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ABSTRACT 

 

Sound Element Spatializer 

 

By 

 

Ryan Michael McGee 

 

 Existing sound spatialization paradigms fail to address the needs of many 

composers and use restraining control methods.  This paper presents Sound Element 

Spatializer (SES), a novel system for the rendering and control of spatial audio.  SES 

provides multiple 3D sound rendering techniques and allows for an arbitrary 

loudspeaker configuration with an arbitrary number of moving sound sources.  Sound 

sources become “spatial sound elements” possessing individual trajectory information 

controlled via the Open Sound Control protocol.  SES operates as a robust, cross-

platform application that can spatialize sound sources from other applications or live 

inputs in real-time.  Also included are novel means for the spatial upmixing of 

sounds.    
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DEFINITION OF TERMS 
 

Digital Audio Workstation (DAW) – popular commercial software packages for 

multi-track recording, editing, mixing, and mastering of audio.  The most common 

include Pro Tools, Ableton Live, Logic, and Digital Performer. 

Sound Element Spatializer (SES) - the spatialization software resulting from this 

project 

Panning Algorithm - any computational method by which sounds are distributed to 

multiple loudspeakers (Ambisonics or Vector-Based Amplitude Panning, for 

example) 
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INTRODUCTION 
 

 Spatialization is a dimension of timbre used to contrast and animate sounds in 

space similar to the use of pitch in the frequency domain.  Spatialization can act to 

clarify dense textures of sounds, perceive greater numbers of simultaneous sound 

elements, or choreograph complex sonic trajectories [17].  Spatialized sound elements 

may reside on Macro, Meso, Sound object, or Micro time scales [16], that is, sound 

elements may consist of entire compositions, organized phrases of sounds, individual 

sound objects, or sound particles at the threshold of human perception.  For effective 

spatialization one must be able to precisely control the trajectories of spatial sound 

elements.  Dramatic effects can be achieved when the movement of sounds is very 

fast- the “whoosh” of a high-speed vehicle driving by or the sounds of several insects 

flying around one’s head, for example.  With computers we can simulate moving 

sound sources beyond the scope of reality.  For instance, one may simulate a violinist 

flying around a room at 100mph or decompose a sound into constituent elements to 

be individually spatialized.  In fact, the visionary composer, Karlheinz Stockhausen, 

listed “the decomposition of sound” and “composition of several layers in space” as 

two of his four criteria for electronic music. 
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Motivation 
 

Much of the motivation for this project began with my needs as a composer 

and frustrations with DAW software when creating my piece, WANTS, in the winter 

of 2009.  Part of the work called for the spatialization of several voices over an 

octaphonic loudspeaker arrangement.  Using popular DAW software, I discovered 

that the included surround sound panners did not support anything beyond a 7.1 

configuration, so, for me, the need to spatialize sound over an arbitrary speaker layout 

was born.  To realize the piece, I also needed to precisely move several simultaneous 

sound sources along separate Fibonacci spiral trajectories.  At the time I 

accomplished this through tedious MATLAB scripting that involved generating eight 

mono sound files for each source.  My MATLAB script implemented distance-based 

amplitude panning [6] with only gain attenuation for distance cue.  For more realistic 

moving sound sources I would need Doppler shift and air absorption filters.   

WANTS also called for sound sources moving at speeds over 50 meters per 

second (100 mph).  I was able to accomplish this using my non-real-time MATLAB 

rendering technique, but I began to wonder if sounds could be moved that quickly in 

real-time without unwanted artifacts.  My following spatialization system prototypes 

in Pure Data and Max/MSP suffered from a “zipper” noise when moving sounds too 

quickly.  I looked at other existing DAW alternatives for spatialization, but found 

each of them lacking with regards to usability, scalability, flexibility, or control. 
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Problem Statement 
 

 Many spatialization techniques remain inaccessible to the average computer 

musician using popular digital audio workstation (DAW) software packages (Logic, 

ProTools, Live, Digital Performer, etc.).  While DAWs do include spatial panning 

interfaces or plug-ins, these panning methods are limited to sounds in a 2-dimensional 

plane and are not scalable to accommodate loudspeaker configurations beyond 

consumer formats such as stereo, quadraphonic, 5.1, 7.1, 10.2, etcetera [11].  DAW 

software packages also lack flexibility with available panning algorithms [11].  In 

fact, most DAWs only implement exactly one form of spatialization rendering, 

usually some variation of vector-based amplitude panning (VBAP) [14] or distance-

based amplitude panning (DBAP) [6].  Unlike VBAP and DBAP, Higher-Order 

Ambisonics (HOA) [2] and wave field synthesis (WFS) [20] techniques use 

soundfield modeling and superposition of wavefronts to provide additional realism 

and depth to spatialized sounds.  Unfortunately, Ambisonics and WFS rendering 

methods are not present in any DAW.   

Most DAW packages do, however, have integrated automation editors for the 

time dependant control of spatialization parameters such as position and distance.  

Yet, the automation of spatialization becomes cumbersome when implementing 

complex geometric (possibly computed or algorithmic) trajectories for sound sources 

or when manipulating the position of several sound sources simultaneously [8].  

Visual artists, on the other hand, are often masters of creating complex spatial 

trajectories, and their tools (Maya, Processing, etc) are extremely capable trajectory 
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editors.  There is a need to link the spatial practices involved in data visualization 

with spatialization in computer music to provide a solution for realizing complex 

sonic trajectories.   

Open Sound Control (OSC) is a network protocol for communication among 

computers and a variety of multimedia devices [24].  To list a few examples, OSC 

messages can be generated from sound synthesis software, visualization software, 

hardware controllers, touch-screen interfaces, and mobile devices.  OSC provides 

massive amounts of flexibility and data capacity over the dated MIDI protocol found 

in all popular DAW software.  For maximum flexibility, sound spatialization should 

be controlled via OSC messages rather than with restricting MIDI based interfaces.  

Project Goals 
 

The goals for this project are stated as follows: 

• Real-time spatialization of an arbitrary number of simultaneous live or 

recorded sound sources over an arbitrary loudspeaker arrangement. 

• Dynamic selection between multiple panning algorithms with distance cue 

including Doppler shift, air absorption, and gain attenuation. 

• High-speed movement of sound sources (over 50 m/s) without “zipper” noise 

artifacts. 

• Flexible, precise control of sound trajectories using the OSC protocol. 

• A standalone application for robustness and ease of compatibility. 

• Provide a means for visual artists to use their work to spatialize sound. 
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RELATED WORK 
 

In response to needs imposed by electroacoustic composers and multi-channel 

venues, a number of novel spatial audio platforms have already emerged.  Of such 

systems the most extensive include BEASTMulch, Zirkonium, Jamoma, and Spat. 

While existing systems do greatly extend the compositional capabilities for 

spatialization well beyond those of DAWs, all lack in at least one area of usability, 

scalability, flexibility, or control.  

Table 1. Features of Current Spatialization Systems 

 

A
rb

itr
ar

y 
Sp

ea
ke

r 
C

on
fig

ur
at

io
ns

 
 A

rb
itr

ar
y 

N
um

be
r 

of
 S

ou
nd

 S
ou

rc
es

 
 D

is
ta

nc
e 

C
ue

 a
nd

 
D

op
pl

er
 S

hi
ft 

 O
SC

 T
ra

je
ct

or
y 

C
on

tro
l 

 M
ul

tip
le

 P
an

ni
ng

 
A

lg
or

ith
m

s 
  S

ta
nd

al
on

e 
A

pp
lic

at
io

n 
 R

ea
l-t

im
e 

DAWs      X  X  

BEASTmulch [23] X X    X  X  X  

Zirkonium [15] X   X   X  X  

Jamoma [11] X X  X  X  X   X  

Spat [5] X X  X   X   X  

ViMiC [10]   X     X  

HoloSpat/HoloEdit [8] X X  X   X   X  

OMPrisma [18] X X  X   X   X  

SSR [1] X  X   X  X   

Granulators [7, 21]  X     X  X  

SES X X X X X X X 
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Zirkonium 
 

 Zirkonium is a program for sound spatialization developed at the Institute for 

Music and Acoustics at the ZKM Center for Art and Media in Karlsruhe, Germany 

[15].  Originally created to control a custom 47-speaker configuration, the program is 

also designed to work with arbitrary loudspeaker environments.  Zirkonium does 

integrate well with a variety of input sources including DAW output and live 

instruments, but the user is limited to 16 simultaneous input sources.  The application 

is able to read position information from OSC messages, but only implements a single 

panning algorithm, VBAP.  The program does not implement Doppler shift or an air 

absorption filter to provide additional distance or motion cue.  Nevertheless, 

Zirkonium is a very useful application and has served as inspiration for this project 

with its support for flexible speaker configurations and OSC control. 

BEASTmulch 
 

 The BEASTmulch System is a software tool for the presentation of 

electroacoustic music over multichannel systems developed at the Electroacoustic 

Music Studios at the University of Birmingham, United Kingdom [23].  The program 

is extremely flexible regarding loudspeaker configuration, panning algorithms, and 

input sources.  However, while there are several different versions of 2D and 3D 

VBAP and Ambisonic panners implemented, there is no option for DBAP.  While 

flexible, the user-interface is a bit cumbersome and may not appeal to the average 

electronic musician trying to begin with spatialization.  There is no direct OSC 
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control of source positions in BEASTmulch either.  It appears one must use another 

application, MotorBEAST, to read and send OSC control data or make use of an 

Ethersense hardware controller to send OSC control data based on haptic sensor 

inputs.  I could not find either the MotorBEAST application or any supporting 

documentation for OSC control online.  Nevertheless, BEASTmulch is a 

comprehensive, highly customizable spatialization environment for experienced 

computer musicians. 

SpatDif 
 

 SpatDIF (Spatial Sound Description Interchange Format) is not a 

spatialization tool, but rather a standardized OSC message format for describing 

spatial audio trajectories between different spatialization platforms [9].  Currently 

SpatDIF is implemented in Jamoma, OMPrisma, and SES.  Additional 

implementations will ease the transfer of sonic trajectory information between various 

spatialization programs and their panning algorithms.  An example OSC message in 

SpatDIF format reads “/SpatDIF/source/3/aed 45.0 -15.0 5.0” meaning that source 

number 3 has an azimuth of 45 degrees, elevation of -15 degrees, and distance of 5 

meters.   

Jamoma 
 

 Jamoma is a Max/MSP based platform for research in new media art and 

interactivity consisting of several parallel development efforts [11].  Several 
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Max/MSP modules for different spatialization techniques (DBAP, Ambisonics, 

VBAP, ViMiC [10]) have been implemented along with distance cue processing that 

takes into account Doppler shift, air absorption, and gain attenuation.  OSC control is 

implemented using SpatDIF format.  Jamoma may be a solution for expert computer 

musicians comfortable with graphical programming in the Max/MSP environment. 

Spat 
 

Spatialisateur (Spat) is a very thorough Max/MSP spatialization suite 

developed at IRCAM dating back to 1991 [5].  Spat implements a variety of panning 

algorithms and is scalable to support an arbitrary number of sources and speakers.  In 

addition to attenuation, time delay, and air absorption, Spat makes use of multi-

channel reverb for distance cue, an extension of John Chowning’s milestone work in 

the seventies [3].  Modules in Spat rely on perceptual rather than technical parameters 

for spatialization.  For example, one may specify the brilliance, vivacity, presence, 

heat, or heaviness of a sound source.  Though, unlike Jamoma, Spat does not utilize a 

simple, standardized OSC trajectory control format.    

Problems With Other Spatialization Systems 
 

This project views dependence on Max/MSP as a major drawback for a 

spatialization framework.  Graphical programming in an environment such as Max or 

OpenMusic should not be a requirement for spatializing audio.  Spatialization systems 

should strive to appeal to the typical DAW user to encourage their usage.  Also, 

systems that rely on their own trajectory editors are seen as lacking.  While it is not 
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expected that typical DAW users should be comfortable programming their own OSC 

control applications, spatialization systems should utilize OSC to encourage the 

development of compatible trajectory controllers by expert users or companies. 

The Granular Synthesis Model 
 

Granular synthesis can serve as a useful model for sound spatialization.  

Granulation involves the time-based decomposition of a sound source into individual 

sound “elements” (also referred to as “grains” or “atoms”) [7].  The composer or 

sound designer can then edit parameters of each element individually with great 

detail.  Some granulation programs already apply an element-based approach to 

spatialization, and “clouds” of sound are created in part by specifying a unique spatial 

position for each sound element [7].  However, most implementations are limited to 

stereo sound, and the precision of positioning is limited to stochastic methods.  

Though, Scott Wilson’s “Spatial Swarm Granulation” is an interesting experiment 

with BEASTmulch that makes use of a Boid distributed behavior model to organize 

spatialized sound grains in 3D [22].  When coupled with a multichannel granulation 

program, SES will allow for the precise positioning of grains or clusters of grains in 

3D space according to any process that outputs OSC messages.   
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DESIGN 
 

Hardware and Software Configuration 
 

 Sound Element Spatializer is currently compiled for Max OSX 10.5 or later.  

Since cross-platform C++ libraries were used for construction, the software can also 

be compiled and run on Linux or Windows systems.  There is no minimum processor 

speed recommended, but higher clock rates support larger numbers of simultaneous 

sources and speakers. 

 Ideally, a spatialization system utilizing SES would distribute the processing 

over three computers.  The first computer would be responsible for running the sound 

generating applications such as a DAW, granulator, or any other audio application.  

The second computer would be responsible for spatialization rendering by running 

SES, and the third computer would send OSC trajectory data to the SES computer 

over the local network. 

Though three computers are ideal, such a configuration is certainly not a 

requirement to run SES.  The sound generation and trajectory computation programs 

may be run simultaneously on the same machine as SES, but it is best to isolate the 

most processor intensive task to a separate computer when possible.  When using 

complex visualizations to compute source positions one may often find that the 

trajectory processing consumes more resources than the sound generation or SES.  In 

that case there should be a dedicated machine to send OSC trajectory messages.  
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When dealing with pre-recorded sound sources the sound generation processing may 

be minor and combined with SES or the trajectory computation.  It may also be 

necessary to isolate trajectory computation when using mobile, touch-screen devices 

to control source positions.  Example hardware configurations are shown in following 

diagrams. 

Figure 1. Distributed Processing with SES Over Three Computers 
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Figure 2. Distributed Processing with SES Over Two Computers 
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Figure 3. SES on a Single Computer 
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Software Design 

 SES consists of several input sources mapped to spatial sound elements 

positioned according to incoming OSC messages from a computer on the same 

network.  Spatial sound elements may either be input channels from the audio input 

device or any number of “derived sources” – a novel feature of SES.  Using derived 

sources the user may create several spatial sound elements from a single input 

channel, a method known as spatial decorrelation or decorrelated upmixing [2].  

There is a graphical user-interface (GUI) to select input/output devices, select input 

sources, create derived sources, manage elements, load and save speaker layouts, and 

choose a spatialization algorithm.  Figure 4 provides and overview of the entire 

software. 
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Figure 4. Abstract Overview of SES Software 
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Implementation 
 

 SES was written in C++ using the Create Signal Library (CSL) [29] for high-

level audio processing and the Jules’ Utility Class Extensions (JUCE) [30] library for 

the user-interface and low-level audio processing.  There is frequent use of the vector 

class from the C++ Standard Template Library, and the SoundTouch [31] library was 

used for adding pitch-shifting functionality to CSL.  Finally, the liblo [32] OSC 

library was used to receive OSC trajectory control messages.   

 CSL already contained a basic framework for spatial audio panning, but many 

modifications and additions to the library were needed to realize this project.  CSL 

contained panning classes for VBAP and HOA.  Both existing panning classes were 

modified to smoothly interpolate their sources between positions so that sources 

could be moved at high speeds without a “zipper” effect from sudden change in the 

amplitude of the speakers.  An additional panning class was created for DBAP, which 

scales very well to irregular speaker layouts.   

 CSL also contained a distance processor that took into account air absorption 

and gain attenuation.  However, to achieve realistic motion simulation it was 

necessary to add time delay for sources by implementing a variable delay line.  

Doppler shift occurs naturally from the time delay when sources move towards or 

away from the listener.  As with the panning in CSL, smooth interpolation was added 

to the distance cue to eliminate unwanted artifacts in the audio when moving sources 

quickly. 
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SES creates spatial sound elements either directly from audio input sources or 

from the software’s novel “derived sources” feature, which currently provides four 

means of spatial upmixing: duplication, spectrum bands, pitch shifting 

(transpositions), and delays.  Duplication is accomplished by repeatedly adding the 

desired number of sources via a code loop in C++.  Sources can be divided into 

several frequency spectrum bands by applying CSL’s Butterworth band-pass filter to 

several copies of the same source and incrementing the center frequency each time.  It 

was necessary to add a new effect class to CSL to achieve real-time pitch shifting of 

sound sources.  The SoundTouch library operates on audio buffers in the new CSL 

PitchShift class to increase or decrease the pitch in increments over a user specified 

range.  CSL’s multi-tap RingBuffer was used to create multiple time delays of a 

single sound. 

 Another novel feature in SES is the ability to instantly “flutter” any element, 

which can increase spatial perception.  Flutter simply applies an individual low 

frequency oscillator (LFO) to the amplitude of each sound element.  The rate of the 

flutter LFO is adjusted by the user in the range of 1hz to 30hz, with 12 to 16hz 

typically being the most effective.  The user can also select the flutter LFO waveform 

to use: sine, square, sawtooth, or triangle.   
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Figure 5.  Creation of Spatial Sound Elements in SES 

 

Audio input sources and derived input sources are instantiated as “spatial 

sources” in CSL.  This project added the ability to control the amplitude of each 

spatial source with a LFO to achieve the “flutter” effect.  The spatial sound elements 

of SES are contained as a STL vector of CSL spatial sources.  The vector class allows 

!""#$#

%&'()*+,-

.(-/-0,1

!""#$#

2'-*,3&/

.(-/-0,1

!""#$#

43+01'51-"

.(-/-0,1

!"#$%$&$'$("$)

*+,$-(

%./0-1$!#234)5$

67

!"#$%$&$'$("$)

+8(9:$;:8!($<=

%./#-%>24)5$

"9(-?2@

!"#$%$&$'$("$)

/A"$%"(:8%>5

!""#.(-/-0,

67(&,,-36#879:1;

2)0<(-#25&3*- %-3)=-"#25&3*-1

2'+,)+(#>+00-3

/B*C+D$E*C+D$"#$C0<8@"%89@5

%)1,+0*-#2)/&(+,53:1;2'-+?-3#8+@5&,

!""#$#

%-(+@-"

.(-/-0,1

!"#$%$&$'$("$)

E2F-=$<=

%./0-1$(8024)5$

@29"%A@

A28#2'+,)+(#25&3*-:1;
;G-(8-F$;"H%A

IF202%(@



  20 

for the dynamic addition and removal of spatial sources, and after the number of 

sources is modified the chosen panning class is updated with the new element vector. 

JUCE was chosen for the user-interface programming because of its use in 

CSL and cross-platform compatibility.  While CSL contains many high-level audio 

processing classes (filters, panning, effects, etc.), JUCE is actually the core of CSL’s 

low-level processing (writing audio buffers to the sound card and device 

management).  Using JUCE, the added complexity of another C++ library was 

avoided and compatibility with Mac, Linux, and Windows systems was ensured.  

JUCE GUI components in SES allow for the dynamic selection of panning algorithm 

and speaker layout used to spatialize all sound elements.   

 Using liblo, SES reads trajectory control messages according to the SpatDIF 

[9] OSC format outlined below.  It is important to note that “sources” in SpatDIF 

are analogous to spatial sound “elements” in SES. 

 “/SpatDIF/source/source number/aed azimuth elevation distance” 

 The combination “aed” indicates that the source will be positioned in terms of 

polar coordinates.  SpatDIF also incorporates Cartesian messages in “xyz” format, but 

these are not used in SES.  The exact message in SES for placing element number 5 at 

an azimuth of 330 degrees, elevation of 25 degrees and distance of 12 meters would 

read: 

 “/SpatDIF/source/5/aed 330 25 12” 

 The azimuth angle ranges from 0 to 360 degrees starting directly in front of 

the listener and measured clockwise.  The elevation ranges from directly below the 
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listener, -90 degrees, to directly above the listener, 90 degrees.  Hence, the elevation 

is fixed at 0 degrees for 2D trajectories.  The distance is assumed to be in meters and 

ranges from 0 to 344.  Since the speed of sound is approximately 344 meters per 

second, a maximum distance of 344 meters meant that a 1 second delay line for each 

source would be sufficient for the time delay component of distance cue.  344 meters 

is also a sufficient maximum distance because sounds are practically silent at that 

distance due to the gain attenuation of distance cue.   
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User Interface 
 

Figure 6. Typical Order of Operations for SES GUI 
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Figure 7. Audio Device Selection in SES 

 

 Next, the user can select the speaker layout editor from the main GUI 

window.  The azimuth, elevation, and radius for each specific loudspeaker can be 

specified and saved to a file for easy loading in the future.  Layouts are saved as 

“.spklyt” files and are plain text for editing outside of SES.  SES will not allow a 

speaker configuration to be loaded if there are not enough available channels on the 

output device.  Figures 8 and 9 show the speaker layout editor and .spklyt file for an 

octaphonic speaker layout. 
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Figure 8. Speaker Layout Editor in SES 

 

Figure 9. Example .spklyt File 

 

 The simple column based text format of .spklyt files allows for easy tweaking 

in a text editor outside of SES, or one may paste the columns into a spreadsheet 

application like Excel for more advanced editing.  The example in Figure 9 

corresponds to the layout in Figure 8.  The first column is the speaker number 

followed by the azimuth, elevation, and distance for each speaker. 
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After the speaker layout is set the software returns to the main window shown 

in Figure 10. 

Figure 10. The SES Main Window 

 

By default the first input from the audio device is mapped to a single element.  

To add more elements, the user can click the “add elements” button on the main 

window, which reveals the window shown in Figure 11.  Alternatively, the user may 

select the “auto map” button, which will automatically map each input channel of the 

audio device to a separate element. 
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Figure 11. Adding Elements in SES 

 

 In the “add elements” window, the source drop-down menu will display all 

available inputs on the current audio input device.  By using a virtual device such as 

Jack or Soundflower one may route the output from DAW software or another audio 

application into SES for real-time spatialization.  Using a hardware input device, one 

may spatialize live audio inputs in real-time.  If one has created an aggregate device 

(a combination of two or more devices) on their system then it is possible to receive 

virtual and hardware inputs simultaneously.  The user can assign a name to each 

element for clearer identification during later editing.  

 Within the “add elements” window, if no derived sources are created then the 

selected input source becomes a single element for spatialization.  However, if the 
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user selects any number of derived sources then that number of elements will be 

created and require individual control for spatialization.  For example, one may 

choose to create 1 duplication, 4 transpositions, 3 spectrum bands, and 2 delays from 

a single sound.  This would bring the total to 10 sources to be spatialized according to 

10 separate OSC control messages.  The main window would update the table of 

elements as seen in Figure 12.  Note that this is a modest example since SES can 

process over 100 elements simultaneously.  The derived sources feature is extremely 

useful when mapping one sound to a large number of trajectory nodes.  Additionally, 

derived sources can be used to create several spatial effects from the amplitude and 

frequency modulations that result from panning and Doppler shift.  

Figure 12. SES Table Demonstrating Derived Sources 

 

As seen in figure 12, the level, flutter rate, and flutter waveform can be 

dynamically controlled for each element.  Traditional mute and solo options are also 

available for monitoring results.  Elements can quickly be removed by selection (as 

with element 1 above) and pressing delete or backspace. 
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Currently, users are able to select between DBAP, VBAP, and HOA panning.  

An implementation of WFS in SES is forthcoming.  The panning algorithm can be 

changed dynamically from the drop down box on the main window.  This allows 

sound artists to quickly experiment with the different panning techniques to find the 

one that best suits their space or composition.  Table 2 briefly summarizes the 

advantages of each panning algorithm. 

Table 2. Features of Panning Algorithms 

 Arbitrary 
Speaker 
Positions 

Arbitrary 
Listener 
Position 

Efficient 
Computation 

Synthesis of 
Wavefronts 

DBAP X X   

VBAP   X   

HOA   X  X 
WFS  X   X 

 

DBAP computes the gain for each speaker based on the distance from the 

sound source to that speaker without considering the position of the listener.  DBAP 

also assumes the every speaker is active all of the time, so while a speaker’s gain may 

be zero, it is still necessary to compute its gain with each position update. Thus, 

DBAP is ideal for irregular speaker layouts and non-fixed listeners, but is not as 

computationally efficient as VBAP, which only needs to compute gains for at most 3 

speakers at any given time.  VBAP simply triangulates the speaker configuration to 

determine the best 3 speakers to represent a source’s position.  However, VBAP 



  29 

works best for hemisphere configurations in which each speaker is equidistant from a 

listener at a central point.   

Unlike DBAP and VBAP, HOA and WFS techniques attempt to physically 

synthesize the wavefronts emitted from a sound source.  These techniques allow for 

sound sources to appear to originate from points closer than any speaker.  While 

HOA is efficient and works with as few as 4 speakers, it works best when the 

speakers are places on the axis of the Cartesian coordinate system.  WFS, on the other 

hand, requires large amounts of speakers (usually at least 16) and computing 

resources.  WFS allows for multiple listeners to perceive the same source, while HOA 

assumes the listener is positioned at a central “sweet spot.”  Though WFS has been 

credited as the most realistic spatial rendering technique by experienced composers 

[2], current real-time implementations are limited to sound in a 2D horizontal plane.  

True 3D WFS has not been perfected and will require even greater hardware and 

computational resources to operate in real-time. 
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Trajectory Control 
 

Spatial sound elements are controlled by OSC messages in SpatDIF format, 

which allows for an extremely broad range of software and hardware controllers.  For 

example, each element may map to the position of a node in a visual flocking 

algorithm, or receive control messages from a touch-screen device such as an iPad or 

iPhone.  The possibilities for trajectory control are virtually limitless, though every 

user of SES is not expected to have the technical knowledge required to code their 

own trajectory controller.  Consequently, there is a need for developers of trajectory 

controllers, editors, and sequencers.  Visual artists may fill this need by simply adding 

SpatDIF OSC output to their code.  I will present some basic trajectory control 

interfaces that are by no means exhaustive of the trajectory control possibilities for 

SES.  The examples presented in Figures 13 through 17 were all coded in the 

Processing environment [33]. 
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Figure 13. A Single Element Trajectory Controller Using the Mouse 

 

 

 Figure 13 shows a very simple trajectory control example.  We see a black dot 

representing an element at an azimuth angle of 41 degrees as measured counter-

clockwise from the listener’s front and at a distance of 3.942 meters from the listener.  

In this example the mouse is clicked and dragged to control the element’s position.  

The OSC message sent from this controller would be:  

“SpatDIF/source/1/aed 41.0 0.0 3.942” 
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Figure 14. A Multiple Element Trajectory Controller Using Boundary Collision 

 

 Figure 14 shows a more complex trajectory controller that utilizes more of 

SES’s power.  We see 20 different colored nodes representing separate spatial sound 

elements.  Each node moves according to a random initial velocity and changes 

directions when colliding with a boundary.  The velocities and boundary restraints are 

controlled dynamically.  The composer many have a broad spatial distribution of 

sounds around the listener as shown above, or may wish to constrain the elements to a 

smaller boundary centered at some point around the listener as shown below. 

Figure 15.  A Bounded Cluster of Spatial Sound Elements 
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 The multiple element controllers shown in Figures 14 and 15 can be extended 

to 3D as shown in Figure 16. 

Figure 16.  3D Multiple Element Trajectory Controller 

 

Beyond simple visualizations of point particles, one may utilize the nodes of a 

more complex, aesthetic visualization to control sound trajectories.  Figure 17 shows 

such an example with the nodes representing each sound highlighted as colored 

circles for clarification.   
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Figure 17.  Complex Visualization Used for Trajectory Control 

 
The work of Visual Artist Reza Ali 

 

Touch surface computers and mobile devices may also serve as trajectory 

controllers.  Often to achieve live spatialization composers will adjust the levels of a 

mixer during the performance of a piece.  While mixer sliders are limited to 1-

dimensional up and down movements, touch surfaces can provide unrestricted 2D 

movements over a large surface (Figure 18).  3D trajectories can be obtained by using 

the gyrometers and accelerometers found in some mobile devices.  Also, devices such 

as the P5 Glove (Figure 19) have the potential to provide 3D OSC trajectory 

coordinates [25]. 
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Figure 18. The Media Arts and Technology Touch Table at UCSB [26] 

  

Figure 19. The P5 Glove [25] 
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APPLICATIONS 

Music 
 

 As mentioned, current DAW systems are heavily lacking support for spatial 

audio.  There is a need for a spatial audio interface that easily integrates with existing 

software familiar to musicians and recording artists.  In addition to electronic and 

computer music is the potential for classical musicians, vocalists, and anyone with an 

analog instrument and microphone have their sound spatialized for live performance. 

Sound Design  
 

 Spatial tremolo and vibrato effects can be heard when moving sounds back 

and forth from the listener due to gain attenuation and Doppler shift in SES 

respectively.  Adding several duplications of the same sound and moving them 

independently leads to a spectral blurring effect.  The faster the motion, the more 

spectral blurring will be heard.  Thus, we can use the speed of sounds to control their 

clarity.  Interesting compositions may be made by exploring the contrast between 

speeding-up sound elements to form a blurred tone and slowing-down the sounds to 

reveal the individual elements.  Using any of the SES’s “derived source” methods to 

create multiple elements from a single sound leads to decorrelated upmixing, the 

process of separating a mono sound into non-similar parts and spatializing the parts 

separately.  Decorrelated upmixing is typically used to convert mono to stereo or 

stereo to a consumer surround-sound format (5.1, 7.1 etc), but SES allows for 

upmixing to an arbitrary number of channels. 
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Doppler FM 
 

 When experimenting with the early prototypes of SES I became interested in 

how quickly I could move sounds.  After implementing Doppler shift I observed the 

modulation of a sound’s frequency components when moving the sound quickly to 

and from the listener, a vibrato-like effect.  By moving the sound back and forth even 

faster I found a new way to achieve FM synthesis using high-speed trajectories.  I call 

this technique Doppler FM.  Just as classic FM synthesis involves the modulation of 

an oscillator’s frequency at rates in the audio domain (roughly greater than 20Hz), 

moving a sound towards and away from a listener over 20 times per second will 

modulate the frequency of the sound due to Doppler shift.  Traditional FM synthesis 

also involves a modulation depth, or how much frequency deviation is applied during 

modulation, which is akin to the speed at which the sound is traveling when using 

Doppler FM.   

For example, consider a listener in the center of a room 10 meters wide and a 

sound with a frequency of 300 Hz.  If the sound is bounded to the room and moves 

towards and away from the listener 20 times per second, then the sound is covering 

10 meters in 0.05 seconds, which corresponds to a speed of 200 meters per second.  

The change in frequency of the sound assuming a stationary listener is given by the 

formula for Doppler shift: 
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where f is the resulting frequency, v is the speed of sound in air (344/ms), vs is the 

speed of the moving sound (positive when moving away from the listener and 

negative when moving towards the listener), and fo is the original frequency of the 

sound. So, for our example the resulting frequency would be (344/(344+200))*300 = 

189.9 Hz when moving away from the listener and (344/(344-200))*300 = 716.7 Hz 

when moving toward the listener.  We can obtain the modulation depth in each case 

by looking at the difference between the original and resulting frequencies, 110.1Hz 

and 416.7 Hz, respectively.   

Figure 18. FM Synthesis and Doppler FM 
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 Further, we see that for sounds with constant velocity the modulating 

oscillator resulting from Doppler FM will resemble a square wave with half a cycle at 

the “moving-towards” modulation depth and the other half at the “moving-away-

from” modulation depth.  To better model classic FM synthesis the moving sound 

should have sinusoidal acceleration and deceleration to and from its maximum 

velocity, resulting in a sinusoidal modulation.  Also, to balance the different 

modulation depths it would also be necessary to have the sound move slower when 

approaching the listener. 

 Doppler FM is essentially an extension of the Leslie speaker effect.  A Leslie 

speaker is a rotating speaker found in Hammond organs.  By physically rotating the 

speaker, the organ is changing the direction of its sound generation spatially to-and-

from the listener, which results in Doppler shift.  One could easily replicate a Leslie 

speaker using SES by having a circular trajectory for a sound element.  The 

advantage to SES is the ability to move the sound source faster, farther, and in more 

trajectory shapes than a mechanically rotating speaker. 
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Multimedia Venues 
 

 Venues for multimedia playback and performance have to potential to benefit 

from SES along with the artists creating works for these venues.  Movie theaters and 

concert venues can position speakers freely and optimally within their space without 

worrying about standardized “surround sound” configurations.  The DBAP 

spatialization method, for instance, responds well to irregular speaker layouts [6].  

Venues also can experiment with various panning algorithms to achieve the best 

possible sound for their space. 

Visualization 
 

 “Adding sound to data visualizations will be like the addition of sound to the 

silent films of the early 20th century.” – Thomas Hermann [4]   

 Many visual artists are unconsciously creating sound spatialization algorithms 

through their visual work.  For example, visual particle systems and flocking 

algorithms work well for sound spatialization.  Visual artists often have a deep 

understanding of the physics behind the motion of moving elements.  Using SES, 

simple OSC message output is all that is needed to transform visualization software 

into an audio trajectory interface.  Considering this novelty, SES should inspire many 

visual artists to experiment with sound and vice-versa.   
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Sonification 
 

 Sonification involves the representation of data with sound to foster 

interpretation.  Just as one reads a graph to discern patterns and movement in data, 

one may listen to a sonification to obtain similar interpretation.  Sonification usually 

relies heavily on the frequency domain (changes in pitch) to convey information.  

However, with advanced sound spatialization techniques one may use the position of 

sounds as an added dimension for data interpretation. 

Like time, space is an objective quality shared between audio and visual 

domains.  While “sound color” (or timbre) and sound brightness may have intuitive 

mappings to visual stimuli, they are subjective, and thus, there is no definitive way to 

map the color or brightness of a sound to visual form.  However, moving a sound 

exactly 15 meters into the distance at an angle of 30 degrees along the azimuth does 

have an objective mapping to a visualization since it is possible to position visual 

stimuli according to such parameters. 
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FUTURE WORK 
 

 The current version of SES stands as a proof-of-concept application and many 

additions are planned for future versions.  First on the list is the addition of WFS to 

the available panning algorithms.  Next, is utilization of multi-core and multi-

processor systems by implementing multithreading in the C++ code.  Since most of 

the processer intense tasks in SES depend on several code loops, multithreading 

should significantly increase performance on systems with more than a single 

processor core.  

 There is much more potential for the user-interface of SES.  Elements should 

be able to be dynamically modified and there should be dynamic controls for the 

parameters of derived sources.  There are also several other means of creating derived 

sources that have not been explored (onset detection, for example). 

 Spatialization rendering could take many more factors into account.  For one, 

reverberation should be added as part of distance cue and possibly even as part of the 

speaker layout editor.  Applying different amounts of reverb to individual speakers 

could help create new virtual spaces in which the sound elements move.  Also, as new 

panning algorithms are invented there will always be consideration for adding them to 

SES.   

 A means for OSC upsampling would be useful when using trajectory 

controllers are not capable of sending position information at audio block rate.  

Currently, the resolution at which controllers can move sounds is limited by the rate 
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at which they send OSC position messages.  For an audio sampling rate of 44.1kHz 

and block size of 512 samples, trajectory messages would need to be sent at least 86 

times per second for seamless panning.  Though SES’s interpolation would prevent 

any artifacts in the sound, the position of the sound will jump between positions 

unless position updates are sent at block rate.  Visualizations, for example, typically 

update 30 times per second, so upsampling by a factor of 3 is required for smooth 

operation with the above audio specifications. 

CONCLUSION 
 

SES provides means for flexible, precise control of spatialization for an 

arbitrary number of sound sources over an arbitrary speaker layout.  Much work has 

been done to remove common limitations found in other systems.  It is my hope that 

the development of a variety of trajectory controllers from visualization software, 

touch-interfaces, and mobile devices will help musicians move towards an organized 

theory of spatial relationships since such a grammar does not currently exist [17].  

SES has aimed to fulfill several needs when working with spatialization, and it is 

desired that composers consider space as significant as any other aspect of timbre. 
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