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Abstract

The Harmonic Pattern Function:

A Mathematical Model Integrating Synthesis of Sound and Graphical Patterns

by

Lance Jonathan Putnam

The current landscape of parametric techniques for synthesis of digital sound

waveforms and graphical curves and shapes is vast, but is largely an incongruous

mixture of closed and highly specialized mathematical equations. While much of

this can be attributed to the independent development of synthesis techniques

within each field, upon closer examination it is clear that there exist common

mathematical bases between the modalities. By pulling back into a broader

mathematical context, it is possible to develop a language of unified audio/visual

synthesis principles so that many of the existing paradigms, regardless of modality,

can be understood from a single vantage point.

This dissertation defends the thesis that a large portion of known sound and

graphical synthesis techniques can be unified through a rational function of inverse

discrete Fourier transforms and that symmetry, invariance under transformation,

plays an important role in understanding the patterns that it produces. We call

this newly proposed audio/visual synthesis model the harmonic pattern function.

A survey of a wide assortment of historic mechanical and electronic devices and

computational systems used for generating sonic and visual patterns in art and

science reveals that their underlying mathematical descriptions are special cases of

ix



this new synthesis function.

The contributions of this dissertation include the introduction of a simple

mathematical function, the harmonic pattern function, capable of generating a

wide assortment of both known and previously unknown patterns useful for sound

and/or visual synthesis, a simplified notation for specifying the complex sinusoids

composing such patterns, and a thorough analysis of general themes and specific

instances of patterns producible from the harmonic pattern function.

x
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1. Introduction

To date, there is no formal mathematical framework that explicitly addresses the

simultaneous generation of both visual and sonic patterns in the context of digital

arts. Artists and researchers working with digital media must often construct

multimodal systems and artworks by combining a variety of seemingly independent

techniques from sound synthesis and computer graphics or rely on purely data-

based representations, such as sound files and raster- or vector-based images. This

fragmentation and independence of modalities not only creates a technical burden

complicating systems design, but can force media artists, designers, and researchers

into creating works that are a patchwork of modality-specific techniques and data,

rather than a cohesive product stemming from a unified set of principles.

In recent years, the combination of computers and discrete mathematics led to

the development of digital signal processing (DSP). A digital signal is any variable

quantity that is measured at regular intervals in space or time and at discrete levels

of intensity. The ability to convert physical media, namely sound and light, into

digital signals and back has opened up new possibilities for storing, synthesizing,

transforming, transcoding, and transmitting multiple media types from within a

single system. “Multimedia” is the term given to this notion of combining one or

more medium of expression or communication [79].
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1.1 Data and Process in Multimedia

In light of these recent developments, multimedia has still not come to fruition as

a medium with its own set of inherent qualities. Our current use of multimedia

can be criticized on two grounds: 1) it is often a combination of single modalities

rather than a true integration [48] and 2) it is overly data-centric rather than

process-centric [15]. Combining several media does not lead to multimedia [48]. In

Hamlet on the Holodeck, Janet Murray calls early multimedia artworks “scrapbook

multimedia” referring to the fact that they were often nothing more than digital

amalgamations of prior media types, such as photographs, text, film, and sound

recordings [73]. The reason, she argues, is that multimedia was (and most likely

still is) going through an initial derivative stage before its intrinsic properties are

uncovered and developed. Digital signals are reservoirs of possible patterns because,

in theory, they can represent any sound, image, or video sequence numerically.

However, a digital signal is not a description of a process. Something else is

required to fill this role—a language for generating patterns. The computer opens

up a large space of possibilities for art, but it is only useful with a repertoire

of image- or sound-generating functions [91]. The first languages for generating

computer graphics and sound were developed in the 1960s and consisted of a

small set of primitives that could be combined to construct more complex forms.

Max Mathews’ MUSIC 1-5 series of acoustic compilers defined a small set of unit

generators—simple oscillators, filters, and random number generators—that could

be connected together in a modular fashion to create more complex instruments

[63]. Georg Nees’ G1, G2, and G3 series of graphics languages consisted of various

pen commands for drawing lines and a random number generator [75]. Mathews’

and Nees’ early computer languages provided a way to generate sound timbres and
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visual shapes, respectively, however, they were not truly multimodal.

1.2 Problem Statement

At the moment, there are a wide variety of techniques for synthesizing sonic

and graphical patterns in the digital arts. What is currently missing in the

audio/visual domain is a simple and coherent mathematical construct specifically

oriented towards the simultaneous synthesis of sound and graphics. The problem is

eloquently stated by John Whitney [127]: “Technical innovation is thus providing

the means to begin a fine art for eye and ear. Regrettably, the formal idea of such

an extraordinary art remains obscure and is still poorly defined.” Also, as stated by

Jaimes et al [47], “Without theoretical frameworks for integrating multiple sensors

and media, we are likely to continue working on each modality separately and

ignoring the integration problem, which should be at core of multimedia research.”

Such attempts at audio/visual integration should not happen after the fact in the

data, but before in the process.

While some research has been done to correlate audio and visual data in the areas

of visual music [126, 6], two-dimensional sound visualization and transformation

[83], and image sonification [132, 131, 20], there is still lack of a simple, well-defined

mathematical framework that relates audio and visual patterns from first principles

rather than through extraneous mappings or extrinsic synchronization. Composer

Adriano Abbado notes that the correspondence between timbre and shape should

form the basis of any audio/visual language [2, 1].

Although the standard definition of multimedia addresses the notion of a

medium having more than one perceptual mode of experience, it does not specifically

define deeper unifying processes tying together different media types. Central to
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understanding process-centric multimedia, we consider the complex sinusoid (or

harmonic) as an atomic unit of digital sound and graphical patterns. Harmonics,

being the dual frequency-domain representation of the samples and pixels of digital

media, permit a different view of data as a combination of simple motions. The

advantage of seeing data from the frequency domain is that it informs us about

its process of creation rather than just stating its final form in the time and/or

position domains.

1.3 Outline of Dissertation

This dissertation continues with a historical background of mechanical, electronic,

and digital systems using harmonics as a basis for audio/visual synthesis. Following

this, in Chapter 3, the conceptual framework is presented which 1) introduces the

harmonic pattern function, a mathematical model tying together prior work on

harmonic pattern generation, 2) describes the role of symmetry in understanding

how the harmonic pattern function operates, and 3) outlines the methodology

used in this dissertation. In Chapter 4, generalizations of the harmonic pattern

function are given and in Chapter 5 specific instances of sound waveforms along

with graphical curves and raster plots are categorized according to the number of

harmonics comprising the pattern. Finally, before concluding, Chapter 6 discusses

some possible directions for future research.
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2. Background on Harmonic

Pattern Synthesis

2.1 Mechanical and Electronic Devices

There is a long and diverse lineage of mechanical devices constructed in order to

visualize sound and produce forms from simple and compound harmonic motion

[7, 82, 124, 125, 8]. The principle operating components of these mechanical

devices are vibrating diaphragms, rods, and strings, oscillating pendulums, and

systems of rotating gears. Many of the devices were constructed in order to study

and/or demonstrate simple types of motion occurring in nature, while others were

made directly for producing complex patterns for artistic purposes or simply as

a “philosophical toy.” The attraction of these devices is their ability to produce

a seemingly endless variety of patterns from simple operating principles. In the

electronic era, oscillography opened up new possibilities for creation of harmonic

patterns. While the earlier mechanical devices can only produce relatively simple

harmonic motions, electrical signals are capable of encoding any type of waveform

shape.
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2.1.1 Oscillating Devices

The study of forms produced by means of controlled sound vibrations is called

cymatics. The process involves taking a finely granulated or fluid-like substance

and placing it on a vibrating surface where it then produces patterns corresponding

to the resonant modes of the surface. In the 15th century, Leonardo da Vinci

noticed that by striking a wooden table covered with a thin layer of dust, various

shapes would form displaying the nodal (motionless) regions of the vibration.

In 1787, Ernst Chladni published Entdeckungen über die Theorie des Klanges

(Discoveries in the Theory of Sound) describing a method for visualizing the

nodal regions of vibrating surfaces using sand. Chladni used a bow to strum

the surface under investigation until a resonant frequency was reached causing

patterns corresponding to normal modes to emerge in the sand. Even with a single

driving frequency, complex patterns could be made as a result of the nodes formed

from the geometry of the vibrating surface. Chaldni’s work was later expanded

upon using more plate shapes with mathematical descriptions of the resulting

patterns [111] and more precise and varied vibrating mechanisms [50]. Margaret

Watts Hughes’ “voice-figures” are some of the most remarkably organic cymatic

patterns ever produced [43]. While cymatic patterns are certainly a type of sound

visualization, they are by no means a direct structure-preserving translation of

the original sound waves. They are not holistic visualizations since it is only the

nodal or anti-nodal regions of the waveform that are observed. Also, like many

other mechanical devices, the shapes of the resultant patterns depend in complex

ways on the physical and geometric nature of the vibrating media that are used

for observation.

In 1800, Thomas Young published the first known illustrations of the transverse
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motion of a vibrating string [133]. His experimental setup was comprised of a

light-reflecting silver wire wound around the lowest-pitched string of a piano. When

the string was plucked, the transverse orbit of the silver wire could be observed as a

“line of light” owing to the human perceptual phenomenon of persistence of vision.

Young made several illustrations of the string orbits (Fig. 2.1.1) exemplifying the

great diversity of harmonic patterns possible.

Figure 2.1.1: Thomas Young’s illustrations of the transverse orbits of a single point on
vibrating string [133]. Fig. 44. Various orbits of a musical chord. Fig. 45. Forms from
sound produced by means of a bow. Fig. 46. Epitrochoidal curves formed by combining
simple vibrations.

In 1815, Nathaniel Bowditch made the first known illustrations of the periodic

motion of a two-dimensional pendulum [16]. Though not a direct visualization of

sound, this experiment set an important precedent for developments later in the

century. The pendulum experiment Bowditch performed was suggested by James
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Dean as a way to study the apparent motion of the earth from the moon [21].

The parametric equation Bowditch gives for the orbits traced out by a pendulum

suspended from two points (for small variations) is

x = b cos(at+ c)

y = b′ cos(a′t)

where x and y give the position of the pendulum, t is time, b and b′ are the

oscillation amplitudes, a and a′ are the oscillation frequencies, and c is a phase

shift that depends on the initial pendulum position. Each dimension oscillates

independently allowing a large variety of curves to be produced. Bowditch curves

subsume many types of well-known curves including circles, line segments, ellipses,

parabolas, the lemniscate of Gerono, the Tschirnhausen cubic, and Chebyshev

polynomials [65]. As one conclusion to his work, Bowditch noted [16] “. . . the

method of finding these curves is very easy from what is here taught, and there

appears to be such an endless variety, that is would be useless to attempt to note

them.” Some illustrations Bowditch made of these curves are shown in Fig. 2.1.2.
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(a) Line (b) Circle (c) Chebyshev polyno-
mial

(d) Parabola (e) Saddlebag (f) Lemniscate of Gerono

Figure 2.1.2: Nathaniel Bowditch’s illustrations of various pendulum orbits.

In 1827, Charles Wheatstone, performed several experiments in visualizing the

sonic vibrations of metal rods. He constructed an apparatus called the Kaleido-

phone or Phonic Kaleidoscope (named after David Brewster’s Kaleidoscope), that

consisted of an assortment of steel rods which at one end were perpendicularly

fixed to a board and on the other end had a spherical silvered-glass bead attached

[123]. The bead, by absorbing and reflecting incident light, allowed the orbit

of the rod tip to be seen as a “continuous line of light” in a manner similar to

Young’s experiments with vibrating strings. Wheatstone made several important

observations about the curves produced from his apparatus: 1) the extent of

spatial motion is smaller for higher frequencies, 2) damped vibrations create spiral

forms, 3) the number of indentations in a figure composed from two frequencies is

related to the difference of the frequencies, 4) multiple points vibrating in unison

trace out solid looking figures, and 5) images vibrated as a whole can appear

duplicated at points where the motion of the orbit is retarded. While Wheatstone’s
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illustrations of the orbits (Fig. 2.1.3) appear closed and stationary, in a recent

reconstruction of his experiments [107] it was observed that the figures actually

rotate in space due to the fact that the rod vibrational modes have inharmonic

frequencies f0, 6.267f0, 17.55f0, 34.29f0, etc. where f0 is the fundamental frequency.

Kaleidophone curves (as drawn by Wheatstone) closely resemble those produced

from a vibrating string, as observed by Thomas Young in 1800. This indicates that

similar natural laws of harmonic motions describe the dynamics of what appear to

be completely different physical systems.

Figure 2.1.3: Charles Wheatstone’s illustrations of his Kaleidophone instrument and
some of the curves it produces [123].

In 1855, Jules Antoine Lissajous built a device in order to visualize acoustic

vibrations [60]. His system consisted of two tuning forks with attached mirrors

positioned at right angles to one another. Light reflected from the mirrors would

trace out curves on a screen that could be studied to determine the frequency

relationships between the two tuning forks. For simple sinusoidal waves, the

frequency ratio between the tuning fork vibrations can be deduced by counting the

number of extrema along the boundary of each dimension of the figure. Like earlier

devices, Lissajous’ apparatus took advantage of reflected light and persistence of
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vision to see the path of the tuning forks’ combined vibration.

The harmonograph is an instrument that traces out the path of a swinging

pendulum in two dimensions. The curves produced by a harmonograph are similar

to Bowditch curves (being essentially the same device), but due to friction, the

markings decay towards the central equilibrium point of the pendulum. The

swinging of the pendulum is due to an oscillation between the system’s kinetic

energy (maximum at center) and potential energy (maximum at edge). The first

harmonograph was constructed by Blackburn in 1844 using a pendulum suspended

from two points that traced patterns in sand [37, 124]. In 1871, Hubert Airy made

an account of a naturally occurring harmonograph, a vibrating twig of an acacia

tree [5]. Airy was able to trace the motions by attaching a small pencil to the twig

(replaced by a thicker hazel stem, for technical reasons) and holding a piece of

paper in contact with the pencil. In 1874, S. C. Tisley built the harmonograph in

its “present” form using two independently swinging pendulums [37].

In 1856, Édouard-Léon Scott de Martinville patented the phonautograph, a

general sound transcribing device modeled after the human ear [27]. The device

consists of a horn, acting as a conduit for sound waves, at the end of which is a

diaphragm with a small stylus attached at a 90º angle. The stylus traces out the

vibrations of the incoming sound onto a piece of paper wrapped around a rotating

cylinder. This device is important because it allowed for the first time arbitrarily

complex sounds to be transcribed in a one-to-one fashion with very few artifacts.

Certain tracings produced by the phonautograph demonstrate a direct connection

between sound waveforms and trochoidal curves (Fig. 2.1.4).
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(a) (b)

(c)

Figure 2.1.4: First known direct transcriptions of sound from Édouard-Léon Scott de
Martinville’s phonautograph. The images are from his 1857 manuscript “Principes de
Phonautographie” showing (a) speech, (b) a guitar, and (c) various trochoidal patterns.

2.1.2 Gear Systems

While many types of curves and patterns can be produced by oscillating mechanical

devices, they have several disadvantages. First of all, unless continually excited,

they will naturally evolve towards a motionless equilibrium due to friction. In

general, the faster the vibrations, the quicker the curves decay. While the harmono-

graph specifically depends on this natural damping to create complicated curves,

in most other cases it would be desirable to have control over the damping or even
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eliminate it completely so that closed or sustained patterns can be constructed. A

second disadvantage is that when an oscillating device has two or more indepen-

dent dimensions of motion, the figures tend to drift, morphing from one shape to

another, due to lack of frequency synchronization. Third, certain non-linearities in

the physical medium (e.g., a rod or a pendulum) create complicated inharmonic

vibration patterns making it difficult to control the stability of forms over time.

Gear systems, being more geometrically rigid, grant more precise control over

production of curves. These devices operate through the principle of compound

harmonic motion which is mathematically equivalent to the notion of deferents

and epicycles used to model planetary motions in antiquity. Each gear rotates at

a uniform rate and typically has another independently rotating gear attached

rigidly to it. A stylus is attached to the last gear of the series for etching or

drawing the resulting compound motion. It is interesting to note that the innate

complexity of compound harmonic motions is both the cause of their highly

successful application in the (ornamental) arts and the reason for their failure

as scientific theory which seeks the simplest explanations of natural phenomena.

In fact, the term “epicycles-on-epicycles” is now used as a general indicator of

pseudoscientific theories.

There is a long history of using “turning” lathes to create ornamental patterns

and designs dating back to the 15th century [42, 25]. Ornamental turning lathes

are used in a variety of applications ranging from watch decorations to candlestick

holders to anti-counterfeiting patterns for bank notes. A turning lathe operates

by rotating an object that is in contact with a fixed cutting tool or by holding

the carved object fixed while moving the cutting tool. The geometric pen is a

drawing machine invented by John Baptist Suardi in 1750 that draws figures based

on the compound motion of two circles [102, 12, 4, 125]. The geometric chuck,
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invented by John Holt Ibbetson in 1827, is a special type of lathe based on the

principle of a geometric pen [45, 77]. As stated by Ibbetson [46], the “power of The

Geometric Chuck consists in its capability of combining all its powers and every

kind of work it can accomplish, into one pattern, in any order of arrangement the

workman pleases.” Representative patterns produced by various chucks are shown

in Fig. 2.1.6.

Figure 2.1.5: John Baptist Suardi’s geometric pen [4] (left) and John Holt Ibbetson’s
geometric chuck [11] (right).

Figure 2.1.6: Patterns produced by the five major ornamental lathe apparatus—
eccentric chuck, ellipse chuck, ellipse-cutting instrument, rose-cutting instrument, and
geometric chuck (left to right) [77].

One of the earliest accounts of the mathematical details underlying chuck

patterns is John Holt Ibbetson’s Specimens In Eccentric Turning published in

1800 [44]. For the first time, the compound eccentric chuck is introduced which is
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“capable of delineating and recording the path of [Geometric Pen] curves, by means

of dots and circles.” The compound eccentric chuck operates under the principle of

two compound circular motions. Ibbetson observes that inward and outward loops

are related to whether the circular motions are in the same or contrary directions,

respectively. He also notes that the cyclical symmetry of the resulting curves is a

direct consequence of the ratio of the angular velocities of the two gears.

In 1838, Henry Perigal published Experimental Researches in Kinematics with

illustrations of several curves produced using a geometric chuck using up to four

compound harmonic motions [40]. The so-called “kinematic curves” produced from

the chuck are “Curves that result from Motion . . . ” and “. . . in contradistinction

to Algebraic Curves representing the Geometric Loci of Equations; which express

the limits of extension or magnitude, not the path of motion; defining a boundary

line, not describing an orbit . . . ” His calls the particular instances of kinematic

curves “spiroeids,”“periodic Curves which progress in coils or circumvolutions.”

In later writings, he uses the term “bicircloid” to describe curves made from two

compound harmonic motions [81]. All bicircloids lie within an annulus where the

outer radius is the apocenter and the inner radius is the pericenter [81]. Table 2.1

displays spiroeids of different curvature, where the curvature is the number of

compound harmonic motions that are combined with a “right-lined” motion. It is

worth noting that Perigal’s mechanical tracings of Bowditch curves, classified as

spiroeids having a curvature of three, predate Lissajous’ publication of the same

curves in 1855 [60].

15



curvature 1 curvature 2 curvature 3

Table 2.1: A selection of Perigal’s “Spiroeid” curves some of which are well-known
including Freeth’s nephroid (top left), an ellipse envelope (top center), the lemniscate of
Gerono (top right), and the right parabola (center right).

Extending the work of Perigal, W. Henry Northcott introduced several new

ways of classifying geometric chuck patterns [77]. The terms circloid, bicircloid,

tricircloid, etc. refer to patterns constructed from one, two, three, and so on, simple

harmonic motions. Centric patterns have all loops passing through the center,

ciscentric patterns have all loops wholly on one side of the center and transcentric

patterns have all loops circumscribing the center (Fig. 2.1.7).
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Figure 2.1.7: Centric, ciscentric, and transcentric figures (left to right).

In 1872, Sir Howard Warburton Elphinstone published a pattern design book

for the lathe with both illustrations and mathematical equations describing the

patterns [26]. One of his unifying principles is the use of the mathematical concept

of envelopes—secondary curves or surfaces tangent to a family of curves in close

proximity. Fig. 2.1.8 shows illustrations of several of the general pattern types he

identified, all of which make use of envelopes of circles. In addition to pointing out

the aesthetic potency of envelopes, he also makes the valuation “it will generally

be found that the beauty of the pattern is much enhanced by causing the circles

to touch each other exactly . . . ”

Figure 2.1.8: Elphinstone’s turning patterns. From left to right, Turk’s-head sur-
rounded with basket-work, shell, star, waved ellipse, and a double counting.

An extensive catalog of geometric chuck patterns is Thomas Sebastian Bazley’s

Index to the Geometric Chuck published in 1875 which includes 3,500 figures with

parametric descriptions [11]. Fig. 2.1.9 shows some figures from the catalog that

demonstrate the versatility of the geometric chuck. Bazley distinguishes both

between “consecutive” and “circulating” loops and “internal” and “external” loops
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(Fig. 2.1.10). A consecutive loop results when the gear velocities are in a simple

integer relationship 1 : n where n is an integer greater than 0. A circulating loop

results when the gear velocities are in a rational relationship n : m where n and m

are both integers greater than 1. The difference between internal and external loops

results from whether the gears turn in the same or opposite direction, respectively.

Figure 2.1.9: Figures displaying the diversity of curves possible from compound circular
motion of two geometric chucks.

(a) (b) (c) (d)

Figure 2.1.10: The four basic looping patterns of a single geometric chuck as described
by Thomas Sebastian Bazley [11] are (a) consecutive/internal, (b) consecutive/external,
(c) circulating/internal, and (d) circulating/external.

Bazley, speaking of the symmetrical qualities of more complex forms produced

by compound circular motions, made an important observation about a rather

curious phenomenon:

The curve, it will be remembered, is single and continuous, and, for

a considerable part of its course, the several portions of which it

is (so far) composed appear discordant, and to have no prospect of
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forming a harmonious whole. But as the delineation proceeds, the

irregular convolutions of the curve recur at such intervals as to overlap

symmetrically, or to adopt such positions with reference to one another

as to render the effect both complete and ornamental.

Figures displaying this overlapping symmetry are shown in Fig. 2.1.11. Bazley did

not analyze this phenomenon to find any patterns in the numerical relationships

that generate these types of shapes. He did, however, observe that for a single

geometric chuck (two compound circular motions) when the gear amplitudes

are inversely proportional to their angular velocities, then cusped forms emerge.

Similarly, when the gear amplitudes are proportional to the squared inverse of

their angular velocities, then rectilinear figures are produced.

Figure 2.1.11: Examples of unicursal figures displaying what Bazley termed “symmet-
rical overlap”.

One last observation of Bazley that is worth mentioning is his assessment of

the aesthetic qualities of the figures:

It may be well, however, to bear in mind that consecutive loops are

less susceptible of varied results than circulating, and internal loops

less satisfactory than external.

While many other gear-based machines were constructed to draw or etch curves

(see, for example [125]), the Creighton Compound Harmonic Motion Machine
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designed by William Francis Rigge in 1915 is arguably the most complex and

versatile of them all capable of drawing 7,618,782,498 distinct patterns [87]. Rigge

describes his invention as such:

The Creighton machine will in principle draw any form of harmonic

curve, for the reason that the number of its sections and the ratios of

its gears may be made almost anything. It is the first machine, as far

as is known, to use many components in series in both X and Y on a

stationary and on a rotating disk, and on a moving ribbon.

Rigge defines a “harmonic curve” as “a planar curve parameterized independently

along its basis axes as Fourier series.” Harmonic curves are classified into six

curve types—sine, rectangular, rectangular-polar, sine-polar, rectangular-sine, and

stereoscopic. Table 2.2 describes these six curve types.

Harmonic curve Description

Sine Pen moves in harmonic motion along Y while paper
moves linearly along X

Rectangular Pen moves in harmonic motion parallel to both its axes
(e.g., Bowditch curve, line, ellipse, circle, parabola)

Rectangular-polar Pen moves in rectangular curve while paper rotates
(e.g., epicycloid, hypocycloid)

Sine-polar Pen moves along one axis while paper rotates
(e.g., rosette, spiral of Archimedes, envelope rosette)

Rectangular-sine Pen moves in rectangular curve while paper drawn
linearly along one axis
(e.g., cycloid, progressive ellipse/line)

Stereoscopic Two plane curves with a slight change in phase of one or
more components

Table 2.2: Rigge’s six classes of harmonic curves.

It should be noted that the stereoscopic phasing effect did not originate with
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Rigge. Earlier accounts of this effect were given by S. C. Tisley in 1878 [124],

Charles Slichter in 1896 [96], and Charles E. Benham in 1909 [37].

2.1.3 Oscillography

In the early 1950s, oscillography arose as a fertile new medium with the capability

to produce multifarious curvilinear light forms through electronic means [29]. The

art of oscillography uses waveforms produced from various electronic (audio) signal

generators to directly control the two-dimensional path of a laser or oscilloscope

electron beam. While many works helped establish oscillography as an expressive

artistic medium (for example, Around is Around (Norman McClaren, 1950),

Divertissement Rococo (Hy Hirsh, 1951), Abstronic (Mary Ellen Bute, 1954) [72],

Magnet TV (Nam June Paik, 1965), and Chromophonie (Alexandre Vitkine, 1967)),

very little has been written about the medium on a more analytical or mathematical

level.

Ben Laposky thoroughly explored the artistic potential of oscillography, exhibit-

ing thousands of images of his work around the world and publishing several articles

on his theories and techniques (see [54, 55, 56]). His work is recognized as being the

first major initiative in generating graphics by means of electronic machines [29].

He described his creations as Oscillons, “images in light composed of waveforms

as they appear on the screen of a cathode ray oscilloscope” (Fig. 2.1.12). While

much oscillographic art tends to be monochromatic, Laposky utilized spinning

color wheels to give his Oscillon curves varying gradients (Fig. 2.1.12c). Laposky

made two observations about the relationship between the sound waveforms and

light images that are worth noting. First, high frequencies produce more solid

appearing sheets and forms [55]. This is due to the fact that higher-frequency
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components in a waveform will create more vibratory motion in the same interval

of time. Second, he states [55] (regarding the forms) “Some have mathematical pre-

cision, others are free-flowing in their curvatures and symmetries.” This distinction

largely stems from the ability to move continuously between simple waveforms with

few harmonics (Fig. 2.1.12a) and more complex waveforms with many harmonics

(Fig. 2.1.12b). Laposky notes that the use of electronics allows a wider variety of

forms than are possible through mechanical devices, such as pendulums [55]. This,

again, can be attributed to the increased control over the harmonic content of the

driving waveforms.

(a) Oscillon 19 (b) Oscillon 263 (c) Oscillon 1206

Figure 2.1.12: Some of Ben Laposky’s Oscillon series of photographs. Images ©
1952-1960, Sanford Museum, Cherokee, Iowa.

Herbert Franke also made use of the oscilloscope as an artistic medium around

the same time as Laposky. In his description [29] of the forms produced “These

configurations are not usually produced as still pictures but as events; the graphic

is a phase picture of such an event.” In other words, the figures on the oscilloscope

display the accumulation of the temporal motion through space of the electron beam.

This is the same notion as the “line of light” produced by vibrating mechanical

devices as articulated earlier by Young, Wheatstone, and Lissajous. The advantage
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of the cathode ray tube over the earlier mechanical devices is that the phosphor

screen extends the time over which events can be captured, thus allowing otherwise

fleeting events to be observed.

Alexandre Vitkine analyzed in more mathematical detail the relationships

between the waveforms and visual results in his oscilloscope art [110]. In his

work Triscargot (Fig. 2.1.13a), he constructs a slowly rotating triangle by adding

together two quadrature signals at 100 Hz and 51 Hz. (In signal processing, a

quadrature signal is a two-component signal comprised of a sine and cosine.) While

never stated explicitly, we can assume the refresh rate of the television he was

using to produce his forms was 50 Hz, a common frequency used for household

alternating current. With this in mind, a 100 Hz waveform will complete exactly

two cycles per display refresh and appear stable on the screen. The slow movement

of the form was the result of an additional 1 Hz added to a 50 Hz frequency.

This detuning reveals an important relationship between the spatial stability and

temporal motion of a waveform displayed on an oscilloscope or similar device. If

the waveform period is an exact integer multiple of the display’s period, then the

figure will appear static, otherwise, the figure will appear in motion. The further

away from integer multiples, the more animated the figure will be. In his work

Espace (Fig. 2.1.13b), Vitkine employs several other mathematical relationships to

obtain specific visual results. Initially, two signals, one with low frequency and high

amplitude (signal A) and the other with high frequency and low amplitude (signal

B), are combined. The two signals alone draw only circles, but when combined

show an emergent hypocycloid structure breaking the symmetry of the original

forms. Next, signal C at 0.4 times the frequency of A modulates B changing the

diameter of the smaller circles. Signal D slowly decreases and is multiplied by A

and B to create an inward falling spiral. Finally, a periodic digital signal with 3/4
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the frequency of B abruptly switches the signal on and off to produce a sequence

of isolated curls. This technique of mixing digital signals with analog signals is

important since it allows spatially separated objects to be produced from the same

signal. A very similar technique was developed by Wheatstone to produce multiple

images, but instead of superposing a digital signal, he superposed a more rapid

vibration, effectively interleaving the image into multiple points in space.

(a) Triscargot, 1970 (b) Espace, 1971

Figure 2.1.13: Images of Alexandre Vitkine’s oscilloscope work.

Oscillography introduced a new level of complexity to artificially-generated

patterns brought forth through the use of controlled electronic signals. The use

of more complex waveforms—those having a rich set of harmonics—led to more

complex and organic patterns. In addition, it was discovered that certain qualities

of the patterns depended in precise ways on the harmonic content of the signals

used. For example, sinusoidal waveforms produce rounded patterns and stepped

waveforms produce independent visual components.
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Conclusion

While the mechanical devices mentioned can produce a wide variety of forms

through simple means, their patterns are easily recognized due to the use of

a limited number of harmonics; a fact that can be attributed to the difficulty

in constructing such machines. Creating more complex patterns required more

complex machines. In addition, one has limited control over the rate at which

patterns are produced. Oscillating devices that react to vibrations produce curves

that are often fleeting due to friction and inharmonicity of the system. Other

devices, such as pendulums and gear systems, can require an extended amount of

time to create a pattern of sufficient complexity (although in some sense, this can

be considered an asset).

Oscillography subsumed many of the capabilities of its mechanical predecessors

with the additional benefits of producing patterns more rapidly and with more

mathematical generality. However, like its mechanical predecessors, recreating

the same patterns on an oscilloscope was not always possible due to the inherent

non-linearities and other complexities of the electronic circuitry involved.

As harmonic pattern producing devices progressed from simple oscillating

devices, to mechanical gears systems, to electronic oscillography, the degree of

mathematical abstraction underlying the systems increased along with the ability

to control their parameters. In this way, the machines came closer to the ideal of a

universal pattern generator. As the next step in this evolution, computers and

digital systems brought forth a way to realize even more abstract mathematical

constructs leading to almost entirely open-ended systems.
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2.2 Digital Systems

Computers bring forth the ability to work directly with discrete mathematics

thereby offering a much higher degree of numerical control than possible with either

mechanical or electronic devices. This additional precision permits mathematical

structures to be represented and transformed in a more exact manner. Another

important trait unique to computers is their ability to store, recall, and process

information with unprecedented speed and precision. With this comes the ability to

convert signals of sounds and images between analog and digital forms and perform

digital signal processing. The ability to generate or process an abstract signal that

can later be converted to sound or graphics opens up the possibility of developing

a unified audio/visual synthesis language. While many possible languages could be

proposed, it is likely that one based on harmonic superposition will prove fruitful

due to its past success within the gamut of mechanical and electronic devices

discussed above and its position as a fundamental principle of modern digital

systems. This goal of this section is to highlight developments in audio, visual and

combined audio/visual digital systems pertaining to the construction of patterns

through harmonics.

2.2.1 Early Sound Synthesis Languages

In the field of computer music, many synthesis techniques have been developed in

order to produce sounds entirely abstract in character or that emulate acoustic

instruments. The major techniques are discussed comprehensively [88, 24, 68] and

surveyed [70] elsewhere. Generally speaking, the primary goal in sound synthesis

is to generate sounds with a quality that match the richness and subtlety of

naturally occurring sounds. Sound synthesis techniques are based almost entirely
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on the manipulation of real-valued signals through mathematical models and

signal networks. Three of the major synthesis paradigms are additive synthesis,

subtractive synthesis, and what could most generally be called mapping synthesis.

Additive synthesis is algorithmically the simplest involving the summation of two

or more (periodic) waveforms to create a more complex waveform. Subtractive

synthesis involves filtering the spectral content of a richly harmonic source waveform

to produce a new timbre. Mapping synthesis is related to the mathematical

operation of function composition—mapping the output of one function into the

input of a second function to produce a new function. In sound synthesis parlance,

mapping synthesis involves either passing a waveform through a mathematical

function (e.g., waveshaping and amplitude modulation) or using a waveform to

control the phase or frequency of another oscillator (e.g., wavetable synthesis and

phase/frequency modulation).

In the early 1960s, Max Mathews created an acoustic compiler that allowed

one to program a computer to generate musical sounds [64]. This first compiler

evolved into a series of programs called MUSIC I-V that provided mechanisms for

synthesizing sounds and sequencing them into musical passages. From Mathews’

perspective, creating sounds on a computer is best accomplished in a manner in

between specifying each individual sample and triggering recorded sounds with note

numbers [63]. His idea was to use encapsulated functions called unit-generators, a

concept influenced by the signal data flow model used in analog circuit design. The

power of unit-generators is less about their individual functions, but their ability

to be used as nodes in a signal flow graph allowing a variety of custom instruments

to be constructed. MUSIC I included only four types of unit generators: G1, a

digital-to-analog output unit, G2, a periodic function generator, G3, G4, and G5,

adders, and RAND, a random signal generator. MUSIC V, the last compiler of
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the series, only added a few more unit generators to the initial set including FLT,

a two-pole band-pass filter, ENV, a three-segment envelope generator, and various

generators for constructing stored functions. The entire MUSIC V unit generator

set is listed in Table 2.3.

Unit Generator Description

AD2 Two-input adder

AD2 Three-input adder

AD4 Four-input adder

MLT Two-input multiplier

OSC Periodic function generator

RAN Low-pass random function generator

ENV Three-segment envelope generator

FLT Two-pole band-pass filter

GEN1 Creates stored function from line segments

GEN2 Creates stored function from a sum of sinusoids

GEN3 Creates stored function from a list of relative amplitudes

OUT Outputs samples to digital-to-analog convertor

Table 2.3: The complete set of MUSIC V unit-generators.

MUSIC V contained the minimal components for executing additive, subtractive,

and mapping synthesis. The MUSIC V language was so successful, that practically

all synthesis languages made after it followed its same design (thus are deemed

MUSIC N languages [62]). Aside from the unit-generator concept, the reason

MUSIC V was an effective synthesis language was that it was based largely on

simple, yet powerful time-tested mathematical concepts, algebra and mapping,

applied to sound waveforms.
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2.2.2 Sound Synthesis From Series Formulae

One of the oldest forms of sound synthesis is additive synthesis, the direct sum-

mation of multiple base waveforms, usually pure tones, in order to create a more

complex waveform. While the mathematical idea of additive synthesis can be

traced to the work of Fourier in 1878 [28], musically, it dates back as far as 200

B.C. with the invention of the Hydraulis organ by Ctesibius of Alexandria. While

conceptually simple, the central problems with additive synthesis techniques are

the sheer number of parameters that must be specified to create sounds of sufficient

richness and the mechanical or computational complexity required for adding to-

gether hundreds of sine waves each possibly having its own independent amplitude

and/or frequency envelope.

Discrete summation formula (DSF) synthesis [69] is an efficient method of

producing many harmonics in mathematically precise ways using very few oscillators.

A DSF is a rational function of a small number of harmonics that generates a

particular class of trigonometric series of either an infinite or variable number of

harmonics. The simplest DSF produces a spectrum with harmonic magnitudes

obeying an infinite geometric progression (Eq. 2.2.1) [24]. By adding an additional

harmonic to the numerator, it is possible to realize frequency shifts (Eq. 2.2.2) [69].

A more complicated type of DSF permits control over the highest harmonic present

in the spectrum (Eq. 2.2.3) [69]. By setting a = 1 and β = π/2 in Eq. 2.2.3 and

simplifying, one obtains a DSF for a band-limited impulse train (BLIT) (Eq. 2.2.4)

[129, 24]. Through additional integration and addition of BLITs, band-limited saw,

square, pulse, and triangle waves can be constructed [100]. There are also compact
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DSFs for direct synthesis of odd harmonic series (Eq. 2.2.5 and Eq. 2.2.6) [51].

∞∑
k=1

ak−1 sin(kθ) =
sin θ

1 + a2 − 2a cos θ
(2.2.1)

∞∑
k=0

ak sin(kθ + β) =
sin β − a sin(β − θ)

1 + a2 − 2a cos θ
(2.2.2)

N∑
k=0

ak sin(kθ + β) = sinβ−a sin(β−θ)−aN+1[sin((N+1)θ+β)−a sin(Nθ+β)]
1+a2−2a cos θ (2.2.3)

1

N

N∑
k=1

cos(kθ) =
1

2N

(
sin[(2N + 1)(θ/2)]

sin(θ/2)
− 1

)
(2.2.4)

N∑
k=1

cos(2k − 1)θ =
sin 2Nθ

2 sin θ
(2.2.5)

N∑
k=1

sin(2k − 1)θ =
sin2Nθ

sin θ
(2.2.6)

The infinite harmonic DSF can be written more compactly as a rational

function of complex sinusoids (Eq. 2.2.7) [76]. In this form, the DSF produces two

waveforms whose corresponding harmonics differ in phase by 90◦. By substituting

eiθ = cos θ + i sin θ into Eq. 2.2.7 and “simplifying” (Eq. 2.2.8), we see that its

imaginary component is identical to Eq. 2.2.1.

∞∑
k=1

ak−1eikθ =
eiθ

1− aeiθ (2.2.7)

=
(cos θ − a) + i sin θ

1 + a2 − 2a cos θ
(2.2.8)
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It is also possible to write the finite harmonic DSF in terms a complex rational

function using the closed-form expression of a geometric series [100].

N−1∑
k=0

akeikθ =
1−

(
aeiθ

)N
1− aeiθ

The advantage of formulating DSFs in terms of complex numbers is not only

that they become more compact and simpler to analyze, but also that any of them

can be frequency shifted by a simple multiplication with a complex sinusoid. In fact,

representing any sound through complex numbers permits ideal (single-sideband)

frequency shifting to become an basic type of sound transformation. This is in

opposition to sounds represented as real numbers, where frequency shifting can only

be approximated with a Hilbert filter or a combination of amplitude modulation

and high-order filtering [14]. By developing a slightly more abstract notion of

sound as a complex-valued signal, then we obtain not only a more powerful and

self-consistent framework for processing sound, but also a more powerful geometric

representation that can be used directly for visual synthesis.

2.2.3 Early Vector Graphics Languages

Many of the early computer graphics languages were based on the notion of a

programmable pen that could be moved from one point to another and raised and

lowered in relation to a drawing canvas. This approach, from a more mathematical

perspective, is known as vector graphics. The earliest programming language

developed for computer graphics was a set of drawing functions built directly

in ALGOL by Georg Nees called G1, G2, and G3 [75]. The first iteration, G1,

provided only four main commands: OPEN, CLOSE, LEER (blank), and LINE.

The function OPEN(A, B) opened a local coordinate system at global coordinates
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(A, B) while CLOSE would close the active local coordinate system. The function

LEER(U, V) moved the pen to point (U, V) without drawing while LINE(U, V)

drew a line from the current pen location to point (U, V). The second iteration, G2,

added several random number generators, Jn, where ‘n’ indicated the generator ID.

The generators operated through the simple recursive equation xn+1 = cxn mod 128

producing a pseudo-random sequence of integers in the interval [0, 128). The last

iteration in the series, G3, added the functions ZIRK (circle), REC (rectangle),

and SCHWARM (swarm). ZIRC(M, N, R, P, Q) drew a circle of radius R centered

at (M, N) starting at the the point (P, Q) lying on the circle. REC(D, E, F, G,

S) drew a rectangle enclosed by the abscissas D and E and ordinates F and G.

SCHWARM(D, E, F, G, U, V, N, P) was a function permitting a single figure to

be drawn many times with variations in size and position. The argument P is the

drawing routine defining the figure and N is the number of times it is called. The

arguments D, E, F, and G define an enclosing frame (similar to REC) and U and

V specify a scaling interval. SCHWARM is an early example of how symmetry

is used in computer graphics to construct more complex scenes by duplicating

objects in space.

While many of the early computer graphics systems were based strongly on

mathematical constructs, later systems began to incorporate more interactive con-

trol leading to “paint systems” where graphical elements could be drawn directly

to computer memory (i.e., the screen) [22, 103, 104]. Modern computer graphics

systems generally combine programmatic and interactive control. Another concep-

tual thread in early computer graphics related to the notion of a programmable

pen is turtle graphics. Turtle graphics continues to evolve in the domains of logic

and mathematics and thus plays a more direct role in defining a common language

between sound and graphics. Turtle geometry provides a concrete mechanism for
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generating sequences of points or discrete curves therefore uniting the synthesis of

visual patterns and sound waveforms.

2.2.4 Turtle Graphics

Turtle graphics is based on the notion of a drawing agent that, at the simplest

level, can be commanded to move forward, rotate, and raise or lower its pen. The

original idea of the turtle came largely from the work of William Grey Walter

in the early 1950s who built simple robot vehicles equipped with various sensors

in order to autonomously navigate their environment [112, 113, 31]. Since the

robots would often bump into obstacles, they were built with a protective “shell”

resembling that of a turtle. In the 1960s, Seymour Papert added turtle graphics

to the Logo programming language which was based on William Grey Walter’s

robots but now equipped with a retractable pen that could draw its path on the

screen [3].

The four basic turtle commands (move, rotate, raise/lower pen) in conjunction

with a programming language that permits procedures and iteration, allows complex

forms to be generated from simple algorithms. The uniqueness of turtle geometry

over other geometric systems, such as Cartesian or polar coordinates, lies in the

fact that it is intrinsic (properties do not depend on external frame of reference)

rather than extrinsic (properties depend on a fixed frame of reference) [3]. A

square, for example, can be described intrinsically as a series of relative motion

commands as

void drawSquare(){

forward(1); right(90);

forward(1); right(90);
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forward(1); right(90);

forward(1); right(90);

}

or extrinsically as a series of absolute coordinate settings as

void drawSquare(){

position(0,0);

position(0,1);

position(1,1);

position(1,0);

position(0,0);

}

Intrinsic geometry depends on having an object that can remember its state.

Each time the turtle is commanded to move forward or turn it is relative to its

current position and orientation. In this way, the turtle’s path is an accumulation

of angular and linear differential quantities. Extrinsic geometry, on the other hand,

is a memoryless description of shape. A shape is described in terms of absolute

coordinates of some global space. Both intrinsic and extrinsic turtle routines can be

viewed in terms of complex numbers. An intrinsic turtle routine is the integration

of a sequence of complex numbers given in polar form. An extrinsic turtle routine

is simply a sequence of complex numbers in Cartesian form.

An important insight of turtle graphics is that any recursive composition of

drawing routines has the underlying structure of a regular star polygon [3]. All

drawing routines can be thought of as black-box algorithms that ignore the actual

path the turtle takes and simply change its position and orientation (Fig. 2.2.2a).
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Figure 2.2.1: Path taken by a turtle following the drawSquare function.

If the same drawing routine is applied recursively, then the result is a (part of a)

regular star polygon with some arbitrary path connecting the vertices (Fig. 2.2.2b).

01

(a)

0, 5

3

4 2

1

(b)

Figure 2.2.2: The recursive application of any (a) turtle drawing routine has (b) the
skeletal structure of a regular star polygon.

Turtle geometry was originally devised in two-dimensional Euclidean space,

but has been extended to three-dimensional Euclidean space, R3, and the surface

of a sphere, S2 [3]. An essential component of a three-dimensional turtle is an

orthonormal reference frame. The operations of motion are rotations around and

translations along the axes of the reference frame.

A reference frame in R is comprised of three unit vectors f , u, and r that

specify the relative forward, up, and right directions, respectively, of the turtle in

absolute coordinates. An R2 turtle is a special case of an R3 turtle restricted to
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rotations around its up vector and translations along its forward and right vectors.

r

u

f

p

Figure 2.2.3: Turtle reference frame in R2 and R3.

Forward movement and rotations in R3 are accomplished with the functions

forward(d) = p + df

yaw(a) =

 r′ = cos(a)r + sin(a)f

f ′ = cos(a)f − sin(a)r

pitch(a) =

 f ′ = cos(a)f + sin(a)u

u′ = cos(a)u− sin(a)f

roll(a) =

 u′ = cos(a)u + sin(a)r

r′ = cos(a)r− sin(a)u

where d is the amount to translate forward and a is the turn amount in radians.

Turtle motions on the surface of a sphere are conceptually similar to those on

a two-dimensional plane (move forward, rotate left/right), however, the underlying

mathematics are quite different since the space is curved rather than flat. A

spherical turtle has a set of three orthonormal vectors p, f , and r that represent

its position and its forward and right directions, respectively.
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p

f

Figure 2.2.4: Turtle on S2.

The equations of motion of a spherical turtle are

forward(a) =

 p′ = cos(a)p + sin(a)f

f ′ = cos(a)f − sin(a)p

right(a) =

 f ′ = cos(a)f + sin(a)r

r′ = cos(a)r− sin(a)f

where a is the turn amount in radians. An S2 turtle is a special case of an R3

turtle that is restricted to rotations around the right and up vectors and whose

position is its up vector.

2.2.5 Parametric Equations

A parametric equation defines a function using a specific set of parameters. They

provide an economical means for describing higher-dimensional shapes using less

dimensions and allow one to control a shape’s global properties [10, 30, 49]. Para-

metric equations can be used to generate Cartesian coordinates of curves and
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surfaces. For example, a helix can be defined in terms of one parameter, t, using

the parametric equation

helix(t) =


x(t) = cos(bt)

y(t) = sin(bt) t ∈ [0, 2π)

z(t) = t

.

A spherical surface can be defined using two parameters, u and v, with the

equation

sphere(u, v) =


x(u, v) = sin(v) cos(u)

y(u, v) = sin(v) sin(u) u, v ∈ [0, 2π)

z(u, v) = cos(v)

.

The general category of supershapes involve mapping trigonometric functions

onto coordinates in Cartesian or spherical space. Supershapes are described either

implicitly as an algebraic equation or explicitly as a set of parametric equations.

A superellipse or Lamé curve is a generalization of an ellipse formulated by

Gabriel Lamé in 1818 [98]. Its mathematical description is an implicit function

with a parameter n that controls its curvature and parameters a and b that control

its scaling factors in the x and y directions, respectively. The superellipse is derived

from a series of generalizations of the implicit equation of a circle (Table 2.4).

Table 2.5 shows a selection of other shapes that the superellipse subsumes.
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Name Implicit Equation

Circle |x|2 + |y|2 = 1

Ellipse
∣∣x
a

∣∣2 +
∣∣y
b

∣∣2 = 1

Superellipse
∣∣x
a

∣∣n +
∣∣y
b

∣∣n = 1

Table 2.4: Equations for the circle, ellipse, and superellipse

parabolic diamond astroid diamond circle
n = 1

2
, a = b n = 2

3
, a = b n = 1, a = b n = 2, a = b

ellipse witch of Agnesi “squircle” square
n = 2, a 6= b n = 3, a = b n = 4, a 6= b n =∞, a = b

Table 2.5: Special superellipse shapes based on the implicit equation
∣∣x
a

∣∣n +
∣∣y
b

∣∣n = 1.
The gridlines are positioned at integer multiples of 1

4 .

The superellipse can also be described parametrically as

x(θ) = a sgn(cos θ)| cos2/n θ|

y(θ) = b sgn(sin θ)| sin2/n θ|

revealing its close relationship to trigonometric functions:

The shapes derived from the superellipse formula suffer from one major short-

coming—they can only express a limited range of symmetry groups, D2, D4, D∞,

and C∞. Any shape constructed through the additive mixture or Cartesian product
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of superellipses will reflect these symmetry limitations.

Johan Gielis’ Superformula further generalizes the superellipse to express all

cyclic and dihedral symmetry groups [33]. It can produce a wide variety of

shapes that resemble plant stem cross-sections, diatoms, starfish, shells, flowers,

and abstract geometric shapes [32]. Gielis points out several advantages of the

Superformula over other techniques:

• describes a wide variety of geometrical shapes found in nature and culture

through one simple expression

• precisely represents symmetry and individual characteristics of shapes

• permits easy calculation of associated measurements such as perimeter,

curvature, and area

• allows natural variation in shapes

• derived from existing basic mathematics

The Superformula equation is given in polar coordinates as

r =

(∣∣∣∣1a cos
(m

4
φ
)∣∣∣∣n2

+

∣∣∣∣1b sin
(m

4
φ
)∣∣∣∣n3

)− 1
n1

.

The Superformula’s use of polar coordinates rather than Cartesian coordinates is

key to its ability to generate curves with arbitrary cyclical symmetry. The variable

m determines the cyclical symmetry of the shape. The values n2 and n3 determine

whether the shape inscribes (|nd| < 2) or circumscribes (|nd| > 2) the unit circle.

Other parameters control the sharpness of corners and straightness of sides. A

selection of Superformula shapes are presented in Fig. 2.2.5.
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Figure 2.2.5: Superformula shapes. The symmetry parameter m is 1, 2, 3, 4, and 9
going from the left column to the right column. The top row shows inscribed shapes
using the parameters a = b = n1 = n2 = n3 = 1. The middle row show circumscribed
shapes using the parameters a = b = n2 = n3 = 1 and n1 = −1. The bottom shows
lobed shapes made using the parameters a = b = 1, n2 = n3 = 8, and n1 = −1.

Gielis discusses several ways in which the Superformula can be extended to

construct more complex shapes [33]. First of all, the Superformula equation can be

multiplied by another function f(φ) to form the Generalized Superellipse Equation.

The function f(φ) is a general function that provides further control over the shape’s

form. If f(φ) = 1 + g(φ), then the Superformula base curve can be modulated by

the function g(φ). Logarithmic and Archimedean spiral shapes can be constructed

by using f(φ) = e−cφ and f(φ) = max(1− cφ, 0), respectively. A second method

is to apply polynomial functions of the angle φ to the variables. This allows the

rotational symmetry of the shapes to be broken. Finally, Superformula shapes

can be combined with others through addition and multiplication and Boolean

operations. The shapes generated by the Superformula can be interpreted as

“atomic” shapes from which more complex and higher-dimensional forms can be
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constructed [32]. In a very simple manner, shapes can be summed together similar

to the way that Fourier series are used to construct arbitrary functions from a

summation of simpler sinusoidal functions.

In summary, mathematically described supershapes have the ability to express

a wide range of forms and symmetry groups through very few parameters. Forms

constructed through implicit equations in Cartesian coordinates have limited

degrees of symmetry. To alleviate this problem, polar coordinates can be used

instead. However, the deeper problem with parametric equations is that they are

too specialized algorithmically resulting in a limited range of forms for any given

equation. This often results in a number of different parametric equations needing

to be used in order to obtain a sufficient variety of distinct shapes. It would be

desirable to work with a mathematical construct that is more complete in the sense

that it permits a wide variety of different forms and a fluid continuum between

them. Synthesis techniques based entirely on Fourier series offer one possible

solution.

2.2.6 Graphical Shapes From Fourier Series

Just as a sum of sine waves can describe a sound waveform, complex Fourier series

can be used to describe two-dimensional curves directly as a continuous path or as

a discrete sequence of vertices. Regular star n-gons with Schläfli symbol {n/a}

have a very simple Fourier series representation given by

fn(t) =
∑
k

1

k2
eikt (2.2.9)

where k = −∞, . . . , a− 2n, a− n, a, a+ n, a+ 2n, . . . ,∞ [89]. Eq. 2.2.9 describes

a regular star n-gon as a set of linear functions rather than a sequence of vertices.
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This means that each side of the polygon has a constant speed. The sharpness of

the corners increases as more harmonic components are used (Fig. 2.2.6).

Figure 2.2.6: Partials sums of the Fourier series of a pentagon given by Eq. 2.2.9 for
n = 5 and a = 1. The number of harmonic components in each figure (pictured left to
right) is 3, 5, 7, and 33.

The basis functions of the discrete Fourier transform form the vertices of regular

polygons in the complex plane and as a consequence of this, any N -sided polygon

may be described as a weighted sum of N regular polygons (some of which are

degenerate) [35]. The basis functions of an 8-point discrete Fourier transform are

shown in Fig. 2.2.7.

Now we’re ready for the big climax. The insight we’ve
been building up to can be expressed in two different,
but equivalent, ways:

1. The rows and columns of the Fourier matrix are reg-
ular polygons in the complex plane.

2. Any N-sided polygon may be described as a weight-
ed sum of N regular polygons.

Let’s see why these statements are true and why
they’re so cool.

We’ll start by looking at the columns of F and plot them
in the complex plane as a sequence of points. For speci-
ficity, I’ll select N = 8, so != i2"/8 = i"/4, and multipli-
cation by e! is a counterclockwise rotation of 45 degrees. 

The left-most column of F is simply the complex point
(1, 0) repeated eight times. It will be helpful to think of

this as a really degenerate octagon, where all the ver-
tices are coincident. Figure 9a shows the results.

The second column is the sequence of points [e0, ei"/4,
ei2"/4, ei3"/4, ei4"/4, ei5"/4, ei6"/4, ei7"/4]. If we plot these, as
in Figure 9b, we get a regular octagon inscribed in a cir-
cle of radius 1. The octagon starts at (1, 0) and proceeds
counterclockwise.

The third column doubles the angles, giving us the
points [e0, ei2"/4, ei4"/4, ei6"/4, ei8"/4, ei10"/4, ei12"/4, ei14"/4].
If we remember that ein" = 1 for any integer n, these
points are [e0, ei"/2, ei", ei3"/2, ei2", ei"/2, ei", ei3"/2]. In
words, the eight points form a square (or diamond) that
wraps around itself twice, as in Figure 9c. This is still an
octagon, but a very strange one. One way of thinking
about this is that we’re going around the octagon, but
skipping one point each time we move.

Following the pattern, the fourth column yields a star
octagon, as in Figure 9d. You can think of this as our
original octagon, except we skip over two points on each
move. It’s still an octagon, but it’s a pretty twisted one.

The fifth column simplifies to the two points (1, 0)
and (#1, 0) in alternation. Figure 9e plots this sequence
of points. Though it looks like a line, this is again a dis-
torted octagon.

The remaining polygons are repeats of their prede-
cessors, taken in the opposite order and traversed in the
opposite direction. The sixth column yields Figure 9f,
where we have a star octagon that looks like Figure 9d,
but is visited clockwise rather than counterclockwise.
The remaining two columns repeat the diamond and
regular octagon, except these two are also traversed
clockwise.

Another way of writing the matrix tableau then is as
in Figure 10, where each column is indicated as a series
of points around the indicated polygon.

Recall that I spoke of the Fourier transform as decom-
posing an input signal into a sum of basis functions, which
were complex sinusoids. In the new interpretation, we
can say that the Fourier transform decomposes a polygon
into a sum of basis polygons, themselves simply regular
polygons (though some are degenerate). Then the vec-
tor a represents the version of the input polygon in basis
space. Converting a back to x means simply weighting
the basis polygons and adding them back together again.

To see this in action, consider how to compute x[2].
We form the dot product of the column vector a and row
3 of the matrix. This row represents the third vertex of
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9 The eight basis polygons, plotted in the unit circle.
The points are numbered in the order they are visited.
(a) The degenerate octagon, where all 8 points land on
(1, 0). (b) The counterclockwise octagon. (c) The octa-
gon consists of points that form two overlapping dia-
monds. (d) An 8-pointed star. (e) The octagon consists
of alternating visits to (1, 0) and (#1, 0). (f) Figure 9d
traversed clockwise. (g) Figure 9c traversed clockwise.
(h) Figure 9a traversed clockwise.
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Figure 2.2.7: The basis functions (complex sinusoids) of an 8-point discrete Fourier
transform form polygons in the complex plane if we connect successive samples with
lines. The complex sinusoids are ordered by increasing harmonic number from (a) 0 to
(h) 7. Figure reprinted from Glassner [35], © 1999 IEEE.

Two-dimensional curves can also be described with Fourier series in a some-

what less direct manner. In pattern recognition, Fourier descriptors, the Fourier
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components of a planar curve’s tangent angle as a function of arc length [19], are

commonly used to analyze the outlines of shapes. Synthesizing a curve from its

Fourier descriptors can be accomplished through a sequence of move/turn turtle

commands (2.2.4) where the move amount is a constant and the turn amount

is determined by the sequence of tangent angles reconstructed from the Fourier

descriptors. Zahn and Roskies discuss several mathematical relationships between

a curve’s Fourier descriptors and its geometry, including its rotational symmetry

and closure [134]. The mathematical equation for curve reconstruction from Fourier

descriptors is given as

φ∗(t) = µ0 +
∞∑
k=1

Ak cos(kt− αk)

where φ∗(t) is the normalized cumulative angle function with domain t ∈ [0, 2π]

and Ak and αk are the harmonic amplitude and phase of the kth Fourier descriptor.

A curve has n-fold rotational symmetry only when the (nk)th coefficients have

non-zero amplitude where k = 0 is a circle. Zahn and Roskies also show that fairly

complex curves can be generated from only a few Fourier descriptors (Fig. 2.2.8)

[134]. A major disadvantage of using Fourier descriptors for shape synthesis is that

rotationally asymmetric curves have rather complicated closing criteria based on

Bessel functions leading to use of non-intuitive values of the amplitude parameter,

Ak (Fig. 2.2.8a and Fig. 2.2.8b).

Harmonograms [17] are produced using the same equation given by Zahn and

Roskies, however, the Fourier descriptors used to generate curves are given as

compact formal descriptors—an ASCII string, a harmonic spacing amount, and a

global scaling factor. Each character in the string corresponds to an amplitude

value of a Fourier descriptor. Undersampling is used as an additional control over
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of all edge lengths in the tree is a minimum among all pos-
sible trees spanning the point set. In case the class member-
ship of each point is known this minimal spanning tree (MST)
can be used to calculate the relative compactness of the
classes with respect to each other-that is, the tendency for
points of one class to be near points of the same class rather (a) (b) (c)
than other classes. The number of MST edges with end
nodes in different classes measures this tendency rather well. ().
We have performed such an analysis on the 117 points used
earlier to see how well the classes would separate in the
space (A,, , A6). The results are that the MST contains
one edge linking a 1 and 2 and three edges linking 2's and
3Ys. With three classes two of these edges were absolutely (d) (e) (f)
necessary and the extra two (out of 114) are a reflection of
the tendency toward intermixture of classes. The tendency
is quite minimal. Looking closely at the nodes causing the
crossover edges we were able to determine that they were
due entirely to one author whose 2's curled downward mak-
ing their shapes approximate 3's more closely. (g) (h) (i)
The recognition experiments carried out by Brill [6] give

Impressive indications of the power of Fourier descriptors.
We briefly summarize the results. In one experiment 600

machine-printed numerals from 50 different fonts were S
recognized with an error rate of 1.5 percent. In another, 400
hand-printed numerals from 40 different styles were recog-

nized with an error rate of 9.5 percent. These are very good (j) (k) (1)
if not spectacular error rates. What is rather surprising is Fig. 8. Examples of synthetically generated curves from simple
that the recognition was accomplished using lower order Fourier descriptor representations, many exhibiting axial and
Fourier descriptors and a reference set containing about two rotational symmetries under control of simple algebraic properties
samples per numeral class. In other words, numerals from of the Fourier descriptors.
50 fonts were recognized by an algorithm whose training set
consisted of at most two fonts-similarly, for the hand- TABLE 11

printed numerals. Brill et al. [7] report on further recogni-
tion experiments with machine-printed characters which are F
known to make trouble. 8(a) A1=3.83171

8(b) Al=7.01559
8(c) A5=4.0

EXPERIMENTS IN SHAPE GENERATION USING 8(d) A4= 3. 0, a4=7r/2, A8-2 0, as8=3r/28(e) A6= 1 .0, a6 = r/2, A,=2.0, a9 =r
FOURIER DESCRIPTORS 8(f) A2k= 1 .2-(o.2)k, a2k=r/2 for k= 1, 2, 3, 4, 5

Programs have been written in PL/I to reconstruct and 8(g) As = 1.0 , a8=3r/2, Ao = 2.0, aio 7r/2Programs ~~~~~~~~~~~~~~~~8(h)A2k=(0. 5)k, a2k = 1. 0(k-l) for k= 1, 2, 3
plot (on-line printer or digital Calcomp plotter) curves from 8(i) Ak= 0.6 -(0. l)k for k= 1 to 5 and al= a3 =a5 r/2,
arbitrary Fourier descriptors. We have experimented very a!2=a=3ir/2

with the generation of curves using these programs 8(j) A3= 2.5, a3 = 7r/2, A6 = 1 0, a6= 3r/2, Ag = 0. 5, a,-=r/2slightly with the generatl of curves these programs 8(k) A6= 3.0, a6 = 7r/2, A12 2.0, a12 = 37r/2
and Fig. 8 contains a small sample of some of the more in- 8(1) A3= 1.5
teresting results. In line with the closure theorem of an earlier
section we reconstructed the presumably closed curves from
a single FD Al where Al is one of the zeros of the first Bessel APPENDIX
function. Fig. 8(a) and (b) are from A == 3.83171 and 7.01559, Theorem 1: If two closed curves y and y' differ only in
respectively. Most of the remaining curves generated have starting point by Al in units of arc length (clockwise from Zo
both k rotational and axial symmetries which can be forced by to Z,') then we have the following.
putting A1= 0 for]+0 (mod k) and atnk--ir/2 (mod ir). Rather Condition 1: Ak' =A,.
attractive curves are generated by a very small set of FD's; Condition 2: ak'= a1+kAa where Aa=-2il/L.
for example, Fig. 8(c) is generated by A5=4, a,=0 and Condition 3: ,,'=Mo+3o-8o'+Aa.
Fig. 8(d) is generated by A4=3, a4= i<2, A,=2, and a'8 Conversely if these three conditions hold then y and yr'
= 3ir/2. The very interesting shape of Fig. 8(e) involves only differ only in a shift of starting point by Al1.
two nonzero harmonic amplitudes A, and A,. Table II lists Proof: If y' and y' differ by Al1 in starting point then
the FD input to generate each of the curves in Fig. 8. 0'(l)= (1+Al) and so
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than other classes. The number of MST edges with end
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and Fig. 8 contains a small sample of some of the more in- 8(1) A3= 1.5
teresting results. In line with the closure theorem of an earlier
section we reconstructed the presumably closed curves from
a single FD Al where Al is one of the zeros of the first Bessel APPENDIX
function. Fig. 8(a) and (b) are from A == 3.83171 and 7.01559, Theorem 1: If two closed curves y and y' differ only in
respectively. Most of the remaining curves generated have starting point by Al in units of arc length (clockwise from Zo
both k rotational and axial symmetries which can be forced by to Z,') then we have the following.
putting A1= 0 for]+0 (mod k) and atnk--ir/2 (mod ir). Rather Condition 1: Ak' =A,.
attractive curves are generated by a very small set of FD's; Condition 2: ak'= a1+kAa where Aa=-2il/L.
for example, Fig. 8(c) is generated by A5=4, a,=0 and Condition 3: ,,'=Mo+3o-8o'+Aa.
Fig. 8(d) is generated by A4=3, a4= i<2, A,=2, and a'8 Conversely if these three conditions hold then y and yr'
= 3ir/2. The very interesting shape of Fig. 8(e) involves only differ only in a shift of starting point by Al1.
two nonzero harmonic amplitudes A, and A,. Table II lists Proof: If y' and y' differ by Al1 in starting point then
the FD input to generate each of the curves in Fig. 8. 0'(l)= (1+Al) and so
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of all edge lengths in the tree is a minimum among all pos-
sible trees spanning the point set. In case the class member-
ship of each point is known this minimal spanning tree (MST)
can be used to calculate the relative compactness of the
classes with respect to each other-that is, the tendency for
points of one class to be near points of the same class rather (a) (b) (c)
than other classes. The number of MST edges with end
nodes in different classes measures this tendency rather well. ().
We have performed such an analysis on the 117 points used
earlier to see how well the classes would separate in the
space (A,, , A6). The results are that the MST contains
one edge linking a 1 and 2 and three edges linking 2's and
3Ys. With three classes two of these edges were absolutely (d) (e) (f)
necessary and the extra two (out of 114) are a reflection of
the tendency toward intermixture of classes. The tendency
is quite minimal. Looking closely at the nodes causing the
crossover edges we were able to determine that they were
due entirely to one author whose 2's curled downward mak-
ing their shapes approximate 3's more closely. (g) (h) (i)
The recognition experiments carried out by Brill [6] give

Impressive indications of the power of Fourier descriptors.
We briefly summarize the results. In one experiment 600

machine-printed numerals from 50 different fonts were S
recognized with an error rate of 1.5 percent. In another, 400
hand-printed numerals from 40 different styles were recog-

nized with an error rate of 9.5 percent. These are very good (j) (k) (1)
if not spectacular error rates. What is rather surprising is Fig. 8. Examples of synthetically generated curves from simple
that the recognition was accomplished using lower order Fourier descriptor representations, many exhibiting axial and
Fourier descriptors and a reference set containing about two rotational symmetries under control of simple algebraic properties
samples per numeral class. In other words, numerals from of the Fourier descriptors.
50 fonts were recognized by an algorithm whose training set
consisted of at most two fonts-similarly, for the hand- TABLE 11

printed numerals. Brill et al. [7] report on further recogni-
tion experiments with machine-printed characters which are F
known to make trouble. 8(a) A1=3.83171

8(b) Al=7.01559
8(c) A5=4.0

EXPERIMENTS IN SHAPE GENERATION USING 8(d) A4= 3. 0, a4=7r/2, A8-2 0, as8=3r/28(e) A6= 1 .0, a6 = r/2, A,=2.0, a9 =r
FOURIER DESCRIPTORS 8(f) A2k= 1 .2-(o.2)k, a2k=r/2 for k= 1, 2, 3, 4, 5

Programs have been written in PL/I to reconstruct and 8(g) As = 1.0 , a8=3r/2, Ao = 2.0, aio 7r/2Programs ~~~~~~~~~~~~~~~~8(h)A2k=(0. 5)k, a2k = 1. 0(k-l) for k= 1, 2, 3
plot (on-line printer or digital Calcomp plotter) curves from 8(i) Ak= 0.6 -(0. l)k for k= 1 to 5 and al= a3 =a5 r/2,
arbitrary Fourier descriptors. We have experimented very a!2=a=3ir/2

with the generation of curves using these programs 8(j) A3= 2.5, a3 = 7r/2, A6 = 1 0, a6= 3r/2, Ag = 0. 5, a,-=r/2slightly with the generatl of curves these programs 8(k) A6= 3.0, a6 = 7r/2, A12 2.0, a12 = 37r/2
and Fig. 8 contains a small sample of some of the more in- 8(1) A3= 1.5
teresting results. In line with the closure theorem of an earlier
section we reconstructed the presumably closed curves from
a single FD Al where Al is one of the zeros of the first Bessel APPENDIX
function. Fig. 8(a) and (b) are from A == 3.83171 and 7.01559, Theorem 1: If two closed curves y and y' differ only in
respectively. Most of the remaining curves generated have starting point by Al in units of arc length (clockwise from Zo
both k rotational and axial symmetries which can be forced by to Z,') then we have the following.
putting A1= 0 for]+0 (mod k) and atnk--ir/2 (mod ir). Rather Condition 1: Ak' =A,.
attractive curves are generated by a very small set of FD's; Condition 2: ak'= a1+kAa where Aa=-2il/L.
for example, Fig. 8(c) is generated by A5=4, a,=0 and Condition 3: ,,'=Mo+3o-8o'+Aa.
Fig. 8(d) is generated by A4=3, a4= i<2, A,=2, and a'8 Conversely if these three conditions hold then y and yr'
= 3ir/2. The very interesting shape of Fig. 8(e) involves only differ only in a shift of starting point by Al1.
two nonzero harmonic amplitudes A, and A,. Table II lists Proof: If y' and y' differ by Al1 in starting point then
the FD input to generate each of the curves in Fig. 8. 0'(l)= (1+Al) and so
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of all edge lengths in the tree is a minimum among all pos-
sible trees spanning the point set. In case the class member-
ship of each point is known this minimal spanning tree (MST)
can be used to calculate the relative compactness of the
classes with respect to each other-that is, the tendency for
points of one class to be near points of the same class rather (a) (b) (c)
than other classes. The number of MST edges with end
nodes in different classes measures this tendency rather well. ().
We have performed such an analysis on the 117 points used
earlier to see how well the classes would separate in the
space (A,, , A6). The results are that the MST contains
one edge linking a 1 and 2 and three edges linking 2's and
3Ys. With three classes two of these edges were absolutely (d) (e) (f)
necessary and the extra two (out of 114) are a reflection of
the tendency toward intermixture of classes. The tendency
is quite minimal. Looking closely at the nodes causing the
crossover edges we were able to determine that they were
due entirely to one author whose 2's curled downward mak-
ing their shapes approximate 3's more closely. (g) (h) (i)
The recognition experiments carried out by Brill [6] give

Impressive indications of the power of Fourier descriptors.
We briefly summarize the results. In one experiment 600

machine-printed numerals from 50 different fonts were S
recognized with an error rate of 1.5 percent. In another, 400
hand-printed numerals from 40 different styles were recog-

nized with an error rate of 9.5 percent. These are very good (j) (k) (1)
if not spectacular error rates. What is rather surprising is Fig. 8. Examples of synthetically generated curves from simple
that the recognition was accomplished using lower order Fourier descriptor representations, many exhibiting axial and
Fourier descriptors and a reference set containing about two rotational symmetries under control of simple algebraic properties
samples per numeral class. In other words, numerals from of the Fourier descriptors.
50 fonts were recognized by an algorithm whose training set
consisted of at most two fonts-similarly, for the hand- TABLE 11

printed numerals. Brill et al. [7] report on further recogni-
tion experiments with machine-printed characters which are F
known to make trouble. 8(a) A1=3.83171

8(b) Al=7.01559
8(c) A5=4.0

EXPERIMENTS IN SHAPE GENERATION USING 8(d) A4= 3. 0, a4=7r/2, A8-2 0, as8=3r/28(e) A6= 1 .0, a6 = r/2, A,=2.0, a9 =r
FOURIER DESCRIPTORS 8(f) A2k= 1 .2-(o.2)k, a2k=r/2 for k= 1, 2, 3, 4, 5

Programs have been written in PL/I to reconstruct and 8(g) As = 1.0 , a8=3r/2, Ao = 2.0, aio 7r/2Programs ~~~~~~~~~~~~~~~~8(h)A2k=(0. 5)k, a2k = 1. 0(k-l) for k= 1, 2, 3
plot (on-line printer or digital Calcomp plotter) curves from 8(i) Ak= 0.6 -(0. l)k for k= 1 to 5 and al= a3 =a5 r/2,
arbitrary Fourier descriptors. We have experimented very a!2=a=3ir/2

with the generation of curves using these programs 8(j) A3= 2.5, a3 = 7r/2, A6 = 1 0, a6= 3r/2, Ag = 0. 5, a,-=r/2slightly with the generatl of curves these programs 8(k) A6= 3.0, a6 = 7r/2, A12 2.0, a12 = 37r/2
and Fig. 8 contains a small sample of some of the more in- 8(1) A3= 1.5
teresting results. In line with the closure theorem of an earlier
section we reconstructed the presumably closed curves from
a single FD Al where Al is one of the zeros of the first Bessel APPENDIX
function. Fig. 8(a) and (b) are from A == 3.83171 and 7.01559, Theorem 1: If two closed curves y and y' differ only in
respectively. Most of the remaining curves generated have starting point by Al in units of arc length (clockwise from Zo
both k rotational and axial symmetries which can be forced by to Z,') then we have the following.
putting A1= 0 for]+0 (mod k) and atnk--ir/2 (mod ir). Rather Condition 1: Ak' =A,.
attractive curves are generated by a very small set of FD's; Condition 2: ak'= a1+kAa where Aa=-2il/L.
for example, Fig. 8(c) is generated by A5=4, a,=0 and Condition 3: ,,'=Mo+3o-8o'+Aa.
Fig. 8(d) is generated by A4=3, a4= i<2, A,=2, and a'8 Conversely if these three conditions hold then y and yr'
= 3ir/2. The very interesting shape of Fig. 8(e) involves only differ only in a shift of starting point by Al1.
two nonzero harmonic amplitudes A, and A,. Table II lists Proof: If y' and y' differ by Al1 in starting point then
the FD input to generate each of the curves in Fig. 8. 0'(l)= (1+Al) and so
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(d)

Figure 2.2.8: Shapes produced from Fourier descriptors (a) A1 = 3.83171, (b) A1 =
7.01559, (c) A4 = 3.0, α4 = π/2, A8 = 2.0, α8 = 3π/2, (d) A5 = 4.0. Images reprinted
from Zahn and Roskies [134], © 1972 IEEE.

the complexity of the curve.

2.2.7 Graphical Shapes From Sound

Another approach to shape synthesis is to use digital sound synthesis techniques

to produce signals acting as sequences of points. The points can then be plotted

directly or connected with lines or surfaces to make geometric forms in space. This

general procedure is simply a discrete version of oscillography and thus follows

many of the same principles.

One method is to take an audio signal and plot it against delayed versions of

itself. Monro and Pressing have examined the use of the mathematical technique of

embedding to visualize sounds [67]. Embedding works by taking a one-dimensional

sequence and forming a new sequence of m-tuples whose components are m evenly-

delayed (lagged) versions of the original sequence. Monro and Pressing analyze

properties of two-dimensional embedded signals from several common types of

sounds. White noise results in a uniformly filled square plot and Gaussian noise

gives a plot with circular symmetry. For periodic signals, a lag of one-fourth the

period creates the most well-distributed plots. A triangle wave produces a square

and a square wave creates four points on the vertices of a square. A single harmonic
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will produce circles, ellipses, and lines depending on the lag time, as has been noted

many times before by others. A signal comprised of the first and nth harmonics

creates either exact or skewed symmetric figures when the lag time is an integer

multiple of 1/(n± 1) times the fundamental period. Monro and Pressing also point

out that all embedded signals share an important mathematical property given by

Takens’ embedding theorem. This theorem states that specific properties of an

M -dimensional signal, such as its complexity, may be determined by embedding

any one dimension of the signal at most 2M + 1 times. This can be interpreted

to mean that certain global properties of dynamic systems are encoded in each

independent dimension. Embedding has also been utilized to visualize the effects

of products of amplitude- and frequency-modulated signals [92, 94, 93].

Andrew Glassner developed a model for synthesizing three-dimensional shapes

based on the operating principles of analog modular sound synthesizers [34]. Rather

than a flow of voltages, the fundamental data unit is a 3-vector of real numbers

that can represent a 3D point, 3D vector, or a color. Glassner outlines three main

design principles for the data flow system, 1) a small number of versatile modules

are provided, 2) each module has parametric controls, and 3) only one type of

data is passed between modules. The third principle is especially important since

it means that there are no restrictions on how information can be processed by

networks of modules. While this system is interesting from the point of view of

being a sonically-inspired approach to visual synthesis, it is not clear if it can also

be used for sound synthesis.
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2.2.8 Digital Harmony

Digital harmony is a compositional method conceived by John Whitney in the 1940s

that aimed to combine audio and visual synthesis through a common grammar

based on musical harmony [127, 126]. Central to digital harmony is the technique

of differential dynamics, where the position of each element in a composition

moves at an integer multiple of a particular base rate. Because of the harmonic

relationships, at specific points in time patterns will form and then dissipate.

The parameters of differential action are TD, the rate of angular or x-direction

movement, RD, the rate of radial or y-direction movement, and ZD, the rate of

z-direction movement. The parameters TD and RD thus can describe motions in

either a polar or Cartesian coordinate system. Whitney makes extensive use of a

mathematical curve called a rose curve which is given in polar coordinates as

r = sin
( n
m
θ
)

where n,m ∈ Z, |m| > 0, and θ ∈ [0 . . . 2mπ] to guarantee that the curve is closed.

Whitney uses a discrete rose curve

rn = sin

(
RD

TD + 1

2πn

N

)

where n is the nth point in the sequence and N is the total number of points.

Whitney discusses the notion of graphical scales which are formed as the matrix

of all integer-valued combinations of RD and TD. Table 2.6 shows a 4x4 “graphical

scale” of discrete rose curves. The graphical scales are a harmonic subset of the

planar continuum which consists of all real-valued combinations of RD and TD.

Integer values of RD and TD demarcate stable points in the field of all possible
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forms. From Whitney’s illustrations [126] it is clear that the stable points are

closed curves, while the so-called tensive points are open curves with free endpoints.

To get from one form to another, Whitney interpolates the differential parameters

from one state to another. As he notes, this results in a complicated sequence of

shapes:

The continuum is stepless until the selection of a frequency value is

made. Once made, a string of consequences follows automatically:

the entire family of intervals related to the first selection falls into

place. One can deduce from this the status before and after the first

choice. Out of the void, so to speak, a complete tensional hierarchy of

structural elements is given substantiality by the one singular decision.

The “tensional hierarchy” is a result of complicated integer relationships between

the differential amounts TD + 1 and RD. Whenever the differentials have a

common multiple the form will degenerate into an “overwound” form described by

the lowest possible ratio of integers. The set of all non-degenerate rose curves are

those where the two differentials are coprime (having no common multiple).
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TD

RD

0 1 2 3

1

2

3

4

Table 2.6: Graphical scale of discrete rose curves

While Whitney did not apply his theory of differential dynamics beyond visual

motion, Bill Alves has continued in this direction with his work Hiway 70, in which

a Just intonation soundtrack and visual composition of rose patterns correspond

through the same frequency ratios and modulations [6].

Conclusion

With the advent of computers came the ability to directly synthesize sound and

graphical patterns using digital signal processing and other forms of discrete math-

ematics. Patterns could be constructed with more precision and control than

with mechanical and electronic devices. However, throughout this evolution the
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development of techniques for audio and visual synthesis remained largely separate

disciplines. It could be argued that if the audio and visual domains were consid-

ered together from the start, a reasonable idea considering the generality of the

computer as a data processor, we might have a stronger mathematical foundation

for describing multimedia. In the next section, we present the mathematical

abstractions that thread through the previous work in harmonic pattern generation

for sound and graphics.

2.3 Mathematical Abstractions

With the advent of the computer and digital techniques for synthesis of both sound

and graphics, one can extract their various underlying mathematical principles

and begin to define a new language that unites visual and audio domains. As

evidenced above, there is a long history of successful application of trigonometric

functions towards the construction of complex curvilinear visual patterns and audio

waveforms. Common amongst these systems is the observation that the addition of

more harmonics directly lead to an increased complexity and variety of results. In

this section, we present a progression of mathematical abstractions from the rose

curve to the transfer function that explicitly tie together the harmonic audio/visual

synthesis techniques described above.

2.3.1 Epicyclic Curves

Plane curves exist in a variety of types each with their own intrinsic mathematical

properties and construction methods [61, 130, 57]. A large number of planar curves

can be classified as roulette curves, tertiary curves produced by the path (or locus)

of a point, the generator, attached to a rolling curve as it rolls without slipping
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along a fixed curve [61]. A particularly well-studied subset of roulette curves are

the epicyclic curves [84], those curves having a rolling curve a circle and a fixed

curve a line or a circle.

There are myriad terms used to describe epicyclic curves both with regards to

the specific type of fixed curve and the location of the generator as well as certain

generalizations. Table 2.7 presents the most common terms in present use. One

exception is the general class of curves generated by a circle rolling on a circle

for which no modern equivalent could be found. This type of curve takes the

name spiroeid [40], bicircloid [81], cyclic-harmonic curve [71], and rosette [86]. For

reasons of historical precedence and descriptiveness, we will use the term bicircloid.

A description of each curve in Table 2.7 can be constructed by inserting the column

headings into the following template:

A(n) {name} is the locus of a point attached rigidly {point location}

the circumference of a circle rolling without slipping {rolling location}

a fixed {fixed curve}.
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fixed curve rolling location point location name

line or circle along normal to epicyclic curve

line along normal to trochoid

on cycloid

inside curtate cycloid

outside prolate cycloid

circle along normal to bicircloid

inside normal to hypotrochoid

on hypocycloid

outside normal to epitrochoid

on epicycloid

Table 2.7: The various types of epicyclic roulette curves.

The cycloid was discovered in the early 16th century by mathematician Charles

Bouvelles. In 1659, Christian Huygens discovered that the cycloid is an isochrone,

the curve along which a particle always has the same descent time, regardless of

its starting position [9]. In 1696, Johann Bernoulli discovered that the inverted

cycloid is a brachistochrone, the curve along which a free-sliding particle descends

the fastest [9]. The parametric equation of a cycloid is

x = aθ − b sin(θ)

y = a− b cos(θ)

The standard parameterization of one cycle of a cycloid on the Argand plane is

f(θ) = aθ + ai+ (c− ai)eiθ

where a ∈ R, c ∈ C, and θ ∈ [0, 2π] [90]. In this standard view, a cycloid is
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superposition of a linear motion aθ + ai and circular (harmonic) motion eiθ(c−ai).

A rhodonea or rose curve, studied by Guido Grandi in 1728 [38, 99], is a specific

type of bicircloid where the tracing point is positioned on the rolling circle so that

is passes through the center of the fixed circle. It is defined in polar form as

r = cos(kθ)

in Cartesian parametric form as

x = cos(θ) cos(kθ)

y = sin(θ) cos(kθ) (2.3.1)

and in complex parametric form as

f(θ) =
1

2
(ei(1−k)θ + ei(1+k)θ)

= eiθ Re(eikθ)

where θ ∈ [0, 2π] and k ∈ N determines the number of petals.

A bicircloid generalizes the rose curve as well as all other circle-on-circle

curves including the hypotrochoid, hypocycloid, epitrochoid, and hypotrochoid. If

integrated, the bicircloid also describes all the epicyclic curves given in Table 2.7.

The bicircloid is described in complex form as

f(θ) = beimθ + ceinθ

where m,n ∈ Z, b, c ∈ C, and θ ∈ [0, 2π]. This is clearly a sum of two complex

sinusoids; a special case of a complex Fourier series.
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While roulette curves account for many different types of curves, they are

defined in terms of curves already given (the rolling and fixed curves) leading to

the problem of how to generate these initial curves. Epicyclic curves solve this

problem by having simple, compact parameterizations, but unfortunately exhibit

a relatively limited range of possible patterns. Seeing as how epicyclic curves are

constructed from a sum of two independent sinusoidal components, it is natural

to extend their range of expression by including more harmonics thus adopting a

more general framework of construction based on Fourier series.

2.3.2 Fourier Series

A Fourier series is an analytical description of a function in terms of a sum of

harmonically-related sinusoidal functions. It is given by

f(x) =
∞∑
k=0

ak cos(kx) + bk sin(kx)

where f(x) is a real-valued function and ak and bk are scalars. Fourier series

were suggested by Jean Baptiste Joseph Fourier in 1822 as a more general form

of representing heat flow than the prevailing methods at the time using partial

differential equations [28]. In essence, his theory provided a more numerically

precise way of describing the temporal evolution of heat within an arbitrary system.

Even though Fourier specifically addressed propagation of heat, he was well aware

that his theorems would apply to the analysis of more general dynamic systems

and mathematical functions:

The analytical equations, unknown to the ancient geometers, which

Descartes was the first to introduce into the study of curves and surfaces,

are not restricted to the properties of figures, and to those properties
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which are the object of rational mechanics; they extend to all general

phenomena. There cannot be a language more universal and more

simple, more free from errors and from obscurities, that is to say more

worthy to express the invariable relations of natural things.

The central tenet of his theory is that any function can be decomposed into a sum

of sinusoidal functions. He used this notion to describe the movement of heat in a

ring, sphere, cylinder, rectangular prism, and cube. It is conceivable that Fourier’s

insight was influenced by a Pythagorean point of view:

The problems of the theory of heat present so many examples of the

simple and constant dispositions which spring from the general laws

of nature; and if the order which is established in these phenomena

could be grasped by our senses, it would produce in us an impression

comparable to the sensation of musical sound.

Fourier showed that geometric waveforms, such as a square or sawtooth, have

very simple analytical representations as a sum of sinusoids. In his words, “The

series formed of sines or cosines of multiple arcs are therefore adapted to represent,

between definite limits, all possible functions, and the ordinates of lines or surfaces

whose form is discontinuous.” Table 2.9 enumerates some of the trigonometric series

of functions given by Fourier [28] and fills in missing series using basic calculus of

trigonometric functions. In an effort to simplify the equations, the original series

given by Fourier have been slightly adapted to eliminate phase shifts around the

origin. The modified series follow the simple pattern of cosine series having their

maximum value at x = 0 and sine series being zero with positive slope at x = 0.
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name graph ideal function Fourier series

impulse

{
1 x = 0

0 x 6= 0

1

K

K∑
k=1

cos kx

cotangent 1
K

cot x
2

1

K

K∑
k=1

sin kx

log sine − ln
∣∣2 sin x

2

∣∣ ∑
k=1(1),k>0

cos kx

k

saw saw(x) = −x
π

mod 2− 1
2

π

∑
k=1(1),k>0

sin kx

k

parabolic
3

2

(
saw(x)2 − 1

3

)
6

π2

∑
k=1(1),k>0

cos kx

k2

smooth saw
´
− ln

∣∣2 sin x
2

∣∣ ∑
k=1(1),k>0

sin kx

k2

log cotangent 1
2

ln
∣∣cot x

2

∣∣ ∑
k=1(2),k>0

cos kx

k

square sgn(saw(x))
4

π

∑
k=1(2),k>0

sin kx

k

triangle 2 |saw(x)| − 1
8

π2

∑
k=1(2),k>0

cos kx

k2

smooth square
´

1
2

ln
∣∣cot x

2

∣∣ ∑
k=1(2),k>0

sin kx

k2

Table 2.9: Fourier series of some simple functions.
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A Fourier series can be written in a more general form as a sum of complex

exponentials

f(θ) =
∞∑

k=−∞

cke
ikθ (2.3.2)

where eikθ = cos(kθ) + i sin(kθ) according to the Euler’s formula. Real-valued

Fourier series can be obtained from a complex Fourier series as its real and

imaginary components.

While in theory it is possible to construct any function with a Fourier series,

in practice, it is not feasible to evaluate an infinite (or large finite) number of

harmonics in order to produce a curve of substantial complexity. What would be

desirable is a way to efficiently produce sets of harmonics in a highly controllable

fashion. The transfer function, a ratio of complex Fourier series, offers one possible

solution.

2.3.3 The Transfer Function

In digital signal processing, a standard signal for analyzing linear time-invariant

(LTI) systems is a complex exponential given by

x[n] = z0z
n
1

where z0 and z1 are complex numbers representing its complex amplitude and

complex frequency, respectively. A complex exponential is written in polar form as

x[n] = A0e
iθ0
(
A1e

iθ1
)n
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where A0 = |z0| is the amplitude, θ0 = arg (z0) is the phase, and θ1 = arg (z1) is

the frequency. When |z1| < 1, we get a decaying complex exponential and when

|z1| > 1, we get a growing complex exponential. For the special case |z1| = 1, we

obtain a complex sinusoid [97].

The discrete Fourier transform (DFT), F , of a signal x of length N is given by

F(x[n]) = X[k] =
1

N

N−1∑
n=0

x[n]e−i2πkn/N

and the inverse discrete Fourier transform (IDFT), F−1, by

F−1(X[k]) = x[n] =
N−1∑
k=0

X[k]ei2πkn/N

where x is a position- or time-domain sequence, X is a frequency-domain se-

quence, N is the total period in samples, n is a position-domain index, k is

a frequency-domain index, and the summation terms are harmonically-related

complex sinusoids.

A transfer function, H(z), is a complex rational function that describes the fre-

quency response of a difference equation. It maps a complex input representing the

frequency of a unit magnitude complex sinusoid to a complex output representing

the complex sinusoid’s change in phase and amplitude.

Transfer functions are used to analyze systems given by a linear constant-

coefficient difference equation (LCCD). An LCCD specifies how to produce the

next element of a sequence out of a linear combination of its next and previous

inputs and outputs. In its most general form, it is given by

∑
k

bky[n+ k] =
∑
k

akx[n+ k]
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where x is the input sequence, y is the output sequence, bk and ak are complex

coefficients, n is the sample index, and k is a sample delay (k ≤ 0) or sample

advance (k > 0). A difference equation is causal if it depends only on its previous

inputs and outputs. These are commonly used for unidirectional signals, such as

real-time audio or other types of temporal data. A difference equation is acausal

if it depends on both its next and previous inputs and/or outputs. These are

generally used for processing bidirectional signals, such as images, volume data, or

other types of spatial data.

Obtaining a transfer function from an LCCD is accomplished by determining

the effect of the system on the complex frequency, z1, of a complex exponential. If

x and y are both taken to be complex exponentials, then we can use the z-transform

to substitute X(z)zk for x[n+ k] (likewise for y). Performing this substitution into

the LCCD equation and solving for Y (z)/X(z) = H(z) we get

H(z) =
Y (z)

X(z)
=

∑
akz

k∑
bkz

k
(2.3.3)

It can be seen from Eq. 2.3.3 that the transfer function is simply a rational function

of complex power series. When |z| = 1, the power series are isomorphic to the

DFT.

Conclusion

With the transfer function, we have finally arrived at an equation that can begin

to unify pattern synthesis both within and across the audio and visual domains.

All of the pattern synthesis devices and techniques described up to this point, from

string vibrations to the geometric chuck to modern digital signal processing, have
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Eq. 2.3.3 as an underlying model. While it is useful to have a single equation

that describes so many different phenomena, what is more important is how to

use it and furthermore, how to do so in an economical fashion. To help provide

some guidance in this direction, the modern notion of symmetry may provide some

important clues.

2.4 Symmetry and Its Importance in Mathemat-

ics, Science, and Art

Symmetry is an important integrating factor in its application in mathematics,

science and art. Throughout history, the definition of symmetry as a balance

of equivalent parts to make a whole has remained consistent. In the early 19th

century, its definition become more formalized and generalized as a result of the

development of group theory in mathematics.

The history of symmetry begins in the prehistoric era where excavated art from

the period signifies mankind’s first recognition and understanding of regularity

in nature. At the Blombos Caves in Western Cape, South Africa, several pieces

of ochre were found with engraved cross-hatched patterns [41]. Fig. 2.4.1 shows

one of the discovered artifacts. The artifacts have been dated back to 77,000 B.C.

making them the earliest known evidence of abstract art and human understanding

of pattern.
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Figure 2.4.1: A piece of ochre carved with abstract patterns dated back to 77,000 B.C.
From Henshilwood et al. (2002). Emergence of modern human behavior: Middle stone
age engravings from South Africa. (Science, 295:1278–1280. Reprinted with permission
from AAAS.)

The Pythagoreans were the first to use the term symmetry to refer to the

harmonization of different elements into a unitary whole. To them, symmetria was

visible beauty and harmonia was audible beauty [105]. Although there is no direct

translation of symmetry from its Greek roots, it can be used to describe harmony,

rhythm, balance, equipoise, stability, good proportions, and evenness of structure

[13]. The Romans also adopted the Greek notion of symmetry, most notably the

architect Vitruvius who wrote in his De Architectura “Symmetry results from

proportion; proportion is the commensuration of the various constituent parts

with the whole.” After the Renaissance, a more precise definition of symmetry

developed based on an equivalence and interchangeability of parts making a whole.

This eventually led to a more general definition of symmetry as invariance under

transformation [122].

Beginning in the 1830s, symmetry developed a more scientific definition origi-

nating in the mathematical notion of a group. A group is a set of transformations

that is closed under an operation that is associative, admits a unit element and

inverse elements [52]. Group theory arose in the attempts to find general solutions

to quintic and higher degree polynomials. In 1832, French mathematician Évariste
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Galois showed that the quintic equation cannot be solved using usual algebraic

operations and radicals. He was able to do this by showing how equations can

be broken down into more fundamental subgroups of permutations. Symmetry

played a significant role in this development. In 1884, German mathematician Felix

Klein demonstrated how to solve the quintic equation using a symmetry group

isomorphic to an icosahedron.

In physics, symmetry is extended from the form of objects to include the laws

governing the dynamics of objects. The harmonic oscillator is one such symmetry

of physical laws. It turns up as a solution to many problems in dynamics because its

general form, an exponentially decaying sinusoid, is invariant under differentiation

and integration. As another example of symmetry in physics, Galilean invariance

says that the fundamental laws of physics are the same in all inertial frames. In

this case, the laws exhibit a type of compact translational symmetry in space

and time. Einstein’s special theory of relativity also has strong ties to symmetry

through the geometry of space-time. Hermann Minkowski framed special relativity

in Minkowski space which forms a group of symmetry transformations. From this

connection, it became clear that physical laws could be deduced from symmetry

requirements. Minkowski’s interpretation of Einstein’s laws of special relativity

made, for the first time, symmetry considerations an important prerequisite in

formulating physical laws [135].

Along with symmetry come some natural complementary concepts. The most

obvious of these, asymmetry, designates lack of symmetry. Dissymmetry can mean

asymmetry or, more specifically, the condition of an object not being superim-

posable on its mirror image [121]. Antisymmetry describes a situation where a

symmetry operation is accompanied by a property that turns into its opposite

[39]. Dissymmetrization is the process of composing a system that has less sym-
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metry than its parts. Symmetrization is the opposite process whereby a system

is composed that has more symmetry than its parts [95]. Symmetry breaking

occurs when there is a reduction in the number of symmetry operations leaving

something unchanged. In physics, symmetry breaking can occur in one of two ways:

explicit or spontaneous. A system is said to exhibit explicit symmetry breaking if

there are intrinsic asymmetries in its dynamical laws [135]. On the other hand,

spontaneous symmetry breaking occurs when a physical system does not exhibit all

the symmetries of the laws by which it is governed [120]. A simple example of a

system exhibiting spontaneous symmetry breaking is the dropping of a marble into

a punted wine bottle. The marble will eventually come to rest on one side of the

bottle even though the shape of the bottle (assumed to be perfectly symmetric)

does not bias motion in any one particular direction [135].
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3. Conceptual Framework

What the background has shown us is the great diversity of visual and sonic

patterns possible through simple compositions of harmonics. From superpositions

of just a few harmonics, we already obtain a bewildering array of patterns applicable

to both sound and graphics. The question that naturally arises is how we can

make sense of this vast space of possibilities to serve both artistic and scientific

inquiry. With clear underlying principles at hand, one can explore the space of

patterns more effectively shortening the path between intention and outcome. This

dissertation proposes to advance our understanding of harmonic spatiotemporal

patterns through a simple, unified mathematical construct with the capacity to

compactly describe such patterns. The main thesis is:

A large variety of waveforms, shapes, and patterns for sound and

graphical synthesis are direct mappings of a one-dimensional rational

function of inverse discrete Fourier transforms, hereby called the har-

monic pattern function, with parameters compactly described in terms

of symmetry principles.

The term harmonic pattern function is used to refer to a complex-valued

rational function of two inverse discrete Fourier transforms. While similar in form

to a transfer function, the harmonic pattern function differs in that its domain

is discrete-space and/or -time rather than continuous-frequency. It produces a
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sequence of complex numbers which can be mapped in various ways to construct

graphical patterns or directly converted to a sound waveform by taking its real or

imaginary component.

3.1 Conventions

The following subsections present the terminological, mathematical, and graphical

conventions used throughout the document.

3.1.1 General Terminology

Term Description

codomain the set of all possible outputs of a function

complex sequence a sequence of complex numbers

complex sinusoid a periodic complex sequence whose real and imaginary
components are sinusoids with equal frequency and
amplitude, but phases differing by π/2

domain the set of all possible inputs of a function

eccentric (a curve) not centered at the origin

harmonic a complex sinusoid

sequence an ordered multiset (a set where a member may have
multiple instances)

speed (of a curve) a measure proportional to the distance between sample
points of a curve

Table 3.1: Listing of terminology
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3.1.2 Mathematical Symbols

Symbol Description

z = a+ ib complex number or sample

z̄ = a− ib complex conjugate

F discrete Fourier transform

F−1 inverse discrete Fourier transform

x = F−1(X) position-domain sequence

X = F(x) frequency-domain sequence

N ∈ N size of x and X, in samples

k ∈ [0, N) frequency-domain sample index

n ∈ [0, N) position-domain sample index

θi ith sample phase, in radians

Ai ith sample amplitude

Table 3.2: Listing of mathematical symbols

3.1.3 Graphical Representations

Throughout this document, several different types of graphical plots will be utilized

to represent one-dimensional complex sequences (Fig. 3.1.1). A component plot

displays the values of the real and imaginary components along the y axis and the

sequence index along the x axis (Fig. 3.1.1a). A curve plot is a direct mapping

of the complex numbers’ real and imaginary components to x and y Cartesian

coordinates, respectively. This type of plot is known as an Argand plot in complex

analysis. We refer to the points as vertices and the lines between successive points

as edges after the same terminology used in graph theory [36, 109]. A vertex curve

plot displays only the vertices and is used to illustrate unordered relationships

between points (Fig. 3.1.1b). An edge curve plot displays lines between successive
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points in the sequence and is used whenever ordered relationships are important

(Fig. 3.1.1c). The hue of each point along the curve correlates to its position in

the sequence, the first point being red, the next point going towards orange, and

the last point being violet. More precisely, the angle of the hue of the nth point

in a sequence of N points is n
N
· 360◦. A raster plot displays a raster scan [66]

of the complex sequence on an
√
N ×

√
N grid (Fig. 3.1.1d). Scanning starts at

the bottom-left corner and moves in the positive x direction incrementing in the

positive y direction and jumping back to the left edge whenever the right edge is

reached. The raster grid is thus topologically equivalent to the surface of a torus.

The hue and value components of each cell directly correspond to the phase and

magnitude, respectively, of the complex number.

(a) component plot (b) vertex curve plot (c) edge curve plot (d) raster plot

Figure 3.1.1: Various graphical plots used to display a one-dimensional complex
sequence. All plots show the same sequence αn = {1}+ {20} with N = 400.

The figures displayed on the curve plot are normalized so that for any point along

the curve given by the complex number z, |z| ≤ 1. When presenting shape equa-

tions, the normalization factor will be omitted for clarity. The normalization factor

is computed directly from the complex sequence as 1/max(|α0|, |α1|, . . . , |αN−1|)

so as to make the figure lie within the unit circle.
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3.2 The Harmonic Pattern Function

The harmonic pattern function, αn, is a newly proposed mathematical generating

function formally defined as a rational function of two inverse discrete Fourier

transforms. It provides a means for producing complex-valued sequences that can

be directly mapped into graphical curve and image patterns, sound waveforms,

and other types of spatiotemporal trajectories (such as the path of a spatial audio

source). The general equation of the harmonic pattern function is

αn =
xn
yn

=

N−1∑
k=0

Xke
i2πkn/N

N−1∑
k=0

Yke
i2πkn/N

(3.2.1)

where αn, xn, yn, are complex time- and/or position-domain sequences, Xk and

Yk are the kth elements of complex frequency-domain sequences, and N is length

of all sequences. Since the harmonic pattern function is often used with a sparse

set of parameters, we adopt the following shorthand notations for the complex

sinusoid terms to assist in reducing clutter

|Xk| · {k, arg(Xk)/2π} := Xke
i2πkn/N

A · {k} := Aei2πkn/N where A ∈ R

{k} := ei2πkn/N

where ei2πn/N is a discrete complex sinusoid sequence of length N indexed by n.

The value of N will typically accompany a harmonic pattern function although,

not strictly so such as the case when N →∞. Arithmetic of complex sinusoids in

the abbreviated form follow the same mathematical rules as before. Addition and
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multiplication are written as

A{a, θ}+B{b, φ}

and

A{a, θ}B{b, φ},

respectively. Multiplication and inversion of complex sinusoids have the reduced

forms

A{a, θ} ×B{b, φ} = AB{a+ b, θ + φ}
1

A{a, θ} =
1

A
{−a,−θ},

respectively. Multiplication is associative and is distributive across addition. The

real and imaginary components of a complex sinusoid A{a, θ} are specified as

ARe{a, θ}

and

A Im{a, θ}.

Any curve given in polar coordinates as a function of trigonometric functions

has an equivalent harmonic pattern function. If a curve’s polar equation is

r = f(θ), then its equivalent harmonic pattern function is αn = f(2πn/N) · {1}

with θ → 2πn/N . For example, a quadrifolium with the polar equation

r = 2 cos(2θ)
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has the harmonic pattern function

αn = 2 cos(2 · 2πn/N) · {1}

= 2
{−2}+ {2}

2
{1}

= {−1}+ {3}.

Implementation of the harmonic pattern function on a computer is straightfor-

ward, but not without a few less obvious considerations that are now discussed.

There are two principle methods for computing αn, the first in the frequency

domain and the second in the time domain. For the frequency-domain approach,

αn is computed by performing two inverse discrete Fourier transforms, storing the

quotient into a table, and then accessing the table. While the cost of computing

the table samples is at best on the order of O(2N log2N) using the FFT, once

computed, the table can be efficiently accessed in O(1) time for any particular

sample n. For the time-domain approach, αn is computed directly for all k, but

only at a particular n. In this way, Eq. 3.2.1 is treated like a complex function of a

real variable n. Considering the task of generating the sequence α0, α1, . . . , αN−1,

the frequency-domain approach has complexity O(2N log2N +N) while the time-

domain method has complexity O(2N2). However, if we assume there are only m

non-zero complex sinusoids, then the time-domain complexity becomes O(mN).

Thus, for m / 2 log2N , direct computation in the time-domain is both faster and

better amortized over time than in the frequency-domain. For these reasons, in

addition to simplicity of implementation, the time-domain approach is better if

only a small number of complex sinusoidal components are used.

A final implementation consideration is the efficient evaluation of eiθ. Direct

evaluation using language-provided trigonometric functions can be prohibitively
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expensive as two calls to cos and sin are required per complex sinusoid. A table

lookup procedure can replace the two trigonometric calls with a single array access,

permitting more speed but at the price of less precision. Fortunately, the geometric

properties of complex numbers provide an efficient way for substantially improving

the precision of table lookups. The trick [108] is to perform a double lookup from

two tables of size
√
N where a course table stores the complex sinusoid ei2πn/

√
N

and a fine table stores the complex arc ei2πn/N for n ∈ [0,
√
N). The tables can

be combined through a single complex multiplication into an “product” table

containing a full-precision complex sinusoid ei2πn/N . Even with two moderately

sized tables of
√
N = 4096, we can obtain an effective resolution of N = 16, 777, 216.

For audio synthesis, this translates to a full-precision sine wave with a period of

approximately 6 minutes at a sample rate of 44.1 kHz.

3.3 The Role of Symmetry

The role of symmetry in this thesis is not to aid in categorization of patterns already

generated, but to help in understanding and describing the processes underlying

the generation of patterns. The three main functions of symmetry considered are

1. Symmetries in the frequency domain have corresponding symmetries in the

time domain. The frequencies, phases, and amplitudes of the harmonics

comprising a pattern have a direct consequence on the formal symmetries of

the composed pattern.

2. All spatiotemporal patterns stem from a one-dimensional sequence. The

structure of the one-dimensional sequence remains invariant under mappings

to sonic and graphical patterns such as curves, images, and sound waveforms.
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For example, generated curves are unicursal; they can be drawn in a single

movement.

3. Near or perfect symmetries lead to near or perfect reinforcements and cancel-

lations. For example, patterns exhibiting envelopes are comprised of nearly

symmetric components and perfect symmetry can eliminate infinities.

Symmetries between harmonics in the frequency domain determine, to a large

part, symmetries of synthesized forms in the position or time domain. There are

particular symmetry relationships between the frequency-domain and position-

domain representations of patterns. When visualizing curves on the complex plane,

it has been found that frequency is directly related to cyclic symmetry and phase

is related to dihedral symmetry. In addition, multiple similar objects in space are

made by superposing low-amplitude, low-frequency harmonics with high-frequency,

high-amplitude harmonics.

Another important conceptual standpoint will be to suppose that all patterns

produced by the harmonic pattern function occupy a single space-time block. The

patterns are always closed since they are produced from periodic functions, however,

these patterns experienced as incomplete subsequences give no indication of the

finished product [87]. In one interpretation, these patterns are derived from a single

pattern existing as a pre-established spatiotemporal structure. The space-time is

considered to be a type of Euclidean space-time [80] where the time dimension is

viewed as nothing more than an extra spatial dimension. From this perspective,

time experienced is a linear movement through regular spatial slices of a holistic

space-time block. Each moment in time is one of the spatial slices. In what could

be called the “film-strip” convention of space-time, a series of spatial “images” are

viewed individually in rapid succession to give the (illusory) sensation of time.
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What leads to a coherent spatiotemporal experience (or at least one familiar to

us in the physical world we perceive) is that the images vary gradually from one

frame to the next. While the space-time being proposed here is similar to the

film-strip convention, it differs in that a makes a stronger assertion about how

spatial structures and their evolution over time are related. Fig. 3.3.1 illustrates the

difference between a continuous and discontinuous spatiotemporal pattern model of

a traveling sinusoidal wave. The top figure shows the discontinuous model where the

pattern taken as a single curve running from left to right is comprised of multiple

segments periodic through space within each time-frame, but discontinuous at the

frame boundaries. Each point within each time-frame “ticks” independently of the

others, albeit all at the same frequency in this particular example If the frames

were shown in rapid succession, it would appear as though the wave was traveling

to the right. In contrast, the bottom figure shows the continuous model which is

distinguished by the fact that there is only one continuous curve flowing across the

entire length of the film. If these cells were shown individually in rapid succession,

they would also show a wave moving to the right.

Figure 3.3.1: Two different models of spatiotemporal patterns. The top figure is the
discontinuous model where the pattern has separate space and time components. The
bottom figure is the continuous model where patterns run smoothly across space and
time.

With continuous space-time patterns, there naturally arise different ways

that a pattern exhibiting simple motion can “flow” through space-time. If the
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pattern comes short of closing on itself within one time-frame, then it undershoots.

Conversely, if the pattern runs past perfect closure, then it overshoots. When it

closes perfectly on itself within the time-frame, then it is coincident. Fig. 3.3.2

compares the three different flow types. Both undershooting and overshooting

patterns exhibit motion, whereas a coincident pattern is static.

Figure 3.3.2: Three types of flow patterns in continuous pattern model: undershooting
(top), overshooting (middle), and coinciding (bottom).

Another important role of symmetry, especially for sound synthesis, is that

it permits interference of waveforms in precise ways. When two antisymmetric

complex sequences are summed together, they cancel each other out. In partic-

ular, complex exponentials have a unique symmetrical form that allows them

to perfectly interfere with one another. In this way, band-limited waveforms

with an arbitrary number of harmonics can be constructed through destructive

interference of waveforms with infinite harmonics. Fig. 3.3.3 illustrates the basic

process. Two sequences, h1[n] = 1
1−b{1} and h2[n] = bd{d}

1−b{1} , with respective spectra

H1[k] =
∑∞

m=0 b
k+mN and H2[k] =

∑∞
m=0 b

[(k−d) mod N ]+d+mN are subtracted from

one another resulting in a spectrum that is truncated above the (d− 1)th harmonic.

This perfect cancellation between the spectra is made possible by two factors-

ideal frequency shifting and self-similarity. The ability to perfectly frequency
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|H1|

|H1 − H2|

k

|H2|

k
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k
0 N0 N

0 Nd − 1

Figure 3.3.3: Band-limited waveform constructed through destructive interference of
complex exponentials in the frequency domain.

shift the waveform is due to the fact that it is composed of complex numbers

rather than real numbers. This eliminates the need for a Hilbert transform filter

to approximate a 90◦ phase-shifted signal [14, 114] and instead only requires

multiplying the input signal by a complex exponential with its frequency set to

the desired shift in frequency. The self-similar nature of the spectrum (a decaying

complex exponential) means that its general shape is invariant under amplitude

scaling and, most importantly, under shifts in frequency.

3.4 Methodology

The contribution of this research is to codify a canonical set of audio/visual forms

constructed from a sparse set of complex sinusoids used in the harmonic pattern

function. This is seen as a necessary preliminary step towards understanding the

composition of more complex patterns. The second contribution is in providing

a precise numerical way for describing symmetry and asymmetry of sequences
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from the perspective of the frequency domain. Current theories of symmetry

[18, 95, 59, 58], as they relate to form, do not make an explicit connection to the

frequency domain nor address how to compose symmetries into particular patterns

that can be used for audio/visual synthesis.

On the basis of the harmonic pattern function, the complex sequences produced

thereof, and the conceptual framework as defined above, the following items are

investigated:

1. Classification of sound waveforms and geometric shapes produced by:

(a) single complex sinusoids

(b) low-order superpositions of (a)

(c) rational functions of (b)

(d) integration of (b) and (c)

2. Correlation between frequency, amplitude, and phase parameters and formal

qualities of patterns

3. Basic principles of combined spatiotemporal patterns stemming from single

one-dimensional complex sequences

Investigations were conducted using a custom-made real-time, interactive program

called Spool (Fig. 3.4.1). Spool provides an interface for parametric construction of

curves based on the harmonic pattern function with direct audio/visual feedback.

It serves as a general tool for exploring sonic and multiple visual representations of

the harmonic pattern function in parallel. By taking such a tautological approach

to rendering these sonic and graphical forms, patterns that may be perceived

differently can be related through a common mathematical basis.
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4. Generalizations of Harmonic

Patterns

The goal of this chapter is to present general mathematical rules and formal themes

that apply across a wide range of harmonic patterns. By examining quantitative

and qualitative aspects together, we can predict the appearance and behavior of

patterns from their mathematical description and vice versa. The most general

transformations to harmonic patterns are modifications to the amplitudes, phases,

and frequencies of harmonic components. For the most part, these transformations

vary one or more aspects of the pattern while leaving others unchanged. Formal

generalizations are primarily concerned with the outward appearance of patterns

and are almost always associated with numerical descriptions.

The mathematical and formal characteristics of patterns are discussed from

the perspective of symmetry—invariance under transformation. There are two

main reasons for this. First, by clearly defining the symmetries of patterns, we

automatically obtain an understanding of the complementary concept of asymmetry.

This is a logical way to proceed as symmetric patterns take up a much smaller

portion of the entire space of possible patterns. Furthermore, since the parameter

space of patterns we are considering is connected, it is entirely possible to generate

gradations between symmetry and asymmetry. This is important since some of the
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most interesting patterns are near-symmetric or pseudo-symmetric. The second

reason for considering symmetry is rather simple—it provides an effective means

for describing and categorizing patterns.

4.1 Frequency-domain Transformations

A frequency-domain transformation is an operation on the complex amplitudes

and/or indices of frequency-domain samples. For every frequency-domain transfor-

mation there is a corresponding position-domain transformation.

Transformation Frequency Position Result
Domain Domain

integration Xk
1
ik

´
xn indefinite integral

differentiation Xkik
d
dn
xn derivative

phase rotation Xke
iφ xne

iφ rotate samples

phase shift Xke
ikφ xn+ φ

2π
N shift position

phase negation X̄k x̄N−n conjugate and reverse

frequency shift Xk+δ xne
i2πδn/N

frequency scale X k
m

xmn mod N shift pitch

frequency negation XN−k xN−n reverse sequence

Table 4.1: Frequency-domain transformations

In the following subsections, the aforementioned transformations are discussed

in more detail. Wherever it is deemed necessary, visual examples of the transfor-

mations are supplied.

79



4.1.1 Amplitude Transformations

An amplitude transformation changes the amplitudes of the harmonics comprising

a complex sequence while leaving phases and frequencies invariant. The simplest

amplitude transformation is amplitude scaling which is associative across the

frequency and position domains. Two less trivial amplitude transformations are

integration and differentiation. The effect of these is to apply a power law to the

amplitudes of each harmonic where the exponent is proportional to the (integer)

harmonic number. The phases are also modified, but by a uniform amount which

can easily be corrected for if necessary. Considering the fact that integration and

differentiation are distributive across harmonics, they can be understood fully

by their operation on a single complex exponential. Differentiation of a complex

exponential is defined by

d

dt
eikt = ikeikt (4.1.1)

and integration as ˆ
eikt = −i1

k
eikt + C. (4.1.2)

where C is an arbitrary constant. The effect of integrating or differentiating a

complex sequence is thus to scale the amplitude of each of its constituent complex

exponentials in inverse or direct proportion, respectively, to their frequency and

apply a global phase rotation (discussed below). Integration and differentiation

can be generalized into the single operation

dp

dtp
eikt = (ik)peikt (4.1.3)

where p > 0 is the pth derivative and p < 0 is the pth integral.
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4.1.2 Phase Transformations

Phase transformations change the phases of the harmonics comprising a complex

sequence. There are two main phase transformations that leave some aspect of

a complex sequence, xn, invariant. The primary distinction between the phase

transformations is whether they operate in a local or global fashion on the sequence

while leaving invariant its global or local properties, respectively. The first trans-

formation, a phase rotation, adds a constant phase amount φ to each harmonic

comprising xn. The operation is described by

hrotate,φ(Xk) = Xke
iφ (4.1.4)

where each complex amplitude Xk is multiplied by eiφ. Due to the linearity property

of the Fourier transform, this operation is equivalent to

x′n = xne
iφ (4.1.5)

where x′n is the transformed sequence. The effect of this transformation is visualized

in the left column of Table 4.2 for various values of φ. It is evident that as φ

varies, there is only a change in the local phase of the sequence while its global

magnitude remains invariant. The second type of phase transformation, a phase

shift or position shift, adds the phase amount kφ to each harmonic k comprising

xn. The transformation is described by

hshift,φ(Xk) = Xke
ikφ (4.1.6)
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where Xk is the complex amplitude of the kth harmonic of xn. In the position

domain, the transformation is given by

x′n = xn+ φ
2π
N

which simply shifts the position of all samples. The effect of this transformation

is visualized in the right column of Table 4.2 for various values of φ. Now we see

that the effect of varying φ is to shift (or rotate) the sequence along the domain; a

consequence of the shift theorem of the Fourier transform [78]. It is evident that

the transformation changes the global magnitude of the sequence (via shifting)

while leaving its local phase invariant.

φ hrotate hshift

0
8
2π

1
8
2π

2
8
2π

3
8
2π

4
8
2π

Table 4.2: Comparison of phase rotation and shift transformations of xn = {1}+ {2}+
{3}. The plots show n (the domain) increasing in the +x-direction, magnitude along
the +y-direction, and phase as hue.

We now look at the effect of these two phase transformations (Eq. 4.1.4 and

Eq. 4.1.6) on a curve plot of xn. The effect of a phase rotation is visualized as a
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curve plot in Fig. 4.1.1. It is clearly evident that this transformation results in a

global rotation of the figure around the origin by φ while leaving its local phase

(starting point) invariant.

(a) φ = 0 (b) φ = 1
82π (c) φ = 2

82π (d) φ = 3
82π

Figure 4.1.1: Effect of a phase rotation transformation on xn = {1}+ {2}+ {3}. Red
and black designate the start and end of the sequence, respectively.

The effect of a phase shift is visualized as a curve plot in Fig. 4.1.2. It is evident

that this transformation realizes a local phase shift by φ while leaving the global

orientation of the figure invariant.

(a) φ = 0 (b) φ = 1
82π (c) φ = 2

82π (d) φ = 3
82π

Figure 4.1.2: Effect of a phase shift transformation on xn = {1}+ {2}+ {3}. Red and
black designate the start and end of the sequence, respectively.

By looking at the two phase transformations on both the complex magni-

tude/phase and curve plots of xn, it is clear that what one defines as a global or

local property depends on the type of plotting method. With a magnitude/phase

plot, the domain is identified as global while the codomain is identified as local.
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Conversely, with a curve plot, the domain is identified as local while the codomain

is identified as global. The reason for this is that when we construct a curve plot

of xn, we are mapping its codomain C onto a new domain, R2 (the Argand plane),

as a displacement.

The last type of phase transformation considered is a phase negation where the

phases of all frequency-domain samples are multiplied by −1. This transformation

is given by

hneg(Xk) = X̄k

where Xk = Ake
iθk and X̄k = Ake

i(−θk). Phase negation is the same operation as

taking the complex conjugate of the frequency samples. A phase negation reverses

and conjugates the position-domain sequence described by the operation

x′n = x̄N−n.

The effect of phase negation on a curve plot is to reflect the figure around the real

axis while leaving the winding direction invariant.

4.1.3 Frequency Transformations

Frequency transformations are operations that change the frequencies of the

harmonics comprising a complex sequence. Three frequency transformations will

be discussed—frequency shift, frequency scale, and frequency negation.

A frequency shift is defined by

fshift,δ(Xk) = Xk+δ

where δ is a constant added to the frequency of each harmonic. As this operation
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is simply to shift all samples in the frequency domain by a constant amount, it

can also be performed by multiplying xn by a complex sinusoid

x′n = xne
i2πδn/N .

The effect of frequency shifting on the magnitude/phase plot is to rotate the local

phases by a linearly increasing amount while leaving the global magnitude invariant.

Fig. 4.1.3 shows the results of frequency addition on xn using magnitude/phase

and curve plots.

δ = 0 δ = 1 δ = 2

Figure 4.1.3: Frequency shifting by varying amounts. A frequency shift causes the
curve to wind more, but leaves the magnitude invariant as shown by magnitude/phase
plots in the top row.

To make more clear how frequency shifting transforms the points in the sequence

xn we can look at a succession of fractional values of the addition amount δ going

from 0 to 1 using a vertex curve plot (Fig. 4.1.4). As the sample number increases,

its rotational “velocity” increases proportionally. The first point (n = 0) remains

stationary while the last point (n = N − 1) completes one full cycle. All other

points move by the fractional amount n/N of a complete cycle.
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Figure 4.1.4: Frequency shifting by fractional amounts δ = 0, 14 ,
2
4 ,

3
4 , 1 (left to right).

A frequency scale transformation is defined by

fscale,m(Xk) = X k
m

for k
m
∈ Z and k ∈ [0, N). Frequency scaling can be performed directly in the

position domain through the corresponding operation

x′n = xmn mod N (4.1.7)

which, unlike its frequency-domain counterpart, is well-defined for m = 0. Fre-

quency scaling is analogous to performing an integer-valued pitch shift on a

waveform. For example, the basis functions of the DFT are the set of xn = ei2πn/N

pitch-shifted for all possible m. What is clear from Eq. 4.1.7 is that frequency

multiplication leaves the values of position-domain samples unchanged while chang-

ing their order. To ensure that the mapping is injective (each index is mapped

to a unique output) and thus there are no degenerate patterns m and N must

be coprime. If N is made prime, then m can be varied freely and the mapping

is always injective. Conversely, if N is a highly composite number, then a large

amount of degenerate or exactly repeating patterns are produced.
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A frequency negation is defined by

fneg(Xk) = XN−k

where k ∈ [0, N). The effect of this transformation is to reverse both the position-

and frequency-domain sequences. The curve plot of a frequency negated sequence

is congruent to the original, but is drawn in the opposite direction.

identity frequency negated

Figure 4.1.5: Comparison between sequence and curve plots of frequency negation of
αn = {1, 0.1}+ {2}+ {−1}. Frequency negation reverses the position-domain sequence.

4.1.4 Frequency and Phase Negation

By combining a frequency and phase negation, we can effect a complex conjugation

on the position-domain sequence. In the frequency domain, this transformation is

fneg(hneg(Xk)) = X̄N−k.

The combined effect in the position domain is

x′n = x̄N−(N−n)

= x̄n
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which is clearly a complex conjugation of each position-domain sample. Since both

the phase and frequency negation reverse the position-domain sequence they cancel

one another out leaving the sequence order invariant. The only effect remaining

is the complex conjugation due to the phase negation. Since |z| = |z̄|, this

transformation leaves the magnitudes of the position-domain sequence invariant.

The individual and combined effects of frequency and phase negations are shown

in Table 4.3.

F
re

q
u
en

cy

Phase
+ −

+

−

Table 4.3: Conjugation and reversal transformations. A + indicates the identity
operation (no negation) while a − indicates a negation operation.

4.2 Planar Symmetry of Curves

Because we are working with discrete sequences of samples, we need to be precise in

how we describe the symmetries of the resultant patterns. In theory, all symmetries

should be formulated exactly in terms of the samples comprising the sequence

under consideration. However, in practice, it can often times be more informative
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to consider symmetries in a continuous sense—that is, on a more macroscopic

scale—when the number of samples is effectively infinite. Fig. 4.2.1 illustrates how

two curves having the same shape and symmetry “in the large” can have entirely

different symmetry properties “in the small.” The curves shown in Fig. 4.2.1a and

Fig. 4.2.1b are both trefoil curves, but have a number of points that differ by 1,

N = 399 and N = 400 respectively. On a macroscopic scale, both shapes appear

to have 3-fold cyclic (C3) and 3-fold dihedral (D3) symmetry. We can rotate the

shape in increments of 120◦ or reflect it around the axes through the center of

the lobes and it will remain unchanged. However, if we zoom in on the origin we

see a different pattern of points for each curve. The curve with N = 399 remains

consistent with its apparent continuous symmetries (C3 and D3), however, the

curve with N = 400 is revealed to be a part of the less symmetric groups C1 and

D1.

(a) N = 399 (b) N = 400

Figure 4.2.1: Two curves with the same continuous symmetries, but differing discrete
symmetries. The dashed boxes show a 16× magnification at the origin.

We define a continuous symmetry as a symmetry of an idealized pattern having

an infinite number of points and a discrete symmetry as a symmetry of a pattern
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with a finite number of points. The conventions are adopted from the notion of

continuous and finite groups in group theory.

4.2.1 Cyclic Symmetry

A curve with continuous cyclic symmetry of degree m around the origin (Cm) has

non-zero amplitudes at harmonics

k = `+ lm

= . . . , `− 2m, `−m, `, `+m, `+ 2m, . . . (4.2.1)

where |m| ≤ N
2

, 0 < |`| < m, l ∈ Z, and the quantities ` and ` + m are coprime.

For discrete cyclic symmetry, there is the additional condition N/m ∈ N. A simple

proof of this result follows.

We first observe that in general any curve with Cm symmetry must remain

invariant when rotated about the origin by angles of `2π
m

where ` ∈ Z. To check

if the curve plot of a complex sequence xn has Cm symmetry it is not enough

to simply rotate the curve and check for equivalency since the starting position

of the curve will also rotate. To counteract the change in starting position of

the curve due to rotation, we need to shift the starting position back without

rotating the curve. A slightly different, but equivalent observation is that for every

shift in starting position of the curve by N
m

there is a corresponding rotation by

−`2π
m

+ 2πl for all l ∈ Z that leaves the curve’s sequence invariant. This symmetry

transformation is stated formally as

Xk = Xke
ik2π/me−i2π(`/m+l)

= Xke
i2π(k/m−`/m+l)
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and gives the conditions for a curve plot of xn to have Cm symmetry. The values

of k that satisfy this condition are

0 =
k

m
− `

m
+ l

0 = k − `+ lm

k = `+ lm.

The general harmonic pattern function that will always produce curves with at

most Cm symmetry is

αn =
∑

k=`(m)

Ak{k, θk} (4.2.2)

where `(m) = . . . , `− 2m, `−m, `, `+m, `+ 2m, . . . and |k| < N/2.

4.2.2 Dihedral Symmetry

A curve with dihedral symmetry Dm has Cm symmetry and harmonic phases

θk = φ+ πl

where φ is an arbitrary rotation constant and l ∈ Z. This is readily shown by

first recognizing that a curve having both Cm and D1 symmetries will have Dm

symmetry. It is then enough to find the conditions for a curve sequence having

D1 symmetry. The condition for D1 symmetry is that the complex sequence must

equal itself with phases negated so that

∑
Ake

i(θk−φ)eik2πn/N =
∑

Ake
−i(θk−φ)eik2πn/N
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where φ rotates the curve to make its symmetry axis coincide with the real axis.

From this it is evident that

θk − φ = −θk + φ+ 2πl

2θk = 2φ+ 2πl

θk = φ+ πl

where l ∈ Z. The general harmonic pattern function that will always produce

curves with at most Dm symmetry is

αn =
∑

k=`(m)

Ak{k, φ+ πl} (4.2.3)

where `(m) = . . . , ` − 2m, ` − m, `, ` + m, ` + 2m, . . ., l ∈ Z, and |k| < N/2.

Comparing Eq. 4.2.3 with Eq. 4.2.2 it is apparent that what distinguishes a

dihedral-symmetric curve from a cyclic-symmetric curve is a rigid constraint on

the possible harmonic phases. The phases across all harmonics must be equal to

the same amount plus an integer multiple of π. Adding an odd integer multiple

of π to a phase is the same as negating the amplitude. Therefore, another way

of of interpreting the constraint is that all harmonics must have the same phase

with the amplitude being any positive or negative real value. This means that the

dihedral symmetry of a curve is preserved under negation of harmonic amplitudes.
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4.3 Regular (Star) Polygon Patterns

If we rewrite Eq. 4.2.2 above in the equivalent form

αn = {`}
∑
k=0(1)

Ak{mk, θk} (4.3.1)

where |k| ≤ N
2m

, it becomes evident that all curves with cyclic symmetry are derived

by scaling and shifting the spectrum of a curve having all harmonics up to the(
N
2m

)th
harmonic. The scaling amount m determines the degree of cyclic symmetry

of the curve, while the shifting amount ` determines its winding pattern. The

variable ` distinguishes between three different types of curve patterns:


` = 0 static-period curves

|`| = 1 consecutive-period curves

|`| > 1 circulating-period curves

When ` = 0, the curve is comprised of m cycles through the base curve resulting

from m = 1. When |`| = 1, the resulting curve is comprised of a single motif

repeating every 2π/m radians in a cyclically symmetric fashion thus aligned to

the vertices of a regular polygon. Likewise, when |`| > 1, the motif repeats itself

every 2π`/m radians coinciding with a regular star polygon pattern.

When ` = 1, Ak = A−k, and θk = θ−k, Eq. 4.3.1 simplifies to

αn = {1}
∑
k=0(1)

Ak · 2 Re{mk, θk} (4.3.2)

93



which is equivalent to the polar equation

r = 2
∑
k=0(1)

Ak cos[2π(mkφ+ θk)]

for φ = 0, 1
N
, 2
N
, . . . , N−1

N
. Eq. 4.3.2 is thus the general harmonic pattern function

that describes all polar curves constructed from Fourier series.

4.4 Interpolation Patterns

An interpolation pattern is a pattern that is either comprised of or approximates

a relatively small sequence of “key” points connected by a polynomial function.

Interpolation patterns help explain certain attributes of planar curves, such as

cusps, jumps, and rectilinear sections. They also help in distinguishing between

various waveforms such as impulse, saw, and triangle waves.

Interpolation patterns are characterized by the degree of their interpolating

polynomial. Table 4.4 lists several interpolating polynomial types by their name

and mathematical function. Moving between the different types of interpolation

patterns is accomplished through integration (increasing polynomial degree) or

differentiation (decreasing polynomial degree). An example interpolation pattern

showing delta, constant, linear, and quadratic interpolating polynomials is shown

in Fig. 4.4.1.
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Type Polynomial

Delta 0

Constant C0

Linear C1x+ C0

Quadratic C2x
2 + C1x+ C0

Table 4.4: Types of interpolation functions

Type
Vertex curve

plot
Component plot

Delta

Constant

Linear

Quadratic

Figure 4.4.1: An interpolation pattern with different types of interpolating polynomials.
The constant, linear, and quadratic interpolation patterns are obtained from successive
integrations of the delta interpolation pattern.

Calculus of complex sequences are key to understanding certain features of
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planar curves that arise often, such as cusps and rectilinear sections. Taking a

dynamical perspective, we define the complex sequences x′′t , x
′
t, and xt as the

acceleration, velocity, and position of a particle from time t = 0 to t = N − 1

where x′′t = d
dt
x′t and x′t = d

dt
xt. In the first case, we consider some t where x′t = 0,

that is, the particle’s velocity curve crosses through the origin of the complex

plane. Integrating x′t once, we obtain xt = C where C is a constant. This constant

indicates that the position of the particle remains invariant over time. A cusp on

a curve, therefore, is a place where the first derivative is zero. In the second case,

we consider what happens when at some time t, x′′t = (0, 0), i.e., the particle’s

acceleration curve crosses the origin. Integrating x′′t twice, we obtain xt = Dt+ C

where D and C are arbitrary constants. Therefore, when the particle’s acceleration

goes to zero, its position becomes a linear function of time. To summarize, wherever

the first derivative of a curve goes to zero, a cusp is formed and wherever the second

derivative of a curve goes to zero, a lineal region exists. Generalizing this further,

wherever the nth derivative of a curve goes to zero, it becomes a polynomial of

degree n− 1 in that region.

4.5 Unit Circle Patterns

A large assortment of patterns can be classified as unit circle patterns—patterns

comprised of points lying on the unit circle. Given a complex sequence x, this

requires |xn| = 1 for all n ∈ [0, N). It must be noted that unit circle patterns are

the position-domain analog of the all-pass class of frequency responses used in filter

design. The underlying mathematical principle is a function that operates only

on the phase component (argument) of a complex number leaving its magnitude

invariant thus having the general form Aeif(θ). The importance of this symmetry
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with regards to synthesizing audio/visual patterns is significant. It means we can

derive a parameter space that is guaranteed to generate well-behaved patterns. For

audio synthesis, this means that (real) waveforms will always have an amplitude

less than or equal to 1 (because the complex waveform always has a magnitude of

1) making automatic gain control or normalization unnecessary. In terms of visual

patterns, it means that all patterns are guaranteed to lie within a well-defined

region, a unit disc. Unit circle patterns remain on the unit circle under inversion,

phase shifting and negating, and frequency shifting, scaling, and negating.

A general harmonic pattern function that results in a unit circle pattern is

given by

αn =

∑M
k=0Ak{k, θk}∑M

k=0AM−k{k,−θM−k}
. (4.5.1)

The main operating principle is division of a complex sequence by itself having

undergone a magnitude-preserving phase transformation. Each element of the

quotient sequence will then have a magnitude of 1, but non-trivial phase. This

is due to the simple fact that if |xn| = |yn| then |xn|
|yn| = 1. We will now show

that Eq. 4.5.1 is derived from a series of magnitude preserving frequency-domain

transformations. If the numerator frequency samples are given by Xk then the

denominator is the result of a magnitude-preserving phase transformation on Xk

given by Yk = g(Xk). It will be shown that g(Xk) is a combination of a phase

negation, frequency negation, and frequency shift. Expanding g(Xk) as a series of
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transformations we obtain

Yk = g(Xk) = fshift,M−N(fneg(hneg(Xk)))

= fshift,M−N(fneg(X̄k))

= fshift,M−N(X̄N−k)

= X̄(N−k)+(M−N)

where the frequency shift amount is M −N or just M . This simplifies further to

Yk = X̄M−k. (4.5.2)

If we limit the interval of non-zero amplitude Xk to 0 ≤ k ≤M , then Yk fall into

the interval M ≤ M − k ≤ 0 which is equivalent to 0 ≤ k ≤ M . The harmonic

pattern function can be written as

αn =

∑M
k=0Xke

i2πkn/N∑M
k=0 X̄M−kei2πkn/N

or in parametric form as

αn =

∑M
k=0Ak{k, θk}∑M

k=0AM−k{k,−θM−k}

which is Eq. 4.5.1. Eq. 4.5.2 can also be performed directly in the position domain

using the corresponding transformation

yn = x̄ne
i2πnM/N

where M is now interpreted to be the highest non-zero amplitude harmonic present
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in xn. Eq. 4.5.1 can be computed efficiently in the position domain using the

formula

αn =
xn

x̄nei2πnM/N

=
xn
x̄n
e−i2πnM/N . (4.5.3)

The advantage of the position-domain approach is that it can be applied to any

complex sequence without needing to know its frequency-domain parameterization.

To further understand its effect on xn, we substitute xn = Ane
iθn into Eq. 4.5.3

obtaining

αn =
Ane

iθn

Ane−iθn
e−i2πnM/N

= ei2θne−i2πnM/N .

This makes it clear that for each xn its magnitude is normalized to 1 and its phase

angle is doubled. Since the amplitudes of each component drop out, any sequences

that are same up to some global scaling factor produce the same unit circle pattern.

4.6 Inversion-symmetric Patterns

Inversion-symmetric patterns remain invariant under complex inversion up to a

reversal and shift in position. An important characteristic of these patterns is

that they exhibit symmetry around the equator of the Riemann sphere under

stereographic projection. Inversion-symmetric patterns remain inversion symmetric

under inversion, phase shifting and negating, and frequency shifting, scaling, and

negating.
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Inversion-symmetric patterns are given by

αn =

∑M
k=0Ak{k, θk}∑M

k=0 e
ikφAM−k{k, θM−k}

which is similar to the formula for a unit circle pattern (Eq. 4.5.1) except for

lack of phase negation and the eikφ (position-shifting) factor in the denominator.

The variable φ can be freely adjusted. For the special case of φ = 0, a unit

circle pattern results. The effect of the eikφ term is to shift the position-domain

sequence by φ
2π
N indices; possibly a non-integer amount. Like unit circle patterns,

inversion-symmetric patterns can be generated directly in the position domain

given a complex sequence xn, but with the restriction that φ
2π
N ∈ Z. We can write

the denominator, Yk, as a transformation of the numerator, Xk, as

Yk = eikφXM−k

which in the position domain translates to the transformation

yn = x φ
2π
N−ne

i2πnM/N .

An inversion-symmetric pattern can thus be generated entirely in the position

domain given an arbitrary complex sequence xn through the transformation

αn =
xn
yn

=
xn

x φ
2π
N−n

e−i2πnM/N (4.6.1)

where φ
2π
N ∈ Z. We will now show that inverting inversion-symmetric sequences

effects a reversal and shift in the position domain. If we substitute xn = Ane
iθn
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and m = φ
2π
N into Eq. 4.6.1, we obtain

αn =
Ane

iθn

Am−neiθm−n

=
An
Am−n

ei(θn−θm−n) (4.6.2)

Under inversion this becomes

(αn)−1 =
Am−n
An

e−i(θn−θm−n).

If we now reverse the position-domain sequence (negating all index subscripts)

(α−n)−1 =
An−m
A−n

e−i(θ−n−θn−m)

and shift it by m (adding m to all index subscripts)

(αm−n)−1 =
An
Am−n

e−i(θm−n−θn)

=
An
Am−n

ei(θn−θm−n)

we arrive back at Eq. 4.6.2. Thus, an inversion-symmetric sequence under inversion

is reversed and shifted by φ
2π
N samples in the position domain.
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5. Taxonomy of Harmonic

Patterns

The purpose of this section is to identify and analyze the various types of patterns

that can be produced from the most basic configurations of harmonics in the

harmonic pattern function. Many well-studied planar curves can be derived exactly

or closely approximated by the harmonic pattern function without any modification.

The patterns are discussed in increasing number of harmonics since new general

characteristics and expressions of patterns tend to emerge as harmonics are added.

Furthermore, complex patterns built from many harmonics can often be understood

in terms of compositions of simpler patterns with fewer harmonics.

For each additional degree of harmonics, the following points will be discussed:

• emergent qualities not present or apparent with fewer harmonics

• connections to archetypical sonic and graphical shapes

• when possible, how new patterns are comprised of subpatterns

• when possible, how new patterns subsume or resemble previously discussed

patterns

We will define the order of an harmonic pattern function as the sum of harmonic

components in the numerator and denominator in reduced fraction form excluding
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any constants alone in either the numerator or denominator. One desirable

consequence of defining the order of a harmonic pattern function in this way is that

its inverse is of the same order. The reduced fraction form of a harmonic pattern

function is the equivalent formula with harmonic numbers reduced until there is

at least one constant term, {0}, in either the numerator or denominator. The

possible harmonic pattern function formulae up to order 4 are given in Table 5.1.

Order Harmonic pattern function

1 A1{k, θ1}

2 A1{k1, θ1}+ A2{k2, θ2}

2
1

A1{k1, θ1}+ A2{k2, θ2}

3 A1{k1, θ1}+ A2{k2, θ2}+ A3{k3, θ3}

3
1

A1{k1, θ1}+ A2{k2, θ2}+ A3{k3, θ3}

4 A1{k1, θ1}+ A2{k2, θ2}+ A3{k3, θ3}+ A4{k4, θ4}

4
1

A1{k1, θ1}+ A2{k2, θ2}+ A3{k3, θ3}+ A4{k4, θ4}

4
1 + A1{k1, θ1}

A2{k2, θ2}+ A3{k3, θ3}

Table 5.1: Unique harmonic pattern function formulae up to order 4.
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5.1 Order 1

The two defining characteristics of single harmonic patterns are constant magnitude

and constant linear change in phase. The elements of a sequence form a cyclic

group and, therefore, all generated curves exhibit dihedral symmetry. Some

fundamental visual representations include point, circle, line, helix, toroidal helix,

regular polygon and star polygon, zigzag, and plane wave. Sonically, a single

harmonic is a pure tone that can be either audible or non-audible. Non-audible

harmonics, either having too low of an amplitude or lying outside the audible range

of hearing, can still be perceptually relevant as modulation effects, such as two

slowly beating harmonics.

Patterns produced from one harmonic have the general harmonic pattern

function

αn = A{`, θ}

where ` is the frequency-shifting amount, a is the amplitude, and θ is the phase

angle. Since A and θ act as similarity transformations (a scaling and rotation,

respectively), we need only consider αn = {`} to describe all unique shapes.

5.1.1 Constant

A constant is a sequence comprised of a repeating value. Its harmonic pattern

function is αn = A{0, θ}. Sonically, this correlates to a non-audible DC offset

and thus is somewhat irrelevant to sound synthesis. However, a single complex

number can describe the position of a sound in space granted it lies on a plane.

Graphically, this sequence produces a collection of points located at the same

position (x, y) = (A cos 2πθ,A sin 2πθ) on the complex plane. In mathematics, a

104



multiplicity is an occurrence where multiple solutions of an equation have the

same value. The term multiplicity is used in this context to describe a geometric

structure comprised of several points having the same value. While graphically, a

multiplicity appears identical to a point, behaviorally, the two are quite different.

This difference in behavior is analyzed more in depth in the next section when two

harmonic shapes are discussed.

5.1.2 Regular Polygon

For |`| = 1, we obtain the vertices of all N -sided regular polygons (Fig. 5.1.1). For

low N , we get the family of N -gons and as N →∞, we approach a circle. When

m = −1, we obtain the same polygon for the case with ` = 1 and equivalent N ,

but with opposite winding direction. In general, when ` > 0, the polygons wind in

the counter-clockwise direction and when ` < 0, the polygons wind in the clockwise

direction (Fig. 5.1.2).

(a) (b) (c) (d) (e) (f)

Figure 5.1.1: Regular polygons constructed from αn = {1} for (a-e) N = 2, 3, . . . , 6
and (f) N = 60.
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(a) (b)

Figure 5.1.2: Negating frequency results in an opposite winding direction. Shown for
(a) αn = {1} and (b) αn = {−1}.

The raster plots of αn = {±1} that are shown in Fig. 5.1.2 display a small

amount of tilt sloping downwards from the left side to the right side. The tilt

arises due to the fact that the underlying topology of the domain of the raster plot

is a toroidal helix. Although the tilt is not visually objectionable within a single

raster plot, it becomes a noticeable problem when attempting to tile multiple plots.

Tiling in the vertical direction is seamless, however, in the horizontal direction

there is a one pixel offset. In order to obtain a smooth tiling horizontally, the

raster plot data must be accessed using a fractional offset in the vertical direction

to compensate for the tilting. Given a texture coordinate (r, s) where (0, 0) is the

bottom-left corner and (1, 1) is the top-right corner, the corrected s coordinate is

s′ = s+ r/
√
N .
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5.1.3 Regular Star Polygon

For |`| > 1, N ≥ 5, we obtain the set of regular star polygons with Schläfli symbol

{N/`}. The number of vertices of the star is a where a/b = N/` and a and b are

coprime. The multiplicity of the star, i.e., the multiplicity of each vertex, is N/a.

If N is prime, then all star polygons for |`| > 1 have a multiplicity of 1. We also

observe that for ` and N coprime, ` ∈ [1, N/2), we obtain the (`− 1)th stellation

of a regular N -gon. The number of intersections of a non-degenerate star polygon

{N/`} is N · (`− 1). The set of all regular star polygons ` ∈ [0, N) form the basis

functions of the complex discrete Fourier transform [35].

Figure 5.1.3: Regular star polygons produced from αn = {`} for N = 7 and ` =
1, 2, ..., 6 (left to right).

When ` = dN
2
− 1e, the star polygon has the highest possible density. Visually,

these types of star polygons produce the most complex patterns as they contain the

maximum number of intersections for a star polygon with N vertices, N(dN
2
−1e−1).

Fig. 5.1.4 shows the densest star polygon with N = 360 having a total of 360 ·178 =

64080 intersections.
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Figure 5.1.4: Densest N = 360 star polygon at 1× magnification (top-left), 64×
magnification (top-right) and 1024× magnification (bottom).

For large N and small `, |`| > 2, the curve plot approaches a multiply wound

circle. The component and raster plots reveal the signal to be the various harmonics

of a complex sinusoid. The raster plot in particular reveals a family of approximate

plane waves in the +y direction.
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(a) (b) (c) (d)

Figure 5.1.5: Component and raster plots of complex sinusoids for N = 1002 and
` = 0, 1, 2, 3 (a-d). Raster plots reveal approximate plane waves in the +y direction.

When N = M2 and ` = M , the raster plot reveals a peculiar characteristic.

We obtain exact plane waves in the +x direction. The entire set of plane waves in

the x direction are produced from ` = mM,m ∈ [0,M). Furthermore, the basis

functions of the the two-dimensional DFT, ei2π(`xnx+`yny)/M , can be approximated

by ` = `x + `yM . In principle, this technique can be extended to an n-dimensional

raster plot approximating an n-dimensional DFT.
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(a) ` = M (b) ` = +1−M (c) ` = +1 +M

(d) ` = 2M (e) ` = −1−M (f) ` = −1 +M

Figure 5.1.6: Raster plots displaying how one-dimensional complex sinusoids can
approximate plane waves. The plots show various harmonic numbers, `, for M = 100.

5.1.4 Interleaved Harmonic

We define an interleaved harmonic as a pattern whose sequence is comprised of

alternating subsequences of complex sinusoids having the same frequency and

amplitude, but different phases. The subsequences form cosets of the original

sequence so that given P subsequences the first subsequence consists of the elements

n = 0, P, 2P, . . ., the second n = 1, P + 1, 2P + 1, the third n = 2, P + 2, 2P + 2,

and so on. The harmonic pattern function of P interleaved harmonics is

αn =

{
p
N

P
+ `

}
(5.1.1)
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where p ∈ Z is a permutation parameter. We can determine the formula for each

subsequence by expanding Eq. 5.1.1 into complex sinusoidal form

αn = ei(2πn/N)(pN/P+`)

then making the substitution n→ Pn+ j to obtain the jth subsequence

αPn+j = ei(2π(Pn+j)/N)(pN/P+`)

where n now lies in the interval [0, N
P

). Simplifying, we get

αPn+j = ei(2π(Pn+j)/N)(pN/P+`)

= ei2π[(Pn/N)(pN/P+`)+(j/N)(pN/P+`)]

= ei(2πn/N)(pN+`P )ei2πj(p/P+`/N)

= ei(2πn/N)`P ei2πj(p/P+`/N)

which translates to the harmonic pattern function

αPn+j =

{
`P, j

(
p

P
+

`

N

)}
(5.1.2)

The harmonic subsequences thus have the same frequency that is P times the

frequency of the original sequence, but different phases that depend in a complex

way on several variables. The parameter p has the effect of rotating the jth

subsequence by jp(2π/P ) radians. Additionally, each subsequence is rotated by a

smaller increment j`(2π/N) radians as a consequence of being interleaved.
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5.1.5 Simple Motion

We will use the term motion to mean a gradual change in shape, size, position,

and/or orientation of an object over time. With a single harmonic, the only kind

of mobile object that is expressible is a star polygon (including a point) rotating

around the origin with uniform angular velocity. This is accomplished by taking

subsequences of the sequence αn as a temporal succession of spatial snapshots. For

example, taking the star polygon given by αn = {41} with N = 120 (Fig. 5.1.7a),

we can take every successive subsequence of 12 samples as representing a path in

space. On each iteration of time, the next subsequence of 12 samples is plotted.

The first three subsequences shown in Fig. 5.1.7b, Fig. 5.1.7c, and Fig. 5.1.7d

illustrate how a rotating triangle is embedded within the entire space-time star

polygon.

(a) n = [0, 120] (b) n = [0, 12] (c) n = [12, 24] (d) n = [24, 36]

Figure 5.1.7: A single harmonic producing a rotating triangle. Figure (a) shows the
entire space-time shape specified by αn = {41} with N = 120 and (b-d) show a succession
of length 12 subsequences.

The manner in which the entire sequence is divided into subsequences determines

characteristics of how both the object and its motion are perceived. First, we

define Ns as the number of elements in our spatial subsequences and Nt as the

total number of spatial subsequences so that N = NsNt. Since we want to isolate

the effects of Ns and Nt we will say that N is very large. When Ns = 1, we get a
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single point rotating around the origin with a uniform angular velocity. On the

other extreme, when Ns = N , we obtain a stationary star polygon. Thus, when

Ns � Nt we get more finely-resolved and/or complex motion with reduced object

complexity, while when Ns � Nt, the converse is true.

The most geometrically accurate and slowest (possibly stationary) rotating

star polygon is obtained by choosing Nt = N/m rounded to the nearest integer

where m is the number of vertices of the polygon. If N/m ∈ N, then the polygon

is stationary, otherwise it rotates by ±2π/N radians every Ns = m elements

depending on whether N/m− bN/mc ≷ 1
2
. If N/m ∈ N, then we can add ±1 to

Nt to obtain motion in the counter-clockwise or clockwise direction. The top row

of Fig. 5.1.8 shows the first four elements of the sequences {41}, {40}, and {39}

with N = 120. With {41} the last triangle vertex overshoots the first vertex while

with {39} the last vertex undershoots the first vertex. With {40}, the first and

last triangle vertices coincide (hence no motion). The bottom row of Fig. 5.1.8

shows a few more time steps of each sequence.

Figure 5.1.8: Top row, left to right: The first four elements of {41}, {40}, and {39}
with N = 120. Bottom row, left to right: The first twelve elements of of {41}, {40}, and
{39} with N = 120.

Normally, a traveling wave in one-dimension is described by u(x, t) = Aei(kx−ωt+θ)
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where A is the amplitude, k and ω are the spatial and temporal frequencies, θ is

the phase, and x and t represent spatial and temporal position. Rewriting u(x, t)

as Aeiθeikxe−iωt, we see that it is the product of three independent components—

a complex amplitude (Aeiθ), a spatial unit complex sinusoid (eikx), and a tempo-

ral unit complex sinusoid (e−iωt). The temporal component rotates the spatial

component by a uniform amount at each instant of time. The complex amplitude

component rotates and scales the wave by a fixed amount for all space and time

positions. The harmonic pattern function can exhibit its own brand of traveling

waves, where instead of having independent spatial and temporal complex sinusoid

components as in u(x, t), its fuses them into a single space-time complex sinusoid.

5.2 Order 2

The step from one harmonic to two harmonics is substantial in terms of the

amount of new shapes, sounds, and patterns that can be constructed. This is due

largely in part to the power of superposition that permits an immense variety of

compound motions to be constructed from simpler circular motions. The increase

in variety is also due to the fact that geometric inversion leads to new types of

shapes—those generally classified as hyperbolic. Unlike single harmonic curves,

two harmonic curves can lack discrete dihedral symmetry. However, when N →∞,

the curves always exhibit continuous dihedral symmetry. All two harmonic curves

are variations of a bicircloid curve— a curve traced by a point rigidly attached to

a circle that rolls without slipping along another circle.

Two harmonic patterns have the general forms

αn = A1{k1, θ1}+ A2{k2, θ2} (5.2.1)
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and

αn =
1

A1{k1, θ1}+ A2{k2, θ2}
. (5.2.2)

The order 2 patterns therefore consist of all sums of two harmonics and their

complex inversions. All forms of Eq. 5.2.1 can be interpreted as frequency scaled

and shifted transformations of a base kernel A1{0, θ1}+ A2{1, θ2}. This is shown

by rewriting Eq. 5.2.1 as

αn = A1{`, θ1}+ A2{m+ `, θ2}

where m and ` are the frequency-scaling and -shifting amounts, respectively. In

terms of frequency-domain transformations, this becomes

αn = fshift,`(fscale,m(A1{0, θ1}+ A2{1, θ2}))

, a frequency scaling followed by a frequency shifting of a base kernel. This base

kernel, discussed next, has the shape of an eccentric polygon.

5.2.1 Eccentric Polygon

The eccentric polygon lies at the core of all order 2 patterns and thus it is

appropriate to consider it first. An eccentric regular polygon is given by the

harmonic pattern function

αn = a{0}+ b{±1} (5.2.3)

where a is the eccentricity and b the radius of the polygon. There is not much to

discuss about eccentric polygon patterns that was not covered in the discussion
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of regular polygon patterns in 5.1.2. The only new characteristic is that these

patterns are offset by a constant amount from the origin. The offset does, however,

introduce novel patterns when Eq. 5.2.3 is integrated.

If we integrate Eq. 5.2.3, we obtain a single cycle of a trochoid curve. The

trochoid is defined by a combination of a constant and circular differential. Because

of the constant differential, the integrated curve will not be closed. When |a| = |b|,

the trochoid is an ordinary cycloid, when |a| > |b| it is a curtate cycloid and when

|a| < |b| it is a prolate cycloid.

´
{0}+ {1}

´
{0} − {1}

´
{0}+ {−1}

´
{0} − {−1}

Figure 5.2.1: Ordinary cycloids produced through discrete integration of eccentric
polygons.

A moving polygon is produced from

αn =

ˆ
a{0}+

{
N

m

}

where a is the velocity, m is the degree of the polygon, N
m

is the number of cycles of

the polygon and N
m
∈ Z. Fig. 5.2.2 shows several moving polygons based on N = 24.

The parameter a determines the linear velocity by which the polygon moves and

the larger its value, the more the polygon is distorted along the direction of motion.

As the polygon unfolds, it undergoes contractions and expansions depending on

whether the path is moving against or along, respectively, the direction of motion.

As a → 1, the contractions and expansions become more exaggerated until the

polygon unloops completely and the curve becomes an ordinary (cuspate) cycloid

(Fig. 5.2.3). When a = 0, the moving polygon degenerates into a static multiply-
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wound polygon. This shows that there is an inherent trade-off between the velocity

and the accuracy of shape of the polygon. For optimal results, a should be non-zero

and small in order to exhibit motion with a minimal amount of distortion.

Figure 5.2.2: Moving regular polygons for N = 24, a = 0.02, and m = 12, 8, 6, 4, 3
(left to right).

Figure 5.2.3: Progression from static polygon (top) to cycloid (bottom). The velocity
parameter a is varied from from 0 to 1 in increments of 0.1 (top to bottom).

A moving polygon can be generalized further to a moving star polygon with

the equation

αn =

ˆ
a{0}+

{
`
N

m

}
which produces N/m star polygons with Schläfli symbol {m/`}. The moving star

polygon shares the same trade-offs between velocity and shape accuracy as the
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moving regular polygon. Through proper choice of parameters it is possible to

construct elaborate interference patterns of lines that exhibit a high degree of

structure but at the same time are slightly imperfect. Some examples are shown

in Fig. 5.2.4.

m = 5, ` = 2, a = 0.0041 m = 5, ` = 2, a = 0.01

m = 8, ` = 3, a = 0.004 m = 8, ` = 3, a = 0.008

m = 12, ` = 5, a = 0.0016 m = 12, ` = 5, a = 0.009

Figure 5.2.4: Examples of moving star polygon patterns with N = 240.

The eccentric polygon has some important applications for audio. The eccentric
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polygon and its inverse form the basis of comb filters commonly used for effect

design. The sequence

αn = {0}+ b{m} (5.2.4)

is the frequency response of an all-zero comb filter with m notches while the inverse

αn =
1

{0}+ b{m} (5.2.5)

is the frequency response of an all-pole comb filter with m resonances. Granted

m > 0, the filters will be causal. For the case m = 1, we obtain the family of

one-pole or one-zero filters with either low- or high-pass characteristic depending

on the sign of b. We can generalize Eq. 5.2.4 and Eq. 5.2.5 to

αn = {0}+ b{m,φ} (5.2.6)

and

αn =
1

{0}+ b{m,φ} (5.2.7)

to obtain more interesting filters whose frequency responses can be shifted in the

frequency domain by the amount φ. The caveat to using these filters is that the

processed signal must be complex rather than real. Aside from this, the complex

filters have the benefit of unifying low-pass, high-pass, band-pass, and notch filters

into a single conceptual framework. Low- and high-pass type filters result when

φ is 0 or 1
2

and band-pass and notch filter types result for all other values of

φ. Eq. 5.2.5 is also useful for waveform synthesis as its spectrum is a complex

exponential derived through series expansion
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1

{0}+ b{m} =
∞∑
k=0

bk{mk}

where m is now understood to control the pitch of the waveform. If the signal is

processed further with a frequency shift, then more useful harmonic and inharmonic

tones without a DC component can be obtained. The frequency-shifted harmonic

pattern function is

{`}
{0}+ b{m} =

∞∑
k=0

bk{mk + `}

where ` is the frequency-shifting amount.

5.2.2 Ellipse

In this context, an ellipse can be thought of as a regular polygon that is scaled

differently along one axis passing through its center. The shape of the ellipse

ranges anywhere from a circle to a lineal projection. An ellipse is given by

αn = b{−1}+ {1}

where 1− b is the minor radius and 1 + b is the major radius. When b = 1, the

ellipse degenerates into 2 Re{1} which is a projection of a complex sinusoid on the

real axis. Similarly, when b = −1, the ellipse degenerates into 2 Im{1} which is a

projection of a complex sinusoid on the imaginary axis. The curve plots of Re{1}

and Im{1} are a type of curve known as a Tusi couple [53], the simplest type of

linear motion that can be produced from two circular motions.
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Figure 5.2.5: Ellipses resulting from b = −0.97,−0.5, 0, 0.5, 0.97 (left to right).

The inverse of an ellipse is

αn =
1

b{−1}+ {1} . (5.2.8)

The inverse ellipse ranges in shape from circle to stadium to peanut to joined

circles. Unlike an ellipse, the inverse ellipse can have a concave shape. The distance

between the two concave sections is 1
1+|b| while the distance between the orthogonal

bulbous sections is 1
1−|b| .

Figure 5.2.6: Inverse ellipse curves for b = 1
10 ,

1
6 ,

2
5 ,

4
5 (left to right).

Eq. 5.2.8 has the equivalent series

1

b{−1}+ {1} =
∞∑
k=0

(−b)k{−2k − 1}

which can also be written

1

{−1}+ b{1} =
∞∑
k=0

(−b)k{2k + 1}
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to make all frequencies positive. An inverse ellipse therefore consists of odd

harmonics whose amplitudes fall-off as a geometric progression. Integration of

Eq. 5.2.8 results in

ˆ
1

b{−1}+ {1} = −i
∞∑
k=0

(−b)k
−2k − 1

{−2k − 1}

which approaches a square wave and log-cotangent wave as |b| → 1.

5.2.3 Rose Curve

A rose curve is any curve constructed from the sum of two equiamplitude complex

sinusoids. A rose curve has the equation

αn = {k1}+ {k2}. (5.2.9)

The number of petals on the rose is equal to |k1 − k2|. When k1 and k2 are not

coprime, then a multiply wound rose results with |k1−k2|/ gcd(k1, k2) petals wound

gcd(k1, k2) times. Rose curves can be classified into two main varieties— inward

looping and outward looping. With inward looping roses, the tips of the loops

intersect at the middle of the rose (Fig. 5.2.7a). With outward looping roses, the

tips of the loops lie on a circle circumscribing the rose (Fig. 5.2.7b). There is a

very simple condition that determines whether the loops are inward or outward. If

k1 and k2 have the same sign, then the loops are inward; if k1 and k2 have opposite

sign, then the loops are outward.
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(a) (b)

Figure 5.2.7: Roses with (a) inward and (b) outward pointing petals.

Considering the amount of inward versus outward looping roses with a given

number of petals, it is important to note that there exist far fewer inward looping

roses than outward looping roses. Fig. 5.2 shows a chart of all rose curves consisting

of one to eight petals that are unique up to similarity and have only one winding.

The columns are ordered by harmonic frequency k while the rows are ordered by

a positive integer m designating cyclic symmetry class Cm. The rose equation

for each cell is thus αn = {k} + {k + m}. In the table, the curves with k < 0

are outward looping while the curves with k > 0 are inward looping. All unique

outward looping curves are shown for roses having up to eight petals, however,

only a miniscule number of inward looping varieties are shown. In fact, there are

an infinite number of inward looping roses within each symmetry group k. The set

of all inward looping roses is the infinite set {k : k ≤ −m, 0 ≤ k} while the set of

all outward looping roses is the complement finite set {k : −m < k < 0}.

For outward looping roses, there are additional conditions that determine the
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relationship between petals. These are


||k1| − |k2|| = 1 non-touching petals

||k1| − |k2|| = 2 touching petals

||k1| − |k2|| ≥ 3 intersecting petals

. (5.2.10)

Curve plots illustrating these three petal conditions are shown in Fig. 5.2.8.

(a) (b) (c)

Figure 5.2.8: Outward looping roses with the three different petal intersection condi-
tions: (a) non-touching, (b) touching, and (c) intersecting.

We notice as a consequence of Eq. 5.2.10, that only those rose curves with even

symmetry m can have touching petals. The two other cases, non-touching and

intersecting, are possible with any value of m.

Next, we will consider raster plots of rose curves (Table 5.3).
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m�k −3 −2 −1 0 1 2 3

1

2

3

4

5

6

Table 5.3: Complex plane wave superpositions derived from αn = {k}+ {k +m}, N =
1002. The solid line running through the table demarcates where the patterns reverse
sequence.

As with curve plots of rose curves, raster plots of outward loopings roses tend

to have more identifiable features than inward looping roses. While in the curve

plot these features are a number of distinct petals circling around the origin, with

the raster plot we see well-defined bands of nearly constant hue. The smaller the

quantity ||k1|−|k2||, the less the hue varies within any given band. The variation in

hue follows analogous principles of overlapping, touching, and non-touching petals

in the curve plots. Non-touching petals are the thinnest having the least amount of

variation in angular excursion while in all other cases the petals are wider having

a greater amount of angular excursion. Mathematically, these features (invariant

hue and thin petals) are a consequence of the phase component of the complex
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sequence holding a relatively constant value over a certain subinterval of samples.

In Fig. 5.2.10, raster, curve, and phase plots of αn = {k}+ {k + 5} are compared

for decreasing values of ||k| − |k + m||. As ||k| − |k + m|| decreases, there is a

corresponding decrease in the local slopes of the phase function. The slope of

the phase function is directly related to the curvature of the curve as it passes

through the origin. Curves having less curvature at the origin (in the extreme case

approaching a line) correspondingly exhibit less change in phase and appear more

line-like overall. The steps in the phase function are a result of the curve flipping

direction as it passes through the origin. In all cases, the phase stepping amount

is approximately equal to π since the curve approaches a line passing through the

origin on an infinitesimal scale.
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(a) αn = {1}+ {6}; ||1| − |6|| = 5

(b) αn = {−1}+ {4}; || − 1| − |4|| = 3

(c) αn = {−2}+ {3}; || − 2| − |3|| = 1

Figure 5.2.10: Comparison of raster plot (left) and curve plot (middle) with phase
plot (right) of the complex sequence αn = {k}+ {k + 5}.

Through integration of Eq. 5.2.9, two additional families of curves are generated.

Integrating once leads to the “cuspoid” family of curves of which the deltoid and

astroid are members. Integrating twice produces a family of curves having regularly

spaced regions that are nearly a straight line. Since integration becomes an operator

on the complex amplitudes in the frequency domain, both of these families of curves

have simple closed forms in the frequency domain. These two derived families of

curves are discussed in the next sections.
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5.2.4 Cuspoid

We define a cuspoid as an integrated rose curve. These curves are categorized

as constant interpolation pattern (Section 4.4). Cuspoids resemble regular (star)

polygons with cusps at the vertices and curved paths connecting the vertices. The

harmonic pattern function of a cuspoid is

αn = i

ˆ
{`}+ {`+m}

or in closed-form as

αn =
1

`
{`}+

1

`+m
{`+m}.

The cuspoid family of curves includes several well-known curves: the deltoid

(` = −1,m = 3), the astroid (` = −1,m = 4), the cardioid (` = 1,m = 1), the

nephroid (` = 1,m = 2), and the cycloid (` = 0). Cuspoids share all the same

behaviors as rose curves with respect to ` and m, namely degeneracy and symmetry

patterns, but have cusps instead of loops. Table 5.4 presents several low-frequency

cuspoids up to similarity. When ` < 0, the curves between cusps bend inward

while for ` > 0, the curves bend outwards. When ` = 0, the curves are cycloids.
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m \ ` −3 −2 −1 0 1 2

1

2

3

4

5

6

7

Table 5.4: Low-frequency, non-similar cuspoids given by αn = i
´
{`}+ {`+m}.

5.2.5 Smooth Star Polygon

When adding harmonics whose amplitudes are the inverse square of their frequencies,

we obtain curves having segments that approach lines [11]. The linear portions

are explained through the notion of a linear interpolation pattern (Section 4.4).

When only two harmonics meeting this criteria are summed, we obtain a family of

curves that are simply low order (two component) Fourier star polygons [89]. The
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equation of smooth star polygons is

αn = −
¨
{`}+ {`+m}

or, in closed-form,

αn =
1

`2
{`}+

1

(`+m)2
{`+m}.

Like with rose curves, the quantity λ = |` + ` + m| plays an important role in

local curvature along of the curve. The smaller λ, the more the curve will “double

back” on itself having longer linear portions punctuated by sharper bends. In the

extreme case λ = 0, the curve collapses into a line. Table 5.5 presents several

low-frequency smooth star polygons up to similarity. Curves for ` = 0 are not

shown because there are an infinite amount of them. Integrating the constant term

{0} twice produces a linear polynomial term with arbitrary coefficients.
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m \ ` −3 −2 −1 1 2

1

2

3

4

5

6

7

Table 5.5: Low-frequency, non-similar smooth star polygons given by αn = 1
`2
{`} +

1
(`+m)2

{`+m}.
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5.2.6 Low N Rose Curve

For small values of N , rose curves produce a variety of rectilinear and polygonal

shapes. Since these patterns come in a seemingly endless variety, only some of

the more interesting shapes are discussed. A spoke-like pattern with N
2

spokes is

constructed from

αn = {1}+

{
N

2
+ 1

}
where N = 2, 4, 6, . . .. The sequence is an alternation between the vertices of a

regular N
2

-gon and points at the origin. The actual complex sequence is

1, 0, ei(1·2π/(N/2)), 0, ei(2·2π/(N/2)), 0, . . . , ei((N/2−1)·2π/(N/2)), 0.

When successive points are connected by lines, a spoke pattern emerges (Fig. 5.2.11).

(a) N = 6 (b) N = 8 (c) N = 10 (d) N = 12

Figure 5.2.11: Spoke shapes given by αn = {1}+
{
N
2 + 1

}
.

Fig. 5.2.12 presents an assortment of low N rose curves having interesting

symmetrical properties such as meeting vertices and overlapping edges.
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∞, 0 6, 0 6, 1
2N

9, 1
2N

15, 0 15, 1
2N

30, 0

(a) αn = {1, φ}+ {4, 4φ}

∞, 0 8, 0 8, 1
2N

12, 0 12, 1
2N

16, 0 24, 0

(b) αn = (1, φ) + (5, 5φ)

∞, 0 10, 0 10, 1
2N

15, 0 15, 1
2N

20, 0 30, 0

(c) αn = {−1,−φ}+ {4, 4φ}

∞, 0 12, 0 12, 1
2N

18, 0 24, 0 24, 1
2N

48, 0

(d) αn = {1, φ}+ {7, 7φ}

Figure 5.2.12: A sampling of low N rose curves. The leftmost column displays the
continuous rose curve shape (N →∞). The numbers under each figure are N,φ.

5.2.7 Star

A star [119] is produced from

αn = {1}+ b

{
N

2
+ 1

}
(5.2.11)

where N = 2, 4, 6, . . . and b ∈ [0, 1] is a “brightness” factor determining how pointed

the star is. When b = 0, a regular N -gon results and when b = 1 we get a spoke as

discussed above. Fig. 5.2.13 shows the effect of varying the parameter b from 0 to

1.
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(a) (b) (c) (d)

Figure 5.2.13: Star shapes given by αn = {1}+b
{
N
2 + 1

}
for N = 12 and b = 0, 13 ,

2
3 , 1

(a-d). The shapes progress from a regular polygon to a spoke.

As N →∞, the star can be used to construct an annulus or a disc by drawing

a triangle strip between successive points.

(a) (b)

Figure 5.2.14: Connecting star points with a triangle strip creates (a) an annulus
(b < 1) or (b) a disc (b = 1).

5.2.8 Polygon Star Wrapping

A polygon star wrapping is a curve comprised of the superimposition of two or

more regular star polygons from the same symmetry group. These curves are a

generalization of the star (Eq. 5.2.11) and are given by

αn = a

{
1,

1

2N

}
+ b

{
m+ 1,

m+ 1

2N

}
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where N = 2, 4, 6, . . ., m = N
2

and a, b ∈ [0, 1]. Table 5.6 shows a selection of

these patterns that were empirically tuned to make vertices coincide. Each vertex

has at most four edges. Exact formulas for the amplitudes were not investigated,

although they would most likely involve relatively simple trigonometric relations.
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m = 4 √
2− 1, 1

m = 5
0.7265, 1

m = 6
1, 1 0.2680, 1

m = 7
1, 0.7975 0.4816, 1

m = 8
1, 0.6682 0.6682, 1 0.1989, 1

m = 9
1, 0.5774 0.8391, 1 0.3640, 1

m = 10
1, 0.5095 1, 1 0.5095, 1 0.1584, 1

Table 5.6: Polygon star wrappings. The numbers under each figure are the harmonic
amplitudes a, b.
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5.2.9 Interleaved Bicircloid

We define an interleaved bicircloid as a pattern produced from the sum of two

interleaved harmonics (5.1.4). Like an interleaved harmonic, it consists of P

alternating subsequences, but instead of the subsequences being star polygons,

they are bicircloids. Interleaved bicircloids are important patterns since they

provide a fundamental way of producing multiple superimposed (overlapping)

curves. The harmonic pattern function of P interleaved bicircloids is

αn = a

{
p
N

P
+ k

}
+ b

{
q
N

P
+ k +m

}

where N
P
∈ N. Using Eq. 5.1.2, we determine the equations of the subsequences to

be

αPn+j = a

{
kP, j

(
p

P
+
k

N

)}
+ b

{
(k +m)P, j

(
q

P
+
k +m

N

)}
. (5.2.12)

Eq. 5.2.12 shows that each bicircloid subsequence is unique up to phase only; the

frequencies do not depend on j. Since the only difference between bicircloids is a

phase rotation and position shift, the shapes of all bicircloids are the same. Some

specific instances of interleaved bicircloids are presented next.

An interleaved eccentric regular polygon consists of a circular ring of regular

polygons. The equation of P interleaved eccentric regular polygons is given by

αn = a{1}+ b

{
N

P

}
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where the jth subsequence is

αPn+j = a

{
P,

j

N

}
+ b

{
0,
j

P

}
.

When b > a, this partitioning becomes more apparent as the figures no longer

overlap with one another (Fig. 5.2.15). Fig. 5.2.15 shows curve plots of interleaved

eccentric regular polygons for P = 2 while Fig. 5.2.16 shows plots for P = 3, 4, 5.

(a) a = 1, b = 0 (b) a = 1, b = 1
2 (c) a = 1, b = 1 (d) a = 1

2 , b = 1

Figure 5.2.15: A 120-gon progressively split into two 60-gons by variation of parameters
a and b of αn = a{1}+ b

{
120
2

}
. The top figures show the vertices and the bottom figures

show the edges.
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(a) (b) (c)

Figure 5.2.16: Equiamplitude (a = b) interleaved eccentric polygons (a) αn = {1}+{
120
3

}
, (b) αn = {1}+

{
120
4

}
, (c) αn = {1}+

{
120
5

}
. The top figures show the vertices

and the bottom figures show the edges.

Revisiting the star defined as αn = {1}+ b
{
N
2

+ 1
}

we can show that it is in

fact two interleaved regular N
2

-gons that differ in phase by 1
N

. From Eq. 5.2.12, we

determine its jth subsequence to be

α2n+j =

{
2,
j

N

}
+ b

{
2,
j

2
+

j

N

}

and therefore its two subsequences to be

α2n+0 = {2}+ b {2}

= (1 + b){2}

α2n+1 =

{
2,

1

N

}
+ b

{
2,

1

2
+

1

N

}
= (1− b)

{
2,

1

N

}
.
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For j = 0, we obtain a polygon with amplitude 1 + b, while for j = 1 we get a

polygon with amplitude 1− b. Fig. 5.2.17 shows vertex curve plots for increasing

b. As b→ 1, the j = 1 interleaved polygon collapses to a point at the origin.

(a) b = 0 (b) b = 1
3 (c) b = 2

3 (d) b = 1

Figure 5.2.17: Interleaved 30-gons constructed from αn = {1}+b
{
60
2 + 1

}
: (a) regular

60-gon, (b) and (c) star figures, and (d) spoke.

If the star figure formula is modified slightly to

αn = {1}+ b

{
N

P
− 1

}

we obtain interleaved ellipses whose jth subsequence is

αPn+j =

{
P,

j

N

}
+ b

{
−P, j

P
− j

N

}
.

Fig. 5.2.18 shows vertex and edge curve plots for several values of b with m = 2.
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(a) b = 1
3 (b) b = 2

3 (c) b = 1

Figure 5.2.18: Interleaved ellipses given by αn = {1}+ b
{
60
2 − 1

}
for increasing b.

The last specialization of an interleaved bicircloid considered is a simple inter-

leaved bicircloid defined by

αn = {k}+ b

{
N

P
+ k +m

}

with jth subsequence given by

αPn+j =

{
kP,

j

P
+
jk

N

}
+ b

{
(k +m)P,

j

P
+
j(k +m)

N

}
.

When b = 1, we obtain an interleaved rose curve. In Fig. 5.2.19, several curve

plots are shown for P = 2, k = −1, m = 3 and varying b. Of special importance

is the figure when b = 1; this is a hexafolium, a rose curve with D6 symmetry

having non-overlapping petals. It is made of two superimposed D3 rose curves in

reflection around the imaginary axis. We cannot obtain a similar rose curve using

αn = {2}+ {−4} (Eq. 5.2.9, Eq. 5.2.10) since 2 and −4 are not coprime and as
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such cause the curve to degenerate into a doubly-wound curve αn = {1}+ {−2}.

(a) b = 1
4 (b) b = 1

2 (c) b = 1

Figure 5.2.19: Interleaved bicircloids given by αn = {1}+ b
{
120
2 − 2

}
and various b.

By taking subsequences of interleaved bicircloids, many new types of curves

can be constructed, some of them well-known (Fig. 5.2.20).
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Name / Equation Subsequence Full Sequence

Vesica Piscis
αn = 1

2

{
N
2

}
+
{
N
2

+ 1, 1
3

}
n = [0, N

3
] n = [0, N ]

Double Link
αn = 1

2

{
N
2

}
+
{
N
2

+ 1, 1
3

}
n = [δ,N − δ] n = [0, N ]

Triquetra
αn = 1

2 sin(π/3)

{
N
3

}
+
{
N
3

+ 1, 1
4

}
n = [0, N

2
] n = [0, N ]

3 Overlapping Discs
αn =

{
N
3

}
−
{
N
3

+ 1
}

n = [0, 5
6
N ] n = [0, N ]

4 Overlapping Discs
αn =

{
N
4

}
−
{
N
4

+ 1
}

n = [0, 3
4
N ] n = [0, N ]

Figure 5.2.20: Some patterns produced from subsequences of interleaved bicircloids.
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5.2.10 Simple Beat

A simple beat pattern is a special case of a rose curve whose harmonic frequencies

are within close proximity to one another. The general form of a simple beat is

given by

αn =
1

2
({k +m} ± {k})

where m is the number of beats and m� k. The addition or subtraction of the

complex sinusoids determines whether the beat is a falling beat or a rising beat,

respectively. A falling beat begins and ends at unit amplitude while a rising beat

begins and ends at zero amplitude.

The equivalent factored form of a falling beat is αn = {k + m
2
} · Re{m

2
}. This

form more clearly reveals a falling beat to consist of a complex sinusoid, {k + m
2
},

multiplied by a cosine envelope, Re{m
2
}. The equivalency between the two forms

is simple to show

αn =
1

2
({k +m}+ {k})

=
{
k +

m

2

} 1

2

({m
2

}
+
{
−m

2

})
(5.2.13)

=
{
k +

m

2

}
Re
{m

2

}

Similarly, a rising beat has a factored form given by αn = {k + m
2
} · Im{m

2
}

showing it to consist of a complex sinusoid, {k+ m
2
}, multiplied by a sine envelope,

Im{m
2
}. Again, the equivalency between the two forms is shown as follows:

αn =
1

2
({k +m} − {k})

=
{
k +

m

2

} 1

2

({m
2

}
−
{
−m

2

})
(5.2.14)

=
{
k +

m

2

}
Im
{m

2

}
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(a) n = [0, N ] (b) n = [0, N2 ] (c) n = [N2 , N ]

Figure 5.2.21: Anatomy of a rising beat αn = 1
2({10} − {9}). Figure (a) shows the

entire beat while (b) and (c) show the first and second half-sequences, respectively.

5.2.11 Archimedes’ Spiral

An Archimedes’ (or linear) spiral is derived from the initial subsequence of a rising

beat as described above. A spiral with k windings is given to good approximation

by the subsequence

α[0,M) = i

({
N

M
k

}
−
{
N

M
k + 1

})

where k �M � N and N
M
∈ N. The close fit to linear growth of the spiral stems

from the fact that sin(θ) ≈ θ for small θ. For θ < 0.4, the difference between the

curves, θ − sin θ, is given approximately by (0.549θ)3.

Figure 5.2.22: Linear spirals with k = 1, 2, 3, 4 winding(s) (left to right). The parame-
ters are N = 16000,M = 160.

John Whitney’s example of a radial differential motion pattern, where 60
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radially equidistant points move with an angular velocity proportional to their

distance from the origin, displays a succession of Archimedes’ spirals with winding

number increasing from 0 to 1 in increments of 1
8

[126]. Fig. 5.2.23 shows his

example frames reproduced using the harmonic pattern function

α[0,60] = −i
({
−12000

25
m

}
−
{
−12000

25
m− 1

})

for m = 0, 1, 2, . . . , 8.

Figure 5.2.23: John Whitney’s example of a radial differential motion pattern.

A regular m-gon linear spiral (also called a spirangle [128]) with k windings is

obtained from the subsequence α[0,km) = i({N
m
} − {N

m
+ 1}) where N

m
∈ N.

Figure 5.2.24: Regular polygon linear spirals with m = 3, 4, 5, 6 polygon vertices (left
to right) and k = 4 windings.

If we extend the m-gon linear spiral subsequence to the half-sequence α[0,N/2),

we observe that the successive vertices of the extended spiral lie on m half-circle

arcs. Fig. 5.2.25a shows the extended spiral with vertices connected with lines

and Fig. 5.2.25b shows the vertices as points. In the line-connected figure, it is

evident that the spiral undergoes a 90◦ counter-clockwise rotation. Fig. 5.2.25c is
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the entire sequence of the 3-gon linear spiral and clearly shows the vertices to lie

on three circles intersecting at the origin. These figures are interleaved bicircloids

(5.2.9).

(a) (b) (c)

Figure 5.2.25: Extrapolation of triangular linear spiral approximation to (a), (b) half
and (c) full sequences. The curve begins as a triangular spiral and evolves into three
intersecting circles. The curve is given by αn = i({N3 } − {N3 + 1}).

5.2.12 Inverse Beat

The general form of an inverse beat is

αn =
2

{k +m} ± {k}

where m is the number of beats and m� k. If we decompose the harmonic pattern

function in factors

αn =
2

{k +m} ± {k}
=

2

{k + m
2
}({m

2
} ± {−m

2
})

=
{
−k − m

2

} 1
1
2
({m

2
} ± {−m

2
})

=
{
−k − m

2

}
sec
(
π
n

N
m− π

4
± π

4

)
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we see that it is composed of a complex sinusoid multiplied by a secant or cosecant

envelope.

(a) n = [0, N ] (b) n = [0, N2 ] (c) n = [N2 , N ]

Figure 5.2.26: Anatomy of an inverse rising beat αn = 1
2({10}−{9}). Figure (a) shows

the entire beat while (b) and (c) show the first and second half-sequences, respectively.

5.2.13 Hyperbolic Spiral

A hyperbolic spiral is the inverse curve of an Archimedes’ spiral (5.2.11). It can be

approximated by the subsequence

α[0,M) =
1

i({N
M
k} − {N

M
k + 1})

where k �M � N and N
M
∈ N.

Figure 5.2.27: Hyperbolic spirals with m = 1, 2, 3, 4 winding(s) (left to right).
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5.2.14 Trochoid

In 5.2.1, it was discussed how trochoids could be produced by integrating an

eccentric polygon. It is also possible to generate the trochoid as a subinterval of

a bicircloid having a rolling circle with some finite radius and fixed circle with

an infinite radius. Based on this perspective, a trochoid with k cycles can be

approximated by the harmonic pattern function

α[0,M) = a

{
N

M
k

}
+ {1}

where k � M � N and N
M
∈ N. In order to keep the curve near unit scale, we

choose a unit rather than infinite radius for the fixed circle and a relatively small

radius for the rolling circle. This means that the trochoid extends along a small

arc of a unit circle from θ = 0 to 2πM
N

. Given f = N
M
k, the amplitude a determines

whether we obtain a prolate (a > 1
f
), curtate (a < 1

f
), or cuspate (a = 1

f
) cycloid.

5.2.15 Standing Waves

As is well known in physics, a standing wave results from the sum of two sinusoidal

waves propagating with equal velocity in opposite directions (J. d’Alembert, 1747).

A standing wave in one dimension is described mathematically as

B(x, t) = A(x+ vt) + A(x− vt)

where x designates position, t is time, A is a sinusoidal traveling wave with velocity

v, and B is the resultant standing wave. If A is taken to be a complex sinusoid,
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then B can be decomposed into independent spatial and temporal components as

B(x, t) = ei(x+vt) + ei(x−vt)

= eix(eivt + e−ivt)

= eix2 Re(eivt).

In this formulation, it becomes clear that the standing wave’s amplitude modulates

with angular frequency v radians/sec. We classify this type of standing wave as

a discontinuous space-time pattern, as defined above, since the space and time

components behave independently of one another. We can approximate a standing

wave as a continuous space-time pattern with the harmonic pattern function

αn = {k − 1}+ {k + 1}

where Nt = k is the number of time frames and Ns = N/Nt is the number of

samples per time frame. As Fig. 5.2.28 illustrates, a standing wave given in terms

of the harmonic pattern function is a single cycle of a beat spanning across space

and time. The vertical dashed lines in the figure demarcate the spatial periods of

Ns samples while time advances from left to right over Nt frames.
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+

Figure 5.2.28: Illustration of standing wave given by space-time curve αn = {11}+{13}
where Nt = 12.

5.2.16 Inverse Bicircloid

An inverse bicircloid is the complex inversion of a bicircloid and has the harmonic

pattern function

αn =
1

b1{k1}+ b2{k2}
. (5.2.15)

A particularly important class of inverse bicircloids are the inverse rose curves.

These have the harmonic pattern function

αn =
1

{k}+ {k +m} .

Inverse rose curves describe many well-known planar curves, such as the epispiral,

trisectrix of Maclaurin, and trisectrix of Delange (Table 5.7).
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Curve Plot Name αn Inverse

Epispiral 1
{−1}+{2} Trifolium

Epispiral (cross curve) 1
{−1}+{3} Quadrifolium

Epispiral 1
{−3}+{5}

Trisectrix of Maclaurin 1
{1}+{2} Limaçon

Trisectrix of Delange 1
{1}+{3} Dürer Folium

Table 5.7: Inverse Rose Curves

The inverse bicircloid sequence is especially pertinent to sound synthesis as it

produces waveforms whose spectrum is a complex exponential. We can obtain more

154



insight into the sonic characteristics of these waveforms by factoring Eq. 5.2.15 as

αn =
1

b1
· {−k1}
{0}+ b2

b1
{k2 − k1}

=
1

b1
{`} · {0}

{0} − b{m} (5.2.16)

where b = − b2
b1

, ` = −k1, and m = k2 − k1. The factor 1
b1
{`} is an amplitude

scaling and frequency shift by `. Now if we let

α̂n =
{0}

{0} − b{m}

then

F(α̂n) =
∞∑
k=0

bkei2πmk/N

which is a sequence of harmonics whose non-zero amplitudes follow a geometric

sequence with factor b spaced m harmonics apart. Thus, αn is simply an amplitude-

scaled and frequency-shifted version of α̂n. Subsequently, the spectrum of Eq. 5.2.16

is

F(αn) =
1

b1

∞∑
k=0

bkei2π(mk+`)/N .

We now present three harmonic pattern functions that are capable of producing

myriad “smooth” waveforms for sound synthesis:

{`}
{0} − b{m} smooth delta

ˆ
i

{`}
{0} − b{m} smooth constant

¨
− {`}
{0} − b{m} smooth linear

The inverse bicircloid is capable of producing a certain class of smooth classical
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waveforms for use in sound synthesis. We can obtain a log-sine (real part) and saw

(imaginary part) waveform from

ˆ
i
{1}

{0} − b{1}

and a log-cotangent (real part) and square (imaginary part) waveform from

ˆ
i
{1}

{0} − b{2}

where the parameter b ≤ 1 controls the brightness of the waveforms. In general,

an entire family of waveforms with harmonic spacing m and whose harmonic

amplitudes vary as the reciprocal of their frequency are produced via

αn =

ˆ
i

{1}
{0} − b{m} . (5.2.17)

Curve and (waveform) component plots of Eq. 5.2.17 for various m are shown in

Fig. 5.2.29. Besides having the ability to control the amplitude of upper harmonics,

an immediate benefit of using Eq. 5.2.17 to produce classical waveforms is that

it automatically produces quadrature signals that are naturally fit for frequency

shifting transformations. One caveat is that these waveforms are not band-limited

and thus the parameter b must be controlled accordingly to avoid aliasing artifacts.
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m = 1

m = 2

m = 3

m = 4

Figure 5.2.29: Smooth saw (m = 1) and square (m = 2) waveforms along higher
symmetry extrapolations (m = 3, 4).

In addition to the once-integrated waveforms produced from Eq. 5.2.17, we

can also obtain a family of twice-integrated waveforms with the harmonic pattern

function

αn =

¨
− {1}
{0} − b{m} . (5.2.18)

Some special cases of twice-integrated waveforms include the parabolic waveform

(real part) ¨
− {1}
{0} − b{1}
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the triangle waveform ¨
− {1}
{0} − b{2}

and the quadrature triangle waveform

¨
− {1}
{0} − b{4} .

5.2.17 Volute Curve

We define a volute curve as a special case of a polynomial spiral [23, 118] whose

curvature is a function of the square of its arc length plus some constant. It is

given by the harmonic pattern function

αn =

ˆ
1

{m}+ b{m+ 1}

where the number of windings on each spiral is m
2

. The parameter b controls the

bend of the curve connecting the two spiral ends. Some example curves are shown

in Fig. 5.2.30. When b = m
m+1

, the segment connecting the two spirals is linear

(Fig. 5.2.31). This stems from the fact that non-integrated curve has a cusp at

n = N/2. These non-integrated curves are inverse curves of cuspoids (5.2.4).

m = 2, b = 0.6 m = 2, b = 0.9 m = 5, b = 0.7 m = 5, b = 0.95

Figure 5.2.30: Various volute curves.
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m = 1 m = 2 m = 3 m = 4

Figure 5.2.31: Volute curves with linear middle segment. The parameter b is m
m+1 .

5.3 Order 3

While the number of new types of patterns introduced going from one harmonic to

two harmonics is dramatic, there is an even bigger leap going to three harmonics.

However, granted this, many three harmonic patterns involve the modulation of a

wavy sinusoidal curve. These sinusoidal curves are constructed from the sum of

two harmonics having equal amplitudes and frequencies that are equal or close in

magnitude, but opposite in sign. Some examples are the Tusi couple and the class

of narrow-lobe rose curves. Sinusoidal curves tend to produce interesting patterns

since they create envelope curves at their tips and dense sheets of parallel lines

intersecting at various angles.

Like order 2 patterns, there are only two unique order 3 harmonic pattern

functions:

αn = A1{k1, θ1}+ A2{k2, θ2}+ A3{k3, θ3}

and its inversion

αn =
1

A1{k1, θ1}+ A2{k2, θ2}+ A3{k3, θ3}
.
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5.3.1 Eccentric Tusi Couple

While an eccentric Tusi couple alone is not interesting from the standpoint of planar

figures, when we integrate it we obtain a (real) sinusoidal curve. The integrated

eccentric Tusi couple is given by

αn =

ˆ
a{0} − {m,φ}+ {−m,−φ}

which produces a cosine curve along the real axis with m periods and a phase of

2πφ radians.

Figure 5.3.1: Integrated eccentric Tusi couples with φ = 0, m = 1 (left) and m = 5
(right).

5.3.2 Botanic Curve

A botanic curve [116] has the harmonic pattern function

αn = {1}+ a({1−m}+ {1 +m}). (5.3.1)

The equivalent formula in polar coordinates is r = 1 + 2a cos(2πmn/N). Some

of the curves obtained by Young and Wheatstone (Fig. 2.1.1 and Fig. 2.1.3) are

instances of botanic curves. The botanic curve can also be seen as the projection
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on the xy plane of a helical torus given by the parametric equation

x = cos(θ)(1 + a · cos(mθ))

y = sin(θ)(1 + a · cos(mθ))

z = a · sin(mθ).

When m = 1, the botanic curve is the limaçon of Pascal.

Figure 5.3.2: Botanic curves with m = 1 and a = 1
4 , a = 1

2 (eccentric cardioid), and
a = 1 (limaçon trisectrix) shown left to right.

5.3.3 Petal Curve

We define a petal curve as a special case of a botanic curve given by

αn = {1}+
1

2
({1−m}+ {1 +m})

where m is the order of dihedral symmetry. In polar coordinates, it is r =

1 + cos(2πmn/N). A petal curve has a similar shape as a rose curve, but differs in

that there are no degenerate symmetry orders and it does not intersect itself, but

rather has cusps that touch at the origin. For m = 2, the curve is also called a

double egg [117].
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Figure 5.3.3: Petal curves with m = 1, 2, 3, 4, 5, 6 (left to right).

The complex sequence of this curve has two unique properties: the magnitude

is a versed cosine function and the phase is linear and monotonic (the same phase

profile as a single-cycle complex sinusoid).

Figure 5.3.4: Magnitude/phase plots of petal curves for m = 1, 2, 3 (left to right).

5.3.4 Double Rose Curve

We define a double rose curve as an extension of a rose curve through the addition

of one harmonic. It is given by

αn = {`}+ {`−m}+ {`+m} (5.3.2)

where m determines the number of petals. When m and ` are odd, the smaller

petals are centered within the larger petals, otherwise, the smaller and larger petals

alternate. For ` = 1 and all m, odd or even, the curve only intersects itself at

the origin. The double rose curve subsumes three well-known planar curves—the

limaçon trisectrix (` = 1, m = 1), the cycloid of Ceva (` = 1, m = 2), and Freeth’s

nephroid (` = 2, m = 1).
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Figure 5.3.5: Double rose curves with ` = 1 and m = 1, 2, 3, 4, 5, 6 (top row, left to
right). Once-integrated curves are displayed in the bottom row.

The double rose is categorized as a delta interpolation pattern Section 4.4. It

is also a special case of the more general Fourier polygon which is presented in

greater detail in 5.4.5. This relationship is more obvious if we integrate Eq. 5.3.2.

As shown in Fig. 5.3.5, the resulting curves become constant interpolation patterns

and begin to resemble polygons with m vertices.

5.3.5 Fanned Rose

We define a fanned rose curve as the curve given by

αn = {1}+ {1 +m,φ}+ {−m,φ}

where φ = 0 or 1
2

and the number of lobes is 2m+ 1− 2φ. When φ = 0 there are

an odd number of lobes and when φ = 1
2

the number is even. When m = 1, this

equation produces two well-known plane curves— the trefoil curve (φ = 0) and the

bifolium curve (φ = 1
2
). A variety of fanned rose curves are shown in Fig. 5.3.6.
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Figure 5.3.6: Fanned rose curves for φ = 0,m = 1, 2, 3, 4, 5 (top row, left to right) and
φ = 1

2 ,m = 1, 2, 3, 4, 5 (bottom row, left to right).

One of the main differences of the even- from the odd-lobed curves is that

the even-lobed curves contain a cusp between the two largest lobes whereas the

odd-lobed curves contains no cusps. Technically speaking, the cusp lies exactly

at the boundary between a prolate (non-looping) and curtate (looping) curve.

Furthermore, the subcomponents {1 +m,φ}+ {−m,φ} describe a rose curve with

2m+ 1 loops which is always odd. Therefore, the even loop curves can be seen as

an odd loop curve where one loop lies at the boundary of becoming unlooped (a

cusp).

As m increases, it becomes more apparent that the curve is enclosed in an

envelope with the shape of a cardioid. This can be shown by factoring the harmonic

components containing m so that

αn = {1}+

{
1

2

}({
1

2
+m,φ

}
+

{
−1

2
−m,φ

})
= {1}+ 2

{
1

2

}
Re

{
1

2
+m,φ

}
.

If we consider only the maxima and minima of Re
{

1
2

+m,φ
}

, 1 and −1, respec-
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tively, it becomes clear that the tips of the loops of the curve form two envelopes

{1} ± 2
{

1
2

}
which are the upper and lower half-plane portions of a cardioid,

respectively. Together, these envelopes form the envelope of the entire curve, a

complete cardioid. This observation leads to a more general type of curve which

will be called an envelope bicircloid.

5.3.6 Envelope Bicircloid

An envelope bicircloid generalizes several seemingly disparate curves into one

family of curves. These curves, loosely speaking, consist of a sinusoidal curve

whose minima and maxima, typically −1 and 1, trace out two independent bicircloid

curves. The harmonic pattern function of an envelope bicircloid is

αn = {p}+
b

2
({q +m}+ {q −m}) (5.3.3)

where m� p, q. The equations of the envelopes are found by factoring Eq. 5.3.3

αn = {p}+
b

2
({q +m}+ {q −m})

= {p}+ b{q}1

2
({m}+ {−m})

= {p}+ b{q}Re{m}

revealing the two envelopes {p} ± b{q}. The parameters q and m can take on half-

integer values, but only if both of them are half-integers since the sum or difference

of any two half-integers is an integer. When q and m are both half-integer, then

the envelope is a single bicircloid formed from the union of two bicircloid halves

produced by the extrema of Re{m} (Fig. 5.3.7).
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Figure 5.3.7: Envelope bicircloids given by p = 1, q = 1
2 , m = 201

2 , b = 1, 12 ,
1
4 (left to

right).

5.3.7 Conic Sections

A conic section is the curve of intersection between a double-cone and a plane.

The standard parameterization of a conic section is

f(φ) =
eiφ

1 + b cos(φ)

where φ ∈ [0, 2π) and b ∈ [0, 2]. The standard parameterization directly maps into

the harmonic pattern function

αn =
{1}

{0}+ bRe{1} (5.3.4)

where φ→ 2πn/N . The parameter b determines the shape of the curve as follows:



b = 0 circle

b ∈ (0, 1) ellipse

b = 1 parabola

b ∈ (1, 2] hyperbola

.
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The ellipse and hyperbola curves resulting from a conic section do not exhibit

velocity symmetry around their vertical reflection axis as do the curves given in

5.2.2 and 5.4.1, respectively. If the sign of b is negative, the figure opens up to the

right rather than to the left as |b| increases.

We can write Eq. 5.3.4 in the alternate form

αn =
1

{−1}+ b
2
({−2}+ {0})

by reduction where it becomes clear that a conic section is the inverse curve of

the limaçon of Pascal and, furthermore, a special case within the family of inverse

botanic curves.

(a) b = 0 (b) b = 0.6 (c) b = 1 (d) b = 1.6 (e) b = 2

Figure 5.3.8: Conic sections circle, ellipse, parabola, and hyperbola.

We can generalize the symmetry of a conic section through definition of an

inverse botanic curve given by

αn =
{1}

{0}+ bRe{m}

or equivalently

αn =
1

{−1}+ b
2
({−m− 1}+ {m− 1})

where the amplitude b acts as a sharpness parameter. Curves plots for various m

and b are shown in Table 5.8. As |b| → 1−, the curves become more spoke-like and
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the vertices get more concentrated near the origin. They can therefore be classified

as delta interpolation patterns. In the case where m = 1, the curve approaches a

delta function.

b�m 1 2 3 4 5

−0.4

−0.8

−0.98

Table 5.8: Inverse botanic curves for various m and b. When m = 1, the curves are
conic sections.

An interesting case presents itself when |b| → 1− and N/m ∈ N. Here we get

spoke-like curves whose tips result from inverting the cusps near the origin of the

inverse petal curve. Because N is an integer multiple of m, the m points closest

to the origin of the inverse petal curve are all the same distance from the origin.

This means that when they are inverted, they again lie at the same distance from

the origin. What makes this interesting, is that when the curve is integrated, the

result will be in the form of a regular polygon. When integrated once, the points

stack up on the vertices of the polygon and when integrated twice, the points are

distributed uniformly along the edges. Tables 5.9, 5.10, and 5.11 show vertex/edge

curve plots and component plots of integrations of inverse botanic curves with

b = 0.9999, N = 60, and m = 3, 4, 5, respectively.
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αn

´
αn

˜
αn

Table 5.9: Integrations of an inverse botanic curve with b = 0.9999, N = 60, and
m = 3.

αn

´
αn

˜
αn

Table 5.10: Integrations of an inverse botanic curve with b = 0.9999, N = 60, and
m = 4.
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αn

´
αn

˜
αn

Table 5.11: Integrations of an inverse botanic curve with b = 0.9999, N = 60, and
m = 5.

5.3.8 Double-sided Spectral Exponential

A complex sequence whose spectrum is an asymmetric double-sideband exponential

is given by

αn =
1

1− a{−m} − b{m} (5.3.5)

where a and b control the fall-off of the negative and positive frequency exponentials,

respectively. To obtain well-behaved spectra, a + b must be less than 1. This

pattern is the same as an inverse botanic curve (5.3.7) when frequency shifted up

one harmonic {1}. To show that the spectrum is indeed a double-sided exponential,
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we start with a product of two single-sided spectral exponentials and then simplify

αn =

(
1

1− a′{−m}

)(
1

1− b′{m}

)
(5.3.6)

=
1

(1 + a′b′)− a′{−m} − b′{m}
=

1

1− a′

1+a′b′
{−m} − b′

1+a′b′
{m} .

The final result is equivalent to Eq. 5.3.5 with a and b in terms of a′ and b′.Since

1

1− a{m} =
∞∑
k=0

ak{mk}

we determine the spectrum of Eq. 5.3.5 to be a product of two exponential functions

(
∞∑
k=0

a′k{mk}
)(

∞∑
k=0

b′k{−mk}
)
.

5.3.9 Moving Bicircloid

Like the moving polygon discussed in 5.2.1, a moving bicircloid is a uniformly

spaced repetition of bicircloid curves along a line of motion. Its harmonic pattern

function is

αn =

ˆ
a+ A1k1{mk1}+ A2k2{mk2}

where a ∈ C determines the direction and speed of motion of m bicircloids given by

A1{k1}+ A2{k2}. When A1 = A2, we obtain a moving rose curve, when A1 = 1
k1

and A2 = 1
k2

, we obtain a moving cuspoid, and when A1 = 1
k21

and A2 = 1
k22

, we

obtain a moving smooth star polygon.
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5.3.10 Circle Cuspoid

We define a circle cuspoid as a curve comprised of a cuspoid (5.2.4) base curve

and a higher-frequency circular curve. In the resulting curve, there appear circles

wherever a cusp is present in the base curve. The reason the circles appear at the

cusps is because the velocity there momentarily becomes zero. At other points

along the curve, the circular curve gets stretched out resembling something like a

trochoid. This type of pattern is seen in some phonautograph images (Fig. 2.1.4c).

The circle cuspoid is given by

αn =
1

k1
{k1}+

1

k2
{k2}+ a{p}

where p � k1, k2. Some examples of circle cuspoids are shown in Fig. 5.3.9.

Regardless of the amplitude of the circular curve, the circles remain clearly visible

at the cusp points of the base cuspoid. The circle cuspoid can be generalized to use

any constant interpolation pattern as a base curve and any other high-frequency

curve as the duplicated curve.
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1
2
{50} {50} 3{50}

{1}+ 1
2
{2}

{1}+ 1
3
{3}

{1} − 1
2
{−2}

Figure 5.3.9: Circle cuspoids. The rows are different base cuspoid curves, a cardioid,
a nephroid, and a deltoid going top to bottom, and the columns are circular curves with
different amplitudes.

5.3.11 Circle Chain

We define a circle chain as the curve given by

αn =

ˆ
a{`}+ {`+m} − {`+ 2m}

where m is the number of circles, ` ∈ [−1, 0] is the winding amount, and a u 0.215.

A circle chain is a unicursal curve that appears like a chain of multiple circles.
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Examples of this curve were first given by Bazley [11]. Fig. 5.3.10 shows some

examples of curves for the parameter ` and m ∈ [2, 6]. When ` = −1 and m ≤ 3,

the circles lose the appearance of being individual curves. Fig. 5.3.11 shows details

at the center of the circle chains with m = 5 revealing how the curve almost

perfectly coincides with itself at intersection points at the bottom for ` = 0 and

center for ` = −1. The phase of the {` + m} component is adjusted slightly to

make the curve’s path more visible.

Figure 5.3.10: Circle chain curves. The symmetry parameter m ranges from 2 to 6
going left to right. The top row curves have ` = 0 and the bottom row curves have
` = −1.

Figure 5.3.11: Details at center of circle chain curves for m = 5 and ` = 0 (left) and
` = −1 (right). The curves are skewed slightly to make the path more visible.

We can understand more about the circle chain curve if we set b to some small
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amount. Fig. 5.3.12 shows the resulting curve when m = 5, ` = 0, and a = 0.015. It

is clearly a type of moving cardioid curve similar to the moving polygons discussed

in 5.2.1. Therefore, a circle chain curve with ` = 0 is a rather unique case of a

moving cardioid.

Figure 5.3.12: A circle chain curve is a special case of a moving cardioid curve.

5.4 Higher Order

In this section, some harmonic pattern functions with an order greater than 3

are presented. Clearly, this can in no way be comprehensive, so only some more

important or well-known patterns are discussed in relation to the harmonic pattern

function.

5.4.1 Rectangular Hyperbola

The rectangular hyperbola discussed here is different from the hyperbola produced

from a conic section in 5.3.7. Unlike the conic section hyperbola, the rectangular

hyperbola is centered at the origin and its speed is symmetrical between both

branches (Fig. 5.4.1). The harmonic pattern function of a rectangular hyperbola is

αn =
a{0}+ b Im{1}

Re{1}
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where a is its horizontal scaling and b is its vertical scaling. The lemniscate of

Bernoulli (Fig. 5.4.1) is the inverse curve of a rectangular hyperbola. Accordingly,

its harmonic pattern function is

αn =
Re{1}

{0}+ Im{1} .

Figure 5.4.1: Rectangular hyperbola (left) and its inverse curve, the lemniscate of
Bernoulli (right).

5.4.2 Bowditch Curves

A Bowditch curve is the locus of two independent simple harmonic motions along

two orthogonal axes. Its harmonic pattern function is a sum of two harmonic

projections on the real and imaginary axes given by

αn =
{k0, φ0}+ {−k0, φ0}+ {k1, φ1} − {−k1, φ1}

2

= Re{k0, φ0}+ Im{k1, φ1}. (5.4.1)

A Bowditch curve is degenerate (loops back on itself) when either k0 is even and

sin δ = 0 or k0 is odd and cos δ = 0 where δ = 2π(k0φ1 − k1φ0) [65]. Some well-

known algebraic curves that are also Bowditch curves include the circle, line, ellipse,

lemniscate of Gerono, Chebyshev polynomials, Tschirnhausen cubic, saddlebag
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[65], and besace curve [115]. Table 5.12 displays several of these algebraic curves

with their corresponding harmonic pattern function beneath.

Re{1}+ Im{1, 1
4
} Re{1}+ Im{2, 1

4
} Re{1}+ Im{3, 1

4
} Re{1}+ Im{4, 1

4
}

Re{1}+ Im{1, 1
8
} Re{1}+ Im{2} Re{1}+ Im{2, 5

8
} Re{2}+ Im{3, 1

4
}

Table 5.12: Well-known algebraic curves that are also Bowditch curves. On the top
row going left to right are the Chebyshev polynomials of degree 1 (a line), degree 2 (a
parabola), degree 3, and degree 4. On the bottom row going left to right are an ellipse,
lemniscate of Gerono, saddlebag, and Tschirnhausen cubic.

When k0 is odd and k1 = k0 ± 1, the Bowditch curve forms a crosshatched

sinusoidal pattern with a square envelope. The harmonic pattern function is

defined as

αn = Re{`}+ Im{`± 1}

where ` is odd. If partitioned into ` contiguous subsequences so that the jth

subsequence has indices n ∈ [N
`
j, N

`
(j + 1)), this pattern captures a continuous

motion from circle to ellipse to line and back. However, since the entire pattern is

unicursal, the intermediate circles and ellipses are not closed. This development

was also observed by Rigge [87] who stated, in reference to a similar pattern, “. . .

because the transition is continuous, there is in reality never a true ellipse, nor
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straight line, nor a circle, since not one of those drawn is a closed curve.” The

term Im{`± 1} determines whether the curve associated with each subsequence

overshoots or undershoots its starting point. Fig. 5.4.2 shows a curve plot of

Re{9}+ Im{10} along with 9 successive subsequences that show its evolution from

circle to line and back. If we let Nt = ` be the number of temporal frames of

motion and N →∞, then as we increase Nt we obtain both higher temporal and

shape resolutions. That is, as Nt increases, the subsequence curves more closely

approximate ideal (closed) ellipses. In addition, as Nt increases, the curve of the

entire sequence forms a denser crosshatched pattern.

Figure 5.4.2: The larger curve on the left is the entire curve plot of Re{9}+ Im{10}.
The grid of curves on the right shows 9 successive subsequences of the entire curve, in
order, going from top to bottom, then left to right.

A family of unit-circle patterns in the shape of a crosshatched disc is given by

αn = Re{`}+ Im

{
N

2
+ `

}

where ` determines the obliqueness of the crosshatch. When ` = ±1 the crosshatch
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is vertical, when ` = N
2
± 1 it is horizontal, and when ` = N

4
± 1 it is right-angled

(Fig. 5.4.3). For other values of `, the angle of the crosshatch falls between these

extremes.

Figure 5.4.3: Crosshatched disc patterns for ` = 1, N4 +1, N2 +1 (left to right). N = 120.

As a final note, integration of Bowditch curves does not lead to any novel

patterns. Integrating Eq. 5.4.1 (ignoring phase terms for simplicity), we obtain

αn =

ˆ
Re{k0}+ Im{k1}

=

ˆ
{k0}+ {−k0}+ {k1} − {−k1}

=
1

ik0
{k0}+

1

−ik0
{−k0}+

1

ik1
{k1} −

1

−ik1
{−k1}

= −i
[

1

k0
({k0} − {−k0}) +

1

k1
({k1}+ {−k1})

]
= −i

(
1

k0
Im{k0}+

1

k1
Re{k1}

)
=

1

k0
Im

{
k0,−

1

4

}
+

1

k1
Re

{
k1,−

1

4

}

which is another Bowditch curve whose sinusoidal components are swapped and

scaled by the reciprocal of their frequency. One unique case is when k0 = 0 where

we obtain a (real) sinusoidal curve on the Argand plane. This, however, is a special

case of the integrated eccentric Tusi couple discussed in 5.3.1.
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5.4.3 Comb Filters

A general comb filter transfer function is generated by

αn =
a0 + am{m}
1− bm{m}

(5.4.2)

which is a discrete sampling of the continuous function

H(z) =
a0 + amz

m

1− bmzm

with difference equation

y[n] = a0x[n] + amx[n−m] + bmy[n−m].

For the filter to be stable, |bm| < 1. By appropriate selection of the parameters

a0, am, bm, and m, a wide variety of filter transfer functions can be produced.

These are summarized in Table 5.13. The parameter m determines the number of

“distortions” that repeat at regular intervals (precisely N/m samples) along the

sequence. A distortion is simply a deviation from uniform magnitude and/or zero

phase.
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Name m a0 am bm c

Delay > 0 0 1 0 1

All-zero > 0 1 [−1, 1] 0 1
1+|am|

1-zero lowpass 1 [0, 1]

Averager 1

1-zero highpass [−1, 0]

Differencer −1

All-pole > 0 1 0 (−1, 1) 1− |bm|
1-pole lowpass 1 [0, 1)

Leaky integrator [0.99, 1)

Integrator 1

1-pole highpass (−1, 0]

Notch (even) > 0 1 −1 [0, 1) 1+|bm|
2

DC blocker 1

DC/Nyquist blocker 2

Notch (odd) > 0 1 1 (−1, 0]

Nyquist blocker 1

Allpass (even) > 0 −bm −1 [0, 1) 1

Allpass (odd) > 0 bm 1 (−1, 0]

Table 5.13: Parametric descriptions of comb filters.
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Delay Notch (even)

All-zero comb DC block

1-zero lowpass DC/Nyquist block

1-zero highpass Notch (odd)

All-pole comb Nyquist block

1-pole lowpass Allpass (even)

1-pole highpass Allpass (odd)

Table 5.14: Magnitude/phase frequency responses of the general comb filter types.
Frequencies run from 0 on the left to N − 1 on the right. The height of the graph is |z|
while the hue corresponds to arg z where 0, 132π, 232π → red, green,blue.

We can extend Eq. 5.4.2 to permit shifting of the sequence by adding a single

phase variable. This shiftable comb filter has the harmonic pattern function

αn =
a0 + am{m,φ}
1− bm{m,φ}

where φ is a shift amount in [0, 1). The difference equation of the shiftable comb

filter is

y[n] = a0x[n] + (amx[n−m] + bmy[n−m])ei2πφ.

When m = 1, φ operates like a center frequency parameter that shifts the single

pole/zero in the frequency spectrum thus creating a resonant/notch filter. For a

one-pole filter, what is typically called the cut-off frequency is really the bandwidth

of the resonant peak. For m > 1, continuous linear increment of φ results in a

barber-pole phasing effect [14]. For the shiftable comb filter to operate correctly,
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the input signal must be complex-valued. If only a real-valued signal is available,

then it can be sufficiently complexified by passing it through a Hilbert filter.

5.4.4 Truncated Spectral Exponential

A truncated spectral exponential is a complex sequence whose spectrum has the

shape of a truncated exponential function. It is the difference of two (infinite)

spectral exponentials (Eq. 5.2.16). Its harmonic pattern function is

αn =
{0} − bK{mK}
{0} − b{m} (5.4.3)

where m is the harmonic spacing or degree of symmetry, K is the total number

of harmonics, and b is the decay factor. Setting b = 1 produces a series of

equiamplitude harmonics. Numerical problems can be avoided by setting b to a

value slightly less than 1. A frequency-shift factor of {`} can be applied to avoid

the DC term or to create inharmonic spectra. Eq. 5.4.3 can be expanded into the

series

αn =
K−1∑
k=0

bke−i(2πn/N)mk.

The series expansion is derived by separating terms in Eq. 5.4.3

αn =
{0}

{0} − b{m} −
bK{mK}
{0} − b{m}
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then expanding each term and simplifying

αn =
∞∑
k=0

bke−i(2πn/N)mk −
∞∑
k=0

bk+Ke−i(2πn/N)(m[k+K])

=
∞∑
k=0

bke−i(2πn/N)mk −
∞∑
k=K

bke−i(2πn/N)mk

=
K−1∑
k=0

bke−i(2πn/N)mk.

The truncation of the series is due to the fact that bk+K = bKbk, i.e., the function

bk remains similar under a shift in position k.

All order 1 (Section 5.1) and order 2 (Section 5.2) patterns are generalized by

Eq. 5.4.3, however, this is a somewhat trivial result as direct synthesis/summation of

harmonics is more straightforward. When b = 1, a truncated spectral exponential

generalizes all patterns comprised of a finite number of harmonics with equal

amplitude and equally-spaced frequencies. These include double rose curves (5.3.4)

and delta Fourier polygons (5.4.5).

5.4.5 Fourier Polygons

The Fourier polygons discussed here are the discrete version of continuous polygons

constructed from Fourier series [89]. Fourier polygons are “overcomplete” polygons

in that they are constructed from a relatively larger number of points than their

symmetry class. They should not be confused with the geometrically exact N -

gons discussed in 5.1.2 and 5.1.3 made from only a single harmonic. These single

harmonic polygons are also referred to as“Fourier polygons”elsewhere [35], however,

we do not adopt the same terminology as Fourier series generally involve functions

constructed from a superposition of many harmonics, not just one. The single
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harmonic polygons could be termed finite circles as they are simply complex roots

of unity described by the cyclic group, Z/nZ [106].

We define regular Fourier polygons as

αn =
∑

k=`(m)

{k}
kp

(5.4.4)

where p determines the smoothness Cp of the curves [101], m ∈ N is the symmetry

class of the polygon and `(m) is equivalent to (. . . , `−2m, `−m, `, `+m, `+2m, . . .).

Computing Eq. 5.4.4 with a finite number of harmonics can either be done through

direct summation or through integrations of a truncated spectral exponential

(Eq. 5.4.3) with b = 1.

For p = 1 and p = 2 two types of regular polygons emerge—constant and linear,

respectively. The distinction between constant and linear polygons is related to

the distance between successive points along the curve. For the constant variety,

the curve makes relatively small orbits around the (ideal) polygon vertices before

jumping rapidly to the next polygon vertex (Fig. 5.4.4b). There are generally far

more points at the polygon’s vertices than along its edges. For the linear variety,

successive points along the curve are at approximately the same distance from one

another (Fig. 5.4.4c). Thus, there are more points along the edges of the polygon

than at the vertices.
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(a) (b) (c) (d)

Figure 5.4.4: Curve plots of (a) delta (p = 0), (b) constant (p = 1), (c) linear (p = 2),
and (d) quadratic (p = 3) Fourier 3-gons made with 8 harmonics and N = 90 points.

For the case of p = 0, the resulting curves are not regular polygons, but rather

spoke-like curves. We refer to these as delta Fourier polygons, a third variety along

with constant and linear. Delta polygons have the characteristic of making small

orbits around the origin while periodically making a rapid excursion outwards

towards a polygon vertex and then back to the origin (Fig. 5.4.4a). Thus, overall,

points are concentrated near the origin. As p → −∞, the curve approaches a

circle.

Fourier polygons have a strong relationship with the classical waveforms dis-

cussed in 2.3.2. Many of the classical waveforms can be obtained from Fourier

polygons with m = 1, 2 (Table 5.15). For m = 1 we obtain all (or even) harmonic

waveforms and for m = 2 we get odd harmonic waveforms. The all harmonic
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classical waveforms are

impulsen = Re
∑
k=1(1)

{k}
k0

sawn = Im
∑
k=1(1)

{k}
k1

parabolan = Re
∑
k=1(1)

{k}
k2

and the odd harmonic classical waveforms are

alternatingImpulsen = Re
∑
k=1(2)

{k}
k0

squaren = Im
∑
k=1(2)

{k}
k1

trianglen = Re
∑
k=1(2)

{k}
k2

For sawn and parabolan, we either assert k 6= 0 or live with the fact that they are

centered at the point (∞, 0) on the extended complex plane.

Fourier polygons are a particular class of interpolation patterns as described

in Section 4.4. Fourier polygons approximate a discrete sampling of a complex

sinusoid along with a particular interpolation policy between the sample points.

The number of samples taken is m (the symmetry degree) while the smoothness of

the path taken between samples is Cp. Table 5.15 shows plots for different values

of m and p for comparison (for m = 1, the infinite offset caused by the component

{0}/0 is removed). For the delta Fourier polygons (p = 0), the path between

samples is C0 smooth and consists of complex sinusoid values at sample points and

zero elsewhere. The constant Fourier polygons (p = 1) approximate a truncating

interpolation algorithm between sample points while the linear Fourier polygons
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(p = 2) approximate a linear interpolation algorithm between sample points. This

interpolation becomes more evident when m ≥ 5. For m = 2, the classical square

and triangle waves can be interpreted as being constructed from truncating and

linear interpolation, respectively, between the two points of a digon. For m = 4,

we obtain, again, both square and triangle waves by the two interpolation methods

between the points of a square. This time, however, the waveforms are complex

(quadrature) signals rather than the purely real (or imaginary) waveforms obtained

with m = 2. We could even go so far as to say that the complex waveform obtained

with m = 4 is the most genuine square wave since its curve plot is also a square!

If we take a closer look at the plots in Table 5.15, we notice a small discrepancy

in the interpolation paths between the cases p = 1 and p = 0, 2. This is more easily

revealed by the real and imaginary component plots. For delta and linear Fourier

polygons, the real and imaginary projections approximate a discrete sampling and

interpolation of a cosine and sine function, respectively (Fig. 5.4.5).

(a) (b)

Figure 5.4.5: Real and imaginary projections of Fourier polygons with (a) p = 0 and
(b) p = −2. Vertical lines show sample boundaries.

However, for constant Fourier polygons, we see upon closer inspection that the

sampling occurs exactly halfway between sample boundaries (Fig. 5.4.6a). We can
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correct this, so sampling occurs on the sample boundaries, by applying a global

rotation factor of e−iπ/m to the complex sequence (Fig. 5.4.6b).

(a) (b)

Figure 5.4.6: Real and imaginary projections of Fourier polygons with p = 1. Figure
(a) is a constant polygon with m = 5 and (b) is the same curve rotated by −π/5. Vertical
lines show sample boundaries.

Raster plots of several Fourier polygons are shown in Table 5.16. When p = 0,

the patterns are evenly-spaced horizontal lines. When p = 1, the patterns become

a series of horizontal filled-in bars. When p = 2, the patterns resemble plane waves

(5.1.3) propagating vertically, although the actual functions are piece-wise linear

rather than sinusoidal.
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p \m 2 3 4 5

0

1

2

Table 5.16: Raster plots of αn =
∑

k=1(m),|k|<8m{k}/kp. For p = 1, αn is multiplied

by the phase correction factor e−iπ/m.

Through a simple frequency-scaling transformation, we can obtain raster pat-

terns at different angles. The frequency-scaled Fourier polygon is given by

αn =
∑

k=`(m)

{sk}
kp

where s ∈ Z is the frequency scaling factor and `, m, and p are the same as in

Eq. 5.4.4. In the position domain, the frequency scaling operation can be performed

by rescanning the complex sequence generated from Eq. 5.4.4 by the factor s,

i.e. changing its pitch. Some frequency-scaled Fourier polygon raster plots are

shown in Fig. 5.4.7. It is apparent that these patterns have a similar structure as

sinusoidal plane waves in that s controls the direction of propagation, but differ
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in that the waveform itself is non-sinusoidal. In this way, these patterns could be

used as basis functions for more complex “self-similar” patterns.

Figure 5.4.7: Raster plots of frequency-scaled Fourier polygons by the amounts s =
0,M,M + 1,M − 1 (left to right) where M =

√
N , m = 5, ` = 1, and p = 1.

As a final note, one of the strengths of many-harmonic Fourier polygons over

single-harmonic polygons (5.1.2) and star polygons (5.1.3) is that they do not

depend strongly on N as long as N is large. In the case of single-harmonic polygons,

the number of vertices of the polygon is exactly equal to N . With Fourier polygons,

the number of vertices of the polygon depends only on the frequency interval

between harmonics and thus more than one polygon order (symmetry) can be

constructed using the same N .

Conclusion

This chapter has systematically looked at specific instances of harmonic patterns

arising from (combinations of) one, two, three, and many harmonics. Many

well-known waveform functions (e.g., sine, square, saw, and triangle waves) and

curves (e.g., star polygon, circle, ellipse, parabola, hyperbola, and spirals) are

producible from simple harmonic pattern functions. Single harmonic patterns

always consist of points spaced uniformly along the circumference of a circle.

Viewing a succession of subsequences of certain regular star polygons over time

can give the appearance of another regular star polygon rotating at a constant
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speed. Two harmonic patterns have an annular envelope consisting of an inner and

an outer circular envelope. Conglomerates of several interleaved patterns can be

produced by using certain high-frequency components. Three harmonic patterns

bring forth a new level of complexity, but generally abide by combinations of rules

from one and two harmonic patterns. For example, the circle cuspoid (5.3.10) is

a circle that moves continuously along the path of a cuspoid. More generally, all

three harmonic patterns can be seen to consist of a two-harmonic base pattern on

which a one-harmonic pattern moves. The many harmonic patterns looked at are

simple extrapolations and combinations of lower harmonic patterns.

The harmonics that comprise a sequence have particular effects on the resulting

sound waveforms or visual patterns. Some harmonic combinations lead to patterns

that are interesting both visually and sonically and other combinations lead to

interesting visual results, but not sonic, and vice-versa. First, we discuss the visual

and aural differences. The presence of high-frequency components in a sequence

leads to more complicated patterns visually, but aurally, the resulting waveforms

are often too bright or inaudible. Such sounds can be made more pleasing by

pitch- or frequency-shifting them down into a lower frequency range, although this

is not always straightforward since some sequences may contain both low- and

high-frequency components. DC and Nyquist components are visually salient, yet

sonically inaudible. Phase is also more visually salient than sonically. Rotating the

phase of a harmonic component can produce a new curve with little resemblance

to the original, however, sonically, this effect is not heard. The effect of combining

negative and positive frequencies is difficult to distinguish sonically, yet visually is

quite dramatic. A trifolium ({−1} + {2}) and limaçon ({1} + {2}) are visually

quite distinct, yet aurally similar. Now, we discuss attributes that are salient

both visually and aurally. Amplitude modulation (or beating) leads to interesting
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patterns both visually and sonically. Curves comprised of beating sinusoids have

a sheet-like appearance displaying complicated intersection patterns. Waveforms

with beats sound more lively as they convey long-term temporal development.

Constant interpolation patterns are both visually and sonically interesting. These

patterns exhibit a peculiar unity between extreme stasis and change. The patterns

are identified by long periods of positional invariance or local orbiting demarcated

by sudden jumps in position.
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6. Future Research Directions

This dissertation provided a solid theoretical foundation for the combined synthesis

of sonic and visual patterns in two dimensions. Most of the patterns analyzed were

relatively simple since the focus of this work was to systematically investigate what

were believed to be the most fundamental principles. A natural question to posit

is how the harmonic pattern function can either be applied directly or extended

to produce other types of patterns based on the results of this dissertation work.

Some open research paths in this direction are now briefly discussed.

6.1 Three-dimensional Patterns

How can the results of this dissertation be carried into three dimensions? Raster

plots in three dimensions are a simple extension of the two-dimensional case pre-

sented. The only modification that needs to be made is for the raster motion to

sweep out the area of a cuboid rather than a rectangle. The harmonic pattern func-

tion inherently provides a basis for generating patterns using a three-dimensional

inverse discrete Fourier transform. Generating three-dimensional curves is a less

trivial research question. There are at least four different paths to consider in

moving to three dimensions—quaternions, coordinate frames, stereoscopic phasing,

and the Riemann sphere. These are briefly discussed in turn.
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On first thought, it seems logical to use quaternions to generate three-dimensional

curves as they are the next higher-dimension (four-dimensional) division algebra

after the complex numbers. Quaternions are like complex numbers in all respects

except that they form a division ring rather than a division field meaning that

commutativity does not hold. Lack of commutativity, however, does not seem to

be a large disadvantage. The problem with quaternions begins to surface when

considering how they can be used as basic generators akin to complex sinusoids.

We can use two complex numbers, one defining a phase and amplitude and the

other defining a frequency, to generate regular (star) polygons on a plane through

recursive multiplication. It would be natural to think that doing the same with

quaternions would generate regular polyhedra, but this is not the case. Recursive

multiplication of a quaternion by another unit quaternion (the frequency compo-

nent) generates a regular (star) polygon on a hyperplane. Thus, a quaternionic

sinusoid is still a planar curve, albeit embedded in four dimensions. In terms of

generating simple patterns, we gain very little going from complex numbers to

quaternions. A quaternionic sinusoid could more easily be constructed by starting

with a complex sinusoid and rotating it into four dimensions. In short, quaternions

are not naturally capable of generating basic patterns of higher dimension; they

still only generate two-dimensional patterns albeit embedded in four dimensions.

The coordinate frame approach extends the work of Abelson and diSessa [3]

in steering a turtle in three dimensions . A coordinate frame in three dimensions

consists of 3 orthonormal 3-vectors that encode the orientation of an object (its

local coordinate system). The tip of at least one of these basis vectors can be

used to define the position of a point in space that traces a curve. In order to

parameterize the coordinate frame, Euler angles can be used. Euler angles describe

how to successively rotate a coordinate frame along the planes formed by its basis
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vectors. In three dimensions, at least three Euler angles are required to describe

an orientation. If each of these Euler angles are the phase component of a complex

sinusoid, then we have a description of a curve on a unit sphere. An Euler harmonic

would thus consist of three complex sinusoids with independent frequencies and

phases. If the frequencies are identical, then the curve is constrained to a great

circle on a unit sphere similarly to a quaternionic sinusoid. Since Euler rotations

in three dimensions do not commute (like quaternions), there are several flavors

of Euler harmonics based on the planes that are rotated and the order they

are rotated in. A common Euler rotation convention is ZXZ which rotates the

coordinate frame around its local Z, X, and Z axes in succession. More investigation

would be required to determine if there are any advantages to using one rotation

convention over another as well as the effects of using more than three combined

Euler rotations.

Stereoscopic phasing is the term we give to the process of simulating separate

images for each eye by generating two two-dimensional curves with identical

parameters except for slightly differing phases. This method is described in detail

by Rigge [85]. The advantage of this approach is that the harmonic pattern function

can be used directly with only the addition of one or more phase differencing

parameters. One potential liability of stereoscopic phasing is its reliance on

stereoscopic viewing techniques in order to perceive the three-dimensional curves.

This means that the curve does not have an immediate three-dimension description.

To do so would require mapping the horizontal difference between the points of

each eye’s curve into a depth value.

A mathematically well-established technique for generating three-dimensional

curves from two-dimensional curves is stereographic projection of the complex

plane onto the Riemann sphere. Through this mapping, the entire complex plane
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including infinity (the extended complex plane C∞) is mapped onto a unit sphere.

The north pole of the sphere is infinity while the south pole is zero. Stereographic

projection is an attractive option since it is a parameter-free mapping from the

complex plane into three dimensions and thus the harmonic pattern function can

be used without any modification. Additionally, many transformations on the

complex plane have simple corresponding effects on the Riemann sphere. Inverting

a curve reflects its image around the equator of the Riemann sphere. The inversion

symmetric patterns discussed in Section 4.6 are therefore entirely symmetric around

the equator. Basic motions on the sphere correlate with simple scale, rotation, and

translation operations of complex numbers which are generalizable through the

Möbius transformation [74]. In order to construct curves off of the unit sphere,

multiple sphere curves can be summed together. Each unit sphere curve would

have its own unique harmonic pattern function description so that when the sphere

points are added together they interfere to create a three-dimensional curve. An

open research problem is how to best parameterize this additive sphere model.

6.2 Self-similar Patterns

While the harmonic pattern function uses complex sinusoids as basis functions,

there is no reason why other functions could not be used. One of the problems

with using sinusoids as a basis function is that highly-localized features, such as

impulses and steps, require the sum of many sinusoids. This problem is partially

circumvented through use of a rational function of complex sinusoids, however, it

can still be useful conceptually and pragmatically to start with a more harmonically-

rich basis function, i.e., an arbitrary complex waveform. One example in sound

synthesis is generation of pulse waveforms through the subtraction of two saw
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waveforms with different phases. While a complex sinusoid is fully parameterized

by a frequency, amplitude, and phase, a complex waveform will have at least one

additional frequency and phase parameter. If we designate the complex sinusoid’s

frequency and phase parameters as a frequency shift and phase shift, respectively,

then a complex waveform could have in addition to these, frequency scale (or

pitch) and phase rotation parameters. The reason these parameters are not used

with complex sinusoids is because they are redundant. For a complex sinusoid, a

frequency shift and frequency scale can be conflated into a single transformation.

The same is true for a phase shift and phase rotation.

The Fourier polygons discussed in 5.4.5 are a good starting point for investi-

gating alternative basis functions. Fourier polygons are not only geometrically

intuitive as they are isomorphic to star polygons, but they are closely connected

to many of the fundamental waveform shapes used in sound synthesis such as the

saw, square, and triangle waveforms. Fourier polygons of the constant interpola-

tion variety could be particularly useful for constructing patterns fixed to some

underlying lattice structure. Triangle and square Fourier polygons could be used

to generate patterns based on Eisenstein and Gaussian integers, respectively. In

particular, the artistic practices of Hindu kolam and ni-Vanuata sand drawing

are based on unicursal patterns drawn over a regular lattice of points. Fourier

polygons could assist in the study and classification of such patterns. Additionally,

it is possible that certain self-similar fractal curves, such as the dragon, Gosper,

Hilbert, and Lévy C curves, can be fully parameterized using superpositions of

Fourier polygons.
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6.3 Level Set Patterns

While the harmonic pattern function is capable of generating n-dimensional textures

through an approximation of Fourier synthesis, this potential was not fully explored

in this dissertation. There is still much to be investigated in the vibration patterns

of rectangular plates and three-dimensional cuboidal volumes. Through use of

level sets, new types of disconnected planar curves and three-dimensional surfaces

can be generated. These new curves and surface would be defined in terms of a

harmonic pattern function potentially with a single isolevel amount, if not zero.

For example, a Chladni pattern on a square plate is defined by the level set

0 = cosnx cosmy − cosmx cosny

where x, y ∈ [−π, π] and n,m ∈ N. Rewriting this as a complex Fourier series, we

obtain

0 = cosnx cosmy − cosmx cosny

=
1

2
[cos(nx−my) + cos(nx+my)− cos(mx− ny)− cos(mx+ ny)]

= Re(ei(nx−my) + ei(nx+my) − ei(mx−ny) − ei(mx+ny))

which is the real part of the sum of four diagonal plane waves. The associated

harmonic pattern function of this system is

0 = Re({n−mM,φ1}+ {n+mM,φ2} − {m− nM, φ3} − {m+ nM, φ4})

where φ1 = n−mM
2

, φ2 = n+mM
2

, φ3 = m−nM
2

, and φ4 = m+nM
2

. Mapping this to

a raster plot with equal dimensions of M =
√
N gives a discretized version of
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the rectangular Chladni pattern. To visualize the nodal lines, the pattern can be

colored brighter where the magnitude of complex values approach zero.
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7. Conclusion

This dissertation presented the harmonic pattern function, a rational function of

inverse discrete Fourier transforms, that integrates synthesis of sound waveforms,

graphical patterns, and spatiotemporal trajectories. The significance of this

dissertation is not only in recognizing a simple mathematical function capable of

efficiently describing many known sound waveforms and visual patterns, but also

in showing them to be special cases of more general families of patterns. Such

generalizations permit meaningful relationships to made between more specific

patterns within and across modalities. Additionally, through generalization comes

the ability to extrapolate—find diversity in unity.

Here are the findings of this dissertation along with a discussion of their

significance:

1. The frequencies and phases of the complex harmonics comprising a complex

sequence determine the cyclic and dihedral symmetries of its corresponding

curve plot.

The fact that harmonic amplitudes and phases are continuous parameters

means that it is possible to smoothly morph between various degrees and types

of planar symmetry, including asymmetry. At the core of these symmetrical

curves is a regular star polygon and a particular path between vertices that

makes up a more complex curve. The underlying regular star polygon is
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a function of frequency only while the path between vertices depends on

amplitude and phase. Certain paths, such as delta functions, constants, and

lines, completely describe the curves of regular polygons going beyond a

simple group theoretic classification.

2. The harmonic pattern function efficiently—with very few harmonics—describes

a large variety of planar curves, raster-based patterns, and sound waveforms.

Specific examples of well-known audio/visual patterns and some novel exten-

sions and extrapolations of these patterns demonstrated the suitability of

the harmonic pattern function as a model for multimodal pattern generation.

Chapter 5 presented a systematic investigation of patterns consisting of one,

two, and three harmonics and a selection of important patterns consisting

of more harmonics. Many well-known patterns are described using a small

number of harmonics. Additionally, simple transformations can naturally

extend these patterns to other similar patterns.

3. Patterns that would otherwise be disconnected or be defined explicitly across

multiple dimensions can be approximated from smooth one-dimensional sig-

nals.

Section 5.1.3 showed how single complex sinusoids can, to good approx-

imation, produce complex-valued plane waves, the basis functions of the

two-dimensional (discrete) Fourier transform. The same principle can be

extended to three or more dimensions. This is significant since it means

that the calculation of a particular complex sequence can be independent

from its representation as pattern on an n-dimensional torus. In 5.1.5 and

5.2.15, it was shown how one and two harmonic patterns can approximate

moving and standing sinusoidal waves, respectively. Interleaved patterns
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are constructed using frequencies that are large factors of the length, N , of

the complex sequence. These were investigated for a single harmonic (5.1.4)

and for two harmonics (5.2.9). Interleaved patterns permit the production

of multiple disconnected curves from a single complex sequence. Therefore,

the harmonic pattern function encodes patterns based not only harmonic

superpositions, but also on superimpositions. In 5.3.11, it was shown how

a chain of apparently disconnected, overlapping circles can be produced

from a unicursal curve. Unlike interleaved patterns, this curve attains its

disconnected nature by tracing over itself while each subcurve intersects at

least one other subcurve of the entire curve.

4. Inversion-symmetric patterns, including unit circle patterns, are producible

from any complex sequence using a series of simple transformations.

Unit circle patterns (Section 4.5) are attained through the operation of con-

jugate division, element-wise division of a complex sequence by its complex

conjugate. More general inversion-symmetric patterns (Section 4.6) are pro-

duced by position shifting the divisor by a variable amount before conjugate

division. Inversion-symmetric patterns can be extended through frequency

shifting.

While the harmonic pattern function compactly describes myriad known audio/vi-

sual patterns and indicates a strong potential for describing many more, it is still

uncertain to what its role is in the larger picture of pattern generation. One of

its most important attributes is that it provides a direct and complete way of

describing the formal symmetries of patterns. Symmetry is important since it

permits any number of identical motifs to be constructed at once; this brings

a sense of coherence to a pattern. Explicit symmetry breaking is an important
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supplement if such motifs are to be made distinguishable from one another; this

brings a desirable sense of diversity from unity to a pattern. Too much diversity

or too much regularity lead to boring patterns. Slight breaks from symmetry tend

to produce the most engaging patterns [37, 8].

The world around us is an arena of sounds, shapes, and patterns. Through

evolution, we have acquired the ability to directly perceive some of these phenomena

giving us a picture of the world that is comprehensible, but necessarily incomplete.

To help fill in these gaps of our understanding, we can develop mathematical

models to extrapolate from what we know. The harmonic pattern function is

such a mathematical model that not only serves both art and science, but helps

reconcile them. It provides a common language for describing the patterns found

both in nature and in human artifacts. In the context of digital arts and design,

the harmonic pattern function can provide a starting point for and bring cohesion

to the underlying structure of abstract audio/visual works. It provides a fertile

ground for artists searching for both new and archetypical shapes, sounds, and

patterns. In the realm of science, it provides a unified description of many recurring

patterns found in nature, such as spirals, cardioids, cycloids, conic sections, beats,

plane waves, and moving/standing waves. Without a shared understanding, art

and science will continue to remain separate human endeavors missing a potential

opportunity to benefit from one another and coevolve. The harmonic pattern

function was arrived at by making such a consideration, and, while not claimed to

be a universal solution, is seen as the right step in this direction.
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