
The Web Browser As Synthesizer And Interface

Charles Roberts
Media Arts and Technology

Program
University of California

at Santa Barbara
charlie@charlie-roberts.com

Graham Wakefield
Graduate School of Culture

Technology
KAIST

Daejon, Republic of Korea
grrrwaaa@kaist.ac.kr

Matthew Wright
Media Arts and Technology

Program
University of California

at Santa Barbara
matt@create.ucsb.edu

ABSTRACT
Our research examines the use and potential of native web
technologies for musical expression. We introduce two Java-
Script libraries towards this end: Gibberish.js, a heavily op-
timized audio DSP library, and Interface.js, a GUI toolkit
that works with mouse, touch and motion events. Together
these libraries provide a complete system for defining musi-
cal instruments that can be used in both desktop and mobile
web browsers. Interface.js also enables control of remote
synthesis applications via a server application that trans-
lates the socket protocol used by web interfaces into both
MIDI and OSC messages.

Keywords
mobile devices, javascript, browser-based NIMEs, web au-
dio, websockets

1. INTRODUCTION
Web technologies provide an incredible opportunity to present
new musical interfaces to new audiences. Applications writ-
ten in JavaScript and designed to run in the browser offer
remarkable performance, mobile/desktop portability, and
longevity due to standardization. As the web browser has
matured, the tools available within it to create dynamic mu-
sical content have also progressed, and in the last two years
realtime and low-level audio programming in the browser
has become a reality. Given the browser’s ubiquity on both
desktop and mobile devices it is arguably the most widely
distributed run-time in history, and is rapidly becoming a
write once, run anywhere solution for musical interfaces.

Additionally, web apps can now incorporate accelerom-
eters, multitouch screens, gyroscopes, and fully integrated
sound synthesis APIs, making web technologies suddenly
very attractive for NIMEs. Our research stems from the
desire to explore the affordances offered by NIMEs that are
web apps and the belief that such instruments should be
open and cross-platform. Ideally, a web-based musical in-
terface should be able to run on desktop machines, laptops,
and mobile devices regardless of the browser or operating
system it is presented in. We believe the libraries described
here are a significant step towards realizing this goal.

Our research is especially sympathetic to NIME develop-
ers wanting to take advantage of web technologies without

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

having to learn the quirks and eccentricities of JavaScript,
HTML and CSS simultaneously. We designed the syntax
of Gibberish.js and Interface.js so that they can be utilized,
both independently or in conjunction, almost entirely using
JavaScript alone, requiring a bare minimum of HTML and
absolutely no CSS (see Section 5). The library downloads
include template projects that enable programmers to safely
ignore the HTML components and begin coding interfaces
and signal processing in JavaScript immediately.

2. PROBLEMS AND POSSIBILITIES OF
THE WEB AUDIO API

In 2011 Google introduced the Web Audio API[14] and in-
corporated supporting libraries into its Chrome browser.
The Web Audio API is an ambitious document; instead of
merely defining a basic infrastructure for processing audio
callbacks, the API defines how audio graphs should be cre-
ated and lists a wide variety of unit generators (“ugens”)
that should be included in browsers as standard. These
ugens are native pre-compiled objects that can be assem-
bled into graphs and controlled by JavaScript. For better or
for worse, the Mozilla Foundation had previously released
a competing API (“Audio Data”)[9] that they integrated
into the Firefox browser. This API also provided a well-
defined mechanism for writing audio callbacks in JavaScript,
however it provided no specifications for lower level, native,
pre-compiled ugens to be standardly included in browsers.
Fortunately, the Mozilla Foundation recently declared their
intention to adopt the Web Audio API[1], suggesting that
it will become the single standard for browser-based audio
synthesis. In October of 2012, Apple rolled out iOS 6.0 to
their phone and tablet devices and integrated the Web Au-
dio API into mobile Safari; it seems likely to be adopted
in other mobile platforms in the future, with promise of
longevity through standardization. Our research supports
both these APIs and automatically selects the correct one
to use.

Although the Web Audio API comes with highly efficient
ugens for common audio tasks such as convolution and FFT
analysis, there are tradeoffs that accompany its usage. Most
relate to the architectural decision to process blocks of at
least 256 samples (≈ 6 ms) instead of performing single-
sample processing. This places two notable restrictions on
audio programming performed using the Web Audio API:
lack of sample-accurate timing and inability to create feed-
back networks with short delays, which are necessary to
important signal-processing applications including filter de-
sign and physical modeling.

Fortunately, there is a workaround for these restrictions.
The Web Audio API contains a specification for a JavaScript
audio node that calculates output using JavaScript call-
backs that can be defined at runtime. These guarantee
sample-accurate timing and enable complex feedback net-

works, but at the expense of the efficiency that the na-
tive pre-compiled ugens provide. During our experiences
developing Gibber [13], a live coding environment for the
browser, we found that existing audio libraries (described
in Section 6) built for this runtime JavaScript node were
not efficient enough to realize the complex synthesis graphs
we envisioned and thus began work on our own optimized
library, Gibberish.

3. GIBBERISH: AN OPTIMIZED
JAVASCRIPT AUDIO LIBRARY

The principal reason for JavaScript’s excellent performance
in the browser is the use of just-in-time (JIT) compilation:
the virtual machine detects the most heavily used functions,
path and type-specializations of the code as it runs, and re-
places them with translations to native machine code. Al-
though JIT compilation is making waves in the browser to-
day, it can trace a long and diverse history to the earliest
days of LISP[5]. Now JIT compilers can approach and oc-
casionally even beat the performance of statically compiled
C code, though getting the best performance from a JIT
compiler may call for very different coding habits than for
a static compiler or interpreter.

We began our research by looking at the performance
bottlenecks associated with the JavaScript runtime and an-
alyzing what could be done to ameliorate them. The most
significant cost we found while working at audio rate in a
dynamic runtime is the overhead of object lookup. In com-
plex synthesis graphs, the simple task of resolving object
addresses thousands of times per second (and potentially
hundreds of thousands of times) levies a substantial cost.
Gibberish minimizes this cost by ensuring that all data and
functions used within the audio callback are defined and
bound within the outer local scope (as“upvalues”), avoiding
the need for expensive indexing into externally referenced
objects[8].

3.1 Code Generation
Unfortunately, ensuring the locality of data and procedures
for performance is not compatible with the flexibility to dy-
namically change the ugen graph, since adding or removing
ugens implies changing the set of data and procedures that
should be considered local to the audio callback. Our solu-
tion to this problem, inspired by [16], utilizes run-time code
generation.

To optimize the audio callback the Gibberish code gen-
eration (“codegen”) engine translates the user-defined ugen
graph created with object-oriented syntax into a single flat
audio callback where all routing and modulation is resolved
ahead of execution. This process is basically one of string
manipulation. Each ugen is responsible for generating a
fragment of code that invokes both its callback function
and the callbacks of all ugens that feed into it. Since all in-
puts to ugens are resolved recursively, requesting the master
output bus to perform code generation will effectively flat-
ten the entire audio graph into a linear series of code frag-
ments invoking ugen callbacks. These code fragments are
then concatenated to form a string representing the master
audio callback which is then dynamically evaluated into a
callable function using JavaScript’s eval() function.

As a simple example of the codegen algorithm in action,
consider the following high-level programming syntax to
create a frequency-modulated sine wave fed into a reverb
that in turn feeds the default output bus:

modulator = new Gibberish.Sine(4, 50); // freq, amp
carrier = new Gibberish.Sine({ amp : .1 });
carrier.frequency = add(440, modulator);

reverb = new Gibberish.Reverb({ input:carrier });
reverb.connect();

Traversing from the master output down through the
graph, codegen will occur in the following order: Bus > Re-

verb > Carrier > Add > Modulator. The result is the fol-
lowing callback function, which will be called every sample:

function () {
var v_16 = sine_5(4, 50);
var v_15 = sine_8(440 + v_16, 0.1);
var v_17 = reverb_11(v_15, 0.5, 0.55);
var v_4 = bus2_0(v_17, 1, 0);
return v_4;

}

The sine_5, sine_8, reverb_11 and bus2_0 variables
are all upvalues defined immediately outside the scope of
the master audio callback and thus resolved inexpensively.
These variables refer not to the ugens but to their signal
processing functions (aka audio callbacks). The simplistic
style of the generated code generally leads to improved run-
time performance. For example, passing values by simple
function arguments rather than using higher-level object
properties and instance variables is ten percent faster in
Google Chrome 26, according to [3].

Note that parametric properties of the ugens are trans-
lated as numeric literals (constants) in the generated code.
By storing properties as compile-time constants, rather than
using dynamic state, expensive calls to continuously index
them are entirely avoided. However the implication, which
may appear unusual, is that code generation must be in-
voked whenever a ugen property changes, in addition to
when ugens are added or removed. In the above example,
if we changed the frequency of our modulator sine wave
from four to three Hertz, code generation would be retrig-
gered. To reduce the cost of frequent regeneration, Gib-
berish caches and re-uses code for all ugens that have not
changed. Whenever a ugen property is changed, that ugen
is placed inside of a“dirty”array. During codegen each ugen
inside the dirty array regenerates the code fragment that in-
vokes its callback function; the code fragments for the rest
of the ugens remain unaltered. Even if the callback is regen-
erated dozens or hundreds of times a second it still winds
up being fairly efficient as only ugens with property changes
invoke their codegen method; all “clean” ugens simply pro-
vide the last fragment they generated to be concatenated
into the master callback.

3.2 Gibberish Ugens
A variety of ugens come included with Gibberish, listed in
Table 1. In addition to standard low-level oscillators such
as sine waves and noise generators, Gibberish also provides
a number of higher-level synthesis objects that combine os-
cillators with filters and envelopes. These high-level objects
provide a quick way to make interesting sounds using Gib-
berish and their source code also serves as guidance for pro-
grammers interested in writing their own synth definitions.

It is fairly terse for users to add, redefine, or extend a Gib-
berish ugen at runtime. For example, here is the definition
for the Noise ugen:

Gibberish.Noise = function() {
this.name = ’noise’;
this.properties = { amp:1 };
this.callback = function(amp) {
return (Math.random() * 2 - 1) * amp;

};
this.init();

}
Gibberish.Noise.prototype = Gibberish.Ugen;

Table 1: Gibberish Ugens by Type
Oscillators Sine, Triangle, Square, Saw, Bandlimited

Saw, Bandlimited PWM / Square, Noise

Effects Waveshapers, Delay, Decimator, Ring Mod-
ulation, Flanger, Vibrato, Chorus, Reverb,
Granulator, Buffer Shuffler / Stutterer.

Filters Biquad, State Variable, 24db Ladder,
One Pole

Synths Synth (oscillator + envelope), Synth2 (oscil-
lator + filter + envelope), FM (2 operator),
Monosynth (3 oscillator + envelope + filter)

Math Add, Subtract, Multiply, Divide, Absolute
Value, Square Root, Pow

Misc Sampler (record & playback), Envelope Fol-
lower, Single Sample Delay, Attack/Decay
Envelope, Line/Ramp envelope, ADSR En-
velope, Karplus-Strong, Bus

The init() method is inherited from the Ugen prototype
and sets up code generation routines for the ugen in addi-
tion to performing other initialization tasks. The properties
dictionary in the ugen definition identifies properties that
are used in the ugen’s callback method signature, and spec-
ifies their default values. When code generation occurs, the
order that individual properties are enumerated in this dic-
tionary defines their order in the ugen’s callback method
signature.

3.3 (Single Sample) Feedback
Allowing single sample feedback is a benefit of processing on
a per-sample basis instead of processing buffers. It can be
achieved in Gibberish using the Single Sample Delay (SSD)
ugen. This ugen samples and stores the output of an input
ugen at the end of each callback execution and then makes
that sample available for the next execution. Below is a
simple feedback example with a filter feeding into itself:

pwm = new Gibberish.PWM();
ssd = new Gibberish.SingleSampleDelay();

filter = new Gibberish.Filter24({
input: add(pwm, ssd),

}).connect();
ssd.input = filter;

In the generated callback below note that there are two
functions for the SSD ugen. One records an input sample
while the other outputs the previously recorded sample.

function () {
var v_7 = single_sample_delay_3();
var v_5 = pwm_2(440, 0.15, 0.5);
var v_6 = filter24_1(v_5 + v_7, 0.1, 3, true);
var v_4 = bus2_0(v_6, 1, 0);
single_sample_delay_8(v_6,1);
return v_4;

}

3.4 Scheduling and Sequencing
Although the JavaScript runtime includes its own meth-
ods for scheduling events, there is no guarantee about the
accuracy of the time used by this scheduler. Accordingly,
the only way to ensure accurate timing is to perform event
scheduling from within the audio sample loop. This in turn
means that any JavaScript DSP library that performs auto-
matic graph management and callback creation (as Gibber-
ish.js does) must also provide a mechanism for event timing
that is synchronized to the audio sample loop. Gibberish.js

contains a Sequencer object that can be used to sequence
changes to property values, calls to methods, or execution
of named or anonymous functions at user-defined rates with
sample-accurate timing.

The syntax for a sequencer uses a simple target/key mech-
anism. A sequencer’s target specifies the ugen (or any other
JavaScript object—scheduling is not limited to controlling
ugens) that the sequencer will control. The key specifies
the name of a property that should be set or a method
that should be called by the sequencer. The values array
defines the values that are passed to object methods or as-
signed to object properties, while the durations array con-
trols how often the sequencer fires off events. By default
time is specified in samples, but convenience methods are
provided for converting milliseconds, seconds, and beats to
samples. Thus, the following sequences a FMSynth looping
through three pitches and alternating between half a second
and a quarter second duration:

a = new Gibberish.FMSynth().connect();

b = new Gibberish.Sequencer({
target: a, key: ’note’,
values: [440, 880, 660],
durations: [seconds(.5), seconds(.25)],

}).start();

Musicians may also want to attach more than one prop-
erty change or method call to each firing of a sequencer ob-
ject, for example, changing an oscillator’s amplitude when-
ever its frequency changes. To accommodate this the Se-
quencer object can accept a keysAndValues dictionary that
can feature multiple key/value pairs to be sequenced.

a = new Gibberish.Sine().connect();

b = new Gibberish.Sequencer({
target: a,
durations: [beats(2), beats(1), beats(1)],
keysAndValues:{
frequency: [440, 880, 660],
amp: [.5, .25],

}).start();

This keysAndValues syntax has similarities to SuperCol-
lider’s Pbind object[11], which also enables the sequencing
of multiple parameters using the same timing.

When a values array contains a function, the Sequencer
will simply invoke it (with no arguments) to determine the
value it should use; this enables the sequencer to sched-
ule arbitrary behavior such as randomly picking elements
from an array. Functions within a sequencer’s values array
will still be called even if the Sequencer has no specified
target, supporting sample-accurate sequencing of any arbi-
trary JavaScript function (for example, to synchronize state
changes of multiple ugens).

4. INTERFACE.JS
Interface.js provides a solution for quickly creating GUIs us-
ing JavaScript that work equally well with both mouse and
touch interaction paradigms. The output of these GUI wid-
gets can control other JavaScript objects (such as Gibberish
ugens) and/or be converted to MIDI or OSC[18] messages
via a small server program that is included in the Inter-
face.js download. This means Interface.js can be used both
to control programs running in the browser and also to con-
trol external programs such as digital audio workstations.

Interface.js includes a useful array of visual widgets for
audiovisual control, including Button, MultiButton, Slider,
MultiSlider, RangeSlider, Knob, XY (multitouch, with physics),
Crossfader, Menu, Label, and TextField.

Interface.js also provides unified access to accelerometer
readings and the orientation of the device. These motion-
based sensors work on most mobile devices as well as the
desktop version of Google Chrome.

4.1 Event Handling in Interface.js
Interface.js binds widgets to object functions and values us-
ing a target / key syntax similar to the Gibberish sequencer
(see Section 3.4). A widget’s target specifies an object and
the key specifies a property or method to be manipulated.
What happens when a widget value changes depends on
what the key refers to: object properties are set to the new
widget value, while object methods are invoked with the
widget value as the first argument. Widgets providing mul-
tiple dimensions of control (e.g., XY, accelerometer...) are
configured with arrays of targets and keys with one target
and one key for each dimension of control.

Users can also register custom event handlers to create
more complex interactions than direct mappings between
widgets and property values. Although most browsers only
deal with either touch or mouse events, Interface.js provides
another type of event handler, touchmouse events, that re-
spond to both forms of input. The specific events are:

• ontouchmousedown - when a mouse press begins or a
finger first touches the screen

• ontouchmousemove - when a mouse or finger moves
after a start event

• ontouchmouseup - when a mouse press ends or a finger
is removed from the screen

There is also a fourth event handler, onvaluechange, that
is called every time the value of a widget changes, regard-
less of whether the widget changes by touch, the mouse, or
by motion. Procedurally changing a widget’s value (per-
haps due to the output of another widget) will also trigger
this event. Although the touchmouse and onvaluechange
event handlers provide a unified interface for dealing with
all events, users are free to register for dedicated mouse or
touch events if they want to change how interactivity func-
tions across different modalities.

4.2 Interface Layout And Appearance
The main container unit of Interface.js is the Panel wid-
get. Panel wraps an instance of the HTML canvas element,
a 2D drawing surface with hardware graphics acceleration
support in all current desktop browsers and most current
mobile browsers. Panel’s constructor allows users to spec-
ify a HTML element for the canvas tag to be placed inside,
allowing multiple panels to be placed at different points in
a HTML page. If no container HTML element is provided,
Interface.js will automatically create a canvas element that
fills the entire window and attach it to the HTML page; this
minimizes the HTML needed to create a GUI.

Widget sizes can be integer pixel values or float values
giving the size relative to the widget’s enclosing Panel. For
example, consider placing a Slider inside a 500 × 500 pixel
Panel. If the Slider’s x value is .5, then its leftmost edge will
be inset 250 pixels at the horizontal center of the panel. If
the Slider’s width is also .5, it will extend 250 pixels from the
horizontal center to the rightmost edge of the Panel. Using
relative layouts enables users to define interfaces without
having to worry about varying window sizes or the screen
sizes of different devices. An exception to this would be
creating an interface for a large screen with a large number
of widgets and then trying to view the same interface on a
smartphone; in this case the widgets, although positioned
and sized correctly, would be too small to use for accurate
interaction.

In lieu of using CSS to specify colors, Interface.js instead
allows them to be defined programatically using JavaScript.
By default, a widget uses the background, fill and stroke
properties assigned its container Panel object. Thus, by
default, all widgets in the same Panel use the same set of
colors. Changing the color properties of a Panel object im-
mediately changes the colors of its child widgets. If color
properties for an individual widget are explicitly set their
values will override the Panel’s default values.

4.3 Preset Management
Interface.js allows programmers to easily store the values
of widgets in an interface for instant recall. A call to the
method Interface.Preset.save(’preset name’) will se-
rialize the values of all widgets in the current interface and
convert the resulting object to a string that can be stored
using the HTML localStorage object.
Interface.Preset.load(’preset name’) loads a preset.

When a preset is loaded every widget sends out its target /
key message (if so defined) and executes its onvaluechange
event handler if the new value differs from the widget’s cur-
rent value.

4.4 Networked Control
As an alternative to controlling Web Audio synthesis graphs
or other JavaScript objects, Interface.js can also transmit
output over a network via the WebSocket API in order
to control remote applications. The WebSocket API sends
messages over TCP but features a handshake mechanism
relying on the HTTP protocol. Since most musical appli-
cations do not understand the WebSocket API, it becomes
necessary to translate messages received from a WebSocket
to a more appropriate musical messaging protocol, such as
OSC or MIDI.

Although there have been previous efforts creating servers
that translate WebSocket data into OSC or MIDI messages,
we believe our solution is uniquely efficient. Instead of sim-
ply creating a server that waits for incoming WebSocket
messages and then forwards them using OSC or MIDI, we
have included a HTTP server that serves interface files to
client devices. After launching our server application, any
user directing a client browser to the server’s IP address
(on port 8080) will receive an HTML page listing available
interfaces stored in the server’s default storage directory.
When a user selects an interface, it is downloaded to their
browser and a WebSocket connection is automatically cre-
ated linking their client device to the server; in other words,
the computer that serves Interface.js pages is automatically
also the recipient of the WebSocket messages generated by
such interfaces. WebSocket messages sent from the inter-
face are translated into OSC or MIDI messages based on
the contents of individual interface files.

A distinct advantage of this system is that programmers
do not need to think about establishing socket connections
when developing their interfaces; there are no hardcoded IP
addresses and no auto-discovery protocols needed. The IP
address and port is entered once when first accessing the
server; after that the location can be bookmarked for easy
access. Individual interfaces can also be bookmarked; in
this case the WebSocket connection is established as soon
as the interface bookmark is selected. On mobile devices
these bookmarks can be represented by icons on user’s home
screens; simply tapping such icons fetches the interface and
immediately opens the appropriate connection.

In order to indicate that a widget’s output should be
sent over the network, a target of Interface.OSC or In-
terface.MIDI is assigned. For widgets that target Inter-
face.OSC, the key property then represents the address the

Figure 1: A drum sequencer with four tracks of 32nd notes and controls for various effects

message will be sent to. For widgets targeting Interface.MIDI,
the key is an array containing the message type, channel,
and number (if it is a three-byte MIDI message) for the
output MIDI message. Multiple devices (and thus users)
can load interfaces from the server and send messages for
translation and forwarding simultaneously.

5. INTEGRATING INTERFACE.JS AND
GIBBERISH.JS

There a few simple steps in order to use Interface.js and Gib-
berish.js together to make a musical interface. Starting with
an HTML document containing the bare minimum neces-
sary tags (<html>, <head> & <body>), add two <script>

tags to import the Gibberish and Interface Javascript files.
A third <script> tag inside the body element contains all
user code to create the interface and/or audio graph. The
following complete sample interface file creates a sine tone
controlled by two sliders:

<html>
<head>

<script src="interface.js"></script>
<script src="gibberish_2.0.min.js"></script>

</head>

<body>
<script>
Gibberish.init();
sine = new Gibberish.Sine().connect();
var panel = new Interface.Panel();

sliderFrequency = new Interface.Slider({
target:sine, key:’frequency’,
min:150, max:1000,
label:’freq’, bounds:[0,0,.3,1],

});

sliderAmp = new Interface.Slider({
target:sine, key:’amp’,

label:’amp’, bounds:[.3,0,.3,1],
});

panel.add(sliderFrequency, sliderAmp);
</script>

</body>
</html>

6. RELATED WORK
There are a growing number of options for writing synthesis
algorithms in JavaScript in the browser. Audiolib.js[10] was
one of the first significant JavaScript audio libraries written
and still provides an excellent array of synthesis options. It
was our original choice for Gibber; we abandoned it only
after discovering that code generation often leads to more
efficient performance. Audiolib.js performs no graph man-
agement leaving programmers to implement their own audio
graphs.

Other libraries take vastly different approaches in terms
of the APIs they offer programmers. For example, Flock-
ing[7] enables users to define new ugens declaratively using
JavaScript Object Notation (JSON), while Timbre.js[4] is a
very impressive library that enables users to compose ugens
in a functional syntax inspired by jQuery, a JavaScript li-
brary for HTML manipulation. In addition to its extensive
use of code generation techniques, Gibberish.js differenti-
ates itself from these other libraries by containing several
more complex pre-composed synthesis ugens. For example,
Gibberish offers a polyphonic, enveloped two-op FM syn-
thesis ugen; to our knowledge no other JavaScript libraries
offer FM synthesis engines with easy control over carrier to
modulation ratios and index properties. Another example of
a complex pre-composed ugen is the Gibberish Monosynth,
a three-oscillator bandlimited synthesizer with an envelope,
24db resonant filter, and independent tuning and waveshape
controls for each oscillator. By including complex ugens we
allow programmers to begin creating music with rich sound

sources immediately.
Another solution for web based synthesis is JSyn[6], a

Java synthesis library originating over a decade ago. Un-
fortunately many browsers do not support Java by default,
and many do not support it at all (including Safari on iOS).

Although there are many other HTML / JavaScript inter-
face libraries, very few understand both touch and mouse
modalities and almost none are catered towards the needs
of musicians and live performers. A extension to jQuery
named Kontrol[15] provides well-engineered virtual knobs
and slider banks that respond to both touch and mouse
events. However, there is no support for control areas track-
ing multiple touches across a single rectangle; in our opin-
ion this is one of the most useful widgets for performance
on touchscreen devices. The Interface.js XY widget tracks
up to 11 touches simultaneously and also features a built-in
physics engine, inspired by the JazzMutant Lemur[2]. In ad-
dition to providing only three widgets, the Kontrol library
also requires knowledge of HTML and of the jQuery library.
In general the library is targeted towards existing web de-
velopers while Interface.js attempts to shield programmers
from HTML and CSS as much as possible.

The massMobile project[17] allows audience participation
in performances through web interfaces on mobile devices
that output to a database that can be read by Max/MSP
externals. It is interesting to note that this project started
with dedicated client applications for iOS and Android be-
fore switching to use web technologies in order to become
usable on a wider variety of devices. A notable precursor to
the massMobile project was the composition Telemusic #1,
by Randall Bradley, Steve Young and John Young[19]. In
this piece, users accessed a website with an embedded Flash
animation that communicated with a Java applet running in
the same page; this Java applet then forwarded information
to a remote instance of Max/MSP.

7. CONCLUSIONS AND FUTURE WORK
Both Gibberish.js and Interface.js are open-source and avail-
able for download on GitHub.1 A separate code repository,
Gibberface2, contains examples integrating both libraries,
ranging from the simple (as in Section 5 above) to more
complex interfaces and audio graphs such as the drum se-
quencer shown in Figure 1.

Part of the inspiration for Interface.js came from our work
on the mobile application Control [12]. Control allows users
to create interfaces for controlling remote applications with
web technologies but also provides access to device features
that are not exposed in browsers, such as the ability to
send and receive OSC and MIDI. Advances in JavaScript
APIs have exposed more and more functionality to mo-
bile browsers’ JavaScript runtime; gyro and compass sen-
sors are two examples of sensors that were not accessible in
the browser two years ago that now have established APIs.
There are still a number of sensors commonly available on
mobile devices that are inaccessible to JavaScript or imprac-
tical to process efficiently. As one example, detecting the
surface diameter of individual touches can be used to create
a crude yet surprisingly musical “aftertouch” signal that is
not possible to read using browser APIs alone. As more
APIs providing access to sensors become available in mo-
bile browsers we will update Interface.js to take advantage
of them.

In Gibberish there is a particular need for more analysis
ugens beyond the simple envelope follower that currently

1https://github.com/charlieroberts/Gibberish and
https://github.com/charlieroberts/interface.js
2https://github.com/charlieroberts/gibberface

exists. Gibberish has already been integrated into the live
coding environment Gibber and numerous group and solo
performances have been conducted using it as the synthesis
engine. The first author has recently performed in concert
using an instrument created with Gibberish.js and Inter-
face.js on a tablet device; a modified version of this inter-
face, which uses multitouch tracking to control bandlimited
pulsewidth modulation oscillators, is included in the Gib-
berface repository.

8. REFERENCES
[1] Web Audio API - MozillaWiki .

https://wiki.mozilla.org/Web_Audio_API.

[2] JazzMutant Lemur.
http://www.jazzmutant.com/lemur_overview.php.

[3] Parameter lookup vs. instance variables - jsPerf.
http://jsperf.com/

parameter-lookup-vs-instance-variables.

[4] T(”timbre.js”).
http://mohayonao.github.com/timbre.js/.

[5] J. Aycock. A brief history of just-in-time. ACM
Computing Surveys (CSUR), 35(2):97–113, 2003.

[6] P. Burk. JSyn–a real-time synthesis API for Java. In
Proceedings of the 1998 International Computer
Music Conference, pages 252–255. International
Computer Music Association San Francisco, 1998.

[7] C. Clark. colinbdclark/Flocking - Github.
http://github.com/colinbdclark/Flocking.

[8] Z. Herczeg, G. Lóki, T. Szirbucz, and Á. Kiss.
Guidelines for JavaScript Programs: Are They Still
Necessary? In Proceedings of the 11th Symposium on
Programming Languages and Software Tools and 7th
Nordic Workshop on Model Driven Software
Engineering. Tampere University of Technology, 2009.

[9] D. Humphrey, C. Brook, A. MacDonald, Y. Delendik,
R. Marxer, and C. Cliffe. Audio Data API -
MozillaWiki.
https://wiki.mozilla.org/Audio_Data_API.

[10] J. Kalliokoski. audiolib.js. http://audiolibjs.org.

[11] R. Kuivila. Events and patterns. In The SuperCollider
Book, chapter 6, pages 179–205. MIT Press, 2011.

[12] C. Roberts. Control: Software for End-User Interface
Programming and Interactive Performance.
Proceedings of the International Computer Music
Conference, 2011.

[13] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. Proceedings of the
International Computer Music Conference, 2011.

[14] C. Rogers. Web audio API.
http://www.w3.org/TR/webaudio/.

[15] A. Terrien. jQuery Kontrol demo.
http://anthonyterrien.com/kontrol/.

[16] G. Wakefield. Real-Time Meta-Programming for
Interactive Computational Arts. PhD thesis,
University of California Santa Barbara, 2012.

[17] N. Weitzner, J. Freeman, S. Garrett, and Y. Chen.
massMobile–an audience participation framework.
Proceedings of the New Interfaces For Musical
Expression Conference, 2012.

[18] M. Wright. Open Sound Control: an enabling
technology for musical networking. Organised Sound,
10(3):193–200, 2005.

[19] J. Young. Using the web for live interactive music. In
Proceedings of the 2001 International Computer
Music Conference, pages 302–305. Citeseer, 2001.

