Explicit Euler

Initial Conditions:
Po-initial position
Vo-initial veclocity

Global Conditions:

Δt - time step
$\mathrm{A}=\mathrm{F}(\mathrm{t}, \mathrm{P}, \mathrm{V})$ - acceleration as a function of time, position, and velocity

For each iteration:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}-1}+\Delta \mathrm{t}^{*} \mathrm{~A}_{\mathrm{i}}-\text { velocity }=\text { previous velocity }+ \text { time step * current acceleration } \\
& \mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}-1}+\Delta \mathrm{t}^{*} \mathrm{~V}_{\mathrm{i}}-\text { position }=\text { previous position }+ \text { time step * current velocity }
\end{aligned}
$$

Verlet

Initial Conditions:
Po-initial position
Vo-initial veclocity

Global Conditions:

Δt - time step
$A=F(t, P)$ - acceleration as a function of time and position

First Iteration:

$$
P_{1}=P_{o}+\Delta t^{*} V 0-\text { position }=\text { previous position + time step * current velocity }
$$

For each iteration:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{i}}=2^{*} \mathrm{P}_{\mathrm{i}-1}-\mathrm{P}_{\mathrm{i}-2}+\Delta \mathrm{t}^{*} \Delta t^{*} \mathrm{~A}_{\mathrm{i}}-\text { position }= & 2^{*} \text { previous position }- \text { doubly previous position } \\
& + \text { time step }{ }^{*} \text { time step * acceleration }
\end{aligned}
$$

Velocity Verlet

Initial Conditions:
Po-initial position
Vo-initial veclocity

Global Conditions:
Δt - time step
$\mathrm{A}=\mathrm{F}(\mathrm{t}, \mathrm{V}, \mathrm{P})$ - acceleration as a function of time, velocity, position

For each iteration:
$\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}-1}+\Delta \mathrm{t}^{*} \mathrm{~V}_{\mathrm{i}-1}+0.5^{*} \Delta \mathrm{t}^{*} \Delta \mathrm{t}^{*} \mathrm{Ai}_{\mathrm{i}}-$ position $=2^{*}$ previous position + time step ${ }^{*}$ velocity +0.5 * time step * time step * acceleration
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}-1}+0.5^{*}\left(\mathrm{~A}_{\mathrm{i}}+\mathrm{A}_{\mathrm{i}+1}\right) / \Delta \mathrm{t}-$ velocity $=$ previous velocity $+0.5^{*}($ acceleration + next acceleration)/time step

