Week 2 : Dynamics & Numerical Methods

Goal : To write a simple physics simulation

Topics: Intro to ODEs, numerical methods for solving differential equations
(using Euler Step, Runge-Kutta, Verlet Integration), 1D spring simulation,
Particle Systems, cloth simulation, water simulation, spring-graph layout.



High level view

put stuff on screen

| I
via CPU (slower) ----------- via GPU (faster)

|
APIs (fixed) Shaders (custom)

| |
DirectX OpenGL CG GLSL HLSL
C C++ C# ObjC Java Ruby Python Lua Scala, etc

Real-Time Frameworks: Processing, GameX, LuaAV,
openFrameworks, Jitter, Unreal Engine, 0gre3D, etc

Other Applications: Maya, Adobe, Blender, etc, etc



super-simple example code

using Java bindings to openGL - The “windowing” methods are based on
GLUT:

“initialize” — set up basic openGL state
“reshape” — set up projection matrix based on window size
“display” — set up modelview matrix and draw geometry

(If you aren’t going to resize the window, you can move the reshape
functionality into the initialize method.)

In general, you set up the projection matrix one time (unless you are doing
something fancy)

The display method is called every single frame, 60 fps.

In general, you reset the modelview matrix every single frame.



super-simple example code

1. clear the screen

2. reset the modelview matrix

the camera is now at the origin of the the coordinate system, so we move the
coordinate system away from the camera to simulate camera movement.

3. position the camera (by moving/rotating the “drawing cursor”)
4. draw geometry, etc. in relation to the “drawing cursor”

repeat 60 times a second.

(show code)



Dynamics

Dynamics is the study of the effects of forces on the motion of objects.

In particular, a dynamic system models the time evolution of a physical
process.

The process is generally governed by a set of intertwined equations for the
relevant forces, such as gravity, velocity, acceleration, friction, wind
resistance, angular momentum, etc.

The time variable is the “independent” variable, and the other variables are
“dependent” variables that change with time...



Simple Examples

Dropping a rock off of a cliff:

need to model gravity, center of balance, air resistance, wind velocity

Pushing an object along a surface:

gravity, friction of object, friction of surface, angle of incline of surface,
initial force

Firing a cannonball:

initial velocity, gravity, wind resistance, etc

Stretching and then letting go of a spring:
Spring elasticity/stiffness (spring constant), initial displacement
position, dampening factor (so it doesn’t spring forever)



Simple Example #1: Gravity

Dropping a rock off of a cliff:

need to model gravity, other forces are less important

Force = mass * acceleration
Gravitational force = (G * m1 * m2) / r?

Where

G = the gravitational constant,

m1 = the mass of the rock

m2 = the mass of the earth

r = the distance from the center of the rock to the center of the earth



Simple Example #1: Gravity

Then we can solve for the acceleration of the rock:
Fg =m,a=Gmym,/r?

and m, cancels out, leaving:

a=Gm,/r?

Plugging in the gravitational constant and using the average radius of the
earth, we get an approximate value for a =9.81m / s?



Simple Example #1: Gravity

Knowing the initial position (the height) and the constant acceleration due to
the gravitational force, we can use the appropriate kinematic equation to
calculate the position of the rock at any time between when we first drop

it and when we let it go. We of course have a “boundary condition” where
we stop calculating when the rock hits the earth.

P, =p; +V, - %2(at?) Kinematic equation

For instance, if we simply drop the rock from 100 meters, then after 3 seconds
the rock is:

100 + (0) - .5(9.81 * 32) = 55.85500 meters above the earth.



Simple example #2: Spring

Stretching and then letting go of a spring:
need to model spring elasticity/stiffness (spring constant), initial displacement
position, dampening factor (so it doesn’t spring forever)

Force = mass * acceleration
Spring force = -k(p, - py) — cv (Hooke’s Law)

Where

k = the stiffness of the spring (based on the structural properties of the spring)
po = the length of the spring at its equilibrium positions (at rest)

p, = the length of the spring when being stretched

c = a damping constant which models the reduction of velocity over time

v = the velocity



Simple example #2: Spring

Lets call the stretch distance x, so that our force equation is:
Spring force = -kx — cv

F=ma
a is the second derivative of the position, x

so, ma = -kx — cv

or,a=-k/m*x—c/m*v



Simple example #2: Spring

or,a=k/m*x—c/m*v

Now there happens to be an analytical solution to this, but instead we are
going to use a numerical method to approximate it. In order to solve a 2™
order differential equation we need to split it into a series of 1t order
equations

dy/dt=v
dv/dt=-(k/m) *y-(c/m)* v=a

That is, the change in position is based on the velocity, and the velocity is
based on the acceleration.



Differential Equations

The spring system is what’s called an Ordinary Differential Equation, or ODE.

Differential equations calculate the change in some quantity in relationship to
another quantity.

In this case we are calculating the change in position with respect to time as
well as the change in velocity with respect to time.



Differential Equations

How can we calculate the position of the spring?
Start with an initial condition for the position: eg, y =-10
Use our equations to determine the position after a small increment of time.

The change in position is based on the velocity,
and the velocity is based on the acceleration.

So we need to solve for the acceleration and the velocity “simultaneously”,
that is, before we can update the position.



Euler’s Step

yn+1 = yn + hf(tn, yn)

Where

y,, is our current position
h is our time step

and f(t,, y,) is our system of differential equations which solve the spring
velocity for a particular y position and a particular time.

(draw example on board)



Euler’s Step

Has problems
Expects the derivative at the current point is a good estimate of the
derivative on the interval

Approximation can drift off the actual function —adds energy to system!

Worse farther from known values
Especially bad when the system oscillates (springs, orbits, pendulums or
when the time step gets large.

* Lousy for forces dependant on position
e Okay for forces dependant on velocity
* Bad for constant forces



Runge-Kutta methods

idea is to take samples from nearby the original points (t, y) and average the
velocity derivates together.

RK2 takes 2 samples... RK4 takes 4 samples...

taking more samples doesn’t significantly increase accuracy (at least not for our
spring simulation)

RK4:
Yosr = Yy + 1/6(k; + 2k, + 2k; + k)

Where:
ky = hf(t,, v,)
k, = hf(t, +h/2,y, +k,/2)
ks = hf(t, + h/2,y, +k,/2)
k,=hf(t,+h,y, +k;)
(draw on board)



Runge-Kutta methods

RK4 works better for larger time steps
Tends to dampen energy
Expensive — requires many evaluations per time step

e QOkay for forces dependant on position
e Okay for forces dependant on velocity

e Great for constant forces



Verlet Integration

Giveny,and v,

First calculate
Y1=Yo + hv, (Euler step)

thereafter, use

yn+]_ = 2yn_yn-1 + hZ/m f(tnl yn)

Where:
m = mass of the object

note: verlet equation doesn’t require keeping track of the velocity



Verlet Integration

Velocity-less scheme originally developed by Newton and first used in
molecular dynamics

Uses position from previous time step
Very stable, but velocity estimated so potentially inaccurate
Good for particle systems

» Better for forces dependant on position (particles)
* Okay for forces dependant on velocity (friction, springs, etc)



Comparison

see demos for comparison of numerical methods...

code examples online...



