
UNIVERSITY OF CALIFORNIA

Santa Barbara

Sound Element Spatializer

A project report submitted in partial satisfaction

of the requirements for the degree of

Master of Science

In

Media Arts & Technology

by

Ryan Michael McGee

Committee in charge:

Curtis Roads, Chair

JoAnn Kuchera-Morin

George Legrady

Matthew Wright

December 2010

 2

The project report of Ryan Michael McGee is approved.

 __

 Curtis Roads, Committee Chair

 __

 JoAnn Kuchera-Morin

 __

 George Legrady

 __

 Matthew Wright

December 2010

ABSTRACT

Sound Element Spatializer

By

Ryan Michael McGee

 Existing sound spatialization paradigms fail to address the needs of many

composers and use restraining control methods. This paper presents Sound Element

Spatializer (SES), a novel system for the rendering and control of spatial audio. SES

provides multiple 3D sound rendering techniques and allows for an arbitrary

loudspeaker configuration with an arbitrary number of moving sound sources. Sound

sources become “spatial sound elements” possessing individual trajectory information

controlled via the Open Sound Control protocol. SES operates as a robust, cross-

platform application that can spatialize sound sources from other applications or live

inputs in real-time. Also included are novel means for the spatial upmixing of

sounds.

CONTENTS

DEFINITION OF TERMS ... 1

INTRODUCTION .. 2
Motivation... 3
Problem Statement .. 4
Project Goals... 5

RELATED WORK ... 6
Zirkonium ... 7
BEASTmulch.. 7
SpatDif .. 8
Jamoma ... 8
Spat ... 9
Problems With Other Spatialization Systems... 9
The Granular Synthesis Model ... 10

DESIGN.. 11
Hardware and Software Configuration ... 11
Implementation ... 17
User Interface.. 22
Trajectory Control... 30

APPLICATIONS .. 36
Music .. 36
Sound Design.. 36
Doppler FM... 37
Multimedia Venues... 40
Visualization ... 40
Sonification... 41

FUTURE WORK.. 42

CONCLUSION... 43
REFERENCES ... 44

 1

DEFINITION OF TERMS

Digital Audio Workstation (DAW) – popular commercial software packages for

multi-track recording, editing, mixing, and mastering of audio. The most common

include Pro Tools, Ableton Live, Logic, and Digital Performer.

Sound Element Spatializer (SES) - the spatialization software resulting from this

project

Panning Algorithm - any computational method by which sounds are distributed to

multiple loudspeakers (Ambisonics or Vector-Based Amplitude Panning, for

example)

 2

INTRODUCTION

 Spatialization is a dimension of timbre used to contrast and animate sounds in

space similar to the use of pitch in the frequency domain. Spatialization can act to

clarify dense textures of sounds, perceive greater numbers of simultaneous sound

elements, or choreograph complex sonic trajectories [17]. Spatialized sound elements

may reside on Macro, Meso, Sound object, or Micro time scales [16], that is, sound

elements may consist of entire compositions, organized phrases of sounds, individual

sound objects, or sound particles at the threshold of human perception. For effective

spatialization one must be able to precisely control the trajectories of spatial sound

elements. Dramatic effects can be achieved when the movement of sounds is very

fast- the “whoosh” of a high-speed vehicle driving by or the sounds of several insects

flying around one’s head, for example. With computers we can simulate moving

sound sources beyond the scope of reality. For instance, one may simulate a violinist

flying around a room at 100mph or decompose a sound into constituent elements to

be individually spatialized. In fact, the visionary composer, Karlheinz Stockhausen,

listed “the decomposition of sound” and “composition of several layers in space” as

two of his four criteria for electronic music.

 3

Motivation

Much of the motivation for this project began with my needs as a composer

and frustrations with DAW software when creating my piece, WANTS, in the winter

of 2009. Part of the work called for the spatialization of several voices over an

octaphonic loudspeaker arrangement. Using popular DAW software, I discovered

that the included surround sound panners did not support anything beyond a 7.1

configuration, so, for me, the need to spatialize sound over an arbitrary speaker layout

was born. To realize the piece, I also needed to precisely move several simultaneous

sound sources along separate Fibonacci spiral trajectories. At the time I

accomplished this through tedious MATLAB scripting that involved generating eight

mono sound files for each source. My MATLAB script implemented distance-based

amplitude panning [6] with only gain attenuation for distance cue. For more realistic

moving sound sources I would need Doppler shift and air absorption filters.

WANTS also called for sound sources moving at speeds over 50 meters per

second (100 mph). I was able to accomplish this using my non-real-time MATLAB

rendering technique, but I began to wonder if sounds could be moved that quickly in

real-time without unwanted artifacts. My following spatialization system prototypes

in Pure Data and Max/MSP suffered from a “zipper” noise when moving sounds too

quickly. I looked at other existing DAW alternatives for spatialization, but found

each of them lacking with regards to usability, scalability, flexibility, or control.

 4

Problem Statement

 Many spatialization techniques remain inaccessible to the average computer

musician using popular digital audio workstation (DAW) software packages (Logic,

ProTools, Live, Digital Performer, etc.). While DAWs do include spatial panning

interfaces or plug-ins, these panning methods are limited to sounds in a 2-dimensional

plane and are not scalable to accommodate loudspeaker configurations beyond

consumer formats such as stereo, quadraphonic, 5.1, 7.1, 10.2, etcetera [11]. DAW

software packages also lack flexibility with available panning algorithms [11]. In

fact, most DAWs only implement exactly one form of spatialization rendering,

usually some variation of vector-based amplitude panning (VBAP) [14] or distance-

based amplitude panning (DBAP) [6]. Unlike VBAP and DBAP, Higher-Order

Ambisonics (HOA) [2] and wave field synthesis (WFS) [20] techniques use

soundfield modeling and superposition of wavefronts to provide additional realism

and depth to spatialized sounds. Unfortunately, Ambisonics and WFS rendering

methods are not present in any DAW.

Most DAW packages do, however, have integrated automation editors for the

time dependant control of spatialization parameters such as position and distance.

Yet, the automation of spatialization becomes cumbersome when implementing

complex geometric (possibly computed or algorithmic) trajectories for sound sources

or when manipulating the position of several sound sources simultaneously [8].

Visual artists, on the other hand, are often masters of creating complex spatial

trajectories, and their tools (Maya, Processing, etc) are extremely capable trajectory

 5

editors. There is a need to link the spatial practices involved in data visualization

with spatialization in computer music to provide a solution for realizing complex

sonic trajectories.

Open Sound Control (OSC) is a network protocol for communication among

computers and a variety of multimedia devices [24]. To list a few examples, OSC

messages can be generated from sound synthesis software, visualization software,

hardware controllers, touch-screen interfaces, and mobile devices. OSC provides

massive amounts of flexibility and data capacity over the dated MIDI protocol found

in all popular DAW software. For maximum flexibility, sound spatialization should

be controlled via OSC messages rather than with restricting MIDI based interfaces.

Project Goals

The goals for this project are stated as follows:

• Real-time spatialization of an arbitrary number of simultaneous live or

recorded sound sources over an arbitrary loudspeaker arrangement.

• Dynamic selection between multiple panning algorithms with distance cue

including Doppler shift, air absorption, and gain attenuation.

• High-speed movement of sound sources (over 50 m/s) without “zipper” noise

artifacts.

• Flexible, precise control of sound trajectories using the OSC protocol.

• A standalone application for robustness and ease of compatibility.

• Provide a means for visual artists to use their work to spatialize sound.

 6

RELATED WORK

In response to needs imposed by electroacoustic composers and multi-channel

venues, a number of novel spatial audio platforms have already emerged. Of such

systems the most extensive include BEASTMulch, Zirkonium, Jamoma, and Spat.

While existing systems do greatly extend the compositional capabilities for

spatialization well beyond those of DAWs, all lack in at least one area of usability,

scalability, flexibility, or control.

Table 1. Features of Current Spatialization Systems

A
rb

itr
ar

y
Sp

ea
ke

r
C

on
fig

ur
at

io
ns

 A

rb
itr

ar
y

N
um

be
r

of
 S

ou
nd

 S
ou

rc
es

 D

is
ta

nc
e

C
ue

 a
nd

D

op
pl

er
 S

hi
ft

 O
SC

 T
ra

je
ct

or
y

C
on

tro
l

 M
ul

tip
le

 P
an

ni
ng

A

lg
or

ith
m

s
 S

ta
nd

al
on

e
A

pp
lic

at
io

n
 R

ea
l-t

im
e

DAWs X X

BEASTmulch [23] X X X X X

Zirkonium [15] X X X X

Jamoma [11] X X X X X X

Spat [5] X X X X X

ViMiC [10] X X

HoloSpat/HoloEdit [8] X X X X X

OMPrisma [18] X X X X X

SSR [1] X X X X

Granulators [7, 21] X X X

SES X X X X X X X

 7

Zirkonium

 Zirkonium is a program for sound spatialization developed at the Institute for

Music and Acoustics at the ZKM Center for Art and Media in Karlsruhe, Germany

[15]. Originally created to control a custom 47-speaker configuration, the program is

also designed to work with arbitrary loudspeaker environments. Zirkonium does

integrate well with a variety of input sources including DAW output and live

instruments, but the user is limited to 16 simultaneous input sources. The application

is able to read position information from OSC messages, but only implements a single

panning algorithm, VBAP. The program does not implement Doppler shift or an air

absorption filter to provide additional distance or motion cue. Nevertheless,

Zirkonium is a very useful application and has served as inspiration for this project

with its support for flexible speaker configurations and OSC control.

BEASTmulch

 The BEASTmulch System is a software tool for the presentation of

electroacoustic music over multichannel systems developed at the Electroacoustic

Music Studios at the University of Birmingham, United Kingdom [23]. The program

is extremely flexible regarding loudspeaker configuration, panning algorithms, and

input sources. However, while there are several different versions of 2D and 3D

VBAP and Ambisonic panners implemented, there is no option for DBAP. While

flexible, the user-interface is a bit cumbersome and may not appeal to the average

electronic musician trying to begin with spatialization. There is no direct OSC

 8

control of source positions in BEASTmulch either. It appears one must use another

application, MotorBEAST, to read and send OSC control data or make use of an

Ethersense hardware controller to send OSC control data based on haptic sensor

inputs. I could not find either the MotorBEAST application or any supporting

documentation for OSC control online. Nevertheless, BEASTmulch is a

comprehensive, highly customizable spatialization environment for experienced

computer musicians.

SpatDif

 SpatDIF (Spatial Sound Description Interchange Format) is not a

spatialization tool, but rather a standardized OSC message format for describing

spatial audio trajectories between different spatialization platforms [9]. Currently

SpatDIF is implemented in Jamoma, OMPrisma, and SES. Additional

implementations will ease the transfer of sonic trajectory information between various

spatialization programs and their panning algorithms. An example OSC message in

SpatDIF format reads “/SpatDIF/source/3/aed 45.0 -15.0 5.0” meaning that source

number 3 has an azimuth of 45 degrees, elevation of -15 degrees, and distance of 5

meters.

Jamoma

 Jamoma is a Max/MSP based platform for research in new media art and

interactivity consisting of several parallel development efforts [11]. Several

 9

Max/MSP modules for different spatialization techniques (DBAP, Ambisonics,

VBAP, ViMiC [10]) have been implemented along with distance cue processing that

takes into account Doppler shift, air absorption, and gain attenuation. OSC control is

implemented using SpatDIF format. Jamoma may be a solution for expert computer

musicians comfortable with graphical programming in the Max/MSP environment.

Spat

Spatialisateur (Spat) is a very thorough Max/MSP spatialization suite

developed at IRCAM dating back to 1991 [5]. Spat implements a variety of panning

algorithms and is scalable to support an arbitrary number of sources and speakers. In

addition to attenuation, time delay, and air absorption, Spat makes use of multi-

channel reverb for distance cue, an extension of John Chowning’s milestone work in

the seventies [3]. Modules in Spat rely on perceptual rather than technical parameters

for spatialization. For example, one may specify the brilliance, vivacity, presence,

heat, or heaviness of a sound source. Though, unlike Jamoma, Spat does not utilize a

simple, standardized OSC trajectory control format.

Problems With Other Spatialization Systems

This project views dependence on Max/MSP as a major drawback for a

spatialization framework. Graphical programming in an environment such as Max or

OpenMusic should not be a requirement for spatializing audio. Spatialization systems

should strive to appeal to the typical DAW user to encourage their usage. Also,

systems that rely on their own trajectory editors are seen as lacking. While it is not

 10

expected that typical DAW users should be comfortable programming their own OSC

control applications, spatialization systems should utilize OSC to encourage the

development of compatible trajectory controllers by expert users or companies.

The Granular Synthesis Model

Granular synthesis can serve as a useful model for sound spatialization.

Granulation involves the time-based decomposition of a sound source into individual

sound “elements” (also referred to as “grains” or “atoms”) [7]. The composer or

sound designer can then edit parameters of each element individually with great

detail. Some granulation programs already apply an element-based approach to

spatialization, and “clouds” of sound are created in part by specifying a unique spatial

position for each sound element [7]. However, most implementations are limited to

stereo sound, and the precision of positioning is limited to stochastic methods.

Though, Scott Wilson’s “Spatial Swarm Granulation” is an interesting experiment

with BEASTmulch that makes use of a Boid distributed behavior model to organize

spatialized sound grains in 3D [22]. When coupled with a multichannel granulation

program, SES will allow for the precise positioning of grains or clusters of grains in

3D space according to any process that outputs OSC messages.

 11

DESIGN

Hardware and Software Configuration

 Sound Element Spatializer is currently compiled for Max OSX 10.5 or later.

Since cross-platform C++ libraries were used for construction, the software can also

be compiled and run on Linux or Windows systems. There is no minimum processor

speed recommended, but higher clock rates support larger numbers of simultaneous

sources and speakers.

 Ideally, a spatialization system utilizing SES would distribute the processing

over three computers. The first computer would be responsible for running the sound

generating applications such as a DAW, granulator, or any other audio application.

The second computer would be responsible for spatialization rendering by running

SES, and the third computer would send OSC trajectory data to the SES computer

over the local network.

Though three computers are ideal, such a configuration is certainly not a

requirement to run SES. The sound generation and trajectory computation programs

may be run simultaneously on the same machine as SES, but it is best to isolate the

most processor intensive task to a separate computer when possible. When using

complex visualizations to compute source positions one may often find that the

trajectory processing consumes more resources than the sound generation or SES. In

that case there should be a dedicated machine to send OSC trajectory messages.

 12

When dealing with pre-recorded sound sources the sound generation processing may

be minor and combined with SES or the trajectory computation. It may also be

necessary to isolate trajectory computation when using mobile, touch-screen devices

to control source positions. Example hardware configurations are shown in following

diagrams.

Figure 1. Distributed Processing with SES Over Three Computers

!"#$%#&%'#$%()*+(,"-$./

!"#$%&'&%

0-1%(*!(-/2.*+(,"-$./

()*%+,-./-012

34-#",-5642

'507

3%4.*5)"-$6

',80546#90%:#$54";8#5$2

<9046=>6#8$2

'507

0-1%(*7.4%2.*8

0-1%(*7.4%2.*9

?6"@$=8-184$

:/#;.2$(/<*+(,"-$./

(/*=(>%&.*7.4%2.

A9$"-,9B-596#$2%56"0>C

9#584D-08$2%8507

&'&%E"5="5

&6"#@%:#="5

E&F

 13

Figure 2. Distributed Processing with SES Over Two Computers

Using a virtual audio device such as Jack [27] or Soundflower [28], one may

realize a complete spatialization system with SES on a single computer. The user

routes output from the sound generating application to SES through the virtual audio

device and configures the OSC trajectory controller to use the network address of

localhost (127.0.0.1).

!"#$%&'()*'!+(,-(.-/(,-")'0"1+#,&$

2#*-"'!"#$%&'2++.-%(,-")

!"#$%&'()*+(,-'$%.,/0

2#*-"'3&4-%&

1-*2345(65'3

5$(6&%,"$7'0"1+#,&$'

"$'8"9-.&'3&4-%&

783*(+89(,8-)3$%,-*/:;

8),5'<(/53$%5,/0

!:!

;-$,#(.'2#*-"'3&4-%&

=(/6%-'%>-*)2!-?5'

<-4&'=)+#,>

.+5/,'-)8/%@)3,'*A5),3$

B8/'-4:-)53$

.,/0

C>DEF8'5?8'5%G-))5/,8-)%,-%>5)2%@)4*,%G:())5+3

H*,4*,3

H>G

 14

Figure 3. SES on a Single Computer

All panning algorithms in SES work with as few as 2 speakers and scale to

accommodate any number of speakers, limited only by processing power. Since few

audio devices have more than 16 output channels, it may often be necessary to create

an aggregate device from 2 or more separate audio devices chained together to act as

the final output device connected to the loudspeakers.

!"!

#$%&'()*+,-

!"#$%&'()$*+(,%&-.#(%,/

0)$&'12'(#,/

!%$3

.$/,+01'2+3$4'5&%$6&

45$6*'&*7'-(8!'9#&

:'-8,1#56#&,

2+3$4'!4+/6&'2**1$60,$4)

;<=/*>&5(-"5%'&/*!%$3*

7/08&6,4/9'2**1$60,$4)

?),-5")@5%)'(,/*#%$3

2+3$4'5&%$6&

A5(8"#,*:)B#*+(1-%

5(8*71#56#&*C-1-%

C-%1-%*D25((#",

E7FGH))&#*D'((#$%)'(*%'*7#(8*+(1-%*D25((#",

!$):1&';4<*+,&/'=4/'2+3$4'!4+/6&->'7/08&6,4/9>'0)3'!*0,01?0,$4)

C7D

05I*5",'*J#*&-(*,%&5)K2%*%'*7!7

 15

Software Design

 SES consists of several input sources mapped to spatial sound elements

positioned according to incoming OSC messages from a computer on the same

network. Spatial sound elements may either be input channels from the audio input

device or any number of “derived sources” – a novel feature of SES. Using derived

sources the user may create several spatial sound elements from a single input

channel, a method known as spatial decorrelation or decorrelated upmixing [2].

There is a graphical user-interface (GUI) to select input/output devices, select input

sources, create derived sources, manage elements, load and save speaker layouts, and

choose a spatialization algorithm. Figure 4 provides and overview of the entire

software.

 16

Figure 4. Abstract Overview of SES Software

Spectrum
Bands

Pitch Shift
Transpositions

Duplicate

Spatialization,
Distance Cue, Mixing

- DBAP, VBAP, or HOA

- Time Delay (Doppler), Air
Absorption, Gain Attenuation

- Add/remove, mute/solo, mix,
utter

Speaker Layout

- Custom Loudspeaker Setup

OSC Position Control

- From Software (visual particle
systems, swarming/ocking
algorithms, trajectory drawing,
sonication data)

- From Hardware controllers
(Multi-touch surface computers,
mobile devices, etc.)

Audio Input Device

- Hardware or Virtual
- Single or Aggregate

Derived Sources

Audio Output Device

- Hardware or Virtual
- Single or Aggregate
- Can be the same as input
Device

Single Sources

- Each input channel from
device

Multi-Channel
Output

Spatial
Sound

Elements

Time Delays

 17

Implementation

 SES was written in C++ using the Create Signal Library (CSL) [29] for high-

level audio processing and the Jules’ Utility Class Extensions (JUCE) [30] library for

the user-interface and low-level audio processing. There is frequent use of the vector

class from the C++ Standard Template Library, and the SoundTouch [31] library was

used for adding pitch-shifting functionality to CSL. Finally, the liblo [32] OSC

library was used to receive OSC trajectory control messages.

 CSL already contained a basic framework for spatial audio panning, but many

modifications and additions to the library were needed to realize this project. CSL

contained panning classes for VBAP and HOA. Both existing panning classes were

modified to smoothly interpolate their sources between positions so that sources

could be moved at high speeds without a “zipper” effect from sudden change in the

amplitude of the speakers. An additional panning class was created for DBAP, which

scales very well to irregular speaker layouts.

 CSL also contained a distance processor that took into account air absorption

and gain attenuation. However, to achieve realistic motion simulation it was

necessary to add time delay for sources by implementing a variable delay line.

Doppler shift occurs naturally from the time delay when sources move towards or

away from the listener. As with the panning in CSL, smooth interpolation was added

to the distance cue to eliminate unwanted artifacts in the audio when moving sources

quickly.

 18

SES creates spatial sound elements either directly from audio input sources or

from the software’s novel “derived sources” feature, which currently provides four

means of spatial upmixing: duplication, spectrum bands, pitch shifting

(transpositions), and delays. Duplication is accomplished by repeatedly adding the

desired number of sources via a code loop in C++. Sources can be divided into

several frequency spectrum bands by applying CSL’s Butterworth band-pass filter to

several copies of the same source and incrementing the center frequency each time. It

was necessary to add a new effect class to CSL to achieve real-time pitch shifting of

sound sources. The SoundTouch library operates on audio buffers in the new CSL

PitchShift class to increase or decrease the pitch in increments over a user specified

range. CSL’s multi-tap RingBuffer was used to create multiple time delays of a

single sound.

 Another novel feature in SES is the ability to instantly “flutter” any element,

which can increase spatial perception. Flutter simply applies an individual low

frequency oscillator (LFO) to the amplitude of each sound element. The rate of the

flutter LFO is adjusted by the user in the range of 1hz to 30hz, with 12 to 16hz

typically being the most effective. The user can also select the flutter LFO waveform

to use: sine, square, sawtooth, or triangle.

 19

Figure 5. Creation of Spatial Sound Elements in SES

Audio input sources and derived input sources are instantiated as “spatial

sources” in CSL. This project added the ability to control the amplitude of each

spatial source with a LFO to achieve the “flutter” effect. The spatial sound elements

of SES are contained as a STL vector of CSL spatial sources. The vector class allows

!""#$#

%&'()*+,-

.(-/-0,1

!""#$#

2'-*,3&/

.(-/-0,1

!""#$#

43+01'51-"

.(-/-0,1

!"#$%$&$'$("$)

*+,$-(

%./0-1$!#234)5$

67

!"#$%$&$'$("$)

+8(9:$;:8!($<=

%./#-%>24)5$

"9(-?2@

!"#$%$&$'$("$)

/A"$%"(:8%>5

!""#.(-/-0,

67(&,,-36#879:1;

2)0<(-#25&3*- %-3)=-"#25&3*-1

2'+,)+(#>+00-3

/B*C+D$E*C+D$"#$C0<8@"%89@5

%)1,+0*-#2)/&(+,53:1;2'-+?-3#8+@5&,

!""#$#

%-(+@-"

.(-/-0,1

!"#$%$&$'$("$)

E2F-=$<=

%./0-1$(8024)5$

@29"%A@

A28#2'+,)+(#25&3*-:1;
;G-(8-F$;"H%A

IF202%(@

 20

for the dynamic addition and removal of spatial sources, and after the number of

sources is modified the chosen panning class is updated with the new element vector.

JUCE was chosen for the user-interface programming because of its use in

CSL and cross-platform compatibility. While CSL contains many high-level audio

processing classes (filters, panning, effects, etc.), JUCE is actually the core of CSL’s

low-level processing (writing audio buffers to the sound card and device

management). Using JUCE, the added complexity of another C++ library was

avoided and compatibility with Mac, Linux, and Windows systems was ensured.

JUCE GUI components in SES allow for the dynamic selection of panning algorithm

and speaker layout used to spatialize all sound elements.

 Using liblo, SES reads trajectory control messages according to the SpatDIF

[9] OSC format outlined below. It is important to note that “sources” in SpatDIF

are analogous to spatial sound “elements” in SES.

 “/SpatDIF/source/source number/aed azimuth elevation distance”

 The combination “aed” indicates that the source will be positioned in terms of

polar coordinates. SpatDIF also incorporates Cartesian messages in “xyz” format, but

these are not used in SES. The exact message in SES for placing element number 5 at

an azimuth of 330 degrees, elevation of 25 degrees and distance of 12 meters would

read:

 “/SpatDIF/source/5/aed 330 25 12”

 The azimuth angle ranges from 0 to 360 degrees starting directly in front of

the listener and measured clockwise. The elevation ranges from directly below the

 21

listener, -90 degrees, to directly above the listener, 90 degrees. Hence, the elevation

is fixed at 0 degrees for 2D trajectories. The distance is assumed to be in meters and

ranges from 0 to 344. Since the speed of sound is approximately 344 meters per

second, a maximum distance of 344 meters meant that a 1 second delay line for each

source would be sufficient for the time delay component of distance cue. 344 meters

is also a sufficient maximum distance because sounds are practically silent at that

distance due to the gain attenuation of distance cue.

 22

User Interface

Figure 6. Typical Order of Operations for SES GUI

 Figure 6 shows the typical order of operations within the SES GUI, though

audio devices, speaker layouts, panning algorithm, and elements can all be managed

dynamically after initial setup. The user begins by selecting devices for audio input

and output as seen in Figure 7 below. It is possible to select different devices for

input and output and specify the channels used on each device.

!"#"$%&'()*+&,"-*$"./0

12)&'$%*-"&324(%56(4(%&78122"#/

9+1)&!4"1:";&91<+(%

'))&=#">"2%/

78++/"&?122*2@&'#@+;*%8>

7+2%;+#&A;1B"$%+;*"/&-*1&6!7

C*D*2@&12)&E#(%%";

 23

Figure 7. Audio Device Selection in SES

 Next, the user can select the speaker layout editor from the main GUI

window. The azimuth, elevation, and radius for each specific loudspeaker can be

specified and saved to a file for easy loading in the future. Layouts are saved as

“.spklyt” files and are plain text for editing outside of SES. SES will not allow a

speaker configuration to be loaded if there are not enough available channels on the

output device. Figures 8 and 9 show the speaker layout editor and .spklyt file for an

octaphonic speaker layout.

 24

Figure 8. Speaker Layout Editor in SES

Figure 9. Example .spklyt File

 The simple column based text format of .spklyt files allows for easy tweaking

in a text editor outside of SES, or one may paste the columns into a spreadsheet

application like Excel for more advanced editing. The example in Figure 9

corresponds to the layout in Figure 8. The first column is the speaker number

followed by the azimuth, elevation, and distance for each speaker.

 25

After the speaker layout is set the software returns to the main window shown

in Figure 10.

Figure 10. The SES Main Window

By default the first input from the audio device is mapped to a single element.

To add more elements, the user can click the “add elements” button on the main

window, which reveals the window shown in Figure 11. Alternatively, the user may

select the “auto map” button, which will automatically map each input channel of the

audio device to a separate element.

 26

Figure 11. Adding Elements in SES

 In the “add elements” window, the source drop-down menu will display all

available inputs on the current audio input device. By using a virtual device such as

Jack or Soundflower one may route the output from DAW software or another audio

application into SES for real-time spatialization. Using a hardware input device, one

may spatialize live audio inputs in real-time. If one has created an aggregate device

(a combination of two or more devices) on their system then it is possible to receive

virtual and hardware inputs simultaneously. The user can assign a name to each

element for clearer identification during later editing.

 Within the “add elements” window, if no derived sources are created then the

selected input source becomes a single element for spatialization. However, if the

 27

user selects any number of derived sources then that number of elements will be

created and require individual control for spatialization. For example, one may

choose to create 1 duplication, 4 transpositions, 3 spectrum bands, and 2 delays from

a single sound. This would bring the total to 10 sources to be spatialized according to

10 separate OSC control messages. The main window would update the table of

elements as seen in Figure 12. Note that this is a modest example since SES can

process over 100 elements simultaneously. The derived sources feature is extremely

useful when mapping one sound to a large number of trajectory nodes. Additionally,

derived sources can be used to create several spatial effects from the amplitude and

frequency modulations that result from panning and Doppler shift.

Figure 12. SES Table Demonstrating Derived Sources

As seen in figure 12, the level, flutter rate, and flutter waveform can be

dynamically controlled for each element. Traditional mute and solo options are also

available for monitoring results. Elements can quickly be removed by selection (as

with element 1 above) and pressing delete or backspace.

 28

Currently, users are able to select between DBAP, VBAP, and HOA panning.

An implementation of WFS in SES is forthcoming. The panning algorithm can be

changed dynamically from the drop down box on the main window. This allows

sound artists to quickly experiment with the different panning techniques to find the

one that best suits their space or composition. Table 2 briefly summarizes the

advantages of each panning algorithm.

Table 2. Features of Panning Algorithms

 Arbitrary
Speaker
Positions

Arbitrary
Listener
Position

Efficient
Computation

Synthesis of
Wavefronts

DBAP X X

VBAP X

HOA X X
WFS X X

DBAP computes the gain for each speaker based on the distance from the

sound source to that speaker without considering the position of the listener. DBAP

also assumes the every speaker is active all of the time, so while a speaker’s gain may

be zero, it is still necessary to compute its gain with each position update. Thus,

DBAP is ideal for irregular speaker layouts and non-fixed listeners, but is not as

computationally efficient as VBAP, which only needs to compute gains for at most 3

speakers at any given time. VBAP simply triangulates the speaker configuration to

determine the best 3 speakers to represent a source’s position. However, VBAP

 29

works best for hemisphere configurations in which each speaker is equidistant from a

listener at a central point.

Unlike DBAP and VBAP, HOA and WFS techniques attempt to physically

synthesize the wavefronts emitted from a sound source. These techniques allow for

sound sources to appear to originate from points closer than any speaker. While

HOA is efficient and works with as few as 4 speakers, it works best when the

speakers are places on the axis of the Cartesian coordinate system. WFS, on the other

hand, requires large amounts of speakers (usually at least 16) and computing

resources. WFS allows for multiple listeners to perceive the same source, while HOA

assumes the listener is positioned at a central “sweet spot.” Though WFS has been

credited as the most realistic spatial rendering technique by experienced composers

[2], current real-time implementations are limited to sound in a 2D horizontal plane.

True 3D WFS has not been perfected and will require even greater hardware and

computational resources to operate in real-time.

 30

Trajectory Control

Spatial sound elements are controlled by OSC messages in SpatDIF format,

which allows for an extremely broad range of software and hardware controllers. For

example, each element may map to the position of a node in a visual flocking

algorithm, or receive control messages from a touch-screen device such as an iPad or

iPhone. The possibilities for trajectory control are virtually limitless, though every

user of SES is not expected to have the technical knowledge required to code their

own trajectory controller. Consequently, there is a need for developers of trajectory

controllers, editors, and sequencers. Visual artists may fill this need by simply adding

SpatDIF OSC output to their code. I will present some basic trajectory control

interfaces that are by no means exhaustive of the trajectory control possibilities for

SES. The examples presented in Figures 13 through 17 were all coded in the

Processing environment [33].

 31

Figure 13. A Single Element Trajectory Controller Using the Mouse

 Figure 13 shows a very simple trajectory control example. We see a black dot

representing an element at an azimuth angle of 41 degrees as measured counter-

clockwise from the listener’s front and at a distance of 3.942 meters from the listener.

In this example the mouse is clicked and dragged to control the element’s position.

The OSC message sent from this controller would be:

“SpatDIF/source/1/aed 41.0 0.0 3.942”

 32

Figure 14. A Multiple Element Trajectory Controller Using Boundary Collision

 Figure 14 shows a more complex trajectory controller that utilizes more of

SES’s power. We see 20 different colored nodes representing separate spatial sound

elements. Each node moves according to a random initial velocity and changes

directions when colliding with a boundary. The velocities and boundary restraints are

controlled dynamically. The composer many have a broad spatial distribution of

sounds around the listener as shown above, or may wish to constrain the elements to a

smaller boundary centered at some point around the listener as shown below.

Figure 15. A Bounded Cluster of Spatial Sound Elements

 33

 The multiple element controllers shown in Figures 14 and 15 can be extended

to 3D as shown in Figure 16.

Figure 16. 3D Multiple Element Trajectory Controller

Beyond simple visualizations of point particles, one may utilize the nodes of a

more complex, aesthetic visualization to control sound trajectories. Figure 17 shows

such an example with the nodes representing each sound highlighted as colored

circles for clarification.

 34

Figure 17. Complex Visualization Used for Trajectory Control

The work of Visual Artist Reza Ali

Touch surface computers and mobile devices may also serve as trajectory

controllers. Often to achieve live spatialization composers will adjust the levels of a

mixer during the performance of a piece. While mixer sliders are limited to 1-

dimensional up and down movements, touch surfaces can provide unrestricted 2D

movements over a large surface (Figure 18). 3D trajectories can be obtained by using

the gyrometers and accelerometers found in some mobile devices. Also, devices such

as the P5 Glove (Figure 19) have the potential to provide 3D OSC trajectory

coordinates [25].

 35

Figure 18. The Media Arts and Technology Touch Table at UCSB [26]

Figure 19. The P5 Glove [25]

 36

APPLICATIONS

Music

 As mentioned, current DAW systems are heavily lacking support for spatial

audio. There is a need for a spatial audio interface that easily integrates with existing

software familiar to musicians and recording artists. In addition to electronic and

computer music is the potential for classical musicians, vocalists, and anyone with an

analog instrument and microphone have their sound spatialized for live performance.

Sound Design

 Spatial tremolo and vibrato effects can be heard when moving sounds back

and forth from the listener due to gain attenuation and Doppler shift in SES

respectively. Adding several duplications of the same sound and moving them

independently leads to a spectral blurring effect. The faster the motion, the more

spectral blurring will be heard. Thus, we can use the speed of sounds to control their

clarity. Interesting compositions may be made by exploring the contrast between

speeding-up sound elements to form a blurred tone and slowing-down the sounds to

reveal the individual elements. Using any of the SES’s “derived source” methods to

create multiple elements from a single sound leads to decorrelated upmixing, the

process of separating a mono sound into non-similar parts and spatializing the parts

separately. Decorrelated upmixing is typically used to convert mono to stereo or

stereo to a consumer surround-sound format (5.1, 7.1 etc), but SES allows for

upmixing to an arbitrary number of channels.

 37

Doppler FM

 When experimenting with the early prototypes of SES I became interested in

how quickly I could move sounds. After implementing Doppler shift I observed the

modulation of a sound’s frequency components when moving the sound quickly to

and from the listener, a vibrato-like effect. By moving the sound back and forth even

faster I found a new way to achieve FM synthesis using high-speed trajectories. I call

this technique Doppler FM. Just as classic FM synthesis involves the modulation of

an oscillator’s frequency at rates in the audio domain (roughly greater than 20Hz),

moving a sound towards and away from a listener over 20 times per second will

modulate the frequency of the sound due to Doppler shift. Traditional FM synthesis

also involves a modulation depth, or how much frequency deviation is applied during

modulation, which is akin to the speed at which the sound is traveling when using

Doppler FM.

For example, consider a listener in the center of a room 10 meters wide and a

sound with a frequency of 300 Hz. If the sound is bounded to the room and moves

towards and away from the listener 20 times per second, then the sound is covering

10 meters in 0.05 seconds, which corresponds to a speed of 200 meters per second.

The change in frequency of the sound assuming a stationary listener is given by the

formula for Doppler shift:

 38

where f is the resulting frequency, v is the speed of sound in air (344/ms), vs is the

speed of the moving sound (positive when moving away from the listener and

negative when moving towards the listener), and fo is the original frequency of the

sound. So, for our example the resulting frequency would be (344/(344+200))*300 =

189.9 Hz when moving away from the listener and (344/(344-200))*300 = 716.7 Hz

when moving toward the listener. We can obtain the modulation depth in each case

by looking at the difference between the original and resulting frequencies, 110.1Hz

and 416.7 Hz, respectively.

Figure 18. FM Synthesis and Doppler FM

!"#$%#&'(

!"#$%%&'()

*&))$+),

-)+./+0#1

2

3

!"#$%#&'(

!"#$%%&'()

4(5/%&'$(0,

-)+./+0#1

4(5/%&'$(0,

6+7'8

!"#$%#&'(

9(/05,9(/)#+

3

-)+./+0#1,(:,9(/)#+,

4(;+<+0','(,&05,:)(<,

=$"'+0+)

6$"'&0#+,9(/)#+,

$",4(;$0>,'(,&05,

:)(<,=$"'+0+)

9(/)#+?",

!)$>$0&%

-)+./+0#1

3

@AA,<B"

@AA,,

B

2

2,$:,<(;$0>,'(C&)5,

D,$:,<(;$0>,&C&1

-4,910'8+"$" 6(77%+),-4,910'8+"$"

 39

 Further, we see that for sounds with constant velocity the modulating

oscillator resulting from Doppler FM will resemble a square wave with half a cycle at

the “moving-towards” modulation depth and the other half at the “moving-away-

from” modulation depth. To better model classic FM synthesis the moving sound

should have sinusoidal acceleration and deceleration to and from its maximum

velocity, resulting in a sinusoidal modulation. Also, to balance the different

modulation depths it would also be necessary to have the sound move slower when

approaching the listener.

 Doppler FM is essentially an extension of the Leslie speaker effect. A Leslie

speaker is a rotating speaker found in Hammond organs. By physically rotating the

speaker, the organ is changing the direction of its sound generation spatially to-and-

from the listener, which results in Doppler shift. One could easily replicate a Leslie

speaker using SES by having a circular trajectory for a sound element. The

advantage to SES is the ability to move the sound source faster, farther, and in more

trajectory shapes than a mechanically rotating speaker.

 40

Multimedia Venues

 Venues for multimedia playback and performance have to potential to benefit

from SES along with the artists creating works for these venues. Movie theaters and

concert venues can position speakers freely and optimally within their space without

worrying about standardized “surround sound” configurations. The DBAP

spatialization method, for instance, responds well to irregular speaker layouts [6].

Venues also can experiment with various panning algorithms to achieve the best

possible sound for their space.

Visualization

 “Adding sound to data visualizations will be like the addition of sound to the

silent films of the early 20th century.” – Thomas Hermann [4]

 Many visual artists are unconsciously creating sound spatialization algorithms

through their visual work. For example, visual particle systems and flocking

algorithms work well for sound spatialization. Visual artists often have a deep

understanding of the physics behind the motion of moving elements. Using SES,

simple OSC message output is all that is needed to transform visualization software

into an audio trajectory interface. Considering this novelty, SES should inspire many

visual artists to experiment with sound and vice-versa.

 41

Sonification

 Sonification involves the representation of data with sound to foster

interpretation. Just as one reads a graph to discern patterns and movement in data,

one may listen to a sonification to obtain similar interpretation. Sonification usually

relies heavily on the frequency domain (changes in pitch) to convey information.

However, with advanced sound spatialization techniques one may use the position of

sounds as an added dimension for data interpretation.

Like time, space is an objective quality shared between audio and visual

domains. While “sound color” (or timbre) and sound brightness may have intuitive

mappings to visual stimuli, they are subjective, and thus, there is no definitive way to

map the color or brightness of a sound to visual form. However, moving a sound

exactly 15 meters into the distance at an angle of 30 degrees along the azimuth does

have an objective mapping to a visualization since it is possible to position visual

stimuli according to such parameters.

 42

FUTURE WORK

 The current version of SES stands as a proof-of-concept application and many

additions are planned for future versions. First on the list is the addition of WFS to

the available panning algorithms. Next, is utilization of multi-core and multi-

processor systems by implementing multithreading in the C++ code. Since most of

the processer intense tasks in SES depend on several code loops, multithreading

should significantly increase performance on systems with more than a single

processor core.

 There is much more potential for the user-interface of SES. Elements should

be able to be dynamically modified and there should be dynamic controls for the

parameters of derived sources. There are also several other means of creating derived

sources that have not been explored (onset detection, for example).

 Spatialization rendering could take many more factors into account. For one,

reverberation should be added as part of distance cue and possibly even as part of the

speaker layout editor. Applying different amounts of reverb to individual speakers

could help create new virtual spaces in which the sound elements move. Also, as new

panning algorithms are invented there will always be consideration for adding them to

SES.

 A means for OSC upsampling would be useful when using trajectory

controllers are not capable of sending position information at audio block rate.

Currently, the resolution at which controllers can move sounds is limited by the rate

 43

at which they send OSC position messages. For an audio sampling rate of 44.1kHz

and block size of 512 samples, trajectory messages would need to be sent at least 86

times per second for seamless panning. Though SES’s interpolation would prevent

any artifacts in the sound, the position of the sound will jump between positions

unless position updates are sent at block rate. Visualizations, for example, typically

update 30 times per second, so upsampling by a factor of 3 is required for smooth

operation with the above audio specifications.

CONCLUSION

SES provides means for flexible, precise control of spatialization for an

arbitrary number of sound sources over an arbitrary speaker layout. Much work has

been done to remove common limitations found in other systems. It is my hope that

the development of a variety of trajectory controllers from visualization software,

touch-interfaces, and mobile devices will help musicians move towards an organized

theory of spatial relationships since such a grammar does not currently exist [17].

SES has aimed to fulfill several needs when working with spatialization, and it is

desired that composers consider space as significant as any other aspect of timbre.

 44

REFERENCES

[1] J. Ahrens, M. Geier, and S. Spors, Introduction to the SoundScape Renderer
(SSR), 2010.

[2] M. a J. Baalman, “Spatial Composition Techniques and Sound Spatialisation
Technologies,” Organised Sound, vol. 15, Oct. 2010, pp. 209-218.

[3] J.M. Chowning, “The simulation of moving sound sources,” Computer Music
Journal, 1977, p. 48–52.

[4] T. Hermann, “Taxonomy and Definitions for Sonification and Auditory
Display,” Proc. of the 14th ICAD, Paris, 2008.

[5] J.-M. Jot and O. Warusfel, “Spat~: A Spatial Audio Processor for Musicians
and Sound Engineers.”

[6] T. Lossius, P. Baltazar, and T. de La Hogue, “DBAP-Distance-Based
Amplitude Panning,” Proceedings of 2009 International Computer Music
Conference, Montreal, Canada, 2009.

[7] A. McLeran, C. Roads, B.L. Sturm, and J.J. Shynk, “Granular sound
spatialization using dictionary-based methods,” Proceedings of the 5th Sound
and Music Computing Conference, Berlin, Germany, 2008.

[8] J. Nixdorf and D. Gerhard, “Real-time sound source spatialization as used in
Challenging Bodies: implementation and performance,” Proceedings of the
2006 conference on New interfaces for musical expression, IRCAM—Centre
Pompidou, 2006, p. 318–321.

[9] N. Peters, S. Ferguson, and S. McAdams, “Towards a Spatial Sound
Description Interchange Format (SpatDIF),” Canadian Acoustics, vol. 35,
2007, p. 64–65.

[10] N. Peters, T. Matthews, J. Braasch, and S. McAdams, “Spatial sound rendering
in Max/MSP with ViMiC,” Proceedings of the 2008 International Computer
Music Conference, 2008.

[11] N. Petersa, T. Lossiusb, J. Schacherc, P. Baltazard, C. Bascoue, and T. Placef,
“A stratified approach for sound spatialization,” Proceedings of 6th Sound and
Music Computing Conference, 2009.

[12] S.T. Pope, “Interchange Formats for Spatial Audio,” Proceedings of the 2008
International Computer Music Conference, 2008.

[13] S.T. Pope, Audio in the UCSB CNSI AlloSphere, 2005.
http://www.create.ucsb.edu/~stp/AlloSphereAudio_01.pdf

[14] V. Pulkki, “Virtual sound source positioning using vector base amplitude
panning,” Journal of the Audio Engineering Society, vol. 45, 1997, p. 456–466.

[15] C. Ramakrishnan, “Zirkonium.”
http://ima.zkm.de/~cramakri/zirkonium/ZirkoniumManual.pdf

[16] C. Roads, “The Nature of Sound,” Composing Electronic Music, Oxford
University Press, 2010. (draft, publication forthcoming)

 45

[17] C. Roads, “Articulating Space,” Composing Electronic Music, Oxford
University Press, 2010. (draft, publication forthcoming)

[18] M. Schumacher and J. Bresson, “Spatial Sound Synthesis in Computer-Aided
Composition,” Organised Sound, vol. 15, Oct. 2010, pp. 271-289.

[19] A. Sontacchi and R. Höldrich, “Getting Mixed Up With WFS, VBAP, HOA,
TRM…’ from Acronymic Cacophony to a Generalized Rendering Toolbox,”
DEGA Wave Field Synthesis Workshop, 2007.

[20] S. Spors, R. Rabenstein, and J. Ahrens, “The theory of wave field synthesis
revisited,” 124th AES Convention, 2008.

[21] B. Sturm, C. Roads, A. McLeran, and J. Shynk, “Analysis, Visualization, and
Transformation of Audio Signals Using Dictionary-based Methods,” Journal
of New Music Research, vol. 38, Dec. 2009, pp. 325-341.

[22] S. Wilson, “Spatial Swarm Granulation,” Proceedings of the 2008
International Computer Music Conference, SARC, ICMA, 2008, pp. 4-7.

[23] S. Wilson and J. Harrison, “Rethinking the BEAST: Recent developments in
multichannel composition at Birmingham ElectroAcoustic Sound Theatre,”
Organised Sound, vol. 15, Oct. 2010, pp. 239-250.

[24] “Introduction to OSC.” http://opensoundcontrol.org/introduction-osc
[25] “P5 Glove.” http://www.vrealities.com/P5.html
[26] “MAT 200C Student Projects,” 2010. http://mat.ucsb.edu/~ryan/200C_site/
[27] “Jack OS X.” http://www.jackosx.com/
[28] “Soundflower.” http://cycling74.com/products/soundflower/
[29] “CREATE Signal Library.” http://fastlabinc.com/CSL/
[30] “Raw Material Software.” http://www.rawmaterialsoftware.com/juce.php
[31] “SoundTouch Sound Processing Library.” http://www.surina.net/soundtouch/
[32] “liblo: Lightweight OSC implementation.” http://liblo.sourceforge.net/
[33] “Processing.” http://processing.org/

