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ABSTRACT
Designing mobile interfaces for computer-based musical per-
formance is generally a time-consuming task that can be ex-
asperating for performers. Instead of being able to experi-
ment freely with physical interfaces’ affordances, performers
must spend time and attention on non-musical tasks includ-
ing network configuration, development environments for
the mobile devices, defining OSC address spaces, and han-
dling the receipt of OSC in the environment that will control
and produce sound. Our research seeks to overcome such
obstacles by minimizing the code needed to both generate
and read the output of interfaces on mobile devices. For iOS
and Android devices, our implementation extends the appli-
cation Control to use a simple set of OSC messages to define
interfaces and automatically route output. On the desktop,
our implementations in Max/MSP/Jitter, LuaAV, and Su-
perCollider allow users to create mobile widgets mapped to
sonic parameters with a single line of code. We believe the
fluidity of our approach will encourage users to incorporate
mobile devices into their everyday performance practice.
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1. INTRODUCTION
Ubiquitous mobile devices such as iOS and Android are
plentiful, useful, and becoming expected/necessary input
devices for NIMEs. In addition to the wealth of all-in-
one applications that implement NIMEs exclusively on the
mobile device hardware, there are now also many general-
purpose software packages for creating various input inter-
faces on mobile devices and outputting OSC over wireless,
including mrmr1, TouchOSC2, and Lemur3. Such “second-
generation OSC implementations” [15] focus entirely on re-
altime gestural control, represent user input as OSC, and
stream the results wirelessly. The pervasiveness and gen-
erality of OSC make it straightforward to build distributed
NIMEs by connecting custom mobile device interfaces to
custom mapping, control, and audio software.

1http://mrmr.noisepages.com
2http://hexler.net/software/touchosc
3http://liine.net/en/products/lemur
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Our research radically simplifies and makes dynamic the
workflow for developing such distributed NIMEs. Instead of
forcing the user to think in terms of different customizable
pieces of software connected by explicit messaging accord-
ing to a custom OSC schema, we provide the abstraction
of a single distributed system in which connecting widgets4

on the mobile device to sound control parameters in the
synthesis environment is no different than if the widgets
existed within the synthesis environment itself. In particu-
lar, programming the entire distributed system occurs only
in the synthesis environment. For example, as a beginning
Max/MSP/Jitter programmer interactively develops a cus-
tom sound synthesis patch in an exploratory manner, the
only apparent practical or conceptual difference between
connecting Max sliders or iPad sliders to synthesis parame-
ters is that they appear on different hardware (with different
display and input affordances). Consequently, it also pro-
vides powerful mechanisms to dynamically create, remove,
and modify the appearance and behavior of interfaces on
the mobile device, opening possibilities for interfaces that
change during the course of a performance under the direct
or indirect control of performers and/or software processes.

1.1 Prior Work(flow)
Before, users of OSC always had to be explicitly aware of the
sending and receiving software systems and of the messages
between them, and program both sides according to the
chosen OSC address space.

Many existing interface apps for mobile devices have an
associated visual interface builder application. The process
of creating a virtual slider and linking it to a prototyping
environment is typically similar to the following (asterisks
indicate a task that only needs to be completed once per
interface as opposed to once per widget):

• Launch the interface builder app and create a new
blank interface*

• Drag a widget into the interface

• Define an OSC address for the widget’s output

• Transfer the interface to a mobile device*

• On the mobile device, select the newly transferred in-
terface*

• On the mobile device, select a IP address and port
number for output*

4Throughout this paper, a “widget” on a mobile device
could take data from the device’s accelerometer, micro-
phone, compass, gyroscope, and other sensors as well as
traditional screen-based GUI elements such as buttons, di-
als, and sliders.



• In the prototyping platform, create an object to re-
ceive OSC messages

• In the prototyping platform, define a callback for the
specific OSC address this widget will output

• In the prototyping platform, define an object that
sends OSC messages to the widget so that you can
set its value from the prototyping environment

Four of these steps only need to be performed once, and
five need to be performed for each widget added to the
interface. Our solution reduces this to a single step per-
interface and a single step per-widget.

Other researchers have also focused on allowing users to
easily map interface elements. In the SpeedDial[2] project
Georg Essl created a system to quickly map the interactive
affordances of the Nokia N95 phone to synthesis parame-
ters using a small number of button presses. This project
shares our goal of making meaningful musical mappings pos-
sible via a minimal number of steps. Essl further continued
this line of research with the default interface of his urMus
project[3] which allows users to quickly map control param-
eters to synthesis algorithms using multitouch gestures. In
both of Essl’s projects device affordances are mapped to
synthesis algorithms running on the phone itself; our re-
search instead focuses on mobile devices controlling synthe-
sis on remote computers. In addition to his experiments
with mapping, Essl also described the benefits of using Ze-
roconf and OSC together in urMus to automate network
connectivity[4].

The c74 app[6] creates interfaces on iOS devices whose
layouts are dynamically generated from Max. However, in-
terface design using c74 requires carefully scripted messages
sent to a single c74 Max object, and the values of the wid-
gets must be separately routed from the c74 object’s outlet.
Unlike our research, c74 is written for a specific desktop ap-
plication and mobile platform.

Ge Wang et al. wrote about dynamic control mapping for
ChucK[14]. ChucK can quickly patch together audio signal
graphs that can be controlled by MIDI, HID and OSC data.
The LiCK library for ChucK5 includes classes that easily
parse input from a variety of control sources, including both
Control and TouchOSC. However, these classes are for ac-
cepting data from pre-defined interfaces and do not allow
the creation of mobile interfaces from within ChucK itself.

Moving away from mobile devices, Julià, Gallardo and
Jordà authored a framework easing the process of creating
and integrating tabletop interfaces[7] with Pure Data (Pd).
Their framework provides the coordinates of fingers on the
tabletop surface via a simple pair of Pd objects and en-
ables users to easily create interface objects on the tabletop
surface in Pd. The Field prototyping environment[1] also
influenced our research. In Field users can create graphi-
cal widgets that manipulate variables in textual code while
programs are running. There is no need to write the compli-
cated callbacks typically associated with asynchronous user
input; instead, visual programming techniques are used to
automatically assign the output of widgets to specific vari-
ables. We imagine the research outlined here being used
with similar ease.

2. IMPLEMENTATION
Much of the research for this paper extends the project Con-
trol [9], written by the first author. Control allows users
to define touchscreen interfaces for iOS and Android de-
vices using web technologies such as HTML, CSS, JSON

5https://github.com/heuermh/lick

Figure 1: Automatically generated layouts after
adding 2, 3, 4 and 5 widgets

and JavaScript. Devices running the Control application
can be automatically discovered on a network using the Ze-
roconf protocol.

In addition to extending Control we have also created li-
braries that manage the process of generating and utilizing
interfaces on devices running Control for Max, LuaAV and
SuperCollider. These can be thought of as proxy classes
running in the synthesis environment that create an ab-
straction of the mobile device / network / personal com-
puter system.

2.1 Dynamic interface creation on mobile de-
vice

We extended Control so that interfaces could be dynami-
cally created using a simple OSC namespace:

• /control/createBlankInterface - creates a blank inter-
face in portrait or landscape orientation

• /control/setDestination - set the IP address and port
where Control will output OSC information

• /control/addWidget - accepts a string of JSON defin-
ing a widget to be placed in the interface

• /control/removeWidget - removes a named widget from
the interface

• /control/runScript - execute any arbitrary JavaScript
on device

There are also addresses to change parameters of existing
widgets such as color, bounding box, and output range.

2.2 Automated GUI Layout
Although the above namespace is flexible enough to allow
users to define interfaces remotely, it did not yield the de-
sired type of fluid experimentation. One impediment was
having to specify a bounding box for each widget: if wid-
gets were placed incorrectly, users would have to send a
separate OSC message to correct positioning. To alleviate
this problem we incorporated an automatic layout manager.
For example, Max users can copy and paste the same con-
trol.slider object five times and five sliders will appear on
the mobile device in an auto-generated layout as shown in
Figure 1.

Control’s new AutoLayout object uses a simple subdivi-
sion scheme. When the first widget is added to an interface
it fills it entirely. When a second widget is added, the first
widget is cut in half and the second widget fills the other
half of the interface. For every widget added thereafter, Au-
toLayout will find the existing widget occupying the largest
area and then cut that widget in half to make room for the



new widget. Figure 1 illustrates this process as more and
more widgets are added to the interface.

Several optional parameters provide flexibility in this scheme.
A widget can be marked sacrosanct ; such widgets will never
be subdivided. Control interfaces are also divided into pages
where a page is one screen of widgets. Users can optionally
specify a particular page for a widget. Once there is more
than one page in an interface buttons automatically appear
to enable users to switch between pages.

2.3 Automated OSC Namespace Generation
We also automate the generation of an OSC namespace for
widgets. In all three of our implementations, a master ob-
ject assigns each widget a unique id number; this number is
appended to the widget type to obtain an OSC address for
the widget. Thus, the first button automatically outputs
to /Button1, the second button outputs to /Button2 etc.
Although these addresses do not document functionality, in
practice users do not need to know the OSC destinations of
widgets because the Max/MSP, LuaAV and SuperCollider
implementations all handle creating the appropriate OSC
responders behind the scenes and route the values received
to a destination of the user’s choice.

Each implementation also provides a method for users to
assign a specific output address to a widget. The output
address for any widget can be changed on-the-fly; for ex-
ample, the output address of a slider could be dynamically
re-assigned whenever a user changes the synthesis algorithm
they are controlling.

2.4 Max/MSP Implementation

Figure 2: Max patch showing accelerometer out-
put and two widgets controlling the frequency and
muting of an oscillator

The Max implementation (see Figure 2) consists of graph-
ical objects that make routing the outputs and inputs of
Control as easy as possible. To begin using Control with
Max a user first creates a control.master object, which is
responsible for finding instances of Control running on the
local network and routing OSC messages to and from a se-
lected instance. By default it will connect to the first run-
ning instance of Control it finds on a wireless network, but
a drop-down menu listing all devices found via Zeroconf is
available if a user wishes to select a different device. As soon
as the master object is created, a blank interface appears
on the selected mobile device.

Each widget in Control has a separate Max object rep-
resenting it, with a single inlet and outlets to match the
number of corresponding widget outputs. For example, the
control.knob object possesses a single outlet outputting the
current value of the knob while control.acc continuously out-
puts the three accelerometer axes via three outlets. A nu-

merical value sent to the inlet of a Max object will set the
value of the widget on the device running Control, while
Max messages such as setRange and setBounds are trans-
lated into OSC messages using the address of the widget.
Max objects that are copied and pasted will create unique
instances of widgets in Control; this makes it extremely easy
to set up arrays of sliders or buttons. When a Max object
is deleted, its corresponding mobile widget is also removed.

The Max implementation is open-source and available for
download6.

2.5 LuaAV Implementation
LuaAV is an integrated programming environment for real-
time audio-visual composition based on the Lua program-
ming language [13]. An extension module to interface with
Control is included in LuaAV.7

Both Zeroconf handshaking and registration with the mo-
bile device and OSC socket management occur automati-
cally when the control module is loaded:

-- handshake via Zeroconf, initialize OSC,
-- and create a blank interface on mobile device:
local control = require "control"

Controls of various types can be created with the Knob,
Slider, and other factories in the control module. The first
argument is an optional name for accessing the widget from
Lua (otherwise a name will be auto-generated and returned);
the second argument is an object or callback to map to.
Additional named arguments can be used to specialize the
widget. The following code creates a knob and slider on the
mobile device and maps them to a synthesizer:

-- create a synth to control
local sine_def = Def{

freq = 200, vol = 0.2,
SinOsc{ P"freq" } * P"vol"

}
local synth = sine_def()

-- create widget on mobile device to control the synth
control.Knob{ "vol", synth }

-- creating with additional configuration
control.Slider{ "freq", synth, label="Frequency",

value=220, min=110, max=880, page=1, color="#f00",
}

Once created, the widget name is used to get and set
the value of the widget, or to remove the widget from the
interface:

-- use widget’s current value
print(control.vol)

-- set widget value (sends to device)
control.vol = 0.1

-- remove widget
control.vol = nil

The control module provides three ways to handle up-
dates from the mobile device interface. Firstly, the state
of each widget can be polled manually by indexing control
with the corresponding widget name. Secondly, a widget
can be set to update the corresponding field in a table or
object, such as a synthesizer. Thirdly, a function callback
can be mapped to a widget name. Mapping to an object
or function can be done in the widget constructor or later
using the control.map(name, destination) function:

6https://github.com/charlieroberts/Control---Max-
MSP-Integration
7Available at https://github.com/LuaAV/LuaAV



-- map to a callback function
control.map("freq", function(...)

print("frequency callback:", ...)
end)

2.6 SuperCollider Implementation
The SuperCollider[8] programming language is extremely
dynamic and flexible. By taking advantage of these traits
we have minimized the code required for interface genera-
tion and usage. However, unlike LuaAV and Max, Super-
Collider is not currently capable of doing Zeroconf based
auto-discovery of devices on a network. This means that
users must manually enter the IP address and port of the
device they wish to utilize.

The SuperCollider class CNTRL that integrates with Con-
trol is open-source and available for download8. The code
example below shows how to create and access device wid-
gets from within SuperCollider.

// initialize class object by passing ip + port
// of mobile device
CNTRL.init("127.0.0.1", 8080);

a = CNTRL.slider; // create a slider
a.value.postln; // print the slider’s current value

b = CNTRL.button; // create a button
b.value = 1; // set state of button
b.value = 0;

// create button with callback
c = CNTRL.button( (\callback:{ arg btn; btn.value; } ) );

// pass optional parameters creating widget
d = CNTRL.button( (label:"TEST", page:1, color:"#f00") );

// Define a synth
x = SynthDef("sine-synth", {| freq = 440, vol = 1 |

Out.ar(0, SinOsc.ar(freq) * vol);
}).play;

// map new widgets to synth parameters
e = CNTRL.button( \vol, x);
f = CNTRL.slider( \freq, x, (min:440, max:880) );

// remove widget
e.remove;

Our SuperCollider implementation provides the same three
mechanisms for handling updates from mobile device inter-
faces as found in LuaAV.

3. DISCUSSION
Users can focus on a single environment with networking
managed behind the scenes, without having to deal with
multiple workflows or networking issues. We believe that
never having to leave the conceptual space of the host en-
vironment (Max, Lua, SuperCollider, etc.) is a substantial
boost to productivity and creativity, as HCI researcher Ben
Shneiderman argues in his writings on creativity support
tools[11][12]. Shneiderman further outlines twelve design
principles for creativity support tools that “...support rapid
exploration and easy experimentation”. Our research incor-
porates many of them:

• Support exploration - The ability to easily add and
remove interface elements dynamically enables rapid
exploration of interface ideas

8https://github.com/charlieroberts/Control---
SuperCollider-Integration

• Low threshold, high ceiling and wide walls - Creating a
simple interface in Control and connecting it to a pro-
totyping environment can be as simple as two lines of
code, but Control also enables users to define complex
interfaces in JavaScript.

• Support many paths and many styles - Users can create
interfaces statically or dynamically. They can use the
AutoLayout object to create layouts for them or they
can manually define boundaries for widgets. Users
can build Control layouts with an explicit host-side
object for each widget or more generally via scripting,
from both graphical and textual programming envi-
ronments.

• Make it as simple as possible - and maybe even simpler
- We don’t believe it is possible to make this process
simpler with current mobile devices.

• Choose black boxes carefully - We believe hiding the
networking protocols greatly simplifies the process;
however users remain free to take advantage of the
Control’s OSC namespace to customize their work-
flows.

In addition to supporting easy experimentation, dynamic
interfaces also create new possibilities for experimental com-
position. In a piece by the first author, entitled Compo-
sition for Conductor and Audience[10], audience members
running Control receive interfaces pushed to them from a
server at the start of the performance. Over the course of
the piece the musical parameter space changes according to
simple game-like rules, one of which is the ability of the con-
ductor to “cut” audience members from the performance if
they do not closely follow his or her direction. As members
of the audience are cut from or introduced into the perfor-
mance their interface changes to control different musical
parameters. This type of piece is an example of audience
participation and bi-directional networking that would have
been impossible to create with other mobile device interface
software.

We conducted informal interviews with potential users of
our research to assess its usefulness and determine features
they would like to see added. In the interviews subjects were
solely shown the Max objects; all subjects had significant
prior experience working with Max. The strongest feedback
was support for the automation our framework provides.
Selected quotes:

• “I like how it’s automatic... trying to get other devices
to work with Max is not usually this easy. There’s
normally a number of steps you need to complete.”

• “You don’t even have to think about layout... it does
seem very fast. I would definitely use this with Max.”

• “Auto-connection and auto-layout is useful... [it’s] re-
ally tedious in other models. I think it’s hella useful.”

The only common feature request was a way to save gen-
erated interfaces on devices for future use. However, all of
our implementations support the re-creation of interfaces
from code. Max objects will always be created in the same
order when opening a saved patch; this guarantees that the
same interface will be generated each time by patches using
Control objects. The sequential nature of code in LuaAV
and SuperCollider also guarantees that an unchanged pro-
gram will always generate the same interface. When this
was explained to subjects two of them followed up by ex-
pressing a desire to modify interfaces on the device itself.



They envisioned a workflow where widgets could be cre-
ated programmatically and automatically have their output
routed to the correct OSC address but then manually posi-
tioned on the mobile device via a drag and drop paradigm.

Users were also interested in having a synchronized inter-
face in Max that mirrored the interface found in Control.
This would allow users to position and change parameters
of the widgets using drag and drop inside of Max and would
also provide a backup interface when a mobile device is not
on hand.

4. CONCLUSION AND FUTURE WORK
The augmented OSC namespace in Control and its auto-
matic layout generator make it easier for any prototyping
environment to generate interfaces dynamically on mobile
devices. We hope that that other implementations will fol-
low the three already completed. The users we interviewed
about the Max implementation all spoke positively of the
research and expressed their desire to use it in their own
practice.

User feedback yielded a number of interesting ideas for
further research, including the mirroring of Control inter-
face widgets in graphical programming environments and
the ability to modify generated interfaces on the device it-
self.

We are interested in exploring introspection as a way to
automatically generate interfaces for defined algorithms. In
SuperCollider interfaces for SynthDefs can be generated this
way using the AutoGUI [5] quark. SynthDefs are queried
in order to determine their parameter space and a widget
is then created for each parameter the SynthDef exposes
for control. This approach often yields interfaces with con-
trols for parameters that are not interesting to users and
thus waste screen real estate. Our research to date has in-
stead focused on providing users the ability to intentionally
generate interface elements controlling parameters of inter-
est. Nevertheless we are also interested in attempting to
optimize the process of creating interfaces quickly via in-
trospection; one simple improvement would be to generate
interfaces automatically but then allow users to easily re-
move unwanted interface elements to prioritize control of
the parameters they are interested in.

We look forward to completing new, experimental compo-
sitions that take advantage of the features added to Control.
The ability to easily modify interfaces on devices opens up
a relatively under-explored territory of composition by ex-
tending the temporal material of composition to include the
interface feature space. We imagine compositions featur-
ing “unstable instruments” in which performance interfaces
change in unpredictable ways over the course of a piece, or
game-like works in which achieving certain musical goals
unlocks new controls to be utilized. The first piece to use
the dynamic features of Control (the aforementioned Com-
position for Conductor + Audience) was a satisfying first
step towards these goals.
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