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ABSTRACT 

 
Aether 

Real-time Recovery and Visualization of Deleted Tweets 

by 

Pehr Lorand Hovey 

 

 Aether is an exploration of the irrevocability of speech in online social networks. 

Just seconds after posting something online it has likely been disseminated to dozens 

of people and definitely been archived by an unknowable number of automated 

systems. Though a delete button may provide solace to those having second 

thoughts, in reality it is a façade—you can never truly take something back online. 

And yet, people around the world are constantly changing and removing things they 

have said, altering their online image. 

 Aether investigates this phenomenon of online self-erasure by capturing and 

visualizing deleted Twitter updates in real-time. Whereas people might hope that 

their deletions go unnoticed, Aether amplifies and dissects the act for the public to 

see. 

 Aether is comprised of a central data processing server and multiple client 

applications that interact with the server using Open Sound Control (OSC). The 

Ruby server continuously processes the Twitter Stream API in a multi-stage pipeline. 

The system stores all tweets in a local Memcached instance. Deletion notices in the 

API stream are crosschecked with the archive to recover the data that has been 

deleted from the public API. Deleted statuses are pushed to visualization clients in 

real-time. Clients can be developed on any platform that can communicate using 

OSC. The visualizations prepared for this project were written in Java using the 

Processing framework. In practice the system is capable of recovering several 

deleted tweets per minute, within seconds of the user deleting it. 
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1 Introduction 
 

Aether is an exploration of the irrevocability of speech in online social networks. 

Just seconds after posting something online it has likely been disseminated to dozens 

of people and definitely been archived by an unknowable number of automated 

systems. Though a delete button may provide solace to those having second 

thoughts, in reality it is a façade—you can never truly take something back online. 

And yet, people around the world are constantly changing and removing things they 

have said, altering their online image.  

 Aether investigates this phenomenon of online self-erasure by capturing and 

visualizing deleted Twitter updates in real-time. Whereas people might hope that 

their deletions go unnoticed, Aether amplifies and dissects the act for the public to 

see. Though the original tweet was publicly available, deleting it may seem more 

like a private act expressed between the user and social network. When unseen 

systems capitalize on this event it questions our understanding of public and private 

space online and how much control we really have over our online identity. 

 Twitter presents a new and interesting opportunity for multimedia artists to 

explore communication at a global scale. Since starting in 2006, this “micro-

blogging” service has exploded in size. Twitter users send 50 million tweets (status 

updates) per day, many of which also include precise geolocation information. 

Though status updates are limited to 140 characters, they come with a wealth of 

other metadata ready to be examined and visualized by today’s digital artists and 

researchers. These updates are often personal in nature and can be a useful gateway 

into examining the human condition in the 21st century.  

 Another benefit for multimedia artists is the low barrier to entry for participating 

in Twitter. The service is free and provides a standard web interface. Mobile tweets 

can be sent using standard mobile text messaging (SMS) as well as rich-client 

applications on internet-enabled mobile platforms like iPhone, Blackberry and 

Android. Using Twitter in an installation piece means that the artist can elicit 
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audience participation without requiring the development of one-off mobile 

applications that may be platform dependent. Instead users can simply send a tweet 

using the software they may already be familiar with. 

1.1. Problem Statement 
Data permanence on the Internet is a core topic explored by Aether. We are prolific 

creators of social content that has often has a very timely component---talking about 

what we are doing, expressing our current emotions. As new events and postings are 

published the old ones fade away into history. We do not often think about the fact 

our data is likely retained forever by the social networks we have interacted with. 

Unlike physically written words that we might be able to definitively destroy, it is 

effectively impossible to truly erase something that has diffused into the cloud of the 

Internet. 

 Surveillance is another theme touched on by Aether. Users do not realize that 

they are being observed by a remote system such as this one. While millions of 

people allow their Twitter updates to be public, they likely do not expect anyone 

beyond their friends to be actively viewing them. They consider their social network 

of followers as a semi-private space inside the otherwise very public Twitter 

ecosystem. The boundary of public and private space online, explored by artists such 

as Lisa Jevbratt [1], is ripe for discussion. Twitter estimates that there are over 

100,000 third party applications accessing their API, which begs the question: would 

people say the same things if they knew they were being automatically watched and 

archived by entities other than their followers?  

 Twitter is considered by many to facilitate peer-to-peer conversation beyond the 

original idea of one-way microblogging and status updates. With this interaction 

paradigm comes concepts borrowed from traditional human conversation. People 

may be concerned with their public image and carefully groom their profile to ensure 

it projects the right message. In Twitter, as in real conversation, you can’t truly take 

something back after you have said it—but it doesn’t stop people from trying.  
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1.2. Relevance of the Research 
Current academic research on Twitter and social networks in general primarily 

focuses on how users interact with others and what types of things they say. Not 

much has been done with the question of why people delete things after they have 

been published. Aether takes on this question while engaging other social aspects 

that have been mapped to the online space such as issues of privacy expectations. 

 On the technical side, Aether represents research into methods for high-volume 

real-time data acquisition and processing. It tests various methods for implementing 

a multi-stage pipeline and dealing with a never-ending data stream. The client-server 

setup of separating the data gathering components from the end product provides an 

example for other similar systems that need to have independent components 

situated on multiple networks. 

 

2. Related Work 
This project operates in both the technical and social realms and has influences and 

parallels in multiple fields. Though Twitter is the medium for data acquisition, the 

core principal of Aether is examining people and their actions online. While there 

has been much research focused on online publishing, not much has been said about 

online self-erasure and the implications of people regretting what they said online. 

2.1. Human Condition Online  

The explosion of online publishing and social interaction has produced works that 

look at a broad spectrum of emotions online. We Feel Fine [1] acts as a barometer of 

people expressing feelings online. It regularly scrapes thousands of blogs from 

around the world and looks for people expressing their feelings. The resulting data is 

presented in six separate visual forms that provide detailed breakdowns on the types 

of emotions being expressed. There is also an API that allows others to create works 

using their data. 
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 Deleting a tweet can be considered an implicit expression of regret. Secret 

Regrets [2] posts user-submitted regrets in a blog format. PostSecret [3] publishes 

pictures of user-submitted secrets, usually in the form of anonymous postcards sent 

through the mail. While the content and tone varies widely, many of the published 

cards consist of an admission of something the sender regrets in some fashion. 

 REGRETS [5] by Mulfinger and Budgett is a multi-year project that asks people 

to anonymously submit short descriptions of things that they regret. The project 

initially solicited input from physical booths and mobile computing platforms that 

went directly to people. The website continues to accept new input and serves as an 

ever-growing archive of regret around the world. REGRETS approaches this subject 

by focusing on specific, quantifiable regret as vocalized by the feeler. Aether takes a 

different angle by looking at implicit examples of regret (people going back and 

erasing something they said), and leaves it to the viewer to decide what the person 

was regretting. Unlike REGRETS, the subjects do not realize their actions are being 

recorded which may avoid response-bias at the cost of less precision since we can 

only infer what their thinking may be. 

2.2. Research on Twitter 

Twitter has attracted many researchers in the humanities and social sciences eager to 

discover new insights into how people interact online. Much of this research has 

focused on why people choose to use Twitter, and how they interact with other users 

of the system.  

 Why we twitter: understanding microblogging usage and communities [5] is a 

paper written just one year after Twitter started that uses social network analysis to 

estimate user intention. Huberman et al. took social network analysis further by 

looking at the follower vs. friend ratio as a predictor of user behavior [6]. The paper 

particularly examined how certain subsets of users’ social networks matter more than 

their network as a whole when it comes to posting behavior. Other research has 

investigated conversation and collaboration on Twitter, including the use of the ‘@’ 
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symbol to denote a screen name [7]. They reveal how people use Twitter for 

conversations and to what extent the current design of Twitter may hamper true 

collaboration. 

2.3. Saving Online Data 

Aether can be considered an archive of Twitter data with a real-time reactionary 

component. Archiving online material is as old as the Internet itself. Internet search 

engines function by crawling the web and storing copies of webpages in vast 

databases to be retrieved later. Though search engines like Google have recently 

begun to provide some ‘real-time’ results, most search engine data is hours if not 

days old.  

 Many search engines allow users to view a cached copy of each page, usually 

corresponding to the most recent version the engine has seen. Search engines tacitly 

acknowledge that their data is likely ‘stale’ and that the page may have changed or 

been removed since it was indexed. There is no declaration of which pages are in 

fact deleted from the public view, but the pages will usually disappear from the 

search engine index over time. Oftentimes items that have been recently deleted or 

hidden can still be viewed by browsing a cached version of the page if it is still in the 

search index. 

 Unlike most search engines, the Internet Archive [9] provides multiple historical 

snapshots for most websites, allowing users to observe how a website looked at 

specific points in time. Their goal is to create complete snapshots of the web and 

their data is often not available online until months after it has been acquired. 

 Twitter provides their own search service, making old tweet data available to the 

public. This service has a historical limit of roughly two weeks and they specifically 

remove deleted tweets from their index, though they almost certainly maintain a 

permanent copy internally. The United States Library of Congress has also recently 

announced [9] that they are archiving every tweet, including historical data going 
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back to Twitter’s nascence in 2006. While they will likely provide interface tools for 

the data, it remains to be seen if they will make deleted tweets available.  

 Tweleted [10] was a service that exploited a former bug in Twitter’s systems to 

find deleted tweets for a specific user, entered on the website. Sometimes deleted 

tweets were not removed from the search API so they would turn up in a comparison 

with the regular lookup API. Twitter has since fixed the issue and the service no 

longer works. 

 In some sense, we are all temporary archivers of online data since our web 

browsers store temporary copies of every visited webpage in a cache on disk. For 

some users, cache clearing is infrequent and they can build up a large collection of 

outdated webpages.  

2.4. Software for Data Aggregation & Visualization 

Aether does not intend to dictate a fully new visualization framework or data 

processing paradigm but the development of the visualizations was inspired by other 

work in the field. Several software systems have been created to facilitate 

generalized data processing and visualization, especially in the area of aggregation 

of large datasets. 

 Yahoo! Pipes [11] is a novel web interface that uses a visual programming 

environment to facilitate data manipulation. Users can connect many operations and 

data sources together to get their desired composite dataset. This data can then be 

exported in various formats including JSON and XML. It is especially useful for 

people not comfortable with more traditional programming. Unlike Aether, the data 

becomes available as a complete set after the pipe is run, not as a continuous stream. 

 The Manyeyes portal [12] from IBM is a collection of online data aggregation 

and analysis tools that allow anyone to upload a dataset (or use some existing data) 

and explore it with many different visualization tools.  

 Behaviorism is a cross-platform C++ framework by Angus Forbes [13] that 

provides several services to support real-time information visualization. It uses a 
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scene graph, data graph and timing graph to give the developer control over every 

aspect of a complex dynamic visualization piece.  

 Prefuse [1] is a Java library that provides tools for creating interactive data 

visualizations. It provides several data structures for storing and searching the data as 

well as several different kinds of data plots and filters to transform the data and the 

visual presentation. Prefuse Flare is a recent Flash implementation of the same 

concept. 

 

3. Recovering Deleted TweetsTwitter API Overview 
Twitter is one of many web services that provide a free Application Programming 

Interface (API). An API is a set of specific methods or commands that allow other 

developers access to their data. The Twitter API allows authenticated third parties to 

retrieve tweet and user data as well as send new tweets. Twitter provides three 

(currently separate) APIs that each serve a distinct purpose. Each API makes data 

available in JSON (JavaScript Object Notation), XML and sometimes RSS Atom 

format, depending on the particular method.  

 The Twitter Search API allows you to search for tweets containing specific 

keywords. Additional parameters allow you to specify a geographic region 

(expressed as a radius around a latitude & longitude point), a date range and the 

number of results to return.  

 The Twitter REST API is the main interface for enquiring about specific users 

and tweets. REST stands for REpresentational State Transfer and is a design 

paradigm that specifies how to structure the methods of a web-service API. This 

interface has methods for retrieving all data for a specific user as well as their most 

recent tweets and the tweets on their timeline (what they would see in their personal 

Twitter client). Applications can also send and delete tweets on behalf of a user, 

provided they have the proper password. 

 The Twitter Streaming API is the newest and most groundbreaking interface. It 

takes advantage of long-lived HTTP connections to send real-time data for a 
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potentially unlimited amount of time. Once connected, tweets come streaming at you 

until you manually disconnect. The full Twitter stream (dubbed the Firehose) is only 

available to large-scale “partners” such as Google or the Library of Congress but the 

sampled stream still provides an avalanche of data. The publicly available stream is 

said to contain a uniform 1/20th sample of all tweets [15]. This interface provides 

parameters to filter by keyword or by a specific group of users. This API is the most 

difficult to use efficiently since it involves maintaining a potentially unreliable 

connection and processing data in real-time as it arrives. If data is not processed fast 

enough, Twitter reserves the right to terminate the connection. 

 Aether uses the Streaming API to get real-time tweet data and deletion notices. 

The REST API is used to look up additional information about a user. 

3.2. Metrics for Understanding Deleted Tweets 
Twitter provides a wealth of metadata with each tweet that is a useful starting point 

for investigation of the deletion event. Additional metrics can be derived from the 

provided data to allow for even more in-depth analysis. Some metrics are useful for 

quantitative evaluations while others are more useful for conveying general 

information about the subjects in question.  

 Below is a summary of the principal items examined by Aether.  

 Context: A tweet is not necessarily an island --- it might be part of a larger 

conversation. When the deleted item is placed into conversational context it can 

sometimes be quite obvious why it was deleted (such as in the case of a typo, with a 

corrected version re-sent immediately). Whereas a single tweet may not seem that 

interesting, viewing more elements of a persons conversation at once can provide a 

fascinating window into their lives. When a tweet is recovered, Aether retrieves a 

few tweets sent by this person before and after the deleted one from the Twitter 

REST API in order to provide context.  

 Hashtags & Mentions: Hashtags are folksonomic markers used to self-

categorize tweets based on content. This allows anyone with similar interests to 

easily find the tweet alongside all others with the same tag. Most hashtag usage is 
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ephemeral and subject to ambiguity (the same tag meaning multiple things) or 

fragmentation (multiple different tags for the same thing) but some research has 

looked into using them for more powerful semantic applications [18].  

 Technically, a hashtag is any text without spaces, preceded by a “#” symbol. 

They are often used to tag a tweet about a specific timely event, such as The Oscars 

(#oscars) or a particular concert (#okgomay222010 ). The presence of one or more 

hashtags in a tweet would suggest that this person was engaging in a global 

conversation beyond their close circle of followers. In effect, they amplified their 

voice prior to deleting what they said.  

 Mentions are a way of tagging a specific user by prefixing their screen name with 

the ‘@’ symbol. On most twitter clients there is a column or view that automatically 

displays other people’s tweets that mention you. Mentioning users is primarily how 

people engage in a conversation directly with one or more people. Deleting a tweet 

with a mention in it is the equivalent of trying to take back something that was said 

face-to-face in real life, though there is no guarantee that the other person saw the 

mention.  

 Followers_count & friends_count: The number of followers is useful since it is 

the number of people that will immediately receive any tweet sent, prior to it being 

deleted (though no guarantee they will see it before it is deleted). Follower counts 

are also interesting because the number is out of direct control of the user—other 

people have to voluntarily follow them and can always un-follow them, driving the 

number down. Friends are the people this user is following. Some researchers have 

looked beyond raw counts to see how the ratio of followers to friends may be a 

predictor for user behavior on Twitter [8] and spam detection [19]. 

 Lifetime: The length of time that a tweet was available for the world to see 

before it was deleted is an interesting metric because it alludes to the (unknowable) 

amount of people that may have seen it before it was rescinded. Longer lifetimes 

suggest that more compelling reasons than fixing a simple typo that could have been 

seen immediately. 
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 Location: Twitter users can enter their physical location to be displayed on their 

profile, though there is no requirement for accuracy or even that it be a real place. 

Unlike Twitter’s tweet geotagging features, this location typically refers to a 

hometown or other regional designation. The location is geocoded to precise latitude 

and longitude using Google Maps geocoder service when possible. 

 Source: The specific software used to post the message to Twitter can be used to 

estimate if they were at a desktop computer or using a mobile device. 

 Time sent, time deleted: The creation time is recorded from the initial tweet 

data (reported in UTC time). The deletion time is recorded when the deletion notice 

is received, also in UTC time. Times can be converted to user’s local time zone by 

using the UTC offset. 

 Typo text: The Levenshtein edit distance formula[18] is used to compare the 

tweet to the set of other tweets that were sent by this user before and after this one. If 

the distance is low (<5) for any of the tests then it is likely the deleted tweet was 

considered a typo. The tweet that replaced this one is retained for analysis. 

 User description: The self-reported “about me” section is useful to humanize 

them and get a sense of their writing style.  

 UTC Offset: The time difference (in seconds) between the user’s local time and 

UTC / Greenwich Mean Time is used to estimate the user’s current time zone.  

 Word Frequencies: Counts of how many times every word has been seen in all 

deleted tweets are useful to see if a tweet is similar in content to other tweets that 

have been deleted. 

 Additional data beyond what is described above is retained to round out the 

visualizations and facilitate experimentation with the data. A detailed rundown of all 

data is in the Appendix. 

3.3. Designing a Data Gathering Framework 
The data-gathering portion of Aether consists of a long-running software system 

written in the Ruby [17] programming language. Ruby is known for its “natural” 

programming style and the brevity of its code. Ruby also strives for general cross-
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platform compatibility and can run on most modern operating systems. There are 

many implementations of the Ruby language including one that runs on the Java 

Virtual Machine (JRuby) and one by Microsoft that can run in a web browser 

(IronRuby). The “standard” implementation is called Matz’s Ruby Interpreter (MRI). 

The current stable version of MRI is 1.9.1 while the 1.8 branch is still widely used 

and supported. Aether was developed on MRI 1.9.1. 

 The Aether server has the joint duty of continuously gathering and storing new 

data while also serving data to multiple visualization clients, a structure that requires 

concurrent programming. Data is shuffled through multiple steps in a modular 

pipeline that all execute in parallel. Each stage runs as a completely separate Ruby 

process and communicates using Distributed Ruby (DRb) [19], a core Ruby 

component that allows any Ruby object to be shared over the network. In theory 

each stage could run on a separate computer, though for simplicity they are all run 

together on the same testing server.  

 The Aether pipeline consists of three primary stages: Grab, Retrieve and React. 

These stages operate in Producer/Consumer relationships where each stage produces 

data that is consumed by the next stage in line. Stages receive data via a push 

paradigm whereby the producing stage remotely populates the target stage’s input 

queue, rather than a poll method where the target stage would periodically check 

upstream for new data.   

 Unlike some Producer/Consumer systems, there is no way for a consumer to tell 

the initial producer, Twitter, to temporarily pause data production in the event that 

the consumer cannot keep up. Moreover, the volume of data coming into the system 

is not constant and may include temporary spikes that must be accounted for to avoid 

data loss. Thus it is imperative that each stage process data as fast as possible to 

avoid losing data. Each stage must process different volumes of data with the input 

volume generally decreasing in later stages as unneeded data is discarded. Figure 1 

shows the data flow in the Aether server with sample volumes from a thirty minute 

test run at mid-day.  
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Figure 1: Aether server data flow 
 

3.3.1. Grab: receiving and storing Tweets & Users 

The Grab stage operates the connection to the Twitter streaming API. Each line of 

data initially arrives as a raw string of characters that must be converted into a usable 

data structure. Aether requests data in JSON format since it is less verbose than 

XML, saving bandwidth and memory resources.  Twitter currently sends two types 

of data through the streaming API: status objects and deletion notices. 

 Deletion notices contain the id of the status that was deleted as well as the id of 

the sending user.  

 
{:delete=>{:status=>{:user_id=>69114405, :id=>8408482002}}} 

Figure 2: Sample Twitter deletion notice (JSON) 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All delete notices are immediately forwarded to the Retrieve stage for further 

processing.  

 Each status object contains metadata for the status update as well as information 

regarding the sending user. An excerpt of a typical status object is in Figure 3. 

 
{ 
"id": 13094530000, 
"text": "Ok back not getting too bad. Hopefully I'll get some sleep.", 
"created_at": "Thu Apr 29 22:53:35 +0000 2010", 
    "source": "<a href=\"http://ubertwitter.com\" 
rel=\"nofollow\">UberTwitter</a>", 
    "user": { 
      "friends_count": 127, 
      "lang": "en", 
      "created_at": "Thu Nov 20 02:36:19 +0000 2008", 
      "statuses_count": 7038, 
      "time_zone": "Edinburgh", 
      "profile_link_color": "0000ff", 
      "geo_enabled": true, 
      "followers_count": 63, 
      "location": "Anywhere you are!!", 
      "screen_name": "fifinoir", 
      "name": "fiona", 
      "id": 17502304, 
      "utc_offset": 0, 
    }} 

Figure 3: Excerpt from Twitter status object (JSON) 
 

An important function of the Grab stage is to discard statuses we are not interested 

in to save resources. Subsequent stages in the pipeline may perform computationally 

expensive processes on each status so it is imperative to minimize the amount of 

work to be done and not lose desirable data due to buffer overflows. Each status 

object is run through a special skip function that determines if we should discard it or 

pass it on to later stages. 

 The criteria for skipping a status depend on the scope of the project and the 

intended uses of the resulting data. It is also important to minimize the complexity of 

the skip function since it will be executed more than any other processing function in 

the data pipeline. More specific and intensive tests can be deferred to later stages that 

process comparatively fewer data objects. The skip function has been shown in 

practice to discard as much as 60% of the data, saving considerable resources. 
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Automatically discarding data can be risky depending on the application 

requirements so it is important to choose the skip criteria carefully. Details on the 

assumptions underlying the skip function criteria are presented in the Design 

Assumptions section.  

 All statuses that pass the skip test are stored in the local memcache instance for 

later retrieval, keyed to the unique tweet id.  

3.3.2. Retrieve: Looking Back into the Archive 

Deletion notices are consumed by the Retrieve stage. The memcache is checked for 

the tweet id provided in the deletion notice. If successful, the tweet and 

accompanying User are retrieved for further processing. If the tweet was not found, 

the delete notice is put into a special queue to be tried again one or more times in the 

future. This is important because Twitter states that sometimes a delete notice may 

arrive before the status does, and there is also the chance that the status has been 

received but not saved yet.  

 This stage is able to perform computationally complex data processing 

operations since the maximum throughput is orders of magnitude lower than earlier 

stages. Any fields that will be made available to visualization clients are extracted 

and used to create a new record called an Event. Each Event corresponds to a 

successfully retrieved deleted tweet and is stored in the MySQL database so it can be 

easily retrieved and sent to external clients. Each event is also immediately sent to 

the next stage to be dispatched to currently active clients. 

3.3.3. React: Interacting with Client Applications 

All real-time communication with external clients is done using Open Sound Control 

(OSC) in the React Stage. This stage accepts connection requests and maintains a list 

of active clients that can each be sent specifically tailored data. The connection API 

details are covered below in the Client Applications section as well as the Appendix. 

 React maintains a list of the most recent several events to facilitate populating 

new clients when they come online. This list is initially pulled from the Event 
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database on startup. The total size of the history list is capped so the oldest events are 

eventually discarded from the buffer. 

 Each fresh Event is popped from the incoming queue and immediately broadcast 

to all active clients. This enables each client to receive new deleted data in near real-

time. The new Event is also added to the top of the history list to keep it up-to-date. 

React also immediately broadcasts server DataRate updates since they are time-

sensitive. 

3.3.4. Utility Stages 

There are two utility stages that support the overall functionality of the system.  

 StageMonitor periodically requests a detailed status report from each main stage. 

The report describes the total number of items processed and approximate processing 

rates. This information is available to the server operator to see how each stage is 

doing. With each stage running as a separate process it would otherwise be difficult 

to get a summary of all stages.  

 RateMonitor calculates real-time data flow rates in each stage at a finer 

granularity than StageMonitor. Clients can use this information to visualize the state 

of the system. Rates are calculated as a rate per second over a change in time equal 

to the report period. 

 
{:rate=>true, :now_ms=>1274754288000, :status_rate=>19.6141, 
:del_rate=>4.230, :succ_rate=>0.05234}  

Figure 4: Example of RateMonitor output 
 

RateMonitor runs once per second to get an estimate of current data rates. The 

current timestamp is bundled with the rates in a Ruby Hash and forwarded to the 

React stage for transmission to clients. 

3.4. Client applications 

Client applications are any other software system that consumes deleted tweet data 

from the Aether server. Clients could include dynamic visualizations, re-broadcasters 
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or even hardware devices with scrolling LCD screens. This project does not attempt 

to dictate exactly how a client application should function, but the components 

needed for successful interaction with the server API are documented.  

 The Aether server is designed to maintain connections with an arbitrary number 

of client applications that have registered to receive data. The server pushes new 

deleted tweets to all registered clients as they are recovered, enabling near-real-time 

visualization. The client-server API is built on Open Sound Control (OSC) since it 

provides for push-style data flow [20]. Pushing data to the clients as it is created is 

important since the flow rate is not consistent and it avoids wasting resources to 

constantly check the server for new information. The Server has a well-defined OSC 

address space that acts as the external API for the deleted tweet data. Clients must 

implement a similarly structured OSC address space to provide specific endpoints to 

receive new data. All OSC data is sent across the network using the User Datagram 

Protocol (UDP) since it is simple, well supported and efficient. 

 Clients must first register with the server to enable the server to send data back 

automatically. This is accomplished by sending the client’s IP address and active 

port number to the server’s /register address. These details are used to assemble a 

unique identifying key, which is required for all subsequent server interactions. 

Multiple clients from the same IP address can operate simultaneously so long as the 

ports are unique. The visualization clients developed for this project random ports 

within a certain range to minimize the chance of collisions. 

 The IP address and port must be accessible by the server in order to establish 

successful bi-directional communication. This is not always possible, such as when 

the client is behind a router on a private network. In these situations a server-side 

technique known as UDP Hole Punching [16] can be used to trick the network into 

allowing the communication. On the client side, Universal Plug-n-Play can be used 

to automatically open the required port if the network hardware supports it. This 

method was successfully used in the Java-based client applications via UPnPlib from 
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SBBI [23]. These methods are not needed when both the client and server are on the 

same network but may be required if a client is being run offsite such as at a gallery. 

 Clients should send periodic /hello keep-alive messages to inform the server that 

they are still running and expecting data. This is useful if the server restarted and no 

longer has a record of the active client. Messages from unknown clients will cause 

the client to be re-registered using the provided client key, re-establishing the 

connection. The time of the most recent keep-alive message is recorded for auditing 

purposes. This feature is designed to maintain reliable communication between the 

server and many clients when left unattended for long periods of time. 

 There are three main OSC methods for requesting event data from the server. 

/event/latest will send the most recent event back, while /event/random will return a 

random event from the history buffer. Since the history buffer is a fixed size and 

constantly updated, even the random event will be relatively recent. /event/history 

will request the entire history buffer. This is useful to bootstrap a fresh visualization 

so it does not start empty. 

 Event objects from the server are transmitted as serialized JSON, as shown in 

Figure 5. The client must parse this into a usable representation. The event contains 

all the fields present in the server’s Event object stored in the database.  

 Periodic updates from RateMonitor are sent as serialized JSON to the /rate 

address of each client.  

 
{"tweeted_at_utc":"2010-05-24 22:17:12 UTC", 
"tweet_id":"14650753602", 
"text":"@KristalMeth1 I'm sorry if you took any of my tweets personal..  
They weren't directed towards you and that's my word.. I love you", 
"screen_name":"I_Am_Spades","location_str":"Sandy Springs, GA, US", 
"lat_lng_mapped":"0.372195987447699,0.698947592592593", 
"sent_time_24":"Mon-17:17","deleted_time_24":"Mon-18:01", 
"lifetime":2630,"source":"UberTwitter", 
"friends_count":408,"followers_count":406,"user_deletes":1, 
"word_text":"i m sorry if you took any of my tweets personal they werent  
directed towards you and thats my word i love you", 
"hashtags":[],"mentions":["@KristalMeth1"],"urls":[],"utc_offset":-
18000, 
"description":"Praying for my enemies.. In Nomeni Patri Et Fili Spiritus 
Sancti..", 
"profile_image_url":"http://a1.twimg.com/profile_images/919651086/108060
789_normal.jpg", 
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"created_at":"2010-05-24 16:01:08 -0700","history":false} 

Figure 5: Event data sent to clients (JSON) 
 

4. Visualizing Deleted Tweets 
While catching and storing deleted tweets is the primary mission of Aether, it is 

useful to see what you have caught. Two dynamic visualizations were created to help 

the public investigate the deleted tweet data. 

 A principle goal of visualizing information is to “make visible the invisible” 

[18]—to take a collection of data points and derive metrics and figures that reveal 

underlying features and patterns. The large and multidimensional nature of the 

dataset presented a challenge of scope and scale—what part of the data should be 

visualized? How can many tweets be visualized at once? The client-server design is 

intended to support many heterogeneous clients simultaneously, which reduces the 

pressure to make a single optimal visualization. Instead multiple visualizations can 

be presented side-by-side which increases coherence by promoting visual linking—

an important concept when dealing with such multivariate data. This passage from 

Graphics of Large Datasets summarizes it well:  

Linking is only possible if multiple views of the same data can be displayed 
simultaneously [...] It is essential to think of many displays contributing to an 
overall picture and not to aim for some “optimal” single display [17]. 
 

Visual linking is promoted within a single visualization by designing everything to 

occupy one screen instead of switching between multiple disjointed pages. The 

visual elements themselves take the form of widgets—standalone objects that can be 

easily laid out on the grid and controlled independently. The goal is to make it quick 

and easy to re-arrange and resize components to explore different aesthetics. Each 

widget has the concept of a “current event” which is the most recent event received. 

While many widgets display an aggregation of all current events, each also 

highlights the current event using a consistent color. With this technique it is easy to 

see how the current event fits in to each display paradigm for extra cohesion. 



 

 19 

 These initial visualizations were developed in Java and Processing [23] and are 

targeted for autonomous gallery presentation instead of detailed user interaction. 

This means that the programs will run unattended for long periods of time and 

update without any requirement or opportunity for user input. This approach deviates 

from Ben Schneiderman’s Visual Information-Seeking Mantra of  “Overview, 

Zoom, Filter, Details on demand” [16] since we are not allowing users to interact 

directly with the visualization. Even so the design process took into account the 

overarching goal of Schneiderman’s theory—ensuring the information is conveyed 

efficiently to those who want to see it. This puts extra pressure on the use of space 

and time to ensure it is interesting and not too cluttered since there is no opportunity 

for viewers to filter or modify the presentation.  

 With so many potential variables to investigate it was decided to segment the 

problem in to two separate but complementary tracks – user-centric and content-

centric. When both visualizations are displayed simultaneously side-by-side they 

provide a detailed picture of real-time deleted tweet data. 

4.1. User-centric Visualization 
The user-centric approach seeks to understand deletions through the lens of the 

sender—who are they? What were they doing when they sent it? How much time 

elapsed before they deleted their tweet?  

4.1.1. SparkTimeline 
This widget is common to both visualizations. Data rates coming from the server are 

rendered as a continuously updating sparkline. Sparklines are described by Edward 

Tufte as “small, high resolution graphics embedded in a context of words, numbers, 

images” [20].   

 Time progresses to the right and the previous data points are plotted before the 

graph reaches the right side of the screen (the end of the display period), where it 

rolls over and starts from the left side again. The display period is variable and 
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determines how fast the graph moves across the screen, as well as how dense the 

resulting lines appear. A period of 120 seconds is the default. 

 

 

Figure 6: SparkTimeline widget 
 

The white line depicts the rate of tweets being stored by the Grab stage and the 

colored line shows the deletes being checked by the Retrieve stage. All data points 

are graphed in terms of items per second. New events are marked on the timeline 

upon arrival as vertical lines. Previous events remain on the timeline until it rolls 

over.  

4.1.2. UserDetails 
This widget displays some basic user information and puts the deleted tweet in 

context. Metadata such as user screen name, location and number of followers helps 

build an image of who this person is in real life. The user’s profile picture and 

biographical description are displayed to further humanize this person.  

 

 

Figure 7: Biographical Information in UserDetails widget 
 

The deleted tweet is displayed in context with a few tweets sent around the same 

time that remain undeleted. The age of the tweet (how long ago it was originally 

sent) is also displayed. This reinforces the “lifetime” of the tweet since viewers can 

see how long ago this tweet was sent, and how far back in history the user had to go 

to find the delete button.  
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4.1.3. Lifetime 
The length of time that each tweet was publicly available is plotted as a single 

dimensional plot, with time progressing to the right. Time is apportioned along the 

axis using a logarithmic scale due to the large range of values involved.  

 

 

Figure 9: Lifetime widget 
 

Labels are provided at meaningful times like Minute, Hour, Day and Week. Events 

are drawn as translucent lines (with the current event highlighted), allowing for 

relative density to be estimated where there are clusters of overlapping events.   

4.1.4. Departure 
The two primary events of a tweet’s lifetime – being launched into the web and 

subsequently being snatched back – are modeled as a transit departure graph similar 

to those highlighted by Tufte [21]. Two days of time is displayed along a horizontal 

axis on top and bottom. Some events span more than one day, such as tweets that 

were sent in the evening and deleted the next morning. By displaying two days we 

can accurately place them on the timeline without the deleted time coming before the 

sent time. This follows the wrap around principle for schedules that Tufte discussed 

[22]. 

Figure 8: Tweet context in UserDetails widget 
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Figure 10: Departure widget 
 

Each event is drawn as a line connecting the sent time on top to the time of deletion 

on the bottom. The graph primarily investigates the relative difference between time-

of-day that a user sent their tweet and when they chose to take it back. This can show 

if tweets that were sent late at night are often deleted in the mornings.  

4.2. Content-centric Visualization 
The Content-centric visualization looks at the text of the tweet itself to investigate 

why it may have been deleted and how it compares to other deleted tweets. It 

originally included Natural Language Processing methods of content analysis but 

they were abandoned due to limited efficacy with the short, noisy twitter updates.  
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4.2.1. RecentText  
The content of each tweet is the center of attention for this visualization, so the 

previous several tweets are displayed in rows with the current tweet highlighted. The 

user’s profile picture is displayed next to each tweet to stamp it as unique – 

reminding viewers that unlike the rows of contextual tweets in the User 

visualization, each tweet comes from a different user.  

 

 

Figure 11: RecentText widget  
 

4.2.2. WordFrequency 
This widget displays the most frequently seen words over the course of the 

visualization. Words in the current tweet that also appear in the most frequent words 

are highlighted which makes it easy to see how typical this tweet is. In this context, 

“words” are any tokens that are not URLs, emoticons or otherwise contain non-word 

punctuation. There is no requirement that tokens be actual words (since many are 

slang or abbreviations). These are entered into a RiConcorder from the RiTa library 

[27], which calculates cumulative word frequencies. Each time a new event arrives 

the word frequencies are updated and a new set of top words is extracted. 

 

 
Figure 12: WordFrequency widget 
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Figure 13: Full User-centric Visualization 

 
 
 

 
Figure 14: Full Content-centric Visualization 
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5. Discussion 

5.1. The Nature of Internet Speech  

Internet publishing may be considered in the vein of personal speech, especially in 

blogging and social network contexts. By taking our conversation online we are 

melding the boundaries between the traditionally formal grammatical structure of the 

written word and the more fluid nature of spoken language. Researchers have been 

closely observing this change in language, examining ways in which our online 

communications relate to what we are used to thinking about with language. Linguist 

David Crystal concluded that this new “netspeak” is “neither spoken language nor 

written language nor sign language, but a new language dimension of computer-

mediated language” [31]. Twitter is an acceleration of this change in language since 

the input methods vary widely and the length of each update is rigidly limited, 

leading to many more people adopting the abbreviations and slang of netspeak. The 

result is that we compulsively shrink our words and even whole passages to fit into 

the space allowed (or the amount of typing we are comfortable with on our mobile 

device). 

 This textual shrinking has been accompanied by diminishing time spent 

composing each piece as well as less personal reflection time before sending it. A 

physical letter may take several minutes of careful thought to compose (avoiding 

misspellings that are difficult to correct), while an email may take just a minute or 

two. The time it takes to actually mail something provides additional reflection time, 

and many chances for those having second thoughts to retain the letter without ever 

sending it. Emails can similarly remain in a perpetual draft state, though the 

instantaneous “Send” button is always there, tempting us to simply dispatch it and 

move on to other things. Tweets represent the extreme of this trend towards quick 

publication without consideration–they require only a few seconds to write and 
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“right now” theme of Twitter encourages us to just send it immediately so we can 

ready ourselves to send another. There are so many tweets being sent all the time it 

would seem quaint to agonize over individual details—setting us up to potentially 

regret things said in haste. 

 People are becoming more open with what they share online and yet 

simultaneously clinging to an expectation of privacy or stealth, dubbed the “privacy 

paradox” by Susan Barnes [17]. When things that were publicly viewable all along 

are suddenly thrust into the spotlight—such as when parents read their children’s 

online postings—the immediate reaction is often shock and surprise rather than 

responsibility for what was said. We forget that the Internet will never be a truly 

private space. 

 A topic of interest when considering Internet publication and the notion of 

responsibility is the question of single vs. multiple publication. Is mass-publication 

defined by a single event (such as hitting the “submit” button on a blog post), or is 

the act replayed every time someone else views the work? This can be a big 

distinction on the Internet when items can be viewed by thousands of people, and it 

is not always possible to get an exact count. 

 This question has roots in disputes of defamation with the very first printed 

publications. When assessing damages, courts had to consider if the publisher was 

liable for just the initial act of publication (regardless of the number of copies 

produced) or could be assessed for each instance of the printed work (perhaps 

thousands of times). The current legal precedent has converged on the single 

publication rule, which stipulates that a single edition of something can make the 

publisher liable for only one case of libel [31]. There is still debate as to how to map 

the concept of an edition to the digital realm.  

 Though primarily a legal concept, the single publication rule can influence how 

we think of deleted tweets. It may caution us to avoid ascribing too much importance 

to tweets that were deleted after a long time. Though the tweet may have been 
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viewable for days or even weeks, a user trying to rescind their speech out of fear of 

causing offense is no more liable than if they had deleted it right away. 

 Since Twitter is often described as a form of “microblogging” it is important to 

consider how even normal-sized blogs are different from traditional publishing. 

“Weblogs” have become quite popular in part because of the low barrier to entry—

blogging platforms are usually free and easy for novices to use. Writers are expected 

to “be themselves” and not conform to rigid standards of content and refinement. An 

interesting characteristic of blogs is that entries are arranged chronologically and not 

alphabetically or in a logical order that supports an overall argument [27]. Twitter 

takes this point to the extreme as several consecutive tweets by one person may all 

belong to different conversational threads or may be independent expressions. This 

limits the amount of automatic contextual interpretation we can do based on the data 

presented in the visualization – only other humans can really decide how a tweet fits 

into the surrounding context, if it fits at all. 

5.2. Analyzing Deleted Tweets 

Information takes on a new dimension when it has been deleted. Previously mundane 

statements suddenly acquire newfound salience and provoke many questions, the 

foremost usually why did they delete this? Aether does not purport to definitively and 

automatically decide why something is deleted – that is both computationally hard 

and prone to error since only the sender can truly say why something was deleted. 

Instead it seeks to make information available to let viewers muse on the motivations 

of the sender—both when they sent the tweet and when they changed their mind. In 

doing so many other questions can be explored along the way, such as who is this 

person, and how were they using Twitter?  

 Twitter can seem impenetrable to some digital humanists and researchers, 

offering an avalanche of enticing human data while at the same time defying the 

application of many time-honored analysis methods. Tweets seem too short in length 

for close reading (the painstaking analysis of a single piece) and too disjoint for true 
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distant reading (Franco Moretti’s idea of poring over large datasets to gain insight 

through aggregation [34]). The text seems at once noisy and heavily encoded—typos 

and sentence fragments co-exist with emoticons, URLs and other semantic elements 

employed to pack as much meaning into 140 characters as possible. Twitter users’ 

fluid grammar and hit-or-miss spelling thwarts many efforts at parts-of-speech 

tagging and classification. Social datasets like Twitter are likely to only grow in size 

and ubiquity, leaving much work for digital humanists and computer science 

researchers.  

 While computational tools have a ways to go before they can be reliably applied 

to random sets of tweets, there are other angles that can be examined at present. 

Placing the rescinded tweet in context with ones sent immediately prior and 

afterward helps envision the users’ behavior patterns. Though many tweets contain 

typos, it is easy to see if that was why it was deleted. Aether estimates this by 

comparing each tweet to the collection of other tweets sent by the user around that 

time (indicating that the user re-sent the tweet with only minor corrections). 

Incidentally, out of a sample of 20,000 deleted tweets, only 16% were found to be 

typos using these criteria.  

 Specific dates can be correlated with events in the news, or days of the week (do 

people spend Monday complaining about the new week, only to have second 

thoughts and delete the later in the week?). Time of day can be examined as well 

such as if tweets sent on Friday nights out are often deleted Saturday mornings.  

 Time continues to play a central role with the consideration of the tweet lifetime 

(the number of seconds that elapsed between when the tweet was sent and when it 

was deleted). During this time the user was doing other things while their tweet 

floated through cyberspace being seen by an unknowable number of entities. When 

plotted in the Departure widget of the User visualization it is clear that many tweets 

are deleted within an hour of being sent. And yet, there are ones that were deleted 

days, even weeks later. It took effort for the user to even find the tweet in the Twitter 

interface in order to hit the delete button, and it is likely that no human twitter users 
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were looking at that tweet anymore. These long-tail deletions offer one of the most 

interesting points of investigation in Aether. 

 Though machine-learning approaches to content categorization were not 

successful (see the discussion of Natural Language Processing tools in 5.3), some 

basic classification in Aether was still possible using regular expressions.  Dividing 

content into categories can provide a new angle to the data, exploring questions such 

as if explicit tweets are deleted more often than tweets with non-offensive language. 

Regardless of the efficacy of classification and the amount of meaningful categories 

employed there will always be some tweets that can only be labeled as idle chatter. 

This chatter takes the form of such vacuous statements as “whats up?” and “Awake.” 

Both are real tweets that were really deleted. Why would someone bother to delete a 

short snippet of conversation that may not have had a purpose to begin with? That 

question alone may stump the viewers of the system.  

 Recent legal cases also suggest that some deletions may be motivated out of self-

preservation. There are always media reports of people getting in trouble as the 

result of immodesty online --- such as losing their job due to scandalous postings on 

Facebook. Recently tweets have started becoming used as evidence in court – to the 

chagrin of their senders. The case of Amanda Bonnen vs. Horizon Group is an 

example that demonstrated both the use of Twitter in the courtroom, and the risk that 

corporations take in using engaging single people through the legal system [36]. In 

this case Bonnen used Twitter to complain about mold in her Horizon Group-owned 

apartment. Horizon sued her for defamation, promptly elevating the case to national 

attention. Bonnen was a small-scale Twitter user with less than a few dozen 

followers who saw her original tweet. The tweet in question ended up being read by 

millions as a result of media publicity, giving substantial negative publicity to 

Horizon. In the end the court dismissed the case, citing the tweet as being “too vague 

to meet the strict definition of libel.” While this episode ended happily for the 

defendant it is entirely plausible that people may have second thoughts about a 

pointed comment they made and take it back in hopes of avoiding litigation or other 
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negative consequences. 

 The autonomous Aether system is not the only actor in this equation. Like any 

software it is unfeeling and does not care about the semantic and emotional content 

of other peoples’ tweets; it just calmly collects them as directed. The viewers play a 

role of interpreter since they may empathy towards those whose thoughts and 

feelings are being sampled and dissected. When we see these statuses on the wall 

that were taken back we feel a sense of voyeurism, like we are spying on them.  

 Some viewers of the installation have questioned the legality or ethicalness of 

storing and presenting other users’ deleted tweets. While the moral and ethical 

considerations surrounding this process are an enduring question (and provide 

purpose to this project), the legality can be addressed by looking at the Terms of 

Service and other documentation published by Twitter. The primary Terms of 

Service (aimed at general users of Twitter) does not cover deleted tweets [39]. The 

Developers Rules of the Road specifically mentions deletion saying:  

Respect the privacy and sharing settings of Twitter Content. Promptly change 
your treatment of Twitter Content (for example, deletions, modifications, and 
sharing options) as changes are reported through the Twitter API [38].  
 

Though not clearly spelled out, this would hint that Twitter does not want developers 

publicly displaying tweets that have been deleted. Twitter’s help pages mention that 

while you can delete your tweets from their system, they may remain in search 

indexes [17] and other site language also warns that it may remain in third party 

applications (such as this one). Future work includes an idea to operate a “lost and 

found” that catches these tweets and sends them back to the person that deleted 

them. A compelling element to this plan is the unknown level of user response or 

backlash. Users reacting strongly to such a system may in fact cause Twitter to 

tighten and enforce their policies with regards to the use of deletion requests.  

5.3. Natural Language Processing for Twitter Data 

Natural Language Processing methods were investigated to further analyze the 

content of the tweets but were largely abandoned due to inefficacy. Twitter updates 
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are difficult to process using higher-level tools because each individual update is 

short (less than 140 characters) and is low in content.  

 Automatic content-based categorization and classification was investigated to 

shed light on the nature of the tweet’s content. These tools typically require 

assembling a large training set of data for each possible category. These sets are used 

to generate a ‘fingerprint’ that characterizes the items that are expected to fall into 

each category. New items can then be categorized by comparing their contents to 

each fingerprint using statistical tests.  Some researchers have found success trying 

to classify tweets based on content and sentiment using a variety of techniques [39] 

[40]. The Java Text Categorization Library [41] was used to experiment with text 

classification for Aether but results were not reliable due to the limited size of input 

text.  

 Parts-of-Speech (POS) tagging involves labeling each word in a sentence with its 

linguistic part of speech (such as noun or verb). Digital humanists use POS tagging 

to investigate individual sentence structure and dialect as well as inform research in 

linguistic trends. POS tagging efforts with tweet data were mildly successful but ran 

into contextual inaccuracies. Words that could be a noun or a verb were often 

mislabeled, an error that can be avoided with contextual awareness not easily 

available with such limited, noisy data. Many tokens found in tweets do not readily 

map onto our notion of part-of-speech, such as emoticons and hashtags. The RiTa 

library [30] was used to explore POS tagging since it is designed for Processing and 

has many different text processing features. 

 One interesting NLP tool that deserves further study is the Markov-chain 

sentence generator. This works by analyzing a large group of sentences to produce a 

statistical model that can be used to generate similarly structured sentences. While it 

can be difficult for these tools to generate truly realistic sentences, a cursory 

investigation suggested that they are well suited for use with Twitter content. Since 

tweets are sentence-like in length and structure but typos and grammatical issues are 

tolerated, the typical shortcomings of a Markov-chain generator are accommodated. 
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Generated pseudo-tweets appeared to be very similar to actual tweets. This could be 

used in a future work that looks at the fluidity of language evidenced in status 

updates, and how possible it is to fool people with fake updates.  

5.4. Design Assumptions 
There are many decisions and assumptions made during the design of this system 

that affect its current architecture and operation. 

 The decision to target real-time visualization (as opposed to offline batch 

processing) has had the greatest influence on the design of the system and is the 

primary reason the server is divided into separate processes since it is so important to 

optimize the throughput of each stage. This factor also influenced issues of memory 

management since there is not an upper bound on the number of items that will be 

processed, or on the total runtime of the software system. 

 The initial visualizations are targeted at autonomous gallery display, which 

affected how they were designed. Without the ability for user interaction and 

filtering the widgets must be carefully laid out to maximize data presentation while 

minimizing clutter. It also encouraged more use of time in the displays to reinforce 

the dynamic nature of the data since people will not be directly using the system to 

see new data come in. By saying that something happened “less than one minute 

ago” and updating the age as time elapses it is more obvious if data is fresh and new. 

 The primary data gathering assumptions involve heuristics to discard as much 

data as possible to keep the workload manageable. As mentioned previously, each 

tweet is checked against a configurable skip function in the Grab stage before it can 

be saved. Those that fail the test are immediately discarded. The skip criteria may 

have the biggest effect on the character of the system and as such must be carefully 

crafted to segment the population of tweets in a logical, well-defined manner and 

reject those that would negatively impact the output. 

 It was decided that the skip tests for Aether would be designed to limit the 

acquired data to tweets sent by users in the United States or Canada, and written in 

English. This drastically cuts down on the number of tweets that end up being saved 
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while still keeping a coherent grouping (instead of discarding them randomly). The 

written language requirement was developed since the audience viewing the 

visualizations will be predominantly English speakers.  

 Country of origin is determined via the user profile’s location as well as UTC 

offset (time zone). Both of these metrics have the potential to be misleading since 

they are user-supplied via the Twitter settings page. Relying on the estimated 

location is fraught with peril since the location string is free-text, may not be their 

actual location, and may not even be a real place. Since geocoding takes non-

negligible time it is relegated to post-retrieval and cannot be used to skip a tweet 

outright before saving, thus wasting memory. The UTC offset is a more effective test 

since it is quick to check and it is probable that most users have filled it in correctly 

since this setting affects how twitter displays the times of all the tweets on their 

website. 

 Written language is checked by looking at the user profile “language” field. This 

too can be prone to errors as not all users have picked the right language in their 

Twitter preferences, and some people write in more than one language. A Ruby 

library called ‘whatlanguage’ is used in the Retrieve stage to estimate the language 

based on the actual textual content.  

 

5.5. Technical Performance Considerations and Results 
The Aether server software was developed and tested on a dedicated Ubuntu Linux 

server with a quad-core 2.5Ghz Pentium processor and 2GB of RAM. It was given a 

publicly accessible hostname, which simplified client-server access. Clients were run 

on a variety of computers and networks. 

 Unrecovered tweets were originally archived in a regular MySQL database but 

the insert bandwidth was found to be a primary performance concern. Though 

MySQL is a relatively fast database system the test server was not powerful enough 

to handle a never-ending high volume stream of insertions while also performing the 

rest of Aether’s functions, such as interacting with clients. The buffers between Grab 
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and the database-storing stage constantly overflowed, causing up to 50% of all data 

to be lost. Additionally, Twitter throttled the amount of data being sent since it was 

not being consumed fast enough. This resulted in a far lower deleted tweet recovery 

rate while still using almost all of the server’s resources and negatively impacting the 

other Aether components.  

 These MySQL performance issues resulted in making a switch to Memcached 

[38], a technology originally developed by Livejournal as a distributed caching 

system to increase performance of high traffic websites. Memcached stores all data 

in volatile RAM memory instead of on disk so it is not persistent, meaning the data 

disappears if the Memcached or the computer is restarted. This is contrasted with 

regular databases such as MySQL, which maintain data until it is intentionally 

deleted. Memcached instances on several computers can be joined together to 

provide a larger storage space and potentially increased performance as the load is 

shared across machines.  It was decided that not losing any data when it arrives from 

Twitter is a better short-term goal than having an infinitely large archive but not 

knowing how much data was never saved.  

 Unrecovered tweets are currently being held in a 768MB Memcached instance 

running on the test server. In practice only about 88% of the capacity is available for 

data items—the rest is used by Memcached for recordkeeping and other tasks. As the 

cache fills up, older tweets get evicted which limits how far back in time Aether can 

look. In practice, the limit is about 500,000 tweets, covering about 12 hours of 

history assuming a nominal saved tweet rate of 12 per second. Increasing the size of 

the local Memcached instance or expanding the pool to include Memcached 

instances on other servers would increase the maximum look-back time.  

 While data rates fluctuate, about 4% of all data items received were deletion 

requests, the rest were new tweets. On average about 5% of these deletion requests 

were successfully retrieved. The other 95% of missing tweets can be explained by a 

few factors. First, we discard up to 60% of all tweets received in order to save 

resources and limit the data to the desired demographics so these tweets will never 
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be recovered. As mentioned previously, increasing the size of the Memcached 

instance or using a different database system would increase the number of tweets 

that can be archived at once, increasing the recovery rate.  

 Besides technical implementation concerns, there are a few known systemic 

limitations to the current approach. Aether may not suitable for academic statistical 

analysis since the sample stream contains only 5% of all tweets sent and we discard a 

large percentage of them to save resources. Additionally, the design decision of 

pursuing real-time analysis effectively prohibits doing heavy processing on every 

single tweet received (such as geocoding). This makes it difficult to compare 

recovered tweets to the larger population since unrecovered tweets do not have as 

much derived metadata. 

5.6. Future Work 
Most web services today provide a standard HTTP / REST API, which allows a 

variety of different uses for the data including access by a standard web browser. We 

Feel Fine is a perfect example of an information art project that added an API to 

encourage the use of its data. At present there is no such interface but one could 

easily be added to complement the existing OSC API since the data is stored in a 

standard database. It would function as an application separate from Aether that 

retrieves deletion Event information directly from the database and returns it to 

clients via a web server such as Apache. These APIs tend to be more discrete and 

history-oriented (sending back finite chunks of previously existing data) but with 

additional infrastructure a real-time streaming system similar to the current Twitter 

Stream API could be produced. Aether would then begin to act like a sort of filter for 

the main Twitter Stream API, providing a subset of the main Twitter stream to 

interested clients. 

 It would be useful to revisit MySQL or investigate new database solutions to 

replace or augment the current Memcached archive. Disk-based persistent databases 

would dramatically increase the recovery rate since tweets can be archived for a 

longer time. Changing or adding databases is only feasible of the insert performance 
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issues can be addressed in order to not lose data. 

 There are many other applications of the deleted tweet data besides ephemeral 

visualization. A Twitter account named @tweet_morgue has been created to collect 

these “dead” tweets and make them available for others to see using Twitter’s own 

infrastructure. If the dead tweets are prefixed with the original sender’s twitter screen 

name (a mention) then the sender will likely see their deleted tweet come back onto 

their timeline, provoking interesting user reactions. By sending deleted tweets back 

to the originator the @tweet_morgue also acts as a sort of lost & found for errant 

tweets. A primary theme of this project so far is that the senders do not realize they 

are being observed. Would their behavior change if they were made aware that their 

deletions are being archived and dissected?  

6. Conclusion 
Aether has proven to be a robust platform for real-time processing and recovery of 

deleted tweets. The multi-stage pipeline approach and separated client-server 

architecture has allowed for a flexible system that can support several heterogeneous 

clients running simultaneously at multiple locations. The push-style client 

communication over OSC allows for clients to display deleted tweet information 

within seconds of the real-world deletion event.  

 The data produced has provided an interesting window into an often-ignored part 

of the data lifecycle. Initial visualizations made the data accessible to the general 

public and often provoked questions and observations as people viewed the 

previously hidden actions of Twitter users around the country.  

 Future work will continue to make the data available in more formats and to 

more people. As people realize their online data is not completely in their control 

they may reconsider what they say and give up deleting all together. Until then, 

Aether will be watching. 
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Appendix 

A) Twitter Data 
Below is an example of data that Twitter sends for each tweet in the streaming API, 
in JSON format. It includes the nested User object as well as an example of the 
geotagging feature which is not yet widely-adopted by Twitter users. 
 
{ 
    "contributors": null, 
    "created_at": "Thu Apr 29 22:53:35 +0000 2010", 
    "source": "<a href=\"http://ubertwitter.com\" 
rel=\"nofollow\">UberTwitter</a>", 
    "in_reply_to_status_id": null, 
    "place": null, 
    "geo": { 
      "type": "Point", 
      "coordinates": [ 
        56.419056, 
        -3.40316 
      ] 
    }, 
    "in_reply_to_screen_name": null, 
    "user": { 
      "profile_background_tile": false, 
      "friends_count": 127, 
      "description": "", 
      "lang": "en", 
      "favourites_count": 26, 
      "verified": false, 
      "created_at": "Thu Nov 20 02:36:19 +0000 2008", 
      "profile_background_color": "9ae4e8", 
      "following": null, 
      "profile_text_color": "000000", 
      "url": null, 
      "statuses_count": 7038, 
      "time_zone": "Edinburgh", 
      "profile_link_color": "0000ff", 
      "profile_image_url": 
"http://a1.twimg.com/profile_images/456261026/twitterProfilePhoto_normal.jp
g", 
      "geo_enabled": true, 
      "notifications": null, 
      "followers_count": 63, 
      "protected": false, 
      "location": "Anywhere you are!!", 
      "contributors_enabled": false, 
      "profile_sidebar_fill_color": "e0ff92", 
      "screen_name": "fifinoir", 
      "name": "fiona", 
      "profile_background_image_url": 
"http://s.twimg.com/a/1272044617/images/themes/theme1/bg.png", 
      "id": 17502304, 
      "utc_offset": 0, 
      "profile_sidebar_border_color": "87bc44" 
    }, 
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    "in_reply_to_user_id": null, 
    "coordinates": { 
      "type": "Point", 
      "coordinates": [ 
        -3.40316, 
        56.419056 
      ] 
    }, 
    "truncated": false, 
    "id": 13094530000, 
    "favorited": false, 
    "text": "Ok back not getting too bad. Hopefully I'll get some sleep." 
  } 

B) Aether Data 
B.1) Tweet 
Every tweet received is stored as its own object along with a small subset of user 
information to make retrieval easier. 
Identifier: Tweet ID  

User ID 
User details: Tweet source (program used to send the tweet) 
Time: Time sent, time deleted in UTC 

User UTC offset for adjusting to local time 
Lifetime (number of seconds before tweet was deleted) 

 

B.2) User 

User objects contain a subset of the fields that Twitter sends with each tweet. Users 
are stored separately to track how many times each person has deleted a status. 
Identifier: Twitter user account ID  
User details: Screen name (account name) 

Display name (supposedly their real name) 
Location string (not geocoded) 
Biographical description 
Profile image URL 

Time: UTC offset in seconds 
Created_at (time registered) 

Counts: Friends, Followers count 
Statuses count 
Count of deleted tweets from this user (that we know 
of) 

 
B.3) Event 
Events are created from a recovered deleted tweet. They contain a mixture of official 
Tweet and User data as well as derived metrics. 
Identifiers: Tweet ID  

User ID 
Text: Original text 

“Word text” – original text, minus punctuation and  
   non-word tokens (URLs, hashtags, etc) 
“typo text” –The tweet that replaced this one if this     
   is a typo 
Extracted Hashtags, URLs, Mentions 

Time: Time sent, time deleted in UTC 
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User UTC offset for adjusting to local time 
Lifetime (number of seconds before tweet was deleted) 

User details: Screen name 
Biographical description 
Location string 
Geocoded location (latitude & longitude) 
Tweet source (program used to send the tweet) 
Profile image URL 

Counts: Friends, Followers count 
Count of deleted tweets from this user (that we know 
of) 

Other tweets: A set of tweets sent before and after the deleted 
tweet, retrieved at recovery time.  
Useful for building context. 

C) Aether OSC API 
All communication between clients and the Aether server takes the form of OSC 
message passing. Sending a message to an address on the server will usually result in 
the server sending one or more messages back to the client. Except for initial 
registration, the client must include the unique client ‘key’ with each message for 
verification. 

C.1) Server side (messages from client) 
/client/register [IP] [port] Initial registration – tell server 

where client is listening. 
/client/deregister [key] Goodbye message – tell server to stop 

communication. 
/client/hello [key] Periodic keep-alive message to ensure 

reliable communication. Should be sent 
at least once per minute. 

/event/latest [key] Request the most recent event. 
/event/random [key] Request a random event from the recent 

history buffer. 
/event/history [key] Request full history buffer (50+ 

events). 
/rate [key] Request most recent datarate. 

C.2) Client side (messages from server) 
/client/register/id [key] Server confirms registration & sends 

unique client key. 
/event/latest [event json] A specific non-history event. 
/event/history/start [expected n] Signify the beginning of history 

messages. Include the expected number 
of messages. 

/event/history/event [event json] One event from the history buffer. 
/event/history/end [actual n] Signify that all history messages are 

sent, with count of actual events 
successfully sent. 

/rate [rate json] A hash of data rates, sent frequently. 

 


