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ABSTRACT 

TagRiver is a novel tag-cloud visualization which incorporates 
both multivariate and temporal data. TagRiver displays tags 
associated with a number of data elements simultaneously by 
visualizing the temporal changes within the tag information 
and the volume of the tags associated with each element. Tags 
for respective elements are scaled based on their popularity, 
and then are displayed in vertically adjacent polygonal 
regions. The area of each of these regions is proportional to 
the volume of the tag information of the corresponding data 
element. To be able to distribute various sized tags within a 
polygonal region we utilize a novel 2D packing algorithm 
which satisfies certain aesthetic criteria and runs in real-time. 
TagRiver updates the polygonal area and tag information for 
each time step and provides a summary visualization for the 
past time steps, where users only see the volume of the tags 
associated with each data element. Users are equipped with 
simple interactive widgets which they can use to traverse and 
insepct tags associated with any time step on demand. 

 

1. INTRODUCTION 
Tag cloud visualizations became highly popular on the 
internet over the last few years, especially after being utilized 
by the photo sharing website Flickr [8]. The efficacy of 
various approaches to tag cloud visualization has been 
explored in a number of studies. For example, some 
approaches utilize graph-drawing algorithms to cluster 
associated tags [3][4]. Bielenberg [5] proposed circular tag 
layouts in social networking navigation systems, where 
significant tags defining the focus of a group appear closer to 
the center.  

Visualizing the evolution of tag information over time also has 
drawn some attention. Dubinko et al. [6] have proposed 
algorithms that sample the most salient tags within arbitrary 
time frames, which are then enhanced with animations and 
interactivity so that users can interact with the tags as they 
evolve over time. Russel [7] visualized evolution of individual 
tags in the form of line graphs.  

TagRiver utilizes a layout based not on semantic relations as 
in [3][4][5], but rather approaches the problem with an 
aesthetic constraint that requires more significant (and hence 
larger) tags be placed in central positions given an arbitrary 
polygonal region.   

The packing algorithm responsible from the layout runs at 
every time-step for each set of tags within a polygonal region. 
The transition from one time-step to the next is done with 
smooth animations. Users are able to see only the volume 

information for the past time-steps in the form of stacked bar 
charts; however, they are able to see any time-step in detail 
with its tags simply by using a mouse rollover, which functions 
similarly to a Fish-Eye lens.  

The visualization of temporal information in the form of 
continuously connected stacked regions is a visualization 
technique proposed by Havre et al. [1] in ThemeRiver. In that 
sense, TagRiver is a specialization of the ThemeRiver 
visualization for temporal tag clouds or other folksonomic 
datasets.  

 

2. OVERVIEW 
2.1 Visualization of Current Time Step 
 
The TagRiver visualization divides a rectangular display area 
into vertically adjacent polygons. The boundaries of these 
polygons are determined by the relative popularity of each 
data element. Our current implementation uses four data 
elements, although the only restriction on the number of data 
elements is the available screen space. Relative popularity for 
each data element is calculated at each time step by dividing 
the number of tags associated with this element to the overall 
number of tags for that time step. This yields a normalized 
measure for the popularity.  
 

 



Figure 1 Current time-step view of the TagRiver. 
 

The popularity measure is then used to determine the lengths 
of the right and left sides of the rectangular region, 
respectively, for the previous and the current time step. 
Connecting these points with straight lines yields the vertically 
adjacent quadrilaterals fitting in a rectangular area. Each of 
these quadrilaterals is color coded and contains the tags 
associated with the data element they represent. 
Tags within each area have the same color, and are scaled 
based on their number of occurrences in the current time step. 
Tags appearing for the first time are semi-transparent, and 
become more and more opaque as they appear successively in 
the following time steps. The tags are then positioned using a 
bin-packing algorithm which has been customized to take 
layout properties in to consideration. Details of the algorithm 
are discussed in section 2.3.  
Since there may be a large number of tags associated with a 
particular category, it may not be possible to display each tag 
at a legible size. For this reason we set a lower bound on the 
size of the tag, which excludes tags which appear with only a 
low frequency, and thus present only a sampling of the set of 
tags at any given time.  

 

2.2 Visualizing Historical Data 
 
As time passes, the visual elements representing past time 
steps are modified. The tags shrink and disappear and the 
polygonal regions are reduced down to stacked bar charts 
representing normalized volume of tag information associated 
with each data element. Similar to the local view, each slice of 
time contains a set of color-coded quadrilaterals representing 
categories filling up a rectangle. The left side again represents 
the beginning of a time period, and the right side represents 
the end of that time period.  

 

 
Figure 2 Summary of the historical data is provided 

around the current time-step of the visualization.  
 
The horizontal axis of the visualization is the time axis, and a 
mouse rollover action is used to pick the current time step. 
The currently-selected time step has the largest area and its 
tags are displayed. Optionally, the width of each time slice is 
based on its recentness, or distance to the current time step-- 

The most recent past time period (previous to the current 
time) is largest, and each successive time period in the past 
become slimmer. This reflects the idea that a user would be 
most interested in recent local fluctuations, but overall be 
interested in seeing the more general trend of the activity of 
the categories. 
The transition between consecutive time steps is smoothly 
animated. The polygonal regions change form with smooth 
animations as do the tags. If a tag is going to appear in the 
next time step, then the visualization animates the color, 
position and scale smoothly of the tag so that it is easier to 
follow the continuity of the tags over time. Tags that do not 
appear in the next time step shrink down and disappear. 
Those that were not present in the previous step slowly grow 
at their defined position and start with a semi-transparent 
color.   
 

2.3 Bin-Packing Algorithm 
 
Bin-packing algorithms are algorithms which attempt to 
minimize the amount of space taken up by a set of objects. 
Since determining the optimal minimum space is an NP-
complete combinatorial problem, a variety of heuristics have 
been developed to find good approximate solutions within a 
minimum amount of time [9]. However, in general these 
heuristics ignore aesthetic concerns pertinent to information 
visualization. We present a customized bin-packing algorithm 
which handles these issues while displaying the descriptive 
tags. By providing some "slack" space to each of the tags 
whereby a tag may be slightly larger or smaller than indicated 
by its activity we can specify layout considerations, such as 
text justification, amount of space to fill, arrangement 
patterns of different size tiles, and quantization of tiles. 
The bin-packing algorithm works as follows: 1) the tags are 
sized and then sorted by their popularity for a particular data 
region; 2) the first, largest tag is positioned within the 
centermost space which is large enough to accommodate it; 3) 
a set of available regions is then identified as possible positions 
in which to place subsequent tags; 4) a subsequent tag is 
placed into one of these regions; 5) if it fits then we return to 
step 3 using the next most popular tag, after appropriately 
culling the list of possible positions that this placement has 
invalidated; 6) otherwise we return to step 4 to examine 
another possible position; 7) if it does not fit anywhere then 
we find the largest of the possible positions that has a similar 
aspect ratio as the tag we trying to place and scale it to fit; 8) 
we then scale all subsequent tags accordingly; 9) we exit the 
layout algorithm once all tags are placed, or once there are no 
possible positions in which to place a tag, or once a tag cannot 
be scaled to fit within any of the possible tags without being 
shrunk beneath a threshold size. 
In general, the results of this layout method are quite pleasing. 
The most relevant tag is positioned in the center with the 
largest size, and less relevant tags are positioned further away 
from the center at smaller sizes. Note that it may not be 
possible to position the tag in the exact center of the polygon 
since the top and bottom segments may be slanted. Also, 
because of the possible scaling of the tags during placement, 
the sizes of the tags will not necessarily be perfectly 



representative of their frequency within the dataset. We have 
tried to mitigate this by making all tags with the same or 
smaller frequency to be similarly scaled so that the general 
informational aspect of the visualization still functions. 
Thresholds such as the maximum amount of scaling and the 
maximum distance of possible positions from the center are 
controlled by a small set of slack variables. In certain datasets 
too much or too little slack can adversely affect both the 
aesthetic display and informational content.   
 

2.4 Software 
 
TagRiver is written using a custom graphics framework based 
on the Java OpenGL bindings [10]. The framework includes a 
novel scene hierarchy in which animations are objects that are 
attached to geometric objects. Animations are traversed and 
updated in a separate loop, similarly to the way geometries 
are traversed, updated and finally rendered to the scene.  
The Java platform enables TagRiver to be embedded into web 
pages via traditional applets or Java WebStart. Alternatively, 
TagRiver can be run as a desktop application.  
 

3. DATASET  
 
While TagRiver is meant to be a flexible visualization 
technique applicable to a wide variety of data, we use as an 
example dataset user profiles gathered from Last.fm [11]. 
Last.fm is a combination of a social networking site and a 
personalized online radio station. Last.fm builds a detailed 
profile of each user's musical taste by recording details of all 
the songs the user listens to. This information is then publicly 
accessible through a web services API. Specifically, it provides 
continually-updated information about users' online presence 
and also about the songs they have listened to within certain 
time frames. Based on this information we map a category to a 
particular user, and the total time spent online during a 
particular time frame to the activity of the category. We also 
can extract all the tags associated with the genres the user is 
currently interested in within the specified time frame. 
Example TagRiver visualizations utilizing this dataset can be 
found at https://svn.mat.ucsb.edu/projects/TagRiver. 
 

4. CONCLUSION 
 

Temporal tags are becoming common datasets in many 
websites utilizing folksonomic categorization. TagRiver 
presents a novel approach that combines temporal data 
visualization and tag cloud visualization techniques. It uses a 
novel bin-packing algorithm which organizes tags within 
arbitrary polygonal regions based on aesthetic criteria.  The 
TagRiver visualization smoothly animates over time, keeping 
the layout as static as possible, so that both short-term 
changes and long-term trends draw attention.  
 

Currently users have limited interaction with the visualization 
application. Extending the interactive capabilities of the 
application, such as by enabling users to determine the 
ordering and the number of categories, are possible next steps. 
Conducting user studies and applying the visualization to 
other datasets and other online sources are future steps which 
will help us to identify and evaluate the strengths and 
weaknesses of the visualization.  
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