Week 3 : Curves & Surfaces

Goal : To introduce various methods of creating and using curves

Topics: parametric curves, Bezier curves, Hermite curves, b-splines/NURBS,
parametric surfaces

Parametric curves

A “parametric” curve is a curve that is parameterized by a function with a
dependent variable.

That is, for a function f(t, P),
providing a number t results in a unique position vector P

ex: Line
the equation y = mx + b can be parameterized by t like so:
P,=x,+Vt
P, =yo+ vt
where
X, and y, are the intial values of x and y
v is a vector that is parallel to the line

Thus using these equations we can determine the position of a point on the line
at any specific t value.

Parametric line

example, if you have the line equation:
y=2x+2
you can parameterize it:

A vector parallel to this line would be v =(1, 2)
And we can set the initial x value to 0

and the initial y value to the y-intercept = 2;

P,=0+1t
P, =2+2t

so for the values t = {0, .25, .5, .75, 1}
we get the points P = {(0, 2), (.25, 2.5), (.5, 3), (.75, 3.5), (1, 4)}

(draw the functions f(t, P,) and f(t, P,))

Parametric curves

ex: circle

(x=a)+(y=b)* =1

where (a,b) = the center of the circle and r = the radius

can be parameterized by t using sine and cosine like so:
X =a+rcos(t)
y =b + rsin(t)

If we step through values of t between 0 and 2pi we will approximate a circle.

If we add another parametric equation for the 3™ dimension, we get a helix
X =a +r cos(t)
y=b + rsin(t)
z=rt

(draw f(t, P,) and f(t, P,) for circle and f(t, P,), f(t, P,) and f(t, P,) for helix)

Bezier curves

Bezier curves are simple parametric curves that are defined by two endpoints
and some number of control points.

They are usually found in one of two flavors: quadratic (with a single control
point) or cubic (with two control points), although there is no reason you
couldn’t have more control points.

The control point(s) define the position function of the curve as the variable t
changes.

An algorithm created by DeCasteljau provides a simple mechanism for
creating these curves parametrically.

DeCasteljau’s algorithm

MAT 594CM S09 Fundamentals of Spatial Computing Angus Forbes, Wesley Smith

Bezier curves

Bezier curves with 2 control points are called cubic curves, because the
mathematical “blending” function that defines the curve from the control
points is a cubic polynomial.

(1-t)3P,+3t(1—t)2 P, +3t(1—t) P, + 3 P,
Where t is between 0 and 1.

That is, this equation defines the amount each point contributes to the curve
as t moves from O to 1.

Att =0, P, contributes 100%
Att=1, P, contributes 100%
Att=.5, P, contributes 12.5%, P, cs 37.5%, P, cs 37.5%, P; cs 12.5%

etc.

Bezier curves

And it turns out that at each point the total sum of the contribution is 100%.

Moreover, at time 0 and time 1 a single point account for the full contribution
of the curve, which means that the curve begins and end on a control

point.

1]
08}
06t
041}

02

Also, the blending is symmetrical about t =.5

Bezier curves

Since we know the blending functions we can shorten our equation to:

P(t) = By(t) Py + By(t) P, + B,(t) P, + B5(t) Py
or just
P(t) = ZB,P,

In practice, you can calculate each dimension of the curve separately. l.e. :

P.(t)=(1-1)° Pot3t(1- t)? Poit 3t2(1-t) Poot t3 P.s
P(t)=(1-t0°P o+3t(1—-t)*? P, +3t(1—-t) P, +t?P 4
P(t)=(1-1)° P,o+3t(1- t)? P, + 3t2(1-1t) P+ t3 P,s

Hermite curves

A similar curve that also lets you create a curve around set endpoints is called
a Hermite curve. In the Bezier curve you move the two control points to
influence the curve. In a Hermite curve you instead adjust the tangents at
the endpoints to control the curve.

Hermite curves are also known as “the pen tool” in Illustrator.
The curve is parametrically defined by the following equation:
P(t) = (23 - 3t2 + 1)P, + (t3 - 2t2 + t)M,, + (13 — t2)M + (-2t3 + 3t?)P,

where PO and P1 are the endpoints of the curve, and MO and M1 are tangent
vectors originating at PO and P1 respectively.

Hermite curves

Here is the graph of the blending function for the two endpoints. (The red and
blue indicate the blending for the points and the green and turquoise for
the tangents)

0.8 -
0.6
0.4

0.2

0.2 -

MAT 594CM S09 Fundamentals of Spatial Computing Angus Forbes, Wesley Smith

Catmull-Rom splines

Nice because the curve actually goes through the points that define the
curve! (often used for camera animations)

Continuity
Obviously both these simple cubic parametric curves suffer from the fact that

you are limited to the kinds of curves you can generate. That is, they have
at most one inflection point.

To increase the range / loopiness of your curve you can either increase the
order/complexity of your curve by adding more control points.

Or you can stitch together a series of simpler curves.

Continuity

When stitching together curves there is generally a trade-off between ease of
use and flexibility. A simple naming scheme is used to describe the power
of the different techinques to join together curve pieces;

CY = the curves share an end point, but the end point may look discontinuous,
sharp

G! = the curves share an end point and those end points have the same
tangent.

Cl = same as G1 except that the tangent vector is also required to have the
same magnitude

C? = the curves share an end point, the tangent is the same, and also the
second derivative (representing curvature or acceleration) is the same.

C* = all derivates of the curve are the same.

Generally strive for C? as it looks good and if we are using the curve for
animation it guarantees that both the velocity and the acceleration are the
same.

B-splines

B-splines are a more general way to think about curves. The “B” stands for the
basis which defines the blending functions. The phrase “b-spline” is often
used to describe a certain category of continuously connected curve
pieces.

B-splines guarantee C2 continuity, but at the price of a increased complexity
and the loss of some control (none of the points go through the control
points!)

B-splines come in three flavors: Uniform, Nonuniform, and Nonuniform
Rational.

The latter is also called NURBS (NonUniform Rational B-Splines)

Uniform b-splines

The basic b-spline is defined like so:

Given a set of n+1 control points, the b-spline curve is composed of n-2 cubic
curves pieces.

Each piece is defined again by a blending of 4 points, where for each piece Q,,
Qt=1)=Q,, (t=0)
Qi(t=1)=Q}, (t=0)
Q'(t=1)=Q",, (t=0)

That is, the joins are C? continuous. These joins are called internal knots.

Uniform b-splines

For each curve piece Q,,
Q,(t) = B,(t) + B,(t) + B,(t) + B(t)
where the blending functions are the following:

Bo(t)=[(1-1)*/6]*P,
B,(t)=[(4—6t2+3t3) /6] * P,
B,(t)=[(1+3t+3t2+3t3) /6] *P,
By(t)=[t?/6]*P,4

Uniform b-splines

Bo(t)=[(1-1t)*/6]*P,
B,(t)=[(4—-6t2+3t3) /6] *P,
B,(t)=[(1+3t+3t2+3t3) /6] *P,
By(t)=[t°/6]*P,4

BSplines functions

Which Iooks Iike this: a.ead
a.684 .--.?T-.‘T'.-_.__;-.;-.e .-..-.--_-_,-'T'.-T-:-.-
: D /:\. : : :
B.484 e .'/.-4//'{-..-?’\\.-.\-.
B . 29 - ,,;I._ ',.-.-'f’T' -.-\f'-,_.,‘-_.‘-_;
a.80

9.00 8.20 ©9.48 0.60 ©.30 1.00

Ylo:8 Yhi:0.666667
MAT 594CM S09 Fundamentals of Spatial Computing Angus Forbes, Wesley Smith

Nonuniform b-splines

In uniform b-splines, the knots are automatically positioned at equal distances
along the curve.

In a nonuniform b-spline, we can space the knots at nonuniform locations
along the curve, which can change the curve in various ways. For instance,
we can create looped curves, and perfect circle arcs.

To create a nonuniform cubic b-spline we need to define a knot-vector to
describe the knot spacing.

If our curve uses 7 control points, then we will need
(# of control points + degree of curve + 1) knots =7+ 3 + 1 =11 knots

If the knot vector is (0,1,2,3,4,5,6,7,8,9,10) then the curve will reduce to the
uniform b-spline.

Cox-deBoor algorithm

Each piece is defined like so:

Q(u) = 2By, 1 4(U)P;ys (sum as k goes from O to 3)

Where

the range of u is defined by the knot vector (the val at t, -> val at t,,..)

d = the degree parameter (which is the degree + 1, or 3 + 1 for cubic b-spline)
The blending functions are recursively defined like so:

Bio(u) =1ift, <=u<=t_,, otherwise 0

B, (U) = (U—t,,) [N;1(u) / by — bl +

(a1 = U) [Niyg ea(U) / tigeq =ty

(ie, input B, ; 4(u) from curve algo above and calc from reduced dimensionality)

NURBS

Similar to nonunifrom b-splines, except that you can specify a weight to every
control point.

Q(u) = ZBi+k-1,d(u)Pi+k-1Wi+k-1

The weight is thought of as 4" component to the point, making it a point in
homogeneous coordinates.

The weights have the effect of shifting the curve in the direction of the
weighted control point

(whereas moving knots close together has the effect of causing the curve to
converge upon a control point.)

NURBS

With a nonuniform b-spline you can insert new control points as desired and
update the knot-vector appropriately. This will let you have more control
over a specfic range, while leaving the curve controlled by points further
away the same.

Also, you can repeat the beginning and end values of your knot vector (order)
times which will force your curve to line up with the control point
endpoints

NURBS surfaces

defined by a mesh of control points, which define two sets of curves —a
column of curves and a row of curves...

(demo)

Curves in OpenGL / GLU

1. create a NURBS object
gluNewNurbsRenderer()
2. indicate that you are using the NURBS renderer
gluBeginCurve(nurbsObj)
3. draw the curve
gluNurbsCurve(
lengthOfKnotVector, //how many knots
knotVectorArray, //the knots
stride, //the stride through the controlArray, either 3 or 4 generally
contolPointsArray, //the control points
curveOrder, //cubic = 3, can be higher but requires more knots
GL_MAP1_VERTEX_ 3 //use 3 for unweighted points, 4 if you weight

