Levity: Building Cubic Playgrounds

Pehr Hovey MAT594CM Spring 09



Cubic Origins

* Goal to create a system for creating generative
3D structures with a wide variety of shapes

* Want to specify complex processes with simple
‘senes’

e Using a combination of probability and
modified L-Systems to calculate geometry




Cubic Genome

* The construct is specified with four genes:

 Each Gene is an L-Code symbol between A-G which each has a
float for basic parameter calculations




Cubic Genome

* Each slot affects different parameters:
— LO: Coloration (hue) and spatial anchoring
— L1: Maximum lateral size and mutation frequency
— L2: Maximum height and growth speed
— L3: Core geometric characteristics and initial root factors

* Changing any of the slots will re-generate the figure using the
new parameters

* Random number generator is reset to the starting seed to help
keep things semi-deterministic




Generative Geometry

e Starting with the principles of L-Systems:
— A specified set of valid symbols
— Rules for expanding & re-writing the symbols
— Actions for translating symbols into geometry

* Different from L-Systems:
— No distinction between terminal & non-terminal systems
— Entire L String is generated in advance and selectively applied

— Probabilistic processes mean the resultant L-String is not completely
deterministic and does not completely specify the resultant form




L-Code - > L-Symbols

Each L-Code symbol (A= G) has a float value (0.0>1.0)
— Currently float is a linear function of the L-Code symbol index

Each L-Code symbol also has a variable length L-String that is
available for use in constructing geometry

L-String for each Code symbol is generated at run-time and
depends on the symbol’s Float Value and the state of the random
number generator

The length of the L-String is highly variable depending on the
rules applied and the float value of the L-Code symbol




Simple L-Symbols

* Available Symbols:

— START: The beginning of the form, not present in final string
— MOVE: Go forward one cubic unit

— FORK: Create one or more children on available surfaces

— PAUSE: Do nothing for one iteration

* L-Symbol Rewriting Rules:
— START > MOVE (Always)
— MOVE - Combo of up to six FORK and MOVE (depending on F-val)
— FORK -> Either FORK or PAUSE (depending on F-val)
— PAUSE~-> Either MOVE or PAUSE (depending on random gen.)




B(0):->
B(1):->
B(2):->
B(3):->
B(4):->

FORK,

C(0):->
C(1):->
C(2):->
C(3):->
C(4):->

L-Examples

[START]

MOVE]

[MOVE, FORK, MOVE]

[MOVE, MOVE, MOVE, PAUSE, FORK, MOVE, MOVE]

[MOVE, MOVE, MOVE, FORK, MOVE, FORK, FORK, MOVE,
MOVE, PAUSE, FORK, MOVE, MOVE, FORK, FORK, FORK]

[START]

MOVE]

[FORK, FORK, MOVE]

[PAUSE, PAUSE, FORK, MOVE, FORK]

[MOVE, PAUSE, FORK, FORK, FORK, MOVE, PAUSE]




Using the L-String

e Overall L-Structure stores the current 4-gene code and the
current L-String for that code (based on Gene L3)

e Starting at each root cube pop one symbol and evaluate?

* MOVE: create new cube in forward direction (away from parent),
give it the remaining string and stop growing.

* FORK: create some children (based on L1) and give them the
complete string to start anew and keep growing

* PAUSE: based on Gene L2, skip one or more iterations




Challenges

Tweaking the limits of the L-String generation system to keep
things varied but bounded

Minimizing number of cubes needed (collision detection)
Keeping everything quantized to the grid for cubic effect

Making good use of the expressiveness of 4-genes with 7
possibilities (724 = 2401 total)

Keeping things generative and not rigged for aesthetics







