Explicit Euler

Initial Conditions:	Global Conditions:
P_0 - initial position	Δt - time step
Vo - initial veclocity	A = F(t, P, V) - acceleration as a function of
	time, position, and velocity

For each iteration:

 $V_{i} = V_{i-1} + \Delta t^{*}A_{i} - velocity = previous velocity + time step * current acceleration$ $P_{i} = P_{i-1} + \Delta t^{*}V_{i} - position = previous position + time step * current velocity$

Verlet

Initial Conditions:

Po - initial position Vo - initial veclocity Global Conditions: Δt - time step A = F(t, P) - acceleration as a function of time and position

First Iteration:

 $P_1 = P_0 + \Delta t^* V_0$ - position = previous position + time step * current velocity

For each iteration:

 $P_{i} = 2^{*}P_{i-1} - P_{i-2} + \Delta t^{*}\Delta t^{*}A_{i} - position = 2^{*}previous position - doubly previous position + time step * time step * acceleration$

Velocity Verlet

Initial Conditions:	Global Conditions:
Po - initial position	Δt - time step
V_0 - initial veclocity	A = F(t, V, P) - acceleration as a function of
	time, velocity, position

For each iteration:

 $P_{i} = P_{i-1} + \Delta t^{*} V_{i-1} + 0.5^{*} \Delta t^{*} \Delta t^{*} A_{i} - position = 2^{*} previous position + time step * velocity + 0.5 * time step * time step * acceleration$

 $V_i = V_{i-1} + 0.5^*(A_i + A_{i+1})/\Delta t$ - velocity = previous velocity + 0.5*(acceleration + next acceleration)/time step