
T O WA R D S A N AT U R A L U S E R I N T E R FA C E
F O R V I S U A L I S AT I O N

ben alun-jones

Analysis and implementation of gestural recognition methods for
collaborative real time content control and creation

Department of Electrical and Electronic Engineering

Imperial College London

June 2010

Ben Alun-Jones: Towards a Natural User Interface for Visualisation, Analy-
sis and implementation of gestural recognition methods for collabora-
tive real time content control and creation, © June 2010

A B S T R A C T

The twin developments of more mobile computing power and 3-D
display technology mean that the requirements for control of computer
systems are changing. The keyboard and mouse, the paradigm of the
office, do not afford the intuitivness that is required to operate these
new systems effectively. New methods need to be investigated that
provide a more natural way of interacting. Gesture recognition is one
of the potenial methods which could create a more natural interaction
style. In order to test that hypothesis, a system was built that afforded
both touchscreen based gestures, and physical gestures in the context
of control of a 3-D environment. The steps in creating that system and
the results of user testing with the system are presented.

iii

Words represent your intellect.
The sound, gesture and movement represent your feelings.

— Patricia Fripp

A C K N O W L E D G M E N T S

The scope and context of this project would not have been possible
had I not had the opportunity to spend my final year at UC Santa
Barbara. I would like to thank all at Imperial who gave me this once
in a lifetime opportunity, in particular Prof. Alessandro Astolfi and
Adrian Hawksworth.

At UCSB, my supervisor, Matthew Turk and George Legrady have
provided invaluable help throughout the year. Big thank yous are also
in order for Matthew Wright, Charlie Roberts and Syed Reza Ali for
help on angles, approaches and iPhones as well as pointing me to the
free bagels. Finally I would like to thank all the students, staff and
friends I have made here who have inspired me and made this a great
year!

v

C O N T E N T S

i the need for change 1
1 introduction 3

1.1 Project Aims 4
2 the user interface 5

2.1 The Development of the User Interface 5
2.1.1 Understanding the exisiting paradigms 6
2.1.2 Designing the next step 7

2.2 The Natural User Interface 9
2.2.1 Human-Computer Interaction and 3-D Visualisa-

tion 9
2.2.2 Future input devices 10

2.3 Summary 10

ii building gesture 13
3 a 3-d interactive multi-user environment 15

3.1 Gesture 15
3.1.1 System Components 16
3.1.2 Next Steps 17
3.1.3 Related Work 17

4 building the controller 19
4.1 An iPhone-based controller 19

4.1.1 Requirements of the controller 19
4.1.2 Designing the User Interface 20

4.2 Gesture Recognition 22
4.2.1 What is a gesture? 22
4.2.2 Automatic Gesture recognition 22
4.2.3 Related Work 23
4.2.4 2-D Gesture recognition - The $1 Recognizer 24
4.2.5 Extending to 3-D - The $3 Recognizer 26
4.2.6 The Gesture set 28

4.3 Summary 29
5 visualisation and sonification of the 3-d environ-

ment 31
5.1 Capturing motion for visualisation 31
5.2 Exploring the iPhone data 33
5.3 The Visualisation Environment 33

5.3.1 Viewing a 3-D scene : Camera control 33
5.3.2 Stereoscopic imagery 35
5.3.3 Sonfication 36

5.4 Constructing the UI 36
6 connecting and finishing the system 39

6.1 Building a connection - UDP vs. TCP 39
6.1.1 Organising your data - OpenSoundControl 40

6.2 Completing the system 40

iii user testing, results and discussion 41
7 user testing 43

7.1 Gesture Recognition 43
7.1.1 The participants 43

vii

viii Contents

7.1.2 Touch Screen gestures 43
7.1.3 Three-Dimensional Dynamic gestures 44

7.2 The Gesture System 44
8 conclusion 47

iv appendix 49
a results - raw data 51

a.1 Open response - User feedback 51

L I S T O F F I G U R E S

Figure 1 Stages in the development of the User Interface 5
Figure 2 Future Directions for the User Interface 10
Figure 3 Gesture system overview 15
Figure 4 Functional Diagram of Gesture 16
Figure 5 Drawn - Layout and Orientation 20
Figure 6 Navigation - Layout and Orientation 21
Figure 7 $1 Recognizer - Key steps [51] 25
Figure 8 The iPhone as an Accelerometer[5] 27
Figure 9 The gesture set 28
Figure 10 E.J. Marey’s Work on Motion 31
Figure 11 Frank and Lilian Gilbreth’s Time and Motion

Studies 32
Figure 12 Process Art 32
Figure 13 Raw Accelerometer data for a Circle Gesture (Also

shown is resampled data for first step of gesture
recognition) 34

Figure 14 Early Attempts at Visualising Accelerometer data 34
Figure 15 Final Visualisation style 34
Figure 16 The OpenGL Vertex Transformation [43] 35
Figure 17 Gesture’s Visualisation display layouts 36
Figure 18 Results for Touchscreen based Gesture Recogni-

tion 44
Figure 19 Results for 3-D Gesture Recognition 45
Figure 20 Raw results 52

L I S T O F TA B L E S

Table 1 Comparison of Interface paradigms 6
Table 2 What each action does in Gesture N.B. The map-

ping was the same for both 2-D and 3-D ges-
tures 37

A C R O N Y M S

UI User Interface

GUI Graphical User Interface

NUI Natural User Interface

HCI Human Computer Interaction

HMM Hidden Markov Model

ix

x acronyms

IDE Integrated Development Environment

UDP User Datagram Protocol

TCP Transmission Control Protocol

OSC OpenSoundControl

OCGM Objects, Containers, Gestures, Manipulations

OOP Object Oriented Programming

OSI Open System Interconnection

Part I

T H E N E E D F O R C H A N G E

1I N T R O D U C T I O N

Often there comes a time where things need to change. Such a moment Towards a Natural
User Interface for
Visualisation

is fast approaching in Human Computer Interaction. For many years
now the paradigms of the previous generation, the keyboard and the
mouse, have been struggling to keep up with the latest developments
in computer technology. Supreme in the office and the laboratory, the
practicalities of keyboards and mice in mobile or three dimensional
applications is questionable. This thesis aims to outline these new
challenges facing Human Computer Interaction, such as large scale
visualisations and three dimensional environments. Then, attempting to
address these problems, I will explain the design of a novel multi-user
system which I have created called Gesture.

The starting point however for investigating alternatives to keyboard
and mouse centred design is understanding what made them so success-
ful in the first place. It is extremely unlikely that anyone will develop
a better system for text entry and navigation of 2-D Graphical User
Interfaces (GUIs) than the keyboard and mouse, but as the new age of
3-D computing and visualisation fast approaches, this new problem set
needs new solutions.

One main way in which HCI systems need to change in is their
intuitiveness. Computers are not easy to use, you have to learn many
skills of high cognitive load in order to be able to use them effectively. By
making interaction more natural and tailoring it to the way in which we,
as humans, behave can reduce the mental challenge of learning these
new systems. This offers the potential to widen access of computers
and their more useful, yet complex, functionality to a wider range of
people and places.

This new paradigm of intuitive, tangible interfaces is refered to as
the Natural User Interface (or NUI) [13]. This is a set of rules and
interaction styles defining a new style of interaction with computers.
The researcher Roope Raisamo describes natural interaction in the
following terms:

“People naturally communicate through gestures, expressions,
movements, and discover the world by looking around and ma-
nipulating physical objects; the key assumption here is that they
should be allowed to interact with technology as they are used to
interact with the real world in everyday life, as evolution and ed-
ucation taught them to do. In addition to the traditional features
of interactive digital media, like updatability, freedom of users’ to
follow their curiosity and interests, natural user interfaces feature
a new architectural aesthetics about how to move computation to
the real world, creating immersive experiences that involve people
senses in the physical space.”

Roope Raisamo[37]

Gestures are a crucial part of the NUI as they make use of peo-
ple’s inate abilities to learn kinesthetically, taking advantage of muscle
memory, as well as more classical styles such as listening or reading.

3

4 introduction

Furthermore, people understand systems better if they can see the effect
of the steps and actions they take[33]. This is a fundamental part of the
design principle known as Direct manipulation[41]; the concept that
computer functionality should be represented as distinct objects which
can be physically affected by user input.

My new system, Gesture, explores the potential for this more natural
form of interaction, by posing it in the context of environments for
collaborative content creation and manipulation. The system allows the
users to make a three dimensional sketch and then move through this
creation at will. In this way, the relationship of a user and the virtual
environment can be explored. Gesture is controlled using two iPhones
(but this could be easily extended to a much larger number within the
framework). Using mobile phones provides a physical, tangible device
which allows the user to both express themselves via the touchscreen
or spatially using the accelerometer. Both styles make use of gestures,
which are non-verbal actions performed by people to communicate
information through motion or expression[19]. Gesture recognition is a
complex problem to solve, but solving it will add to the intuitiveness of
future Human Computer Interaction methods and will further enhance
people’s natural view of computers as real social actors[38].

1.1 project aims

The main issues that this project aimed to investigate were as follows:

• Gesture Recognition: The main part of this project was the in-
vestigation of gesture recognition techniques for practical applica-
tions. Many systems have the potential to use gestures for user
interface design but few do. By implementing various types of
gesture recognition and placing them in a real, useful context, the
reasons behind this can be investigated.

• 3-D Navigation: Navigation in 3-D space is still an unsolved
problem. The mapping of controllers are often poor and if a
system does not have good navigation control (and is sufficiently
immersive for the user) then it can result in serious nausea.

• Content creation and manipulation: Realtime content creation
is a interesting challenge especially when that data is capable of
being manipulated. Gesture aims to map the users motion as a
means to create a visual model which can then be investigated
and changed by the users.

The implementation, research context and results of each of these aims
will be presented and discussed in this report in the context of a multi-
user collaborative virtual environment as well as discussing the findings
from the two public demonstrations of Gesture at a UCSB open day and
the Media Arts and Technology End of Year Show.

2T H E U S E R I N T E R FA C E

The challenge for computer systems has always been how to make them
interactive in such a way that people can pick them up and make use
of computer with little or no instruction. In this chapter we will review
the key steps in the history of HCI as well as future developments that
point the way to the future directions for man machine interfaces.

2.1 the development of the user interface

The user interface has been through many changes and transformations
since the early days of punch card computing. From Vandevar Bush’s
first imaginations of the Memex (a thought experiment of a mechanical
computer with many of the features of a modern desktop) to Tim
Berners-Lee and the rise of the internet, the thoughts of what could be
achieved have changed dramactically.

(a) Ivan Sutherland’s Sketchpad (b) The First Production Mouse

(c) The Xerox Star (d) Apple iMac

Figure 1: Stages in the development of the User Interface

Ivan Sutherland produced what is probably the first user interface
as part of his PhD thesis, Sketchpad Sutherland [45]. It had a light pen
(the precursor for the mouse) which allowed you to draw on the screen
and was the first interface where clicking and dragging was used as an
input metaphor. This was to form the inspiration for many of the ideas
of direct manipulation many years later.

The next major step forward was created by Doug Engelbart. Engel-
bart produced the NLS (oN-Line system) which he famously demon-

5

6 the user interface

interface analogy elements attributes

Command Line
Interface

Typewriter Prompt,
Command
and
arguments,
Result

Single task,
Single user,
Command
oriented,
Keyboard
input

Graphical User
Interface

Papers
arranged on a
desk

Windows,
Icons, Menus,
Pointer
(WIMP)

Multi-task,
Single user,
Task oriented,
Keyboard +
Mouse input

Natural User
Interface*

Objects Objects,
Containers,
Gestures, Ma-
nipulations
(OCGM)

Multi-task,
Multi-user,
Object
oriented,
Touch input

Table 1: Comparison of Interface paradigms

strated in 1968. His demonstration showed the first examples of the
mouse, computer networking, video calling, collaborative computer
work, realtime display editing and the windowing environment. He also
was the creator of the first mouse. The first moue to enter production
based on this design is shown in Figure 1b.

The next stage was the development of the personal computer. In
1968, Alan Kay conceived the Dynabook, the first conception of a
’personal’ computer in the same year Engelbart demonstrated the NLS.
This was the motivation for many of Dr. Kay’s later developments
such as object-oriented programming (OOP). Since the Dynabook was
fundamentally a laptop, and far too advanced technology for its time,
it is only recently with the release of the iPad that many of his ideas
have been realised. Instead, Kay helped produce the Xerox Alto and
the Xerox Star (shown in 1c). This was the first machine to make use
of the true graphical user interface that we know today. The Star was
designed using extensive user testing which helpin to develop many
features, some in use today, many still to be widely accepted such as
total object-orientation of the operating system.

The final image (Figure 1d) shows the 2010 model Apple iMac. This
has nearly all the features imagined over fourty years previously and
is testament to the foresight of those individuals. These designs have
stood the test of time and are so pervasive that they will likely continue
for many years to come.

The question then is how are we to move on with the user interface?

2.1.1 Understanding the exisiting paradigms

There have been two major interface paradigms in personal computing.
These are the command line interface and the graphical user interface.
Each has their advantages and applications and here we will investigate

2.1 the development of the user interface 7

what their failures are, what makes them useful and the analogies and
mental models they use. Note: The content of

this chapter is just
some dummy text. It
is not a real language.

the command line interface: This is a text based form of con-
trol. The user is required to enter their syntactically strict com-
mand which defines exactly the operation to be performed. This is
extremely fast, as long as you know what to type. In order to use
the command line successfully the user needs to memorise all the
necessary commands. This obviously requires a large amount of
recall of information (or indeed lookup in a manual) and cannot
be said to be intuitive. If you do not know how to use it, the
design of the interface does not give you many clues. The failure
is not the speed or the accuracy. In fact this is the most accurate
of interfaces, but it takes a large amount of time and investment
to learn how to use it and you must be familiar with it in order
for it to be usable.

the graphical user interface: The Graphical User Interface (or
GUI) was developed at Xerox Parc out of attempts to broaden the
access to the computer. In order for design to be deemed natural,
users must be able to create clear mental model of how the system
works, even if this is far from the truthNorman [33]. The concept
employed in the GUI is that of papers on a desk. This is window
environment (akin to different pieces of paper) which you can
select, drag and drop. This is obviously the dominant paradigm
forming the basis of Mac OS X and the Microsoft Windows envi-
ronment. One issue regarding GUIs are that, again, intermediate
to expert users understand where and how to navigate, but often,
for beginner users this can be diffcult to grasp. However, the
main issue with the GUI is that as we enter a more mobile age
with smaller, more mobile computers. Is the GUI, the interface
designed for the office environment, the correct one to take us
into the next age?

First we need to understand and categorise the types of user interface
and their features. This will allow us to understand what has been
implemented and what is there yet to be achieved. This categorisation
is shown in Table 1

2.1.2 Designing the next step

In order to look more closely at the design strengths and failures
of each inteface, it is important that we look at Shneiderman’s eight
golden rules of interface design taken from his book, Designing the
User Interface[42]. These are:

“

1. Strive for consistency. Consistent sequences of actions should be
required in similar situations and consistent commands should
be employed throughout.

2. Enable frequent users to use shortcuts. As the frequency of use
increases, so do the user’s desires to reduce the number of in-
teractions and to increase the pace of interaction. Abbreviations,
shortcuts and hidden commands are very helpful to an expert
user.

8 the user interface

3. Offer informative feedback. For every operator action, there
should be some system feedback. For frequent and minor ac-
tions, the response can be modest, while for infrequent and major
actions, the response should be more substantial.

4. Design dialog to yield closure. Sequences of actions should be
organized into groups with a beginning, middle, and end. The
informative feedback at the completion of a group of actions
gives the operators the satisfaction of accomplishment, a sense
of relief, the signal to drop contingency plans and options from
their minds, and an indication that the way is clear to prepare for
the next group of actions.

5. Offer simple error handling. As much as possible, design the
system so the user cannot make a serious error. If an error is
made, the system should be able to detect the error and offer
simple, comprehensible mechanisms for handling the error.

6. Permit easy reversal of actions. This feature relieves anxiety,
since the user knows that errors can be undone; it thus encourages
exploration of unfamiliar options. The units of reversibility may
be a single action, a data entry, or a complete group of actions.

7. Support internal locus of control. Experienced operators strongly
desire the sense that they are in charge of the system and that
the system responds to their actions. Design the system to make
users the initiators of actions rather than the responders.

8. Reduce short-term memory load. The limitation of human infor-
mation processing in short-term memory requires that displays
be kept simple, multiple page displays be consolidated, window-
motion frequency be reduced, and sufficient training time be
allotted for codes, mnemonics, and sequences of actions. “

We can see from this breakdown that the command line interface
obviously invalidates some of these rules. Feedback is often lacking,
some operations are often irreversable and so input errors cannot be
adequately handled. However, the main failure as stated above is the
fact that in order to use it effectively, you must retain numerous codes,
or sequences of actions in your memory in order to use it successfully.
There are some GUIs that follow these guidelines successfully, but there
are many more that do not.

However, there is a single reason for the unsuitability of the GUI and
command line for the next stage of computing, these were paradigms
created for the office environment. This move towards a more natu-
ral computing style is necessary when we consider three dimensional
displays and mobile computing. As the pervasiveness of computing in-
creases and computers or microprocessors appear in unexpected places,
then the real need for a new paradigm to address these challenges
becomes obvious. 3-D navigation is obviously another huge challenge
that has not been adequately addressed by the existing computing
paradigms. It is wrong to say the existing paradigms should be re-
moved or retired, they still apply, but mobile and 3-D interfaces cannot
be controlled optimally using these systems.

What would happen if the methods we interacted with computers
were so obvious, there would almost be no need to recall anything?
That is to say the pattern of behaviour needed to interact would be

2.2 the natural user interface 9

exactly the same pattern that we use to interact with the real world.
This is the concept behind the natural user interface.

2.2 the natural user interface

The Natural User Interface (or NUI) is an interface paradigm which
becomes invisible to the user after learning how to interact with it, or
ideally, before you ever begin. This depends on computers being able
to recognise people’s gestures, motions or even thoughts. In order to
make this a reality, several new sensor or motion recognition procedures
would need to be developed (and at much higher level of accuracy)
so that it does become truly seamless. Microsoft is already making
large advances in this field with the development of Surface and the
imminent release of Project Natal. “Surface” is a touch screen table top
interface which provides a new form of 2D interaction and Natal is
a optical motion capture system for the XBox 360. This would allow
you to move without any physical connection and be able to control a
computer game environment.

A new theory which encompases natural user interfaces is breaking
the key parts of a NUI into Objects, Containers, Gestures and Manipula-
tions (or OCGM) George and Blake [13]. OCGM is pronounced Occam,
based on Occam’s Razor, the theoretical concept that “entities must
not be multiplied beyond necessity”[14] and this breakdown aims to
define the interface in terms of the simplest forms of user interaction.
George and Blake show that the skills required to operate an OCGM
based interface are developed at nine months old, significantly earlier
than icon recognition (three and a half years) and the required reading
level was not until school age. OCGM is fundamentally a set of ab-
stract metaphors “that support many layers of concrete metaphors”. i.e.
these are the building blocks for a new interface paradigm and in fact
describe the exisitng paradigms as well. OCGM is the description by
which we can describe all interfaces as it is the most basic understand
of what is required in order to create an interface.

2.2.1 Human-Computer Interaction and 3-D Visualisation

Throughout the development of 3-D Visualisation systems and in par-
ticular immersive systems such as CAVE type environments or the
Allosphere , the Human Computer Interaction of these environments is Built at UCSB, the

Allosphere is one of
the world’s only
corner free 3D
environments [17]

often neglected, even though (and perhaps because) it is a difficult and
challenging problem. Many things that we do easily in the real world
are complex in 3D virtual worlds, Navigation and Object Selection be-
ing two classic examples. The challenge of natural interface design for
3-D worlds is made more complex due to the fact that a lot of extremely
accurate models based on physics are in fact difficult or complex to use
in the real world [34].

Research has been done on 3-D Navigation including taxonomy of
techniques used[46]. These point to a still emerging field where even
the input device, let alone the characteristics have been determined.
3-D Navigation ultimately will be most successful when the state of
the user is fully known, either through an array of cameras or sensor
networks. This allows the state of the user to be fully determined and
so their intention can be percieved (probably after some fairly advanced
machine learning techniques are then applied).

10 the user interface

(a) Camera based Gesture recognition[3,
3]

(b) Contact Lens based video displays [2]

(c) Brain Computer Interfaces[1] (d) ’Skinput’ a novel user interface[16]

Figure 2: Future Directions for the User Interface

2.2.2 Future input devices

The array, complexity and quirkyness of input devices show a huge
range of options and potentials. From computer vision techniques
(which show some of the strongest promise - Figure 2a) to brain in-
terfaces and bio sensing (Figure 2c), the way in which we enter data
into a computer system is about to change forever. More early stage
research technologies such as Skinput (Harrison et al. [16]) suggest a
future where a computer system is built entirely on your body. Finally,
augmented reality applications where computer graphics are overlaid
on the real world, are another step towards a more ubiquitous comput-
ing world. One potential device that would have seemed far fetched or
unbelievable in the past is the integrated display on the contact lens
(Figure 2b). This also shows that with increased minaturisation, this
possible integration of computers and the human body is important, if
for no reason other than the usability of such small devices.

2.3 summary

The history of HCI is one of idea generation and implementation. It was
only by exploring the potential of new applications of computing that
we came to a better understanding of how we interact with technology.
It is this experimentation and new direction that is forcing us again
to take a new look at our means of interaction with computers. The
plethora of three dimensional applications (made popular by the success
of 3-D films such as “Avatar” etc) and the increased portability of
technology is taking us towards a new paradigm, one where the user is

2.3 summary 11

king and the computer must understand the user; not one where the
user must understand the computer.

Whilst I cannot hope to solve these problems, in the next section I
will outline the multi user visualisation environment that I created to
attempt to investigate users’ behaviour and the reasons for and future
steps needs to solve these problems.

Part II

B U I L D I N G G E S T U R E

3A 3 - D I N T E R A C T I V E M U LT I - U S E R E N V I R O N M E N T

Many challenges exist for 3-D interactive environments. Actions we
take for granted in real life, such as object selection or simply moving
through 3-D space, are complex to achieve in virtual worlds. Making a
natural interface where you can multi-task (such as selecting an object
and navigating at the same time) is a harder problem by a level of
magnitude if not more. As we saw in the last section, there is a need for
new interaction styles for 3-D environments that will be more natural
and better suited. Some of the challenges to overcome are the means
of control, the method of feedback, the level of immersion and the
accuracy of the system, as well as ensuring that the interface obeys the
“golden rules of interface design” (see Section 2), which still applies for
3-D environments in the opinion of the author. Furthermore, by making
the system multi-user, we can explore the potential of collaborative
environments which allows multiple tasks to be achieved at once. In this
section I will outline Gesture, the system I have created to investigate
some of these interaction styles and the response of users who are
controlling it and will highlight some of the key parts that make this
system work.

3.1 gesture

When constructing Gesture, my aim was to create an environment to
investigate the potential and challenges of a natural user interface for
three dimensional visualisation. This means a system which can support
gestural recognition (i.e. one that could recognise natural motion as
input), 3D navigation, multiple users and realtime content creation and
manipulation. The functional blocks to create such a system and their
inter-relations are described below:

Projectors

Speakers

Navigator Creator

iPhone Controllers
(custom software per-
froming gesture recognition)

W
ir

el
es

s
D

at
a

Tr
an

sf
er

Application controller
(Creates visualisation based
on data input)

Figure 3: Gesture system overview

15

16 a 3-d interactive multi-user environment

Speakers

ProjectorsVisualisation
Application

Stereo

Mono

OpenGL
System Model

Navigation
Controller

Drawing
Controller

Wireless Messaging

Gesture
Recogniser

Gesture
Recogniser

Accelerometer

Accelerometer

Screen UI

Screen UI

Sound Generation

Figure 4: Functional Diagram of Gesture

3.1.1 System Components

The system overview shows some of the key features. Two users, one
assigned the navigation role and another who is the content creator
and manipulator, are looking at a projected environment (either a
standard projection or in stereo). There is also sound reproduction
which responds to user input adding another modality to improve the
user experience.

One obvious means of control for such a system is a mobile ’smart-
phone’ such as an iPhone. These are wireless, reasonably powerful,
portable computers which have a range of sensors suited for gesture
recognition and natural unencumbered motion. The accelerometer can
be used for 3-D gesture recognition and touchscreens provide a means
to record 2-D gestures (N.B. Gesture recogntion is discussed in depth
in the next section).

Another challenge is then building an intuitive interface around this
controller. The controls themselves must be easy to interpret and use
and the design of the touch screen UI must be clear and understandable
for the user. A means of valid feedback must also be provided (such asEarcons are a clear,

defined sound which
represents an event in
a user interface e.g.
text message
notification

the vibration of the phone or audio in the form of earcons).
The complete interaction sequence for the system also needs to be

mapped out and planned i.e. what form of interaction will take you
where and how these gestures will change your environment, so that
errors can be prevented and the user maintains control of the system at
all stages.

The data flow also needs to be controlled; in particular the wireless
networking from the phone controllers to the visualisation system.
Phone data needs to sorted into ’packets’ so it can be transfered and the
visualisation system needs to read and interpret this data for projection
and sonification.The Allosphere at

UCSB is one of only
three corner-free
multi-user virtual
environments to have
been built making it
one of the most
immersive 3-D
environments in the
world.

In order to create a 3-D environment, OpenGL was used to provide
a way to create custom graphics which can easily be extended to true
stereoscopic 3-D for an environment such as the AlloSphere as well as
standard display equipment. A camera for this 3-D space also needs
to be created which can be controlled by the user. The visualisation
application also needs to handle the sound notifications and generation.

3.1 gesture 17

These sounds take the form of either earcons which respond to the
gestures or sound which respond to the data received as part of the
visualisation. Finally the application also needs to output the data to
the projectors and speakers to complete this multi-modal visualisation
environment.

3.1.2 Next Steps

In the next section, the construction of the mobile controller software
and how the gesture recognition works will be discussed. Then the
visualisation process, including the inspiration and the technical details
of creating the OpenGL space and sonic environment, will be explained.
Finally I will describe the connectivity of the system and the wireless
messaging format used to create and complete the system.

3.1.3 Related Work

Many people have posed the question of gesture recogntion as a means
for controlling a 3-D environment. One of the earliest such systems
was “Put-that-there” which involved the user controlling simple shapes
through speech and basic gesture recognition (Bolt [10]) and there has
been a lot of work in this field to apply it to visualisation of earth
environments (Krum et al. [22]) or wider 3-D navigation (Krahnstoever
et al. [20]). Some form of gesturing is also used for sketching. It has
been desireable since the advent of computers (Landay and Myers
[23]) and has been applied to 3-D sketches more recently (Zeleznik
et al. [53]). Research is now starting into mobile technology as a means
for control of virtual environments (Kela et al. [18]), but none found
combine navigation, mobile control and content creation in the same
way as Gesture.

4B U I L D I N G T H E C O N T R O L L E R

Ensuring the user has a natural means to interact with the system was a
crucial step in the project. In order to do that a wireless controller which
could be used for some sort of gesture recognition was desirable. Users
already have an affinity with mobile telephony. For many, it is the most
intimate piece of technology they own, which provides personal access
to their friends and family. Hence it made sense to use a controller
which most users already had some familiarity with.

4.1 an iphone-based controller

The iPhone platform was chosen for the hardware of the controller. With
a very responsive touch screen and built-in accelerometer, 2D and 3D
gestures can be mapped. It also has, unlike many phone development
platforms, good user support and an excellent integrated development
environment which allowed rapid prototyping making it a good, all
round choice for the controller.

Two custom Objective-C applications were written to address each
of the user roles for the visualisation. One to navigate through the 3-D
environment and one to generate the content for this exploration. The
operation of each was abstracted as far as possible from a knowlege
of the visualisation so that they were simply controllers and could
be applied to other visualisations or even other systems. Hence, the
controllers needed to solve the following requirements:

4.1.1 Requirements of the controller

• The controller needs to be intuitive to use and as natural as

possible. This requires a clear interface design on the touchscreen
and a strong relationship between the actions performed and
the impact that has on the visualisation. Naturalness is an issue
for this kind of environment as expert users may have different
perceptions to beginners (which indeed was the case with the
user testing performed).

• The recognition rates should be as fast as possible to ensure

actions are relevant. If the timelag between a gesture being per-
formed and the response is too long, it may seem like there is
no correlation between the interaction and the action performed.
Large lag times also impact the usefulness of the technology and
the potential for multiuser collaboration as the response of various
actions may be confused.

• Gesture recognition should be done on the phone. In order to
ensure that separation of the visualisation environment and the
controller is complete, the controller should just send the name
of the gesture performed, not raw data which needs processing.
Enforcing this separation also improves the development of a
multiuser system and makes it scalable to a large number of
users.

19

20 building the controller

(a) The Draw Application Orientation (b) The Draw
App Layout

Figure 5: Drawn - Layout and Orientation

4.1.2 Designing the User Interface

The two applications, Draw and Navigate, both need to have clear
controls as well as leaving room for gestures to be performed. Another
part is that due to limitations of the 3-D gesture recognition method
used, a button is required to signify the presence of a physical gesture.
Both had the same core functionality of the gesture recognition software,
but both required slightly different layouts to specialise each for their
respective tasks.

Both applications also have a setup screen which allows entry of the
required IP address of the visualisation application (This is described
in more depth in section6). All the elements were constructed from the
built in iPhone UI widget set for consistency.

Draw

The Draw app’s main functionality is to create the form for the visualisa-
tion. This means the application must provide data to the visualisation
engine to create a 3-D model yet the aesthetic control of the visual-
isation must rest with this user. This provides us with a context for
designing the layout.

Using the accelerometer data, we can create form based on the user’s
motions (see next section). Gestures can then be used to change the
drawing options and general aesthetic. As stated previously, all the
recognition is done on the phone and so this is simply sending a
command to change an element (without any prior knowledge of the
scene).

The main functional elements are deciding when to draw, when to
perform a 3-D gesture (which due to technical limitations requires a
button to be pressed) and a reset or clear function. These are clearly
displayed with labels describing their function and a large space for
drawing gestures5b. The drawing is a switch as it gives a clear indication
of the current output state of the controller. The other buttons simply
need to behave as buttons, so were kept simple to minimise confusion
for the user. The reset button also turns off the draw functionality and
provides an easy way for the user to undo a particular action.

The vibration function of iPhones was then used to provide imme-
diate feedback as well as sending a notification to the visualisation
environment for audio feeback.

4.1 an iphone-based controller 21

(a) Orientation of the Navigate Application (b) The Navigate App layout

Figure 6: Navigation - Layout and Orientation

The orientation of the screen was chosen to be vertical and in held
in one hand since this fitted closest to the analogy of a paintbrush and
allowed the user to retain full motion when moving the phone (for
drawing).

Navigate

Due to the complexity of 3-D navigation, the Navigate application
needed to be more complex in layout than Draw. The main functions
for 3-D navigation are:

• Rotation about the point observed by the camera

• Panning Moving the camera in an x and y direction relative to
the camera direction.

• Zooming in and out of the scene

Rotation and Panning were chosen to be separate controls since it is
rare that you would want to do both at the same time. Zooming is an
operation a user would want to do at the same time as rotating and
panning, hence it is a separate control. As the control is mostly done
through tilting the phone, a two handed orientation was chosen to be
more accurate and hence the placement of the large gesture button (for
3-D gestures) and the zoom slider. The large black space is then left to
draw gestures on the touch screen.

The operation of the camera is selected from the row of buttons
along the top (defaulting to off), but this could be potentially triggered
by gestures as well. As it stands, each gestures take the camera to a
predefined view to aid with navigation. Like the Draw app, there is a
reset button which returns the view to a default location (for example
if the user pans to far beyond the scene).

The rotation and panning data, unlike for the drawing data for the
Draw application, needs to be processed so it is useful and reduces
the nausea inducing capabilities in an immersive 3-D environment.
For example, limiting the range of data being sent (having a dead
zone where no rotation is performed and a maximum rate) as well
as smoothing the inherently noisy accelerometer data were necessary
steps for a smooth camera motion.

22 building the controller

4.2 gesture recognition

In order to create a more natural user interface, as well as using a
mobile platform which instantly liberates the user, gesture recognition
forms a key part of the move towards a pattern of interaction more in
tune with the human user. Gestures and gesture recognition have been
mentioned a lot prior to this section, so here we will explain what a
gesture is and how we can go about attempting to recognise gestures in
a reliable and repeatable fashion. I will then cover the implementation
details of the 2-D and 3-D methods on the iPhone.

4.2.1 What is a gesture?

Gestures are non-verbal signals that relate information through mo-
tion or expression[19]. For example the way you stand in relation to
someone, how you look at them, the way you move your hands when
you talk or simply the motion of your eyebrows. But gestures do not
include how close you stand to someone, or pure undirected expression
of emotion. Gesturing is simply a non-verbal means to convey a specific
piece of information to another person. In addition, the fundamental
and most interesting part of gesturing is that people only “gesture”
when in the presence of another person [19, 6].

The difficulty and complexity of gestures is their ever changing be-
haviour. Gestures vary based on social background and context, age,
gender, culture, location, even among friendship groups. In fact every
variable that impacts human speech impacts upon gestures since af-
ter all it is non-verbal communication. This means it is an extremely
complex problem with few clear cut solutions. Even in psychological
literature [Kendon [19], Armstrong et al. [6], McNeill [29]], the com-
plexity of gestures, their real meanings and their significance is hard to
define. This poses the question : Should we attempt to create methods
to recognize the plethora of human gestures, or should we structure
our gesture set and limit it in a similar way to sign language?

The key points about constructing a gestural “language” is that, as
said before, different gestures mean different things to different people
and people ability to reproduce even known gestures is extremely
variable and hard to define. Also the language we create should have
some degree of consistency and if possible allow some sort of metaphor
to be associated with it. Whilst this is hard with current technology (in
particular online implementations of recognition), it is none the less
desirable.

4.2.2 Automatic Gesture recognition

One of the difficulty of recognising gestures is getting the required data
in a machine readable, high quality format, let alone the algorithms to
recognise gestures. Focusing on the most basic sets of gestures, they are
fundamentally motion and so require you to record some sort of value,
be it acceleration, velocity or displacement. This will fundamentally be
noisy and so recognition algorithms will need to be robust or feature
some form of pre-processing. They are also dynamic and so require
some sort of segmentation of time to define the start and end of the
gesture.

4.2 gesture recognition 23

In two dimensions, many of these problems are solved since the
location of the finger on the screen (in x and y coordinates) in accurately
recorded. The start and end of the gesture is well defined by the time
at which you start and finish touching the screen and the associated
noise is minimal.

For three dimensional gestures this is more complex. People do not
repeat gestures in that similar a fashion (there is noise in the action, let
alone the recording of the action) and time segmentation of the gesture
is hard. Luckily, using the iPhone, we can use a button in the user
interface which is held down to define the start and end of the gesture.
This gives us our data set which we can then investigate methods to
recognise gestures automatically using either machine learning methods
such as Hidden Markov Models, which are complex or using simpler
template matching schemes. Both methods are their pros and cons are
outlined in the next section.

4.2.3 Related Work

Touchscreen based methods

There have been two main waves of interest into online handwriting
recognition for two dimensional drawing applications. There was a
large amount of activity in the 50s till the 70s when computers first
became popular. The second wave was in the early 90s with the advent
of touchscreens which could accurately be used for graphical drawing
and is continuing now with mobile devices and the need for text entry
on smaller displays.

The development of online and offline methods occured reasonably
in parallel for the first stage until, somewhat suprisingly, online meth-
ods were shown to be superior for recognition of even the same data
(Mandler et al. [25]). Even with the greater complexity of drawing even
something simple like an ’E’, there are multiple ways of drawing it
which would complicate online recognition, but this can be successfully
handled and in fact the temporal information can then be used to
improve the recognition rates sufficiently. Methods using Shape recog-
nition, Character Recognition, Time sequence based methods, curve
matching and other methods show various levels of success for hand-
writing recognition (and are all outlined thoroughly in Tappert et al.
[47] and Plamondon and Srihari [36] who both review the field), but
the requirements for Gesture imply a simpler and less complex method.

These methods for simple gesture recognition are overblown and
overly complex. The simplicity of the shapes required for gesturing
means methods can be much simpler and in fact, when implemented
on a phone, need to be simple, have minimal memory requirements
and return results fast. That is why Wobbrock et al. [51] and their paper
“Gestures without Libraries, Toolkits or Training: A $1 Recognizer for
User Interface Prototypes” is actually extremely effective for simple
geometric shape recognition and will be implemented for use in Gesture.
Full details of implementation are explained below and results are
presented in Section 7.

Accelerometer based methods

Touchscreen based methods are relatively mature in comparison for
3-D gesture recognition. Lots of research has been put into computer

24 building the controller

vision based methods (detailed more thoroughly in Moeslund and
Granum [30], Gavrila [12]). For Gesture, the focus was implementing
3-D gesture recognition on a mobile device and so accelerometer based
methods are the most appropriate. Acceleromter based methods use
either basic accelerometers (Liu et al. [24]), Wii Controller (Schlömer
et al. [39], Sreedharan et al. [44]) or more recently extending to mobile
platforms too (Vajk et al. [49], Niezen and Hancke [32]). In terms of
the recognition algorithms used, Hidden Markov Models were used
in (Schlömer et al. [39] again and Mäntyjärvi et al. [26], Ward et al.
[50], Kela et al. [18]) which show reasonable success. Some use Neural
Network based approaches (Murakami and Taguchi [31], Boehm et al.
[9]) and there is also the “$3 Recognizer” developed by Kratz and
Rohs [21] as an example of a template matching scheme. The relative
advantages and disadvantages show that with continuous HMMs, time
segmentation (and so continuous gesture recognition - i.e. no button
presses) can be achieved (Elmezain et al. [11]). But as of yet, there have
been no implementations of this have been on mobile platforms.

4.2.4 2-D Gesture recognition - The $1 Recognizer

As stated above, there has been a large amount of research into the field
of two dimensional gesture recognition. As one of the main require-
ments for this project was to develop a system where all the gesture
recognition was done on the phone, a minimal solution was required.
Hence the “$1 gesture recognizer”, a touchscreen recognition method
developed by Wobbrock et al. [51] was used. This is a template matching
algorithm that has comparable recognition rates to more advanced sys-
tems, but is significantly simpler and less computationally and memory
intensive i.e. perfect for recognition on a mobile device. A disadvantage
is that the recognition is done based on a strictly defined gesture set
and so no dynamic learning can be performed to tune the system to
the user without recording a new set of templates.

The main stages of the algorithm are primarly normalising the data
so it can be compared. Those key stages of operation are:

1. Resampling the data to ensure there are the same number of
points in the data under test as in the templates.

2. Rotation of the gestures so the samples and templates are of the
same orientation

3. Scale and Translate the sample so that the dimensions and centre
points are the same as the templates

4. Find the best template match using a Golden Section Search for
the rotation of the algorithm and produce a value

Then a theshold can be put on the gestures to ensure that false positives
are prevented against to some degree. Each of these stages is now
discussed in finer detail.

resampling: Natural variance in the speed at which a gesture is
performed can lead to a variable number of points to compare.
This is also influenced by the speed of hardware recording etc,
so we want to remove this variability. Figure 7a shows some of
variablility in touchscreen points. These points are then resampled

4.2 gesture recognition 25

(a) Variance in the number of sample
points for touchscreens

(b) Rotation to “indicative” angle

Figure 7: $1 Recognizer - Key steps [51]

to be of size N. All the templates are also of this size to simplify
(and speed up) the comparison). The setting of N is obviously
a crucial value. N needs to be sufficiently large to distinguish
between gestures, but not to large as then upsampling points
would introduce unwanted noise in the data. This was found
to be 100 points for the iPhone (much higher than the number
recorded in the original paper).

rotation based on the indicative angle: Finding a way to
normalise the data based on rotational angle is a complex problem
and there is no closed solution. In the paper, after considering
numerous methods, they describe a “rotation trick” which is fast
and efficient. By taking the centre point or centroid of a gesture
and the first point where the gesture began, we can make a good
estimation as to the angle normalising the gesture7b. Any small
error in this quick estimation is then handled by the Golden
Section Search (GSS) in the final stage of the algorithm.

scaling and translation: The gesture sample is scaled non-uniformly
to a square. This means that changes in the sample values when
in the final stage the gesture samples are rotated later is due to
the rotation only and not the aspect ratio of the points. Once this
is done, the samples are then translated back to the origin with
the centroid as the centre point.

template matching by finding the optimal angle: Firstly the
average distance between each point and each of the templates is
found using the equation :

di =

�N
k=1

�
(C[k]x − Ti[k]x)2 + (C[k]y − Ti[k]y)2

N

This is a simple distance metric for two dimensions where C is the
candidate sample and Ti is each of the templates in the gesture
template set. The path distance for each template is then defined
as:

score = 1 −
di

1/2
√

size2 + size2

The size value here is the number of points that the candidate
samples are normalised to (i.e. 100 points). This value is then
used as a score metric. The best value is defined to be the correct
gesture. To improve the recognition, the candidates are also ro-
tated using the Golden Section Search to improve the recognition

26 building the controller

over the original “guess” that is the indicative angle rotation. This
finds the minimum value in a range of values (perfect for finding
the local minima i.e. the desired gesture) using the Golden ratio
(ϕ = 0.5(−1 +

√
5). The angle for rotating the candidate gesture is

incremented by the golden ratio up to 45º in 2º increments (based
on the paper’s results). This is much more efficent that both brute
force searching and a hill climbing technique (see Wobbrock et al.
[51] for reference).

The limitation of this method is due to the simplicty of the recognition
algorithm, some common gestures cannot be differentiated and hence
recognised. These are gestures that depend on scale or orientation of
the gesture. The other issue is due to the non-linear scaling, objects
that are similar in creation, but have variations along, for example,
the x axis, but not the y (such as a circle compared to an ellipse, or
rectangle compared to a square) cannot be distinguished. Finally time
is not taken into account due to the resampling, so the speed at which
a gesture is performed is lost.

However, this is a minimal method. It is fast and requires signifi-
cantly less memory than comparable schemes which is important for
mobile devices when runnng at the same time as other processes. The
algorithm was implemented in Objective-C on the iPhone. Results of
the implementation are shown in the results section of the report.

4.2.5 Extending to 3-D - The $3 Recognizer

For 3-D gesture recognition, after comparison of the methods outlined
in the related work section, the “$3 recognizer” method was chosen
(Kratz and Rohs [21]). This is an extension of the $1 recognizer for
three dimensions and is again a minimal and relatively fast algorithm
based on template matching. The correct recognition rate is lower
than HMM based methods but it is comparable, given the simplicity
of implementation and the minimal requriements on the operation
system. This is perfect for my application as the requirement is that
the recognition should be performed on a mobile device and hence
the minimal, and faster solution is prefered (to minimise CPU and
memory load hence improving battery life). One negative of such an
implementation is that there is no method for automatic segmentation
of time (like with more advanced HMM based methods Schlömer et al.
[39]) and so there needs to be a button to define the start and end time
of gestures.

The steps in the algorithm are extensions of the “$1 recognizer”
method (extended to two dimensions) except that the authors propose
using a set of templates for each gesture (e.g. 5 circle templates) and
a metric to define whether or not the gesture is of a particular type.
Due to the complexity of 3-D recognition and the relative simplicity of
this method, a naïve threshold gives poor results (and does not make
best use of the information). The set of gestures helps to overcome
some of the issues of noise and repeatability of the gesture, but at the
cost of increased processing load (and hence slower recognition rates).
However this set of training data is half the amount of comparable
HMM amounts (again good for mobile devices).

The data used was the difference between accleration values, refered
to as “acceleration deltas”. No preprocessing was proposed in the paper
(achieving 80% recogniton rates).

4.2 gesture recognition 27

Figure 8: The iPhone as an Accelerometer[5]

The main differences between the $1 and $3 implementation are:

rotation: The rotation to the indicative angle which required taking
the inverse cosine of the scalar product of the centroid and the
start point of the gesture.

θ = arccos(
(p0 • c)

�p0� �c�
)

The unit vector orthogonal to p0 and c is then found. This vector
is given by the crossproduct of p0 and c:

vaxis =
p0 × c

�p0 × c�

and the rotation is then performed about this vector.

template matching by finding the optimal angle: The same
scoring metric is used (minimum distance), but the Golden sec-
tion is extended to two dimensions. The range of values searched
is also increased from ±45º to ±180º but now in 5º steps, this is
much wider search area, but only using a slightly large number
of steps. Each template in the library is then searched and a table
of the results is produced.

a scoring heuristic: The table from the template matching step is
then sorted, a threshold, ε, is defined and the following heuristic
is applied:

• Iff the highest-scoring candidate in the score table has a score
> 1.1ε, return this candidate’s gesture ID.

28 building the controller

Figure 9: The gesture set

• Iff, within the top three candidates in the score table, two
candidates exist of the same gesture class and have a score >
0.95ε, respectively, return the gesture ID of these two candi-
dates.

• Else, return “Gesture not recognized!”.

The limitations of such a method are obvious. It is an extremely sim-
ple algorithm that does not make use of any noise reduction in the data
and hence suffers from the fundamentally noisy data that is accelerome-
ter data. Also having more templates improves the recognition rate, but
nothing is learnt from a larger set, simply there are more comparisons,
so this method is not scalable to larger gesture data sets. However it
is reasonably accurate, the rates for the simplified set are comparable
to an HMM based approach (depending on the gesture) and it is fast
and simple. Perfect for realtime gesture recognition on a mobile phone
(which does not have the computational power required for many of
the more advanced HMM based gesture recogntion algorithms).

The results, described fully in the next section are variable, dependant
on the type of gesture and the templates recorded for comparison. To
the best of my knowledge, this is the first implementation of the $3
recognizer on a mobile device.

4.2.6 The Gesture set

In order to keep the recognition step fast, the gesture library was kept
small to 4 gestures, however after some testing, both directions for each
gesture had to be recorded as people drew the gesture in both directions
(and this fooled the template matching). Having small gesture set also
reduced the search space for the recognizer, the load on the phone and
the number of gestures which needed to be shown to the user. The same
shape of gesture was used for both the 2-D and 3-D gesture recognition
to reduce the cognitive load on the user. Visual aids as to the nature
of the gestures were also given to the user on the visualisation display.
The four gestures are a circle, square, triangle (all in both directions)
and a tick or check mark (depending on which side of the Atlantic
you’re from) and they are shown in Figure 9.

The recognition rates of the gesture set are shown in Part III.

4.3 summary 29

4.3 summary

In order to create a natural interface for both navigation and content
creation, a mobile phone based controller was developed which per-
forms gesture recognition using the touch screen and accelerometer
to record and recognise two dimensional and three dimensional ges-
tures completely on the phone. The methods chosen to perform the
recognition were fast, and simple algorithms, rather than more complex
Hidden Markov based methods to minimise the computational load on
the phone. A small, well defined gesture set was used to further reduce
the load as well as keep the novel interface style simple for new users.

In the next section, the visualisation and sonfication of the project
will be discussed.

5V I S U A L I S AT I O N A N D S O N I F I C AT I O N O F T H E 3 - D
E N V I R O N M E N T

The focus for the system was to analyse gestural recognition as an inter-
action style for natural user interfaces. Hence any data for visualisation
and exploration should come from the user’s motion in the tradition
of Process art, the 1960s American movement focused on the method
of artistic creation rather than the ’object’. By creating shape and form
from the user’s motion, an interest and affinity with the system is natu-
rally created. This was important to immerse the user, putting them in
a relaxing environment which allows them to express themselves; with
the end goal being to help analyse the performances of a natural user
interface

In this section I will briefly discuss the some of the early time and
motion studies and process art as inspiration for the visualisation. Then
look into the the technical steps neccesary to create the real time visuals
as well as the camera controlled by the navigation controller. Then
we will briefly look into the development of stereo vision for use in a
visualisation environment such as the Allosphere. Finally we will look
into the implications of sound for the natural user interface (a rarely
studied area) and sound is created in Gesture.

(a) Marey’s Chronophotograph of Man with a Pole
[27]

(b) Marey’ Capturing a dove in
flight[28]

Figure 10: E.J. Marey’s Work on Motion

5.1 capturing motion for visualisation

Some of the first to investigate natural motion in the world were the
early chronophotographers. Etienne-Jules Marey was seen by many as
the first to make use of timelapse photography to capture the unseen
motion of humans and animals (and in many ways was one of the
fathers of cinema). Some of his work, shown in Figure 10, helped
change people’s perception of anatomy, aviation, motion and the study
of labour and was said to make “the natural unnatural” .

Frank and Lilian Gilbreth were also interested in labour and focused
on ’work simplification’. This was the idea that by analysing workers
motions and breaking down the results into fundamental motions (a
set they called “therblig” - Gilbreth backwards) you could simplify
processes and optimise your workforce. In order to test their theories,
they employed chronophotography as a means to record people’s mo-

31

32 visualisation and sonification of the 3-d environment

(a) Some of the Gilbreth’s Wire Motion
Models

(b) Woman at Work - The Gilbreths
[15]

Figure 11: Frank and Lilian Gilbreth’s Time and Motion Studies

(a) Lynda Benglis - For Carl Andre,
1970[7]

(b) Richard Serra - Lead
Piece 1968 [40]

Figure 12: Process Art

tion. Some of the wire models they constructed, shown in Figure 11a,
demonstrated for the first time the true path of motion of a worker
througha factory. This changed the perspective of factory work for ever
and helped to solidify the theories of Scientific Management, the idea
that the greatest output of a work force can be achieved by optimising
their workflow Taylor [48]. This lead onto the production line and other
mass production techniques.

This chronophotography is inspirational to my aims for Gesture as
the process of capturing motion as a means for expression is an aim
for my work as well as the pioneers of the field. Such a method of
creation, where the process of creation is the ultimate aim was also
crucial to the Process art movement in 1960s America. The focus of
the movement was based on the ideal that art should be based on the
method of creation rather than the artistic ’object’. Classic examples of
this can be seen from Lynda Benglis’ poured metal sculptures, where
the action of throwing molten lead was the action she saught to capture,
or the lead springs created by Richard Serra where the cooling creates
new forms (Figure 12). This was one of the main inspirations for the
aesthetic style of Gesture as the users motion creates the visual form
and so their motion should be represented by the final form that is
created.

5.2 exploring the iphone data 33

5.2 exploring the iphone data

Looking at the raw accelerometer data produced by the iPhone (Figure
13) gives us a form. By then using the data from that motion to inform
the colour, thickness and style, then we can create art. Some of the early
exploration of these forms are shown in Figure 14. These were focused
on the development of the system and so the colour scheme is semi-
randomly assigned based on the motion and value of the accelerometer
data at that time.

The final visualisation now maps colour (using the HSB scale), thick-
ness of the line (which is actually a sequence of triangular strips) and
location based on the integrated accelerometer data (to obtain a dis-

placement vector for each point) shown in Figure 15. By mapping the
data in this way, some elements of the

5.3 the visualisation environment

The application for visualising the data for Gesture was written in the
Java based Processing IDE1. This meant that visual elements could be
rapidly prototyped, the project could run cross-platform and would be
easily extendible to include additional features, such as Active stereo
or sound creation (both discussed later).

All the graphics were created in OpenGL. OpenGL is a generic
software interface for computer graphics hardware meaning OpenGL
code will run efficiently on multiple platforms and hardware without
you rewriting code. OpenGL defines a set of basic shapes known as
geometric primitives (points, triangles and polygons) which are then
used to build up a more complex graphics set. The program structure
is that of a state machine. It displays one image (and stays in that
state) until another set of commands cause the display to update. By
sending the sequence of commands to the graphics hardware, the scene
is created. Full details of implementation for OpenGL including an
excellent introduction to the language and more advanced topics can
be found in the OpenGL Red Book [Shreiner et al. [43]].

5.3.1 Viewing a 3-D scene : Camera control

In order to view a 3-D scene in OpenGL firstly objects need to be
rendered using OpenGL commands (again see Shreiner et al. [43] for
full details) and this plots the points in object coordinates. need to be
completed so that the desired part of the scene can be viewed. Un-
derstanding the sequence that transforms it to window coordinates
is important for defining a camera in OpenGL which can then be
controlled to view the scene. A camera for computer graphics is analo-
gous to setting up a physical photographic camera in the real world.
The modelview matrix is analogous to arranging the scene to be pho-
tographed and then setting up the camera to point at it. The projection
matrix then defines the lens or the level of zoom of our camera and the
shape of the image (if it is skewed etc). The persepective division step
normalises the view data so that it can then viewport transformed so it
matches the size of the display window (e.g. the monitor). These stages
are shown in the steps shown in Figure 16. By changing the projection

1 www.processing.org

−2
−1.5

−1
−0.5

0

−0.4

−0.2

0

0.2

0.4

0.6

−2

−1.5

−1

−0.5

0

Figure 13: Raw Accelerometer data for a Circle Gesture (Also shown is resam-
pled data for first step of gesture recognition)

(a) An Early Attempt at 3-D visuali-
sation

(b) A later attempt with grid

Figure 14: Early Attempts at Visualising Accelerometer data

(a) Overview of Gesture - Now several
visual elements are mapped to the
data

(b) Fine Detail

Figure 15: Final Visualisation style

34

5.3 the visualisation environment 35

Figure 16: The OpenGL Vertex Transformation [43]

matrix, using standard matrix rotation techniques, addition etc, we
can control the zoom level and position of the camera. By abstracting
these into function call such as “rotate” etc, we then have a means of
controlling the camera from the iPhone. A full tutorial on camera class
creation can be found at [4].

5.3.2 Stereoscopic imagery

The modern cutting edge visual technique is stereo video. Unlike
normal video of three dimensional scenes, stereoscopy provides a
separate view for each eye which means viewers can gain a sense of
depth from. Since each eye captures a separate image (each eye views
the same scene, just separated by a disparity (the distance between the
eyes), this needs to be mapped in the computer graphics. The scene
is “double buffered” where special graphics cards (which have two
visual buffers) progressively update each part of the scene and flip
between each part of the scene. In order to ensure that the correct
image goes to the correct eye, the user needs to wear special glasses. In
the Allosphere this is done using special “active shuttering” glasses. An
infra-red signal is sent at rate the projector flips between the two images
of the scene (one for the left eye, one for the right) that is produced.
The glasses sync to these images and then close each eye successively
in time with the image. This is done faster than in perceivable by the
eye (using LCDs to black out the eye) and so the correct image goes to
the correct eye at the right time.

In Gesture, stereo vision was implemented by developing the graphics
in true 3-D and then using the stereo-vision library2 developed by
Angus Forbes and Charlie Roberts, two researchers in the AlloSphere
group.

2 http://angusforbes.github.com/stereo/

36 visualisation and sonification of the 3-d environment

(a) The Gesture “Welcome Screen” (b) The Gesture Viewing Window

Figure 17: Gesture’s Visualisation display layouts

5.3.3 Sonfication

Sound was generated for the scene using the Minim Library for Pro-
cessing3 The key considerations were what the sounds should be,
the duration and the differentiating between the earcons and soundEarcons are audio

notifications. For
Gesture, they will be
played when gestures
are recognised

generated to complement the visual data. Earcons have been shown
to help improve users’ understanding of systems as another form of
notification[8]. In terms of sonifying the data. In order to increase
the likelihood of exploration in Gesture, sound is produced when the
acceleration is over a certain threshold (so that this reaction is not ob-
vious). The pitch increases as the acceleration increases and when the
accelerometer hits the limit, the quantisation of the sound increases and
so the distorition of the sounds maps to the distortion of the data (since
the accelerometer has an relatively low upperbound beyond which the
output is capped. Performing these two sonic cues together helps make
Gesture a true multi-modal user environment.

5.4 constructing the ui

In order to maximise the user experience and controll the flow of the
user through the program steps, several visual aids and checks were
added into the display. Shown in Figure 17b, the bottom left and bottom
right of the screen displayed a “Head-Up display” style element which
became illuminated when the gesture was recognised. This added to
the pre-exisiting signals from the vibration of the phone and the audio
“earcons” created by the sound. The grid was added to give perspective
to objects in the 3-D scene from which the user could judge depth.
This is important as the forms produced are abstract and do not allow
for prior perception of the images and so new users cannot gain an
estimate of depth from the scene (sometimes even with stereo).

The homescreen was introduced to control access to Gesture and
by giving explicit instructions with a visual aid, helping the user by
providing clues as to how they should interact with the system. This
was so successful that people attempted to draw on the projected wall
when they did not realise this required the iPhones as controllers. A
second page with text was also displayed that the user then had to read
and draw a gesture to confirm having read. This provided information
about the system and clues as to how to interact with it.

The relationship between the gestures and the action of the visuali-
sation was also of crucial importance. With such a limited gesture set,

3 http://code.compartmental.net/tools/minim/

5.4 constructing the ui 37

draw navigate

Circle Cycle through
the colour
schemes

Auto rotate
the camera :
on/off

Square Cycle through
fill options

Take the
camera to
predefined
location 1

Triangle Cycle through
line plotting
options
(thickness etc)

Take the
camera to
predefined
location 2

Check Begin/end
drawing (in
addition to
explicit
button)

Take the
camera to
predefined
location 3

Table 2: What each action does in Gesture N.B. The mapping was the same for
both 2-D and 3-D gestures

making a good selection of gesture for a given action is hard. A good
guide from previous interface designs listed in Chapter 2 is to assign a
metaphor to the gestures. This helps the user to recall the actions and
creates a better mental model of the system for the user. Hence that
is why for the Navigate app, the circle gesture can easily be assigned
to switching on and off the camera, but then what should the triangle
represent. Often, an arbitrary gesture should not matter as long as the
system is responsive and the behaviour is consistent, which was a key
aim for the system.

Once this was completed and the mappings were completed, then
the system could be tested with real users. In the next section, an
evaluation of the accuracy of the gestures is performed as well as the
users’ performance and their satisfaction with the system and thoughts
on the new interaction style are presented. Finally the overall lessons
learnt from this project are discussed.

6C O N N E C T I N G A N D F I N I S H I N G T H E S Y S T E M

The iPhone controller and the visualisation needed to be connected in
order to work properly. The iPhone has a wireless card which means
data transfer can be done over the wireless network. However in order
to do this, a connection protocol needs to be established that is fast
and efficient as well as easily understandable. In this section we briefly
discuss networking protocols and messaging and how the connections
are then used in Gesture.

6.1 building a connection - udp vs . tcp

Using the built-in wireless capabilities of the iPhone makes transmission
of data between the phones and the computer handling the visualisation
easier. This means we only have to worry about the organising the
transport layer of the system. The transport layer is a group of protocols
responsible for taking data from the application layer (i.e. your program)
and converting it into data packets which can then be transmitted over
the network (through the network layer). This is all defined by the
Open System Interconnection model (or OSI [35]) There are various
protocols for doing this, two of the most commonly used examples
of which are UDP (User Datagram Protocol) and TCP (Transmission
Control Protocol) :

transmission control protocol (tcp): TCP is one of the most
common protocols for computer to computer connections. The
main reason is that TCP provides guaranteed delivery of data
packets in the correct order and provides error correction. This is
because TCP implements flow control and so checks to see if each
packet has been successfully transmitted. If not, then the system
will re-transmit the packet to ensure delivery. The issue is that
this can introduce a delay in getting this consistent data.

user datagram protocol (udp): UDP is a connectionless, broad-
cast protocol. This means it sends the data and does not care
whether it has been successful or not. This means it can be ex-
tremely unreliable with packets being dropped, sent out of order
or even sent twice. This has to be handled by the application
(if this will cause errors) but it means that there is next to no
overhead for UDP transfer meaning it is extremely fast. UDP is
used for streaming video and audio, but this is another reason
why the quality of this kind of media can be low.

Hence for Gesture, UDP is a good choice as the data for rotation and
drawing requires speed to be effective and create a natural environ-
ment. The issue of packets being dropped or out of order can impact
performance, and impact the smoothness of the camera motions. In
an improved version of the system, TCP and UDP could be used to
separate the information out. Gestures, which require guaranteed trans-
mission should be sent via TCP, but as we are using a mobile device
and battery life is a challenge (continuous broadcast drains the battery),
UDP is the best solution.

39

40 connecting and finishing the system

6.1.1 Organising your data - OpenSoundControl

UDP does not organise your data, it leaves the organisation of the infor-
mation to the Application. Hence we need a data encapsulation format
which can be easily written and easily read, as well as being minimal for
transfer. OpenSoundControl, a message based protocol, was developed
for easy transmission between mobile devices. The full standard can
be found here [52]. For the project the minimal implementation liblo1

was used for objective-C and oscP52 for Processing. This also included
support for the creation of the necessary UDP connection.

6.2 completing the system

Gesture makes use of a wide range of components and technologies
to attempt to build a system which has a natural user interface. The
iPhone controller UI layout as well as methods for gesture recongition
have been discussed. Then the aspects of visualisation in OpenGL
were covered including the porting to Active Stereo and to include
sonification and earcons for the data. Finally the connection of the
controller and the visualisation was discussed. In the next section we
will analyse the results of this work and look at what conclusions can
be drawn from this.

1 http://liblo.sourceforge.net/
2 http://www.sojamo.de/libraries/oscP5/

Part III

U S E R T E S T I N G , R E S U LT S A N D
D I S C U S S I O N

7U S E R T E S T I N G

There were two things that needed to be user tested in order to make
a critical evaluation of the system. The first is the effectiveness of the
gesture recogntion techniques and the second is the effectiveness of
the overall system including a critical evaluation. Ten participants were
used for the study of the gesture recognition. The same users were
used for both tests, since it was assumed that these were separate tasks.
Quantative results are presented. In order to measure, the effectiveness
of the overall system, ince the end task does not have a measureable
outcome which we can use as a comparison (a weakness of the system),
the results focus on subjective user evaluation. The results breakdown
is presented in Appendix A

7.1 gesture recognition

7.1.1 The participants

The ten users in the trial were selected to cover a range of abilities and
both genders. Five men and five women were selected. Several things
were recorded such as their right or left handed-ness, prior experience
with touchscreen or accelerometer based applications (all had used
iPhones or played Wii before) and user success at achieving the desired
gesture.

In both cases templates were pre-loaded, unlike the testing featured
in papers such as Kratz and Rohs [21] and Schlömer et al. [39]. These
studies trained their recognition algorithms to each user. This testing,
however, was done blind. As such the results present a good result,
although the variance of the 3-D gestures is extremely high, highlighting
the fact that everyone performes gestures in 3-D differently and so
building a generic algorithm to solve this issue is extremely challenging.

7.1.2 Touch Screen gestures

The results speak for themselves. This is an extremely accurate gesture
recognition method. The limitation is that the gestures themselves have
to be learned and completed exactly. Lazy completion of the gesture
or moving too fast were the main reasons for the failed recognition.
The one issue however was that people draw the gestures in different
directions (clockwise or anticlockwise). This was not a problem for the
circles or triangles (which had templates for both directions) but the
square only worked in one direction. Interestingly, even the check was
performed the opposite direction by a left handed person.

Most of the feedback was positive with users feeling that they could
perform the gestures accurately and saw tangible applications for such
a system in their own lives. Some users commented that they felt that
the limitations gestures were more down to their own failings (found
physical tasks challenging - one user had trauma dexterity) or felt their
memories and interaction style was more aural or visual rather than
spatial.

43

44 user testing

Figure 18: Results for Touchscreen based Gesture Recognition

7.1.3 Three-Dimensional Dynamic gestures

where templates were recorded for each individual user and then the
effectiveness of the algorithm was tested, this testing was done as a
final complete system solution. The basic templates chosen were from a
range of users and then the effectiveness of the system new users to use
this system was tested. Five users (not part of the ten surveryed) were
recorded each doing the gesture five times. One template from each
was selected at random to make a 5 template set for the recognition
folder.

As can be seen from the results, the gesture recognition is highly
dependent on the proximity of the template to the gesture performed.
For example the triangle gesture results ranged from 0% to 100%. This
was down to poor templates for the triangles (whilst most gesture
templates clustered together in the ranking table, triangles were often
dispersed) and some users were extremely poor at being able to draw
repeatable gestures or even close to other users (for exampler user
5 averaged less than 10%). This obviously presents problem for the
construction of a system using 3-D gestures (the false positive level is
also too high) and so more work must be done to improve this area to
make it useful for practical applications.

The feedback received was extremely positive. Most users said it was
more “fun” or “cooler” to interact with a computer in this way, as can
be shown with the success of the Wii versus the XBox. Again the same
issues cropped up where towards the tenth gesture, users focused less
on performing the gesture accurately and so it would not be recongised.
Most would have liked such a means of interaction for use around
the house or to control their music etc, but only a few saw this a real
practical application they could use with their existing computers.

7.2 the gesture system

The Gesture system was positively recieved at both public demonstra-
tions. Some of the problems of releasing it “in the wild” were that most
users were unsure of how to use gestures. Many people drew circles
as one and a half circles rather than a complete single circle (twelve
o’clock till twelve o’clock) which was unexpected and not designed for.

7.2 the gesture system 45

Figure 19: Results for 3-D Gesture Recognition

The solution to this is to guide the users as the draw a circle command
did. In fact this was so successful in guiding peoples actions that many
people tried to draw a circle on the projected wall (without realising
they needed the iPhone controller!). Improvements would be adding
guides for each gesture, or running each user through a training section
at the start.

The main issues with the 3-D gestures was that everyone draws
shapes in 3-D space in their own way. The templates did not capture
the range of gestures people performed. In fact, to fully solve the
template matching approach a number of gestures required would
be larger than most computer’s memories, let alone that of a mobiles
phone.

The other major issue that was found when running the gesture
recognition at the same time as sending data for drawing or rotating
the camera. When the processor was handling both operations, the
polling rate of the accelerometer was slower and so the number of
sample points for each gesture was lower. This missed key details of the
gesture and hence reduced the accuracy. The simple improvement that
was made was that sending is stopped temporarily whilst the “Gesture”
button is pressed.

At the second demonstration to more technical users, the ability to
pick up the gesture language was much faster. Many of the comments
were very positive. The reception of the Navigate app was also ex-
tremely positive with JoAnn Kuchera-Morin, creator of the AlloSphere,
saying that she needed one for the Allosphere.

The main discovery from the demomstrations was the huge range of
user expectations. Many found the mappings strange, but then just a
many found them instantly intuitive. This suggests that the ultimate
solution should simply be fully customisable where you can retrain the
gestures for yourself.

8C O N C L U S I O N

Gesture was created to build a user interface which demonstrates the
potential of new methods of Human Computer interaction. This is a
neccesary direction as the paradigm of the keyboard and mouse starts
to break down in the age of mobile computing that we now live in. We
need new, more natural ways to interact with our computers on our
terms and not by being constrained to the desk and chair.

The place of the keyboard and mouse is the office and in that envi-
ronment it reigns supreme, but as more computing power moves from
the desk to the mobile phone or the television, the suitablity of newer
ways to interact must be investigated.

Gesture recognition is a relatively new means to interact with com-
puters, and along with speech recognition, represents a key stage in
making a natural interface. By implementing gesture recognition for
both the iPhone’s touchscreen and the more experimental method using
the accelerometer, the potential of this technology can be investigated
properly.

The findings of this work are that gesture recogntion using touch-
screens is now a mature enough technology that it is ready for imple-
mentation in commerical products. The iPhone has shown that basic
gesturing has a place in mobile operating systems and my results show
that more complex gestures can be easily recognised and recognised
accurately. The problem is context.

In order to make gesture recognition realistic, it needs to be tied to
a strong context or metaphor which makes it appropriate. Drawing
a circle to plot a triangle on the screen is an obvious exaguration of
bad design, but ensuring that the gesture is appropriate is a huge
challenge for the interface designer. As we have seen from the results of
this work, even simple geometric gestures represent a challenge when
a user is told “draw a circle” and the designer has to handle all of
the resulting scenarios. Providing a visual guide or strongly tying the
action to a metaphor reduces the ambiguity to the user and so narrows
the resulting inputs to a more manageable number. This was done in
Gesture at the home screen, but could have been used more widely for
these reasons.

This question of context is crucial for the development of a natural in-
terface. Humans do not use the same method to interact with each other
all the time. Sometimes we whisper, sometimes we shout, sometimes
we gesture and sometimes we write. Similarly, voice recognition would
be great for controlling a “smart” home, but would be a terrible method
for control on a plane or to enter commercially sensitive information
(as you would have to speak it out loud). Again the challenge as we
move towards a more pervasive style of computing is do we develop the
interface to be suitable to all environments or should we contextualise it
for the user making it a specialist with its own functional environement.

Gesture created a context for gesture recognition where it fitted in
and worked effectively. Controlling three dimensional visualisations
is a particularly challenging area for Human Computer interaction
as intuitively mapping user input from a two dimensional controller

47

48 conclusion

to three dimensions is hard. Adding into the that the fact that what
one person finds extremely intuitive, another person finds completely
alien and challenging and providing a generic solution is probably
impossible.

Customisation of the interface is a crucial step is overcoming the
uniqueness of users and one of the key insights to making a true
natural interface. If a user finds the interface strange, then they should
be allowed to change it to suit their needs. Many of the people who
tested gesture or used the gesture recongition found it interesting
and useful, but not the way that works best for them. Humans have
many learning styles and hence many ways of interacting, be it verbal,
physical or simply writing it down, and the Natural User Interface has
to cater for all of these people.

Making Gesture a multi-user system also allowed another key chal-
lenge of a natural user interface to be investigated. As realtime com-
munication becomes more pervasive and systems use the power of the
internet to connect more and more people together simultatiously, de-
signers need to cater for multiple users. Beyond the technical challenges
of data handling etc, there is also the issue of creating an environment
in which it makes sense, is engaging and works in realtime. By sepa-
rating the navigation and draw functions into two separate controllers,
both could become more specialised and provide more functionality
to the user and by working together the display could become more
engaging and interesting.

The main comment from users of Gesture is that is was fun to use. If
“natural” user interfaces are challenging and require a steep learning
curve to understand, not only will they no longer be natural, but they
will not be taken up by users, even if it would be beneficial in the long
run. Employees work more effectively when they are in an inspirational
and fun environment and it is just the same with computer users. If the
system is rewarding, responsive and engaging, then the barriers to the
raw power can be broken down and the true potential of computers
can be realised.

Creating Gesture has been a challenging and informative experience. I
have learnt a lot about gesture recognition, interface design and wireless
protocols, but ultimately the future of the natural user interface is about
people. In order to make systems for new environments (or ones in
which computers have not classically be found in) that are easy to use,
we need to design for the responses of people in these situations and
build the system that caters for their desires and needs.

Part IV

A P P E N D I X

AR E S U LT S - R AW D ATA

The table in Figure 20 presents the raw data of the user testing for
accuracy of the implemented gesture recognition algorithms.

a.1 open response - user feedback

• “2D was easier to use than 3D.3D was difficult to visualise, so
was harder to repeat the same shape and size of drawing. It was
difficult to make the beginning and end point meet. However, I
enjoyed using it and I look forward to using it in the future.”

• “The drawing was easier to control. Making the same start and
end point was hard, but I loved using the 3D gestures more. It
was much more interesting, but less repeatable and I guess more
challenging to get it to work. Personally I find it hard to visualise
shapes, so gestures aren’t probably the best thing for me.”

• 3D was a better mapping for the screen. Using 2-D movements
limited the screen as your fingers get in the way. I would have
liked to have been able to have seen what I’d drawn for both. but
in general the 2D didn’t feel as natural. 2D didn’t have proper
affordance. For the 2D I found myself getting distracted. The
3-D allowed more interaction but I feel like I needed to be more
precise. Having some sort of tactile affordance would improve the
naturalness. I can see though that in a closed environment 2-D
would be more practical.”

• “Very cool and very intuitive. Being exact with the shapes is easy.
Was much more fun as I really liked the interactitvity, kinda like
on the wii!”

• “ I found this really hard. Maybe having a training period at the
beginning of the application. I sometimes forgot the direction of
movement I had done. Maybe by having audio cues within the
gesture, such as when you hit the three points of the triangles
would help, especially if it got stronger as I got closer to making
the real gesture. Similarly visually seeing this as well would help!”

• “This is awesome. Sadly i find this stuff quite hard as I’ve been
diagnosed with trauma dexterity and I guess being left handed
too didn’t help. Nice work though.”

• “I definitely found this to be a more natural way of doing stuff.
3-D stuff gave you more control that 2D but definitely better to
have both. I think triangles were hard in 3D and were definitely
more natural on paper. But yeah, when this gets released on the
App Store let me know”

• “The controls were totally non-intuitive, Could have made more
of the gesture stuff.”

• “I thought the controls were very intuitive. I was really impressed
with the navigation most. We need one of these in the AlloSphere”

51

52 results - raw data

• “This is great. It really reminds me of Miro’s wireframe models. I
enjoyed using it a lot. Well done.”

Figure 20: Raw results

B I B L I O G R A P H Y

[1] URL http://emilyethos.files.wordpress.com/2009/09/
brain-computer-interface-11.jpg. (Cited on page 10.)

[2] URL http://www.technovelgy.com/graphics/content08/
contact-lens-circuit-human.jpg. (Cited on page 10.)

[3] URL http://paloma.isr.uc.pt/gesture-reco/pics/
gestureLib.jpg. (Cited on page 10.)

[4] URL http://nehe.gamedev.net/data/lessons/lesson.asp?
lesson=Quaternion_Camera_Class. (Cited on page 35.)

[5] Apple. iphone accelerometer picture. URL http:
//developer.apple.com/iphone/library/documentation/uikit/
reference/UIAcceleration_Class/Art/device_axes.jpg. (Cited
on pages ix and 27.)

[6] David F. Armstrong, William C. Stokoe, and Sherman Wilcox.
Gesture and the nature of language. Cambridge University Press,
1995. (Cited on page 22.)

[7] Lynda Benglis, 1970. URL http://www.brooklynmuseum.org/
eascfa/feminist_art_base/archive/images/576.1721.jpg.
(Cited on page 32.)

[8] Meera M. Blattner, Denise A. Sumikawa, and Robert M. Greenberg.
Earcons and icons: Their structure and common design principles.
In Human-Computer Interaction, volume 4, pages 11–44, 1989. (Cited
on page 36.)

[9] Klaus Boehm, Wolfgang Broll, and Michael A. Sokolewicz. Dy-
namic gesture recognition using neural networks: a fundament for
advanced interaction construction. Technical report, Proc. SPIE,
2004. (Cited on page 24.)

[10] Richard A. Bolt. "put-that-there": Voice and gesture at the graphics
interface. Technical report, Architecture Machine Group, Mas-
sachusetts Institute of Technology, 1980. (Cited on page 17.)

[11] Mahmoud Elmezain, Ayoub Al-Hamadi, Jorg Appenrodt, and
Bernd Michaelis. A hidden markov model-based continuous ges-
ture recognition system for hand motion trajectory. In Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, 2008.
(Cited on page 24.)

[12] D. M. Gavrila. The visual analysis of human movement: A survey.
In Computer Vision and Image Understanding, volume 73, pages 82–
98, 1999. (Cited on page 24.)

[13] Ron George and Joshua Blake. Objects, containers, gestures, and
manipulations: Universal foundational metaphors of natural user
interfaces. In CHI’10 Natural User Interfaces Workshop, 2010. (Cited
on pages 3 and 9.)

53

http://emilyethos.files.wordpress.com/2009/09/brain-computer-interface-11.jpg
http://emilyethos.files.wordpress.com/2009/09/brain-computer-interface-11.jpg
http://www.technovelgy.com/graphics/content08/contact-lens-circuit-human.jpg
http://www.technovelgy.com/graphics/content08/contact-lens-circuit-human.jpg
http://paloma.isr.uc.pt/gesture-reco/pics/gestureLib.jpg
http://paloma.isr.uc.pt/gesture-reco/pics/gestureLib.jpg
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=Quaternion_Camera_Class
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=Quaternion_Camera_Class
http://developer.apple.com/iphone/library/documentation/uikit/reference/UIAcceleration_Class/Art/device_axes.jpg
http://developer.apple.com/iphone/library/documentation/uikit/reference/UIAcceleration_Class/Art/device_axes.jpg
http://developer.apple.com/iphone/library/documentation/uikit/reference/UIAcceleration_Class/Art/device_axes.jpg
http://www.brooklynmuseum.org/eascfa/feminist_art_base/archive/images/576.1721.jpg
http://www.brooklynmuseum.org/eascfa/feminist_art_base/archive/images/576.1721.jpg

54 Bibliography

[14] DIETER GERNERT. Ockham’s razor and its improper use. URL
http://www.vixra.org/pdf/0908.0074v1.pdf. (Cited on page 9.)

[15] Frank Gilbreth. Motion efficiency study, 1914. URL http://click.
si.edu/images/upload/Images/pn_737_Image_167.jpg. (Cited
on page 32.)

[16] Chris Harrison, Desney Tan, and Dan Morris. Skinput: Appro-
priating the body as an input surface. In CHI 2010. ACM, 2010.
(Cited on page 10.)

[17] Tobias Hollerer, JoAnn Kuchera-Morin, and Xavier Amatriain. The
allosphere: a large-scale immersive surround-view instrument.
In Emerging displays technologies: images and beyond: the future of
displays and interacton. ACM, 2007. (Cited on page 9.)

[18] Juha Kela, Panu Korpipa, Jani Mantyjarvi, Sanna Kallio, Giuseppe
Savino, and Luca Jozzo Sergio Di Marca. Accelerometer-based ges-
ture control for a design environment. In Personal and Ubiquitous
Computing, 2005. (Cited on pages 17 and 24.)

[19] Adam Kendon. Gesture: visible action as utterance. Cambridge
University Press, 2004. (Cited on pages 4 and 22.)

[20] Nils Krahnstoever, Sanszhar Kettebekov, S. Kettebekov, Rajeev
Sharma, Mohammed Yeasin, and R. Sharma. A real-time frame-
work for natural multimodal interaction with large screen dis-
plays. In Fourth IEEE International Conference on Multimodal Inter-
faces, 2002. (Cited on page 17.)

[21] Sven Kratz and Michael Rohs. A three dollar gesture recognizer :
Simple gesture recognition for devices equipped with 3d acceler-
ation sensors. In Intelligent User Interfaces, February 2010. (Cited
on pages 24, 26, and 43.)

[22] David M. Krum, Olugbenga Omoteso, William Ribarsky, Thad
Starner, and Larry F. Hodges. Speech and gesture multimodal con-
trol of a whole earth 3d visualization environment. In Proceedings
of the symposium on Data Visualisation, 2002. (Cited on page 17.)

[23] James A. Landay and Brad A. Myers. Interactive sketching for the
early stages of user interface design. 1995. (Cited on page 17.)

[24] Jiayang Liu, Zhen Wang, Lin Zhong, Jehan Wickramasuriya, and
Venu Vasudevan. uwave: Accelerometer-based personalized ges-
ture recognition. Technical report, Rice University and Motorola
Labs, June 2008. (Cited on page 24.)

[25] E. Mandler, R. Oed., and W. Doster. Experiments in on-line script
recognition. In 4th Scandinavian Conference of Image Analysis, pages
75–86, 1985. (Cited on page 23.)

[26] Jani Mäntyjärvi, Juha Kela, Panu Korpipäa, and Sanna Kallio.
Enabling fast and effortless customisation in accelerometer based
gesture interaction. In MUM, 2004. (Cited on page 24.)

[27] Etienne-Jules Marey. Man with pole. URL http://content.
stamen.com/talks/where_20_2008/files/marey_pole.jpg.
(Cited on page 31.)

http://www.vixra.org/pdf/0908.0074v1.pdf
http://click.si.edu/images/upload/Images/pn_737_Image_167.jpg
http://click.si.edu/images/upload/Images/pn_737_Image_167.jpg
http://content.stamen.com/talks/where_20_2008/files/marey_pole.jpg
http://content.stamen.com/talks/where_20_2008/files/marey_pole.jpg

Bibliography 55

[28] Étienne-Jules Marey. Doves, Around 1882. URL http://
www.probehead.com/log/images/20050130_Marey.jpg. (Cited on
page 31.)

[29] David McNeill. Hand and Mind: What Gestures Reveal about Thought.
University Of Chicago Press, 1996. (Cited on page 22.)

[30] Thomas B. Moeslund and Erik Granum. A survey of computer
vision-based human motion capture. In Computer Vision and Image
Understanding, volume 81, pages 231–268, 2001. (Cited on page 24.)

[31] Kouichi Murakami and Hitomi Taguchi. Gesture recognition us-
ing recurrent neural networks. Technical report, roceedings of
the SIGCHI conference on Human factors in computing systems:
Reaching through technology, 1991. (Cited on page 24.)

[32] Gerrit Niezen and Gerhard P. Hancke. Gesture recognition as
ubiquitous input for mobile phones. In UbiComp ’08 Workshop W1
– Devices that Alter Perception, 2008. (Cited on page 24.)

[33] Donald Norman. The Design of Everyday Things. Doubleday Busi-
ness, 1990. (Cited on pages 4 and 7.)

[34] Antti Nurminen and Antti Oulasvirta. 10 designing interactions
for navigation in 3d mobile maps. In Lecture Notes in Geoinforma-
tion and Cartography. Springer Berlin Heidelberg, 2008. (Cited on
page 9.)

[35] David M. Piscitello and A. Lyman-Chapin. Open Systems Net-
working: TCP/IP and OSI. Addison-Wesley, Boston, MA, USA, 1st
edition, 1993. (Cited on page 39.)

[36] Réjean Plamondon and Sargur N. Srihari. On-line and off-line
handwriting recognition: A comprehensive survery. In IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE IN-
TELLIGENCE, volume 22, pages 63–84, 2000. (Cited on page 23.)

[37] Roope Raisamo. Multimodal human-computer interaction : a
constructive and empirical study. Master’s thesis, University of
Tampere, December 1999. (Cited on page 3.)

[38] Byron Reeves and Clifford Nass. The Media Equation: How Peo-
ple Treat Computers, Television, and New Media Like Real People and
Places. Center for the Study of Language and Information, 2003.
(Cited on page 4.)

[39] Thomas Schlömer, Benjamin Poppinga, Niels Henze, and Susanne
Boll. Gesture recognition with a wii controller. In Tangible and
embedded interaction. University of Oldenburg, 2008. (Cited on
pages 24, 26, and 43.)

[40] Richard Serra. Lead piece, 1968. URL http://www.kunstmuseumsg.
ch/. (Cited on page 32.)

[41] Ben Shneiderman. Direct manipulation: A step beyond program-
ming languages. In joint conference on Easier and more productive use
of computer systems. (Part - II): Human interface and the user interface,
1981. (Cited on page 4.)

http://www.probehead.com/log/images/20050130_Marey.jpg
http://www.probehead.com/log/images/20050130_Marey.jpg
http://www.kunstmuseumsg.ch/
http://www.kunstmuseumsg.ch/

56 Bibliography

[42] Ben Shneiderman. Designing the User Interface. Addison Wesley,
1997. (Cited on page 7.)

[43] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis.
OpenGL(R) Programming Guide: The Official Guide to Learning
OpenGL(R). Addison-Wesley, August 2007. (Cited on pages ix,
33, and 35.)

[44] Sreeram Sreedharan, Edmund S. Zurita, and Beryl Plimmer. 3d
input for 3d worlds. In OzCHI, 2007. (Cited on page 24.)

[45] Ivan Sutherland. Sketchpad: A man-machine graphical communi-
cation system. Technical report, Massachusetts Institute of Tech-
nology, 1963. (Cited on page 5.)

[46] Desney S. Tan, George G. Robertson, and Mary Czerwinski. Explor-
ing 3d navigation: Combining speed-coupled flying with orbiting.
In SIGCHI conference on Human factors in computing systems, pages
418 – 425, 2001. (Cited on page 9.)

[47] Charles C. Tappert, Ching Y. Suen, and Toru Wakahara. The state
of the art in on-line handwriting recognition. In IEEE TRANS-
ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLI-
GENCE, volume 12, 1990. (Cited on page 23.)

[48] Frederick Winslow Taylor. The principles of scientific management.
1st World Library - Literary Society, 1923 (Reprint 2005). (Cited on
page 32.)

[49] Tamas Vajk, Paul Coulton, Will Bamford, and Reuben Edwards.
Using a mobile phone as a “wii-like” controller for playing games
on a large public display. In International Journal of Computer Games
Technology, 2008. (Cited on page 24.)

[50] Jamie A. Ward, Paul Lukowicz, and Gerhard Troster. Gesture
spotting using wrist worn microphone and 3-axis accelerometer. In
Proceedings of the 2005 joint conference on Smart objects and ambient
intelligence: innovative context-aware services: usages and technologies,
pages 99 – 104, 2005. (Cited on page 24.)

[51] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures
without libraries, toolkits or training: A one dollar recognizer for
user interface prototypes. In User Interface Software and Technology,
October 2007. (Cited on pages ix, 23, 24, 25, and 26.)

[52] Matt Wright. The open sound control 1.0 specification. URL
http://opensoundcontrol.org/spec-1_0. (Cited on page 40.)

[53] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes.
Sketch: an interface for sketching 3d scenes. In International Con-
ference on Computer Graphics and Interactive Techniques, 2006. (Cited
on page 17.)

http://opensoundcontrol.org/spec-1_0

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	The need for change
	1 Introduction
	1.1 Project Aims

	2 The User Interface
	2.1 The Development of the User Interface
	2.1.1 Understanding the exisiting paradigms
	2.1.2 Designing the next step

	2.2 The Natural User Interface
	2.2.1 Human-Computer Interaction and 3-D Visualisation
	2.2.2 Future input devices

	2.3 Summary

	Building Gesture
	3 A 3-D interactive multi-user environment
	3.1 Gesture
	3.1.1 System Components
	3.1.2 Next Steps
	3.1.3 Related Work

	4 Building the Controller
	4.1 An iPhone-based controller
	4.1.1 Requirements of the controller
	4.1.2 Designing the User Interface

	4.2 Gesture Recognition
	4.2.1 What is a gesture?
	4.2.2 Automatic Gesture recognition
	4.2.3 Related Work
	4.2.4 2-D Gesture recognition - The $1 Recognizer
	4.2.5 Extending to 3-D - The $3 Recognizer
	4.2.6 The Gesture set

	4.3 Summary

	5 Visualisation and Sonification of the 3-D environment
	5.1 Capturing motion for visualisation
	5.2 Exploring the iPhone data
	5.3 The Visualisation Environment
	5.3.1 Viewing a 3-D scene : Camera control
	5.3.2 Stereoscopic imagery
	5.3.3 Sonfication

	5.4 Constructing the UI

	6 Connecting and finishing the system
	6.1 Building a connection - UDP vs. TCP
	6.1.1 Organising your data - OpenSoundControl

	6.2 Completing the system

	User Testing, Results and Discussion
	7 User testing
	7.1 Gesture Recognition
	7.1.1 The participants
	7.1.2 Touch Screen gestures
	7.1.3 Three-Dimensional Dynamic gestures

	7.2 The Gesture System

	8 Conclusion

	Appendix
	A Results - Raw Data
	A.1 Open response - User feedback

