
UNIVERSITY OF CALIFORNIA

Santa Barbara

Vessel:

A Platform for Computer Music Composition,

Interleaving Sample-Accurate Synthesis and Control

A Thesis submitted in partial satisfaction of the requirements for the degree

Master of Arts

in

Media Arts and Technology

by

Graham David Wakefield

Committee in charge:

Professor Curtis Roads, Chair

Professor JoAnn Kuchera-Morin

Professor Marcos Novak

June 2007

The thesis of Graham David Wakefield is approved.

JoAnn Kuchera-Morin

Marcos Novak

Curtis Roads, Committee Chair

June 2007

 iii

Vessel:

A Platform for Computer Music Composition,

Interleaving Sample-Accurate Synthesis and Control

Copyright © 2007

by

Graham David Wakefield

 iv

ACKNOWLEDGEMENTS

I would like to thank the members of my committee for their support, patience

and the many ways in which they have inspired me.

I would also like to thank:

 Lance Putnam, for both the sharing of and support for his Synz audio library,

and synthesis programming in general,

 Wesley Smith for inspiration and support both creatively and technically

regarding 3-D graphics, and for the OpenGL bindings to Lua,

 The MAT GLV, CREATE CSL and IGERT Mint student researchers

(including Lance Putnam, Wesley Smith, Eric Newman, Rama Holtzein, Alex

Norman, and the author) for resources in the in the windowing/GUI implementation,

Stephen Pope and Xavier Amatriain for instruction in software synthesis and

event scheduling,

My friends, family and loved ones for endless support, encouragement and

patience.

Partial support provided by NSF IGERT Grant #DGE-0221713.

 v

ABSTRACT

Vessel: A Platform for Computer Music Composition,

Interleaving Sample-Accurate Synthesis and Control

Graham David Wakefield

The rich new terrains offered by computer music invite the exploration of new

techniques to compose within them. The computational nature of the medium has

suggested algorithmic approaches to composition in the form of generative musical

structure at the note level and above, and audio signal processing at the level of

individual samples. In the region between these levels, the domain of microsound,

we may wish to investigate the musical potential of sonic particles that interrelate

both signal processing and generative structure. In this thesis I present a software

platform (‘Vessel’) for the exploration of such potential. In particular, a solution to

the efficient scheduling of interleaved sound synthesis and algorithmic control with

sample accuracy is expounded. The formal foundations, design and implementation

are described, the project is contrasted with existing work, and avenues for musical

application and future exploration are proposed.

 vi

TABLE OF CONTENTS

1 Introduction ...11

1.1 Motivations & Significance ...12

1.2 Some suggested Applications...15

1.2.1 Granular synthesis...15

1.2.2 Synthesis with timbral complexity...16

1.2.3 Musical micro-agents ..16

1.2.4 Atomic physical modeling...17

1.2.5 Strategy variation and top-down articulation17

1.3 Key concepts & terms..18

1.3.1 Formal representations of computer music composition18

1.3.2 Unit generators and block rate processing20

1.3.3 Block rate and control rate ..21

2 Related Work & Observations..22

2.1 Max ...22

2.1.1 Graphical and textual representations for composition...........23

2.2 CSound..25

2.2.1 Distinction of synthesis and temporal form............................26

2.2.2 Declarative and procedural languages27

2.2.3 High-level interpreted languages ...28

2.3 SuperCollider...30

2.3.1 Latency in the procedural control of synthesis31

 vii

2.3.2 Concurrency and musical flow ..31

2.4 ChucK ...33

2.4.1 Strongly-timed: avoiding block control-rates.........................34

2.4.2 Application-specific or generic programming language?34

3 Design & Implementation ..37

3.1 Summary of requirements..37

3.2 Representation language ..39

3.2.1 Choice of language..39

3.2.2 Lua ...42

3.2.3 Concurrency..42

3.2.4 Existing Lua / Audio bindings...45

3.3 Software synthesis ...45

3.3.1 Synz..46

3.3.2 STK ..47

3.3.3 CSL ..47

3.3.4 CLAM ..47

3.3.5 SndObj..48

3.3.6 Csound opcodes ..49

3.4 Scheduling...49

3.4.1 Unit generator graph traversal ...50

3.4.2 Threads considered harmful ..51

3.4.3 Scheduling dynamic graphs and coroutines53

3.5 Efficiency ..53

 viii

4 Description & Examples ..55

4.1 Single language, multiple applications ...55

4.1.1 Vessel command line ..55

4.1.2 Vessel application ...56

4.1.3 Vessel in Max/MSP (the lua~ external)57

4.2 The language ...59

4.2.1 Scheduler functions...59

4.2.2 Units ...60

4.2.3 Busses...61

4.2.4 Distributed interaction (OSC, MIDI)62

4.2.5 Lua libraries..62

4.2.6 Lanes ..63

4.3 Examples...63

4.3.1 Minimal example: note list player ...63

4.3.2 Microsound Synthesis ...64

4.3.3 Concurrent processes ..65

4.3.4 Sample-accurate dynamic graphs ..66

4.3.5 Generative signal graphs ...67

5 Conclusion...69

5.1 Extensible for musical structures..69

5.2 Avoiding an application-specific language.....................................70

5.3 Drawbacks...72

5.4 Vessel in use..72

 ix

5.5 Future Work ..73

5.5.1 Extended set of unit generators..73

5.5.2 Notifications & audio triggers ...73

5.5.3 Runtime specification of unit generators................................74

5.5.4 Graphics..75

6 References ...77

 x

LIST OF FIGURES

Figure 1: Basic Csound XML file with orchestra and score sections.........................25

Figure 2: The Vessel command line tool in use. ...56

Figure 3: Screenshot of the Vessel standalone application on OSX.57

Figure 4: Screenshot of the lua~ object within a Max/MSP patch.............................58

LIST OF TABLES

Table 1: Relative merits of graphical and textual representations of computer music.24

Table 2: Features of procedural languages with applications in algorithmic music. ..28

Table 3: Benefits of using an existing programming language..................................35

Table 4: Rough CPU and memory usage comparisons of Lua, JavaScript, Python,

Ruby and Scheme, with Lua as the reference..41

 11

1 Introduction

The rich new terrains offered by computer music invite the exploration of new

techniques to compose within them. The computational nature of the medium has

suggested algorithmic approaches to composition in the form of generative musical

structure at the note level and above, and audio signal processing at the level of

individual samples. The region between these levels, the domain of microsound [43],

holds special interest due to the potential of sonic events to finely interrelate both

signal processing and generative structure.

 This thesis defends the position that algorithmic exploration of microsound calls

for the dynamic yet deterministic interleaving of both signal processing and

structural control with up to sample accuracy. Satisfying this demand poses a

challenge for both the (outside-time) representation and (in-time) rendering of

computer music compositions. This thesis presents a software solution (‘Vessel’) to

this challenge. For representation, it comprises an interpreted music programming

language with extensions for event, control and synthesis articulation, while for

rendering, it comprises a deterministic, dynamic, lazy scheduling algorithm for both

concurrent control logic and signal processing graphs.

 12

Chapter 2 comparatively places the work in relation to existing languages and

frameworks. Many key observations related to the thesis question, and the

subsequent implementation, are drawn.

Chapter 3 summarizes the requirements of the thesis project, and the

implementation of the scheduler and language extensions are expounded in detail.

The conceptual model can be summarized as follows: A composition represented as

a script file may be evaluated in real-time into hierarchies of dynamically interleaved

concurrent processes and relatively outside-time structures. The processes

themselves are iteratively interpreted over discrete time, producing an in-time

performance or form as digitally produced sound.

Chapter 4 describes the Vessel language and applications in detail, including a

number of example scripts for evaluating its ability to satisfy the requirements.

Chapter 5 reviews the conclusions of the thesis and outlines directions for future

work.

1.1 Motivations & Significance

“In the 1950s, certain composers began to turn their attention toward the

composition of sound material itself. In effect, they extended what had always

been true at the phrase level down to the sound object level. Just as every phrase

and macro form can be unique, each sound event can have an individual

morphology. This creates a greater degree of diversity – of heterogeneity in

 13

sound material – without necessarily losing continuity to other objects… we can

extend the concept of heterogeneity even further, down to the level of

microsound, where each sound particle may be unique. The microstructure of

any sound can be decomposed and rearranged, turning it into a unique sound

object.” [43].

Throughout millennia we have invented tools to overcome our physical and

mental limitations, and the domain of music production is no exception. The digital

computer in particular has redefined what a musical tool can be, offering

computational potential with tremendous generality applicable to many different

musical activities. Of special interest to the composer are the use of computational

facilities for the synthesis of otherwise inaccessible sounds and the articulation of

complex musical structures.

The synthesis of music according to a set of rules is often referred to as

algorithmic music, though strictly speaking the term generative music should be

applied if the rules are expressed in a form that can be processed by the computer

[42]. One might object that, at a certain level, all music produced by computers is

algorithmic, since all computer activity is rule-based; to be useful, the distinction of

algorithmic computer music indicates that the rules are stipulated and/or

meaningfully applied by the composer, rather than the system architect.

Algorithms and rules may be used to stipulate musical structure with different

relationships to time. Synthesis and signal-processing algorithms may be specified

 14

by the composer to generate sonic textures at the level of discrete samples or sample-

streams, while musical form and structure across larger temporal ranges may be

derived according to mathematical functions, categorizations and relationships of set

theories, operations of flavors of formal logic, procedural instructions, and so on. In

addition, the composer may require algorithms to be dynamic over the duration of

the composition, whether according to pre-set configurations, or by deriving them

generatively at run-time.

The primary motivation therefore for enabling fine algorithmic control of

synthesis and musical structure is to augment the vocabulary and enrich the nuances

of computer music composition. Trevor Wishart for example highlights the need for

“precise sound-compositional control of the multi-dimensional space” in order to

achieve “a subtly articulated and possibly progressively time-varying ‘playing’ of

the sound space.” [54]. Curtis Roads meanwhile emphasizes that the exploration of

the microsonic time-scale presents exciting creative opportunities for the computer

musician: “Microsonic particles remained invisible for centuries. Recent

technological advances let us probe and explore the beauties of this formerly unseen

world. Microsonic techniques dissolve the rigid blocks of music architecture – the

notes – into a more fluid and supple medium.” [43]. The fine interleaving of control

and synthesis in musical expression is also a key component of the author’s own

artistic endeavors [47].

Today both signal processing [42] and algorithmic form [31] benefit from

extensive research and musical use, however as we shall see in Chapter 2, many

 15

contemporary tools for computer music composition limit the combined exploration

of these techniques dynamically and at micro time-scales. This thesis describes the

development of software tools to specifically support such compositional

explorations.

1.2 Some suggested Applications

Some specific examples of potential avenues of musical exploration enabled by

this thesis project are described below. It should be noted that any and all of these

techniques can be combined with each other and with more established approaches

computer music composition. Since what is possible at the micro-level may be

extrapolated to larger time-scales, much of the potential can be extended to computer

music composition in a more general sense.

1.2.1 Granular synthesis

There are many different forms of granular synthesis [43], however in general all

use some combination of event scheduling for multiple voices, each of which has a

small signal processing routine. Geiger notes that granular synthesis “needs a high

level of dynamic instantiation with a exact time granularity and speed,” which

cannot be transparently supported by many computer music systems, thus “Most of

the systems therefore integrate granular synthesis as a separate unit generator” [15].

The model described in this thesis overcomes these issues (as described in later

 16

Chapters) and thus is not only capable of many known of granular synthesis both in

terms of signal processing and event distribution, but is also ideal for the

investigation of new granular approaches.

1.2.2 Synthesis with timbral complexity

Xenakis compared the stationary steady state of synthesized sounds to the tiny

variations and fluctuations evident in acoustic sources, and called for “new theories

of approach, using another functional basis and harmonic analysis on a higher level,

e.g., stochastic processes, Markov chains, correlated or auto-correlated relations, or

theses of pattern and form” [55]. Finely interleaving control logic and synthesis

introduces scope for quite non-linear methods of micro-variation within sound

timbre. Applied to FOF synthesis for example [42], one could embed the

indeterminacies and fluctuating behavior of the vocal tract into the generative

algorithm rather than applying it as a global control.

1.2.3 Musical micro-agents

Algorithmic composition based upon parallel procedural flow can support

techniques based upon Finite State Automata (FSA) on a per-particle basis. Such

techniques might include Markov chains, formal grammars, L-systems, cellular

automata, artificial life, flocking and any agent-based algorithmic models [31].

 17

Structured rather than stochastic determination of acoustic grain properties is an

exciting field to explore within music composition.

1.2.4 Atomic physical modeling

Physical modeling is an established technique for sound synthesis [42] as well as

high-level musical control [19]. The extension of physical modeling techniques to

micro-sonic particle simulations could include interacting sonic atoms with inter-

particle and surface collisions, under the action attractive and/or repulsive fields.

One can imagine a model of a corpuscular scattering of an impulse, as a granular

approximation of reverberation for example. What differentiates such an approach

principally from typical stochastic approaches to granular synthesis is the insertion

of memory and pattern coherence.

1.2.5 Strategy variation and top-down articulation

Roads notes that signal processing suggests a parametrical model that need not

be exclusively adhered to: “Alternatively, the compositional strategy itself may be

the subject of variations... Juxtaposition refreshes the brain, breaking the cycle of

closed permutations and combinations.” [43]

Besides enriching synthesis from the bottom-up, a high-level musical

programming language can support top-down determination of musical structure.

For these purposes, generic language features such as math and text processing can

 18

be used to generate, model and evaluate semantic grammars, narrative system

dynamics, and fuzzy and temporal logic. Temporal scripting is particularly well

suited to responsive real-time systems and simulation systems (for further discussion

see the Tempo language of Dami et al. [9].) Goal-oriented coroutine programming

could be used to dynamically evaluate pattern logics, constraint systems or

elaboration graphs [29].

1.3 Key concepts & terms

Before proceeding, it is prudent to clarify some of the key concepts and terms

used in this thesis.

1.3.1 Formal representations of computer music composition

Computer music composition encompasses humans interfacing with computers

in order to write compositions in such a way that objective sonic output (in the form

of digital samples) becomes possible. To stipulate musical structure, it must be

represented in a form that can be expressively written and read by the human while

also precisely parsed by the computer. It is a role of the software developer to

provide a good bridge between human users and computer-parsable formal

representations, and to maximize the capabilities of these formal representations by

finding an appropriate substrate in which to work while minimizing the tradeoffs of

expressive flexibility against efficiency.

 19

Unfortunately, any definition of artistic ideas must necessarily be open-ended,

and the domain of music composition is fraught with complexity and ambiguity [11].

In summary, a desired musical structure may be a tangled conceptual hierarchy that

interleaves with variable dependencies. It may be described in sequential and parallel

terms, include complex, dynamic, homogeneous or heterogeneous strata of

containment, behavior and relationships. A good formal representation of computer

music should support all of these possibilities.

Varèse described music as ‘organized sounds’ [51]. The noun term ‘sounds’

suggests that music results in objective forms, whilst the past-tense term ‘organized’

indicates that music is the result of a process of organization. We can thus identify

two extremes in the representation of musical output, the form of the musical output

of a composition, and the process by which a composition is constructed. Likewise,

Roads here echoes observations by Xenakis: “Musicologists have long argued

whether, for example, a fugue is a template (form) or a process of variation. This

debate echoes an ancient philosophical discourse pitting form against flux, dating

back as far as the Greek philosopher Heraclitus. Ultimately, the dichotomy between

form and process is an illusion, a failure of language to bind two aspects of the same

concept into a unit… A form is constructed according to a set of relationships. A set

of relationships implies a process of evaluation that results in a form.” [43].

Similarly, we can identify the formal representations of compositions (the

composition file, script, project files etc.), as well as the process by which the output

is generated (the algorithms specified in the composition and the software substrate

 20

in which it is rendered). The author therefore suggests that a formalized model of

musical process to be a suitable basic grounding for algorithmic computer music

composition.

1.3.2 Unit generators and block rate processing

At the lowest level, computer music involves the procedural determination of a

series of samples to be rendered as sound by a digital to audio converter. Audio

signal processing comprises mathematical functions used to synthesize output

sample values in response to input samples or the passage of time. The unit generator

model is archetypal: “One of the most significant developments in the design of

digital sound synthesis languages was the concept of unit generators. Unit generators

are signal processing modules … which can be interconnected to form synthesis

instruments or patches that generate sound signals.” [42]. Unit generators

encapsulate mathematical functions and context variables into processing nodes,

which can be connected via arcs into directed graphs suitable for real-time signal

processing (DSP graphs). Unit generators offer flexibility due to their modularity:

the same unit generator types can be reconfigured into different graph structures,

resulting in wholly different sonic output. The flexibility and generality of the unit

generator model is ideal for exploratory computer music composition.

 21

1.3.3 Block rate and control rate

Audio signal processing involves mathematical operations on large quantities of

data, and is therefore expensive computationally. A solution to improve efficiency,

supported by most unit generator models, is to operate upon ‘blocks’ of audio data at

a time. The loading of contextual data for a unit generator operation does not need to

occur at each sample (improving cache performance), and operations upon chunks of

data can make use of SIMD instructions in the CPU. Block sizes are typically

between 32 and 256 samples, corresponding to durations between 7.25 and 58

milliseconds respectively. Control (rather than signal) parameters to unit generators

are updated at this block rate to avoid disrupting the block-processing efficiency, and

likewise structural changes to the synthesis graph must occur at the boundaries of the

block, resulting in the notion of a ‘control rate’.

However, in order to freely explore regions of the micro time-scale, control and

graph changes may be required between these block boundaries, perhaps as finely

delimited as a single sample. The block-rate quantized control also limits the

capability to relate synthesis and control logic with temporal accuracy at the micro

scale. It should be noted that control-rate has no musical significance, but is made

apparent to the user in order to manage computational efficiency.

 22

2 Related Work & Observations

The contemporary computer music composer can choose from a plethora of

software tools, however for the purposes of this thesis the author will consider four

of the most prevalently used and relevant to the thesis question: the Max family

(Max/MSP, PD, jMax), CSound, SuperCollider, and ChucK. The capabilities of each

of these systems regarding the dynamic interleaving of both signal processing and

structural control are evaluated, and in each case, observations applicable to the

design and development of the Vessel system are made clear.

2.1 Max

For the purposes of this thesis, Max refers to Max/MSP [56], PD [38] and related

software. Max is a popular choice for composing interactive digital media works

because of the approachable graphical interface, extensive bindings to media

processes and protocols, and the open-ended philosophy. The Max family

implements a Data Flow Architecture [28] for both synthesis and message

scheduling, defined in a visual a patching interface in which audio is processed in

stream flow and other data types are processed in event flow.

Puckette emphasizes that “Max is fundamentally a system for scheduling real-

time tasks and managing communication among them.” [39], and as such can be

ideal for the complex interleaving of synthesis and control. In addition, the Max

 23

interface may ease the learning curve required to use it and thus support exploratory

composition, as McCartney notes: “Max … provides an interesting set of

abstractions that enable many people to use it without realizing they are

programming at all. “ [30].

For synthesis, Max provides an extensive library of unit generator modules that

can be patched together quite freely by the composer. Max uses a control-rate for

efficiency, though the user has some control over its relationship to the message

processing and priorities. Subsections of signal graphs can operate with different

control rates using the poly~ container, though the interface can be cumbersome.

2.1.1 Graphical and textual representations for composition

While a graphical patching interface may facilitate rapid sketching through an

intuitive representation, it also carries some inherent limitations for algorithmic

composition of microsound. Since each processing unit must be visually

represented, the process graph becomes somewhat static and struggles to represent

large numbers of processors, especially with minor variations. It is difficult to

dynamically change the process graph during performance, particularly with

accuracy regarding timing. Expressive data structures, variable scoping and in

particular procedural control flow can be difficult to express visually.

Many of these limitations do not apply to textual interfaces. For example,

Puckette notes that procedural approaches to control are "better undertaken within

 24

the tasks than by building networks of existing tasks. This can be done by writing

''externs'' in C, or by importing entire interpreters…” [39]. McCartney notes that

Max’s visual representation “is also limited in its ability to treat its own objects as

data, which makes for a static object structure.” [30].

A general comparison of the advantages and disadvantages of graphical and

textual interfaces are presented in Table 1.

Graphical user interface Textual language interface

+ User-input may be constrained to
logically valid operations

- Steeper learning curve of syntax and
vocabulary

+ Easier to view and input quantitatively
rich data such as control envelopes

- Tiresome to specify by data-entry when
precision is not required

+ Common tasks can be immediately and
intuitively represented

- Simple tasks may require detailed code

+ Interaction can be more rapid - Interaction can be time-consuming,
particularly if text must be compiled

- Interfaces tend to be more specific + Interface is highly generic

- Complex data-structures, if made visible,
can be visually overwhelming

+ Compact description of complex data-
structures

- Precise qualitative specification can be
difficult at fine granularity

+ High degree of precision & control

- Visual representations usually demand
rigid models

+ Textual elements may more easily refer
to or embed each other

Table 1: Relative merits of graphical and textual representations of

computer music.

 25

2.2 CSound

CSound is one of the better-known textual interfaces for computer music

composition. CSound was originally written by Barry Vercoe at MIT in 1985, based

upon earlier languages of the Music-N family, and continues to be developed today

(advancing to version 5.0 in February of 2005). At its core, CSound is “designed

around the notion that the composer creates a synthesis orchestra and a score that

references the orchestra.” [42]. The orchestra and score are specified textually using

distinct syntaxes (Figure 1).

<CsoundSynthesizer>;

 <CsOptions>
 csound -W -d -o tone.wav
 </CsOptions>

 <CsInstruments>
 sr = 44100 ; Sample rate.
 kr = 4410 ; Control signal rate.
 ksmps = 10 ; Samples pr. control signal.
 nchnls = 1 ; Number of output channels.

 instr 1
 a1 oscil p4, p5, 1 ; Simple oscillator.
 out a1 ; Output.
 endin
 </CsInstruments>

 <CsScore>
 f1 0 8192 10 1 ; Table containing a sine wave.
 i1 0 1 20000 1000 ; Play one second of one kHz tone.
 e
 </CsScore>

</CsoundSynthesizer>

Figure 1: Basic Csound XML file with orchestra and score sections.

 26

Csound files were originally processed in non real-time to render sonic output, in

a “process referred to as ‘sound rendering’ as analogous to the process of ‘image

rendering’ in the world of computer graphics.” [6]. Csound instruments are defined

in the orchestra file as directed graphs of unit generator types (called ‘opcodes’ in

CSound). Flexible sound routing can be achieved using control and audio busses via

the Zak objects. Control rate is evident in CSound through the a-rate and k-rate

notations.

2.2.1 Distinction of synthesis and temporal form

Since 1990, Csound has provided real-time rendering [52], and today various

implementations support interaction input such as graphical interfaces, VST controls,

MIDI, OpenSoundControl etc. Nevertheless, the set of instruments must be defined

in advance of performance, thus any generative structures desired must be imposed

externally according to this vocabulary.

The strong separation of synthesis and temporal event definition imposes a strict

limitation on the scope for algorithmic composition: new synthesis processes cannot

be defined in response to temporal events, and new temporal events cannot occur in

response to the synthesis output. “Csound is very powerful for certain tasks (sound

synthesis) while not particularly suited to others (data management and

manipulation, etc.).” [5].

 27

2.2.2 Declarative and procedural languages

The Csound score and orchestra languages are essentially declarative series of

statements, with almost no provision for procedural control (such as expressions and

control flow). Roads identifies two key benefits of procedural representations of

musical flow: “First, the compositional logic is made explicit, creating a system

with a degree of formal consistency. Second, rather than abdicating decision-making

to the computer, composers can use procedures to extend control over many more

processes than they could manage with manual techniques.” [42].

The CSound orchestra language does support rudimentary procedural control

flow using goto/label, Boolean conditions with if/goto, and temporal pseudo-

subroutines via reinit/rireturn/timout and ihold/turnoff, however the use of such

features for algorithmic composition is not trivial. For example, Eugenio Giordani

uses the timout function in order to generate individual grain events within a granular

synthesis instrument definition, yet it is clear in the implementation that this was far

from straightforward to achieve [5]. The Csound score language does not support

any kind of programmatic control flow suitable for algorithmic composition1.

In contrast to declarative languages, procedural languages “generate musical

events by stipulated procedures or rules… Procedural composition languages go

beyond the representation of traditional scores to support the unique possibilities of

computer music. These languages let composers specify music algorithmically.”

1 The carry and tempo stretching operators are for pre-processing only.

 28

[42]. There are many features in procedural languages with potential applications to

algorithmic music that are unavailable to declarative languages, as summarized in

Table 2. Generic procedural programs can be written in C and executed using Cscore

to create score files generatively.

Procedural language feature Applications in algorithmic music

 Flexible data-description
(Variable data-types, homogeneous and
heterogeneous containment, object
hierarchies)

 Musical signal representation,
categorization and set theoretic
operations, behavioral encapsulation

 Mathematical functions & logical
functions

 Mathematically and logically specified
rules

 Procedural control flow Branching, looping, parallelism and
nesting of functional activity, compact
representation through code re-use

 Extensibility (static and dynamic
binding)

 Generically connect to other processes,
e.g. scientific library routines or
graphical rendering

Table 2: Features of procedural languages with applications in algorithmic

music.

2.2.3 High-level interpreted languages

Writing generative programs in C requires low-level programming skills not

necessarily appropriate for the computer music composer. In contrast, high-level

interpreted programming languages such as Lua, Python, Ruby and Scheme are

increasingly popular due to more approachable syntaxes. In addition, interpreted

music languages can be modified and executed immediately while the program is

 29

running, without needing to go through a distracting compilation stage. The

composer engaged in musical experimentation may appreciate a shorter

programming-testing loop in a real-time system. Interpreted languages can also

support advanced techniques such as run-time code generation, which may offer

unique potential for algorithmic composition.

Recently CSound has added bindings to Python, a high-level interpreted

programming language. Scripts in Python can generate Csound orchestra/score files

and instantiate Csound renderers to interpret them into sound, while utilizing the

powerful data description, control flow and extension library capabilities that such

high-level languages provide. There remains however a functional and temporal

separation between the generation of orchestra/score and the rendering thereof.

Conversely, Csound can interpret Python code embedded within an orchestra file,

supporting more powerful generative synthesis techniques. This Python interpreter

can also be used in real-time rendering, however the Python opcodes are limited to

control rate execution, and Python is not optimized for high-priority real-time

execution. Though it is possible to have sample-accurate Python calls within the

synthesis rendering by setting the control-rate equal to the sample-rate, the CPU cost

is likely to be prohibitive for most real-time applications.

 30

2.3 SuperCollider

SuperCollider [30] is a high-level interpreted programming music language

designed specifically for dynamic and generative structures and synthesis of

computer music. It can be generally applied to many different approaches to

composition and improvisation rather than any particular preconceived model. It

features an application-specific high-level programming language SCLang (drawing

inspiration from C++ and Smalltalk) with extensive data-description and functional

programming capabilities, and support functions for common musical needs.

SuperCollider also features an extensive library of unit generators for signal

processing. Sample-rate and control-rate distinctions are made explicit via the .ar

and .kr notation. A key distinction from CSound is that code can be evaluated in

real-time as the program runs.

SuperCollider is ideal for the exploration of algorithmic composition. Since

version 3.0 (the currently available version), graphs of unit generators are defined

textually and compiled at run-time into dynamic libraries (‘SynthDefs’) to be loaded

as instruments (‘synths’) by the synthesis engine (‘SCServer’), all under control of

the language. The language and synthesis engine run as different processes or

applications that communicate using socket messaging.

 31

2.3.1 Latency in the procedural control of synthesis

The separation of language and synthesis into distinct processes in version 3.0

introduces compilation and performance optimizations, but also implies limitations

in the degree of temporal control: “Because instruments are compiled into code, it is

not possible to generate patches programmatically at the time of the event as one

could in SC2... In SC2, an audio trigger could suspend the signal processing, run

some composition code, and then resume signal processing. In SC Server, messaging

between the engines causes a certain amount of latency.” [30]. While for most

purposes this latency is not noticeable, in the micro time-domain it can be

devastating.

An additional consequence of the separation is that the expressive functional

language of SCLang is not available within synthesis instrument definitions.

SuperCollider 3.0 therefore represents a slight return to the CSound model of

orchestra and score, in which however the score is procedural rather than declarative.

2.3.2 Concurrency and musical flow

One of the motivations behind the design of SuperCollider was the support for

the representation of musical structure using high-level data descriptions of

concurrent musical flow [30]. Compositions with sequential and parallel symmetries

can be represented more succinctly and structurally in functional terms than as flat

 32

lists of elements2. Herein lies a benefit: increasing apparent functional structure also

increases expressive affordances for transformation, including algorithmic

composition. Smoliar for example considers a procedural representation of musical

flow as an interaction of multiple processes in order to develop a language

(‘Euterpe’) for the algorithmic analysis of musical structure [48]. We might also

observe that real performers do not react linearly to each elementary advancement of

time but rather multi-task: they maintain meter, prepare for imminent gestures, scan

ahead in the score, and so on.

Software development encounters a similar problem: in the limit, computation

according to the finite state machine model3 is in fact a singular procedural

progression, but this is not a natural way to think about the design of interactive

software. High level programming languages present interfaces with greater

affordances by making use of apparently concurrent constructs such as subroutines,

threads and coroutines. Many digital composition tools also embed parallel structure

as multiple timelines (e.g. Adobe Flash). SCLang provides excellent support for

concurrent processes and musical flow using for example the Routine and Task data

types.

2 Just as redundant information can be compacted by Huffman coding.
3 For the purposes of this thesis, we disregard parallel CPU architectures; the

justification will become clear later in the section describing the scheduling
implementation and threading.

 33

2.4 ChucK

ChucK [53] represents one of the only contemporary options that avoids latency

in the procedural control of synthesis. ChucK is a concurrent, dynamic

programming language designed for run-time programming in mind. It also provides

a library of unit generators (largely based on the STK library) to be freely

instantiated and connected into graphs within ChucK scripts. The authors refer to

ChucK as ‘strongly timed’, which can be defined as follows:

- Supports sample accurate events,

- Defines no-control-rate (or supports dynamically arbitrary control-rates),

- Supports concurrent functional logic,

- Control logic can be placed at any granularity relative to synthesis,

- Supports run-time interaction and script execution.

Like SuperCollider’s SCLang, the ChucK language was written especially for the

ChucK software. It is a high-level interpreted programming language, which is

strongly typed. It focuses on a ‘massively overloaded’ operator => which is used for

variable assignment, unit generator patching and text stream processing for example.

Also like SCLang, ChucK provides support for concurrency using the Shred data

type, a kind of deterministic coroutine. Code in ChucK does not advance in a block

of code unless the programmer explicitly advances it, by assigning durations to the

now object.

 34

2.4.1 Strongly-timed: avoiding block control-rates

ChucK’s concurrent shreds and explicit control of timing within the same

language as synthesis graph specification supports complete, sample-accurate control

of synthesis structure. Being able to specify signal graphs dynamically in response to

control events opens up the scope for algorithmic music composition in which

control and synthesis evaluations are finely interleaved. Generative algorithms

frequently involve some kind of input based upon feedback from previous output,

thus for example a granular synthesis technique can be supported in which each

grain’s properties is calculated upon the demise of the previous one, along with other

properties of the local context. The requirements of this thesis clearly include the

‘strongly timed’ classification.

2.4.2 Application-specific or generic programming language?

Procedural music languages may be written specifically for an application, or be

domain-specific extensions of an existing general purpose programming languages.

Amatriain notes that “Offering a completely new programming environment based

on a new language is a titanic effort that needs of a very large development team. On

the other hand, the language has to offer very unique and outstanding features in

order to convince new users that the effort of learning it is worth the while.” [4].

McCartney, author of the SuperCollider language, also wonders whether an

application-specific language is worthwhile: “Is a specialized computer music

 35

language even necessary? In theory at least, I think not. The set of abstractions

available in computer languages today are sufficient to build frameworks for

conveniently expressing computer music.” [30].

Making use of a powerful existing programming language benefits from the

proficient work of many skilled software developers, and implies additional

advantages as outlined in Table 3.

Generic language feature Benefit

 Existing facilities of data description,
function and control flow

 Formally verified in the computer
community

 Existing documentation, may also be
familiar to some users

 Easing learning curve

 Existing development, debugging and
profiling tools

 Minimizing user error and improving
user experience

 Undergone extensive revision Removal of developer bugs and
increase of efficiency

 Potentially numerous extension libraries Many additional capabilities available
for scope of exploration

 Formal generality Future scalability & portability
Code written in the language can be re-
used in many applications.

Table 3: Benefits of using an existing programming language.

Given these advantages, why would a developer choose to write a new language?

The tight efficiency, tiny time-scales and large data-processing demands of the

computer music domain may often drive developers to create new languages for

synthesis control. McCartney for example bemoans the lack of garbage collection

 36

appropriate for real-time and inflexibility of syntax of most generic programming

languages as the main obstacles to use for computer music.

An intermediate solution may to use a generic programming language that is

designed for application extension, and which offers an open enough programming

interface to be optimized to real-time demands.

 37

3 Design & Implementation

In this section I outline the design and implementation of Vessel: how the control

language was chosen and extended, how dynamic synthesis was supported, how the

sample-accurate interleaving of control and synthesis was achieved and how the

constraints due to the substrate were minimized. Before proceeding, let us

summarize the key observations made so far.

3.1 Summary of requirements

Software for computer music composition must formally represent musical

structures in a form parsable by the computer, but also humanly readable. For

algorithmic composition, a process-based representation supporting generic logic

and mathematical relationships is ideal. The software must also provide the means to

evaluate such a description into active structural and synthesis processes to produce

audio output in the form of digital samples, without compromising efficiency.

Synthesis specification is generally well modeled using the unit generator model,

and both serial and parallel musical flow can be well modeled using concurrent

timeline constructs. It is essential for the exploration of microsound to avoid block-

rate quantization of control and structural changes. Nevertheless, efficiency is a key

demand.

 38

A graphical representation may be intuitive, but a textual representation is

preferred for exploration of algorithmic composition due to generality, precision and

scalability4. Synthesis and temporal structure should be combined in the same

language, with no latency of interaction between them ('strongly timed'). Procedural

languages are more suitable than declarative languages for algorithmic approaches,

since they directly expose the algorithms to the user, and high-level interpreted

languages offer specific benefits such as interactivity over compiled languages for

real-time purposes. A generic language is more portable and better supported than an

application-specific language.

The implementation requirements for the software may now be summarized:

• A domain-specific (computer music composition) extension of an

interpreted procedural programming language supporting generic

programming and concurrency,

• Feature a vocabulary of unit generators that can be variously and

dynamically connected into signal processing graphs,

• Incorporate a real-time sample-accurate scheduler to simultaneously

render dynamic unit generator graphs and concurrent process timelines,

• Be efficient.

4 The graphical paradigm does have advantages however, and thus this thesis
project is also presented as a library extension (‘extern’) for Max/MSP, to be
described in a later section.

 39

Each of these requirements will be described in turn through the remainder of

this section.

3.2 Representation language

The design model calls for a domain-specific extension of an existing high-level

interpreted procedural language (supporting concurrent processing) for computer

music composition. Interpreted programming languages exhibit higher-level

interfaces to programming more suited to quick prototyping and testing. However,

real-time audio processing involves large quantities of numeric operations, and

efficiency is the primary concern when choosing a programming language for audio

synthesis. The compiled languages C and C++ are established as the standards in this

field, due to their efficiency, flexibility and active support in the wider programming

community. Interpreted languages can be embedded within compiled languages such

as C and C++ such that CPU-intensive operations can take place outside of the

interpreted context, thus the interpreted language penalty can be constrained to a

minimum.

3.2.1 Choice of language

The interpreted languages considered for this project included Ruby, Python,

Scheme, IO, JavaScript and Lua. Though IO [12] had an appealing cleanliness to its

 40

syntax, it was judged to be not yet mature enough for the project. Likewise,

JavaScript was soon dismissed due to excessive CPU and memory overhead [3].

Scheme is a dialect of LISP, which has long been a popular choice for

algorithmic computer music languages [11]. However, many users suffer with the

unusual syntax of LISP variants, which is often described as both cumbersome and

error-prone. Scheme is however a very powerful language, with high-level

functional programming and lexical scoping features.

Ruby is an interpreted object-oriented language with a large and growing

community, plenty of support and extension libraries, and has been particularly

successful for web programming. It is however regarded as difficult to embed.

Python is a very popular interpreted language for application extension. It is

object-oriented and incorporates features such as modules and exception handling.

The syntax is clean, and Python benefits from an incredibly large selection of

extension libraries, tools, supporting documentation and active community.

Embedding Python is nontrivial however, and its support for concurrency is good but

not excellent.

Lua is an interpreted programming language specifically designed for application

extension, featuring the high level functional and concurrent programming features

of LISP/Scheme with a more familiar infix syntax along the lines of Python and

Ruby [20]. Lua is perhaps best regarded for its small size and efficiency, and thus is

most highly regarded in the game developer community [22]. A rough comparison

of efficiency of these languages is given in Table 4, based upon benchmarks at [3].

 41

For the curious, these benchmarks show that Lua is around 10-30x slower than C,

using around 2-3x more memory.

Language CPU usage: Memory usage:

JavaScript (SpiderMonkey) 5x 50x!

Lua 1x 1x

Python 5x 2-3x

Ruby 10x 2-3x

Scheme (MzScheme) 1.5x 4x

Table 4: Rough CPU and memory usage comparisons of Lua, JavaScript,

Python, Ruby and Scheme, with Lua as the reference.

Ruby was discounted as being not sufficiently distinct to Python yet less

efficient, while Scheme was discarded as offering similar benefits to Lua but with a

less approachable syntax. The decision was close between Python and Lua; Python’s

extensive libraries and community support (including use in CSound) were

appealing, but the portability, ease of embedding, formal completeness, concurrency

support and overall efficiency of Lua was deemed more valuable. As Brandtsegg

notes: “One could argue that Python is not the most CPU-effective language

available, but it seems it's speed will be sufficient for compositional algorithmic

control, as these processes do normally evolve at a relatively slow pace compared to

 42

e.g. audio processing tasks. The exception being compositional algorithms that

works directly on the audio signal.” [7]

3.2.2 Lua

Lua's authors describe Lua as an extension language [20] specifically designed to

be embedded within host programs and extended by domain-specific APIs.

McCartney also states that an abstractly extensible language allows the programmer

to “focus only on the problem and less on satisfying the constraints and limitations

of the language’s abstractions and the computer’s hardware.” [30]

Lua meets the needs of an extension language by providing good data description

facilities (associative tables), clear and simple syntax, and flexible semantics. Lua is

a full-fledged programming language, supporting higher-level features found in

languages such as Scheme such as first-class functions and coroutines. As in

Scheme, a variable in Lua never contains a structured value, only a reference to one.

Lua incorporates an incremental garbage collector suitable for real-time use. Lua is

frequently used for game logic programming (e.g. World of Warcraft [44]) and

application extension (e.g. Adobe Lightroom [20]).

3.2.3 Concurrency

The design model calls for the support of hierarchies of interacting serial and

parallel timelines to deterministically represent an algorithmic musical process.

 43

Lua provides excellent support for deterministic concurrency in the form of

coroutines, or more fully, asymmetric collaborative multi-tasking [32]. Coroutines

were originally introduced by Conway in the early 1960s, and described as

subroutines that act as the master program [8]. A coroutine in Lua represents an

independent thread of execution, a parallel virtual machine, for deterministic

scheduling. It is constructed from a function defined in Lua code. A coroutine has its

own stack, its own local variables (persistent between calls), and its own instruction

pointer (it resumes from the same code point at which it last yielded); but shares

non-local variables with other coroutines. Lua coroutines are first-class objects:

variables can point to coroutines, and coroutines can be passed into and returned

from functions. Lua coroutines are asymmetric, based on the primitives yield() and

resume(), and since calls from Lua to Lua are ‘stackless’, the algorithm by which

coroutines are resumed can be determined very flexibly (in fact, the ‘main process’

of the interpreter is itself a coroutine). Coroutines have helped Lua to gain popularity

in the game development community. For a more detailed description of coroutines

and their use in Lua, see [32].

Each concurrent musical timeline in Vessel is represented as Lua coroutine along

with metadata such as the sample-clock time it should next continue processing. The

body of a timeline-coroutine is a Lua function, and can include the full range of

dynamic control structures that the Lua languages offers, along with a small number

of additional functions to interact with the scheduler. In this model, a timeline may

represent the entire composition, or a single grain, and each timeline responds

 44

distinctly to the passage of time according to internal determinations. In functional

programming parlance, coroutines are continuations: they are objects that model

‘everything that remains to be done’ at certain points in the functional structure.

Thus the evaluation of a composer’s script is implemented as a variation of the

continuation-based enactment design pattern [27].

The flexible nature of Lua coroutines and the transparent C API permits the

developer to specify with great freedom the manner in which they are resumed, and

this will be described in detail in the Scheduling section below. The manner in which

the unit generator graphs are specified through Lua will also be described in a later

section, however it roughly follows the game development paradigm, which calls for

efficiency and flexibility: “many games are coded in (at least) two languages, one for

scripting and the other for coding the engine” [22].

Finally, to summarize the representation model in the language extension: a

computer music composition is evaluated in real-time into hierarchies of

dynamically interleaved concurrent processes and relatively outside-time structures.

The processes themselves are iteratively interpreted over discrete time, producing

temporal form as digitally produced sound. The author does not suggest that all

composition fit the representation model described above, or that the formalized

models that the computer can provide are necessary for music. However the model

does provide a working hypothesis upon which to develop an implementation that

may be evaluated in practice.

 45

3.2.4 Existing Lua / Audio bindings

A web search uncovers few Lua bindings of audio libraries, predominantly

comprising simple sound-mixer additions to gaming software. CSound 5.0 includes

a Lua binding which is mostly limited to loading and rendering orchestra and score

files and thus not of interest to this thesis.

The closest relation found is the ALUA project, a part of Günter Geiger’s

doctoral thesis [15]. The software was not available for testing, so the comparison

here is purely theoretical. A general observation however is that ALUA is “a

research system only” and “although not my main focus, there is still a lot of work to

be done until ALUA is a fully usable language for computer music” [15]. Geiger

chose Lua for the flexible and expressive high-level syntax, and ALUA supports unit

generator constructors and explicit control of scheduled time in a similar but reduced

manner to Vessel. It is not clear whether it supports concurrency. The ALUA

language extensions are not as developed as Vessel; for example, operators are not

overloaded for unit generators (Add(Sine(), Sine()) rather than Sine() +

Sine()). Overall, it appears that ALUA may no longer be a supported project.

3.3 Software synthesis

One can distinguish between software synthesis applications, such as the project

outlined in this thesis, and software synthesis libraries. Synthesis libraries provide

DSP functions or unit generator modules written in an efficient programming

 46

language, with application programming interfaces (APIs). Libraries offer atomic

access to elementary DSP functions and make minimal assumptions as to how they

may be used. The developer of a synthesis application can take advantage of many

existing libraries for DSP to provide tested and recognized functionality.

This section describes the various synthesis libraries considered and

implemented in Vessel. In accordance with the design requirements, any synthesis

considered library for Vessel must meet the following requirements:

- C/C++ API in order to provide bindings to Lua

- Single-sample or variable block-size processing for microsound

- Efficiency of performance and minimal opcode setup/removal cost

- Minimal dependencies for portability

- Open-source distribution for portability

3.3.1 Synz

Synz [40] is a C++ library for common signal processing tasks, providing a set

of efficient opcodes based on a set of low-level stateless operator functions and

generic data structures. The evasion of preconceived use-cases allowed the author to

very easily bind this library to Vessel. Synz neither assumes nor prevents block

processing, it provides a low-level but consistent C++ API, and is distributed as open

source.

 47

3.3.2 STK

STK [46] is suitable to be embedded within Vessel, since it provides a C++ API

and supports single-sample opcode evaluation with a generic tick() method, and is

distributed as public domain source code. STK is familiar to many computer music

researchers, and would be a valuable asset due to its particular support for physical

modeling synthesis. A binding of STK in Vessel is therefore planned as future work.

3.3.3 CSL

The CREATE Signal Library [37] is an object-oriented C++ library of synthesis

unit generators. CSL is inherently block-processed and embeds the signal graph

representation within unit generators themselves; for these reasons CSL could not be

efficiently utilized within Vessel.

3.3.4 CLAM

CLAM [4] is a framework for building audio applications, both in C++ and

through a graphical editor application (the CLAM Network Editor). CLAM

implements data-flow architecture for processing, distinguishing between

synchronous data flow and asynchronous control flow. In contrast to the Max

family, it is the control flow that is constrained to numeric types, while data flow

 48

may include signals, spectra, and complex data structures. A CLAM network,

expressed as an XML file, can be converted into a standalone application with a

graphical interface designed using the QT GUI toolkit, and CLAM is distributed

under an open source license.

CLAM processing nodes can support dynamic block sizes (up to a maximum

size) within the audio thread, through reconfiguration of processing nodes cannot

occur in the audio thread. The architecture of unit generators and source code is very

similar to the approach taken in the Vessel system, though it remains to be evaluated

whether CLAM could be used within the Vessel system.

3.3.5 SndObj

SndObj (Sound Object Library [24]) is an open-source C++ generic audio

processing library incorporating many opcodes and utilities. SndObj can use

different block sizes per opcode instance, however it remains to be evaluated

whether these can be efficiently modified dynamically (using

SndObj::SetVectorSize) in order to be incorporated within the Vessel

scheduler5.

5 The documentation at http://music.nuim.ie//musictec/SndObj/SndObj_Manual-
2.6.1.pdf suggests that this will not be the case.

 49

3.3.6 Csound opcodes

Csound has over 450 opcodes for audio signal processing, probably the most

complete of any software. Csound is distributed as open-source, and provides APIs

in C and C++ in order to be embedded within other languages and applications. In

fact, a binding of Csound for Lua already exists in the Csound distribution, however

this binding is high level (supporting the loading and rendering of Csound files)

rather than offering low-level access to the synthesis opcodes themselves.

Examining the source code reveals that opcodes may involve strong dependencies on

the CSound host, making it unlikely that they can be generally used within other

scheduling environments.

3.4 Scheduling

“This moment which I live, this thought which crosses my mind, this

movement which I accomplish, this time which I beat: before it and after it

lies eternity; it’s a non-retrogradable rhythm.” Olivier Messiaen, in [45]

The design model calls for a real-time sample-accurate scheduler to

simultaneously render dynamic unit generator graphs and concurrent process

 50

timelines, in order to finely interleave algorithmic musical structure and signal

processing. This section describes how this is achieved.

3.4.1 Unit generator graph traversal

Signal processing of unit generator directed graphs must be executed in

deterministic orders such that a node’s inputs have been determined before the node

can output. A naïve tree-search algorithm may quite effectively achieve this. It can

also be viewed as a formulation of the producer-consumer problem, and thus both

push (leaf to root) and pull (root to leaf) models may be used for the traversal. Static

scheduling pre-determines the graph before executing, while dynamic scheduling

evaluates the graph at runtime. Dynamic scheduling can therefore handle changes to

the DSP graph at run-time.

Normally the unit generator graph is viewed as an indivisible process, such that

each node processes equally sized tokens per iteration (typically matching the block-

rate). We have seen however that this model is insufficient when control or graph

changes are required more finely than the block-rate.

The Vessel scheduler algorithm attains state changes not quantized to the block

rate by allowing arbitrary sub-divisions of the block duration. The cost incurred is

that graph traversal is derived dynamically at each state change. Traversing only

those portions of the graph hierarchy upon which the state change is

deterministically dependent can minimize this cost (lazy dynamic scheduling). The

 51

graph manager in Vessel traverses only the deterministic input6 dependencies of unit

generators within the signal-processing graph, only up to the current state-change

time-stamp, and thus implements just-in-time sample-accurate graph dynamics.

Between state changes, the signal processing proceeds in sample blocks, taking

advantage of block processing efficiency whenever possible.

3.4.2 Threads considered harmful

Vessel has the responsibility to maintain sufficient potential in the system for

free action of arbitrary and independent state change of the synthesis graph during

real-time performance. Synthesis processing and structural control are usually

separated into distinct operating system threads for efficiency, however as noted by

Dannenberg & Bencina [10]:

“The simple timing approach, which is something like

 A(); sleep(5); B(); sleep(3); C(); sleep(7); ...

will accumulate error due to finite computation speed and system latencies.”

6 Within a directed dynamic graph, it is not possible to schedule with sample

accuracy for input nodes that are also downstream of the current processing context

(i.e. cycles), but the latency will be automatically minimized to block-rate.

 52

The standard solution to achieve scheduling determinism is to provide an event

buffer with an acceptable latency and schedule accurately time-stamped events

ahead within this buffer. Effectively, the buffer conceals the indeterminacy (jitter)

of synchronization between the system timer, the message thread and the audio

thread sample clock. Early implementations of Vessel took this approach.

Unfortunately, this solution incurs indeterminacy if a scheduled event is micro-

temporally dependent on another event’s output. To achieve sample accuracy of state

change in response to audio events, it became apparent the composition script must

execute in the same system thread as the synthesis processing and manage event

scheduling and execution directly with the audio sample clock.

The cost of interpreted Lua code in the high-priority audio thread is minimized

by maintaining the expensive signal processing and graph management/scheduling

entirely within C++ code, only calling into Lua for the relatively cheap coroutine

evaluations. Furthermore, expensive workarounds to threading indeterminism

(locking, semaphores etc.) are entirely avoided within the Vessel interpreter [26].

The Vessel language can thus support thousands of concurrent coroutines with

deterministic behavior and shared memory, rather than hundreds of concurrent

threads with unpredictable behavior and buffered/locked memory7.

7 On the other hand, pre-emptive concurrency can be achieved if desired (e.g. for
file loading) using the Lanes extension described in section 4.

 53

3.4.3 Scheduling dynamic graphs and coroutines

The scheduler algorithm manages the proper execution of both the unit generator

graph and the list of active coroutines. The scheduler ‘wakes up’ each coroutine

timeline when its sample-clock time is due, and the coroutine proceeds through its

virtual machine instructions until it completes or it yields to reschedule itself at a

future sample-clock time. While it proceeds, the composition time is effectively

frozen. If at any point during the coroutine’s execution, it triggers a state change in a

unit generator or the signal processing graph, the affected portion of the signal

processing graph will be traversed and processed up to the current composition

timestamp. Once all active timelines are complete for the current audio block, the

synthesis graph is once more traversed from the root node, to calculate any

remaining indeterminate samples. Composition time can now advance to the end of

the block.

Since Lua includes dynamic and indeterminate control structures, the effective

control rate can be arbitrarily specified or even indeterminately derived with sample

accuracy as the performance proceeds.

3.5 Efficiency

Besides the optimizations made in the scheduling algorithm, the efficiency of the

synthesis library functions and the performance of Lua, the principal issue for Vessel

is memory management. The high priority real-time audio thread demands that

 54

processes to occur in bounded time [10], but memory allocation cannot always

satisfy this constraint. Dynamic graphs therefore require memory management

techniques to achieve bounded time performance.

Vessel implements up-front allocated free-list memory pools for the most

dynamic elements: audio buffers, coroutines and unit generators. Pre-allocated

memory is recycled as the program executes, and pools grow if needed, utilizing a

memory allocator optimized for real-time use [25]. The same real-time allocator

easily replaced malloc and free for all Lua calls using the Lua API. The reader is

referred to the Real Time Memory Management patterns in [10] for a fuller

description of these techniques.

Since version 5.1 the Lua language incorporates an incremental garbage

collector. Lua 5.1 saw the introduction of an incremental collector adaptable for real-

time use (provided in response to requests from game developers), avoiding

potentially long pauses during garbage collection [22].

 55

4 Description & Examples

4.1 Single language, multiple applications

The language extensions to Lua to support sample-accurate synthesis and control

constitute a software library that can be embedded or dynamically loaded within

other applications. The three existing applications described in this section should

be taken as indicative of its scalability. Additional future targets could include audio

plug-ins (VST, JACK, AU etc), cross-platform support for Windows and Linux, and

embedded devices such as PDAs and gaming consoles.

4.1.1 Vessel command line

A command-line implementation of Vessel is available, which can be used for

testing, or controlling from other applications (Figure 2). Input arguments specify

the main Lua script file to execute, an optional maximum duration, and an optional

file in which to record audio output.

 56

Figure 2: The Vessel command line tool in use.

4.1.2 Vessel application

Vessel exists as a standalone application (presented for OSX but scalable to other

platforms) incorporating the Vessel language and synthesis scheduler along with an

audio scope and status window, and a Lua code editor window (Figure 3). The code

editor is based upon the Cocoa MDI (multiple document interface) development

pattern, and features syntax highlighting for both Lua and Vessel reserved words.

Run, Merge, and Stop buttons restart, mix and terminate Lua scripts respectively.

 57

Figure 3: Screenshot of the Vessel standalone application on OSX.

4.1.3 Vessel in Max/MSP (the lua~ external)

Lua~ is an extension (external) for the Max/MSP environment containing the

Vessel language and synthesis scheduler along with bindings for relevant Max/MSP

components (Figure 4).

 58

Figure 4: Screenshot of the lua~ object within a Max/MSP patch.

A lua~ object in a Max patch can load and interpret Lua scripts and receive,

transform and produce MSP signals and Max messages accordingly. The In and

Out busses represent the lua~ object inlets and outlets respectively. Messages set to

the lua~ external are interpreted as function calls with arguments8, and the function

outlet() is used to send Max messages out of the lua~ external. Lua~ provides

the unified integration of text-based and graphical meta-mechanisms for audiovisual

composition within a single application.

8 E.g. the Max message “print hello 5” results in the Lua call
print(“hello”, 5).

 59

4.2 The language

This section presents an overview of the language extensions to Lua that

constitute Vessel.

4.2.1 Scheduler functions

 now()

Returns the number of seconds since the containing coroutine was created. With

an optional argument (any), returns the root scheduler timestamp.

 go([delay], func, [args…])

Adds a new coroutine to the scheduler queue, and returns the coroutine. The

coroutine will begin after delay seconds (or immediately if not specified), based

upon the function func, which will be passed all values in args.

wait([delay])

Pauses the containing coroutine for delay seconds. The wait() function in

Vessel is deterministically sample-accurate; it effectively causes the currently

executing coroutine to yield and reschedule itself, and permit the next scheduled

coroutine or synthesis process to resume.

 60

play(bus, dur, unit)

Adds the unit generator unit as an input to bus, pauses the containing coroutine

for dur seconds, then removes the unit generator from bus. Equivalent to

bus:add(unit); wait(dur); bus:remove(unit).

abort([coro])

Aborts the coroutine coro immediately, removing it from the scheduler and

freeing any memory resources unique to the coroutine (including other coroutines

launched by coro and not referenced elsewhere). Note: this may lead to ‘stuck notes’

if the coroutine had added unit generators to external busses. An alternative strategy

is being investigated to avoid this issue.

4.2.2 Units

Units are Lua objects that encapsulate C/C++ unit generator DSP code. Units

flexibly handle constant numbers or other Units for most input parameters. Units

may provide Lua methods to determine instantaneous state changes. Units can

expand to multi-channel upon demand, and individual channels can be indexed with

the unit[n] notation, where n is an integer starting from 1. Units can be

composed into graphs via their inputs, by using Busses (see below), or by using math

operators (+, -, *, /, %, ^).

 61

Vessel currently incorporates a minimal set of Units for development purposes,

outlined below. This list will grow rapidly in the near future.

Noise generators: Noise(), Pink()

Oscillators: Sine([freq]), Square([freq]),

Tri([freq]), Saw([freq]),

Imp([freq, harmonics, mode]),

Dsf([freq, fratio, aratio, harmonics])

Generators: Decay([t60]),

 Curve([dur, curve, start, end])

Filters: Smooth(input, [factor]),

Biquad(input, [freq, resonance, mode])

Shapers: Env(duration, input, [shape])

Spatializers: Pan(input, [pan]),

Reverb({parameters})

Math: Round(input), Floor(input), Ceil(input),

Abs(input), Min(input, operand),

Max(input, operand), Mean(input,

operand),

Gt(input, operand), Lt(input, operand),

Clip(input, a, b), ClipB(input, a, b),

Wrap(input, a, b), Fold(input, a, b),

+, -, *, /, %, ^

4.2.3 Busses

Busses are a particular kind of Unit into which other Units can write. Busses

therefore allow arbitrary signal mixing, efficient effects chains, and graph cycles.

 62

Busses add the bus:add(unit) and bus:remove(unit) methods to add

or remove Unit writers from a Bus.

Two special global Busses, named Out and In, represent the output and input

channels of Vessel respectively. The number of channels matches the number of

channels of the sound card (standalone) or number of inlets/outlets (lua~).

4.2.4 Distributed interaction (OSC, MIDI)

Vessel supports MIDI and OSC for input and output. Ports are created from

constructors taking textual or numeric qualifiers (e.g. MidiIn(1) or

OscOut(“localhost”, 7400)). Messages are read using the :read()

method, and sent using OscOut:send(…) or MidiOut:noteon(note,

vel, chan), MidiOut:control(cc, val, chan) etc.

4.2.5 Lua libraries

The entire Lua core libraries are available for use in the script, including standard

math and string functions. Additional functions are defined by Vessel for common

musical tasks, such as miditofreq(). Lua itself is an extensible language, and

any libraries written for stock Lua can be dynamically imported and used within a

Vessel Lua script, to provide scientific math functions, networking capabilities, etc.

 63

4.2.6 Lanes

The Lua Lanes project [22] is a special library incorporated into Vessel to enable

the sharing of simple data types between Lua states in distinct operating threads, via

named FIFO message queues. Lanes can also be utilized to create pre-emptive tasks

in distinct system threads, which may be useful to compute expensive non-real-time

operations.

4.3 Examples

In this section I present simple demonstrations of the capabilities of the presented

software.

4.3.1 Minimal example: note list player

The following code fragment defines a coroutine process to progressively iterate

a note list table and interpret its data as a sequence of notes to synthesize using a

Sine oscillator:

-- a simple sequence player:
local player = function(notelist)
 for i = 1, #notelist do
 local event = notelist[i]
 play(Out, event.dur, Sine(event.freq))
 end
end

-- a minimal sequence:
local triplet = {

 64

 { freq = 440, dur = 0.5 },
 { freq = 880, dur = 0.25 },
 { freq = 660, dur = 0.25 }
}

-- play the sequence concurrently:
go(player, triplet)

This is minimally equivalent to the orchestra-score model of Csound et al., yet

can be endlessly extended with functional and concurrent programming. For

example, the table of event parameter sets could just as easily contain functions or

other coroutines in place of numbers. A library of complex and generative pattern

streams can be designed using tables, functions and coroutines, according to the

composer or programmer’s discretion.

4.3.2 Microsound Synthesis

Curtis Roads describes a diverse catalogue of rich synthesis techniques

dependent upon the micro time scale [43]. Vessel has been designed to support

microsound synthesis in general terms, but for the purposes of this thesis we will

consider trainlet synthesis as a specific indicative example: “A trainlet is an acoustic

particle consisting of a brief train of impulses. Like other particles, trainlets usually

last between 1 to 100 ms.” [43]

 65

Trainlet clouds incorporate at least three levels of hierarchy: the trainlet cloud,

each stream of trainlets, and the impulses within each trainlet. The following code

sample demonstrates a basic specification of a trainlet cloud:

-- trainlet cloud parameters:
local duration = 40 -- seconds
local density = 80 -- per second
local durmin = 0.001
local durmax = 0.1
local freqmin = 220
local freqmax = 880
local maxharmonics = 40

function trainlet(dur, freq, harmonics)
 local ig = Imp(freq, harmonics)
 play(Out, dur, Pan(ig * Decay(dur), math.random() - 0.5))
end

function trainletcloud()
 local t = now()
 while now() < t + duration do
 local dur = durmin + math.random() * (durmax - durmin)
 local freq = freqmin + math.random() * (freqmax - freqmin)
 local harmonics = math.random(maxharmonics)
 go(trainlet, dur, freq, harmonics)
 wait(math.random() * 2/density)
 end
end

go(trainletcloud)

4.3.3 Concurrent processes

This simple example demonstrates the layering of concurrent processes. Note

that both processes are instantiated from the same function template, but with

distinct arguments:

 66

-- simple percussive repeater as coroutine template:
function pattern(stepdur, freq, p)
 while true do
 -- create a DSP graph:
 local f = Sine(freq, 0)
 local ugen = Pan(Sine(freq, 0) * Decay(0.2) * 0.5, p)
 -- play for one step, then pause for one step:
 play(Out, stepdur, ugen)
 print(f:freq():current())
 wait(stepdur)
 end
end

-- launch coroutine immediately,
-- at 1/6s step size, 440Hz, pan right:
go(pattern, 1/4, 440, 0.5)

-- launch coroutine after 2 seconds,
-- at 1/4s step size, 330Hz, pan left:
go(2, pattern, 1/6, 330, -0.5)

4.3.4 Sample-accurate dynamic graphs

In Four Criteria of Electronic Music, Karlheinz Stockhausen described a

technique to produce synthetic tones that demonstrated the continuum between pitch

and rhythm (and by extension, timbre and polyrhythm). The following code example

demonstrates that graph can be created and destroyed at any control rate, slowly

moving from rhythm through to timbre. The period between each new instantiation

gradually reduces from one second to a single sample:

local dur = 1

local function player()

 -- launch child activity to change tempo:

 67

 local t = go(function()
 while dur * samplerate > 1 do
 dur = dur * 0.9
 print("dur", dur * samplerate, "samples")
 wait(0.1)
 end
 end)

 -- loop until down to a single sample duration:
 while dur * samplerate > 1 do
 local s = Sine(55 * math.random(8))
 play(Out, dur, Env(dur, s))
 end
end

go(player)

4.3.5 Generative signal graphs

In the following code sample, a series of events are produced in which each has a

signal graph that is determined randomly. The node() function selects from the

template table of functions to generate each part of the graph. Note that the

functions themselves recursively call node(), until the proper depth is reached.

-- mixer with reverb
local mix = Out:add(Bus())
local verb = Out:add(Reverb())
verb:add(mix * 0.1)

-- a set of templates to generate ugen nodes
local node -- forward declaration
local templates = {
 function(a) return Sine(node(a) * (2^math.random(10)),
 math.random()) end,
 function(a) return Tri(node(a) * (2^math.random(10)),
 math.random()) end,
 function(a) return Smooth(node(a), math.random(10)) end,
 function(a) return Decay(math.random() * 4) end,

 68

 function(a) return Env(math.random(), node(a),
 math.random(7)) end,
 function(a) return node(a) * node(a) end,
 function(a) return Fold(node(a), node(a), node(a)) end,
 function(a) return Mean(node(a), node(a)) end,
 function(a) return Abs(node(a)) end,
}

-- recursive graph node generator:
function node(depth)
 if depth > 0 then
 -- call a function from the template
 local t = templates[math.random(#templates)]
 return t(depth - 1)
 else
 -- just use a constant:
 return math.random()
 end
end

-- event generator:
function note()
 -- make a new duration
 local d = 0.1 + math.random() * 3
 -- generate a graph
 local graph = node(3)
 -- scale by an envelope
 graph = graph * Smooth(Decay(d), 100) * (math.random() - 0.5)
 -- DC block
 graph = Biquad(graph, 1, 1, 1)
 -- panning graph (pan at sample rate)
 local panner = node(2)
 -- clip to reasonable range
 panner = Clip(panner, -0.5, 0.5)
 -- schedule it!
 play(mix, d, Pan(graph, panner))
end

-- produce some graphs in sequence:
while true do
 local d = 0.1 + math.random()*0.1
 go(note)
 wait(d)
end

 69

5 Conclusion

The aim to finely interleave signal generation, event handling and composition

structure within a unified composition language has been achieved. Embedding

functional logic on a per-event basis can support both sequenced and algorithmic

composition in tangled hierarchies of parallel and serial time flows, and the

composer’s script itself becmes the source of synthesis complexity.

This section returns to some points that bear further elaboration, evaluates some

of the limitations of Vessel, and highlights areas for future development.

5.1 Extensible for musical structures

Many computer music composition systems incorporate abstractions and

behaviors appropriate for common musical structures. This can be very helpful,

however musical structures should not obstruct the free exploration of new ideas.

Many higher-level problems of musical signal representation are therefore not

directly addressed by Vessel. In the design of Vessel the author strove to avoid

limiting its use to certain ways of thinking about music, instead providing lower-

level general ‘meta-mechanisms’ (to follow the acknowledged philosophy of both

Max [56] and Lua [21]) with which musical ideas can be constructed. The use of

these mechanisms within real musical composition remains to be evaluated.

 70

By minimizing hard-coded distinctions and instead providing meta-mechanisms,

Vessel grants the composer greater responsibility towards the creative output (for

better or for worse). Truax states: “Ultimately, a computer music composition

reflects the musical knowledge embodied in both the software system that produced

it and the mind of the composer who guided its realization. The interaction between

these two bodies of knowledge is the essence of the creative musical process” [50]

An open-ended system may begin with little or no musical knowledge, however if

this knowledge is provided by the composer, the system may provide tools with

which to represent and then make use of this knowledge, and by consequence of

organizing complexity, afford new points of view otherwise obscured.

5.2 Avoiding an application-specific language

The decision to make use of an existing language rather than write a new one not

only simplified the implementation incredibly, but also suggests a wide scope for

experimentation in the future. The value of using an embedded language for

composition software is apparent in the many extensions to Csound derived from

Python.

I was fortunate to find a language as efficient, portable and well defined as Lua,

particularly with respect to the ability to extend coroutines into a sample-accurate

time domain. Throughout its ten-year history, Lua has been designed to be a simple,

portable, efficient extensible extension language.

 71

Since, beyond minor syntactical differences, this is the principal contrast with the

ChucK language, a slightly more detailed consideration is appropriate. Unlike

Vessel, ChucK cannot benefit from existing code, documentation or extension

libraries written for general programming languages. The following list gives an

indication of some of the Lua extension libraries that could be used within Vessel:

• Lbc, Numeric Lua (extended math)

• LPeg, Lrexlib (textual pattern matching)

• LuaExpat (XML)

• Pluto, lper (persistence & serialization)

• LuaCairo, LuaPDF (2-D graphics for printing)

• LuaFileSystem, Lposix, LuaZip, lgzip (file access & compression)

• LuaSocket, LuaCURL, CGILua (networking & web)

• LuaSQL, luasqlite (databases)

• Luaunit, Lunit (unit testing)

• Lua-eSpeak (speech synthesis)

• LuaJava, LuaObjCBridge (interfacing other languages & libraries)

A particular concern of the author is future portability: compositions written in

application-specific languages become unrealizable as soon as the application is no

longer supported. While applications such as Max and particularly CSound have

enjoyed longevity, the history of computer music composition is littered with now

defunct composition tools. While it is true that established programming languages

 72

may suffer the same fate, a formally defined generic programming language should

be easier to ‘port’ into future representations than an application-specific language.

5.3 Drawbacks

Despite the optimizations made, there is clearly a cost incurred by using an

interpreted language in audio thread. It remains to be tested how detrimental this

effect may become; however the author has been quite satisfied with performance so

far.

Although the abstraction level of the unit generator is at a level typical for

computer composition environments, certain activities may require access to direct

sample-producing functionality. The author is considering extending Vessel to

include a secondary level offering direct function calls upon sample buffers

accordingly.

5.4 Vessel in use

A component of the project was presented at the UCDarNet symposium in

January 2007, and a paper describing the Max/MSP implementation (along with a

workshop and performance) has been accepted for the Digital Arts Week conference

at ETH Zurich for July 2007. Another paper documenting the project has been

accepted to the ICMC 2007, Copenhagen. The software has been used already in a

 73

composition by the author and Wesley Smith [47], performed a number of times in

public.

5.5 Future Work

The software described in this thesis is planned for beta release in the summer of

2007. The author believes that the real test of a design concept is the

implementation and evaluation in practice, and (beyond bugs!) no doubt many new

ideas for extension will arise from such activity. However, the author in this section

will outline some of areas of development already identified.

5.5.1 Extended set of unit generators

The palette of unit generators is thus far minimal, but should indicate to the

reader that the extension to a more complete is feasible. Certain unit generators may

call for a different approach to timing or signal representation however; a case in

point would be FFT and IFFT processors. The design of such an interface is planned

as future work.

5.5.2 Notifications & audio triggers

A valuable addition to the scheduler/language would be a notification

mechanism for the coroutine yield wait() call, as an optional alternative to

 74

durations. Resuming a coroutine yielded in this way might be triggered by message

events (such as wait(midinote)), or more interestingly, events due by audio

analysis. For example, dynamic processing of Wavesets [54] might involve yielding

a coroutine until a zero crossing occurs on a specified input. It should be noted

however that any situations involving cyclical dependencies must cause a certain

buffer of latency in response.

5.5.3 Runtime specification of unit generators

Thus far, signal processing may be specified using unit-generator graphs for

micro-temporal durations, however like many other environments, Vessel is limited

to the vocabulary of unit generators provided, and unit generators themselves remain

opaque for the sake of efficiency. The standard solution to this is to provide a

software development kit (SDK), which developers may use to write new unit

generators in C or C++. New unit generators must be built in C++ and compiled

prior to use. At some level there will always be a trade-off between design time

(coding, compiling, loading) and execution time (efficiency).

A more novel approach may be supported by Faust [34], in which a high-level

functional language is used to specify unit generator algorithms, which can in turn be

automatically compiled into generated C/C++ code for many different composition

environments. The code generated by Faust may not be as efficient as hand-written

code, but it a) allows users with no C/C++ experience to create unit generators, b)

 75

creates representations of unit generators that are not specific to any environment,

good for portability and longevity, and c) may benefit from a shorter

implementation-test loop with runtime compiling & loading.

A third option for Vessel is to provide utilities to write signal-processing code

directly in Lua using basic primitives, and machine code compilation with the

LuaJIT compiler [35]. This will probably be less efficient than Faust, but can

provide an implementation-test loop so short that signal processing code itself could

be the result of a generative algorithm at runtime!

5.5.4 Graphics

The integration of algorithmic audio and graphics has long been a goal of the

author. Fortuitously, Wesley Smith, a fellow graduate student at MAT, had been

simultaneously developing a 3D graphics toolkit based upon the Lua language and

the OpenGL standard, named Abelian. Vessel and Abelian will communicate and

share data through serialized message buffers, and may share code. In addition, user

interface components can be created using the GLV OpenGL user interface library

[33], developed by the authors and other researchers at MAT.

The potential uses include graphical interfaces and visual instruments for real-

time performance and installation, visual music composition, audio-visual software

art and scientific or pedagogical visualizations. Conjoining a 3D graphics and user-

 76

interface toolkit with audio synthesis for a generalized digital media composition

environment is perhaps the most exciting future direction of research for this project.

 77

6 References

[1] H. Abelson, G. J., Sussman, Structure and Interpretation of Computer

Programs, MIT Press, Massachusetts, USA, (1996).
[2] P. Ackerman, Object-Oriented Time Synchronization of Audio-Visual Data

in a Multimedia Application Framework, PhD dissertation, University of
Zurich, Switzerland, (1995).

[3] Alioth, Computer Language Benchmarks Game, retrieved April 2007:
http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=lua&la
ng2=javascript.

[4] X. Amatriain, An Object-Oriented Metamodel for Digital Signal
Processing, with a focus on Audio and Music, Doctoral Thesis,
Departament de Tecnología, Universitat Pompeu Fabra, Barcelona, Spain
(2004).

[5] R. Bianchini, A. Cipriani, Virtual Sound: Sound Synthesis and Signal
Processing – Theory and Practice with Csound, Contempo s.a.s, Rome,
Italy, (2001).

[6] R. Boulanger, The Csound Book, MIT Press, Cambridge USA, (2000).
[7] Ø. Brandtsegg , “A Sound Server Approach to Programming in Csound:

Building a modular system for realtime algorithmic composition and
improvisation”, Csound Journal, Vol. 1, Issue 1 (Fall), (2005).

[8] M. Conway, Design of a separable transition-diagram compiler, in
Communications of the ACM 6, 7 (July), 396–408, (1963).

[9] L. Dami, E. Fiume, O. Nierstrasz, D. Tsichritzis, Temporal Scripting using
TEMPO, Centre Universitaire d’Informatique, Université de Genève,
(1994).

[10] R. Dannenberg, R. Bencina, Design Patterns for Real-Time Computer
Music Systems, Septermber (2005);
http://www.cs.cmu.edu/~rbd/doc/icmc2005workshop/real-time-systems-
concepts-design-patterns.pdf

[11] R. Dannenberg, P. Desain, H. Honing, “Programming Language Design for
Music” in Musical Signal Processing, Swets & Zeitlinger, Netherlands,
(1997).

[12] S. Dekorte, io, retrieved June 2007: http://www.iolanguage.com/about/

 78

[13] B. Garton, Maxlisp v0.8, July (2004);
http://www.music.columbia.edu/~brad/maxlisp/

[14] B. Garton, D. Topper, RTcmix – using CMIX in real time, In Proceedings of
the International Computer Music Conference. International Computer
Music Association, (1997).

[15] G. Geiger, Abstraction in Computer Music Software Systems, doctoral
thesis, Department of Technology, Universitat Pompeu Fabra, Barcelona,
Spain (2005).

[16] T. Grill, Py/Pyext, retrieved April (2007); http://grrrr.org/ext/py/.
[17] E. Giordani, “GSC4: A Csound Program for Granular Synthesis”, in Virtual

Sound: Sound Synthesis and Signal Processing – Theory and Practice with
Csound, Contempo s.a.s, Rome, Italy, (2001).

[18] F. Guerra, LuaGL, retrieved April (2007); http://luagl.wikidot.com/.
[19] C. Henry, A. Momeni, “Dynamic Independent Mapping Layers for

Concurrent Control of Audio and Video Synthesis”, Computer Music
Journal, 30:1, pp.49–66, Spring (2006).

[20] R. Ierusalimschy, L. H. de Figueiredo, W. Celes, “Lua - an extensible
extension language”, in Software: Practice & Experience 26 #6, 635-652,
(1996).

[21] R. Ierusalimschy, Programming in Lua (2nd ed.) PUC-Rio, Rio de Janeiro,
(2006).

[22] R. Ierusalimschy, L. H. de Figueirdo, W. Celes, The Evolution of Lua, to
appear in ACM HOPL III, (2007).

[23] A. Kauppi, “Lua Lanes – multithreading in Lua”, April (2007);
http://kotisivu.dnainternet.net/askok/bin/lanes.html.

[24] V. Lazzarini, Sound Processing with the SndObj Library: An Overview,
Proceedings of the COST G-6 Conference on Digital Audio Effects
(DAFX-01), Limerick, Ireland, December 6-8, (2001)

[25] D. Lea, A Memory Allocator, April (2000):
http://gee.cs.oswego.edu/dl/html/malloc.html

[26] E. Lee, The Problem with Threads, Technical Report No. UCB/EECS-
2006-1, Electrical Engineering and Computer Sciences University of
California at Berkeley, (2006).

[27] D. Manolescu, Workflow Enactment with Continuation and Future Objects,
in OOPLSA'02, Seattle, WA, (2002).

 79

[28] D. Manolescu, A Dataflow Pattern Language in Proceedings of the 4th
Pattern Languages of Programming Conference, (1997).

[29] Marsden, “Representing Melodic Patterns as Networks of Elaborations,” in
Computers and the Humanities, Vol 35, 37-54, (2001).

[30] J. McCartney, “Rethinking the Computer Music Language: SuperCollider,”
Computer Music Journal 26, 4, 61–68 (2002).

[31] E. Miranda, Composing Music with Computers, Focal Press, USA, (2001).
[32] L. de Moura and R. Ierusalimschy, Revisiting Coroutines, Computer

Science Department – PUC-Rio, PUC-RioInf.MCC15/04 June, (2004).
[33] E. Newman, L. Putnam, W. Smith, G. Wakefield, “GLV – OpenGL

Application Building Kit,” December (2006); http://glv.mat.ucsb.edu/.
[34] Y. Orlarey, G. Albert, S. Kersten, DSP Programming with Faust, Q and

SuperCollider, Proceedings of the 4th International Linux Audio
Conference, Karlsruhe, Germany (2006).

[35] M. Pall, LuaJIT, retrieved April (2007); http://luajit.luaforge.net/.
[36] T. M. Parks, Bounded Schedule of Process Networks, PhD thesis,

University of California at Berkeley, USA, (1995).
[37] S. Pope, X. Amatriain, L. Putnam, J. Castellanos, and R. Avery,

Metamodels and Design Patterns in CSL4 in Proceedings of the 2006
International Music Conference, Computer Music Association, (2006).

[38] M. Puckette, Pure Data, in Proceedings of the 1997 International Music
Conference, Computer Music Association, pp. 224–227, (1997).

[39] M. Puckette, “Max at Seventeen,” Computer Music Journal 26, 4, 31-43
(2002).

[40] L. Putnam, Synz, retrieved April (2007);
http://www.uweb.ucsb.edu/~ljputnam/synz.html.

[41] D. Pyon, Csound~, retrieved April (2007);
http://www.davixology.com/csound~.html.

[42] C. Roads, The Computer Music Tutorial MIT Press, Cambridge, MA, USA,
(1996).

[43] C. Roads, Microsound, MIT Press, Cambridge, MA, USA, (2001).
[44] Rustak, WoWWiki, The Warcraft wiki, retrieved April (2007);

http://www.wowwiki.com/UI_Beginners_Guide.
[45] C. Samuel, Olivier Messiaen, Music and Color: Conversations with Claude

Samuel, Hal Leonard Corporation, (2003).

 80

[46] G. P. Scavone, P. R. Cook, RTMIDI, RTAUDIO, and a Synthesis ToolKit
(STK) Update In Proceedings of the 2005 International Computer Music
Conference, Barcelona, Spain, (2005).

[47] W. Smith, G. Wakefield, Synecdoche, January (2007);
http://www.mat.ucsb.edu/~whsmith/Synecdoche/.

[48] S. Smoliar, A Parallel Processing Model of Musical Structures, report,
Department of Mathematics, MIT, Cambridge, USA, (1971).

[49] H. K. Taube, Notes from the Metalevel: Introduction to Algorithmic Music
Composition, Swets & Zeitlinger, (2005).

[50] B. Truax, “Computer Music Language Design and the Composing
Process.”, in Emerson S. (ed.) The Language of Electroacoustic Music,
Macmillan, London, (1986).

[51] E. Varèse, C. Wen-Chung, “The Liberation of Sound”, Perspectives of New
Music, Vol. 5, No. 1, (1966).

[52] Vercoe, D. Ellis, Real-time CSOUND: Software synthesis with sensing and
control. Proceedings of the ICMC Glasgow, 209-211, (1990).

[53] G. Wang, P. Cook, ChucK: A Concurrent, On-the-fly Audio Programming
Language, in Proceedings of the International Computer Music Conference,
(2003).

[54] T. Wishart, Audible Design, Orpheus, UK, (1994).
[55] Xennakis, Formalized Music, Pendragon Press, New York, USA, (1992).
[56] Zicarelli, “How I Learned to Love a Program that Does Nothing” Computer

Music Journal 26, 4, 44-51 (2002).

