
TagRiver Visualization
Basak Alper Angus Forbes

 Media Arts and Technology, UC Santa Barbara Media Arts and Technology, UC Santa Barbara
basak.alper@mat.ucsb.edu angus.forbes@mat.ucsb.edu

ABSTRACT

TagRiver is a novel tag-cloud visualization which incorporates
both multivariate and temporal data. TagRiver displays tags
associated with a number of data elements simultaneously by
visualizing the temporal changes within the tag information
and the volume of the tags associated with each element. Tags
for respective elements are scaled based on their popularity,
and then are displayed in vertically adjacent polygonal
regions. The area of each of these regions is proportional to
the volume of the tag information of the corresponding data
element. To be able to distribute various sized tags within a
polygonal region we utilize a novel 2D packing algorithm
which satisfies certain aesthetic criteria and runs in real-time.
TagRiver updates the polygonal area and tag information for
each time step and provides a summary visualization for the
past time steps, where users only see the volume of the tags
associated with each data element. Users are equipped with
simple interactive widgets which they can use to traverse and
insepct tags associated with any time step on demand.

1. INTRODUCTION
Tag cloud visualizations became highly popular on the
internet over the last few years, especially after being utilized
by the photo sharing website Flickr [8]. The efficacy of
various approaches to tag cloud visualization has been
explored in a number of studies. For example, some
approaches utilize graph-drawing algorithms to cluster
associated tags [3][4]. Bielenberg [5] proposed circular tag
layouts in social networking navigation systems, where
significant tags defining the focus of a group appear closer to
the center.

Visualizing the evolution of tag information over time also has
drawn some attention. Dubinko et al. [6] have proposed
algorithms that sample the most salient tags within arbitrary
time frames, which are then enhanced with animations and
interactivity so that users can interact with the tags as they
evolve over time. Russel [7] visualized evolution of individual
tags in the form of line graphs.

TagRiver utilizes a layout based not on semantic relations as
in [3][4][5], but rather approaches the problem with an
aesthetic constraint that requires more significant (and hence
larger) tags be placed in central positions given an arbitrary
polygonal region.

The packing algorithm responsible from the layout runs at
every time-step for each set of tags within a polygonal region.
The transition from one time-step to the next is done with
smooth animations. Users are able to see only the volume

information for the past time-steps in the form of stacked bar
charts; however, they are able to see any time-step in detail
with its tags simply by using a mouse rollover, which functions
similarly to a Fish-Eye lens.

The visualization of temporal information in the form of
continuously connected stacked regions is a visualization
technique proposed by Havre et al. [1] in ThemeRiver. In that
sense, TagRiver is a specialization of the ThemeRiver
visualization for temporal tag clouds or other folksonomic
datasets.

2. OVERVIEW
2.1 Visualization of Current Time Step

The TagRiver visualization divides a rectangular display area
into vertically adjacent polygons. The boundaries of these
polygons are determined by the relative popularity of each
data element. Our current implementation uses four data
elements, although the only restriction on the number of data
elements is the available screen space. Relative popularity for
each data element is calculated at each time step by dividing
the number of tags associated with this element to the overall
number of tags for that time step. This yields a normalized
measure for the popularity.

Figure 1 Current time-step view of the TagRiver.

The popularity measure is then used to determine the lengths
of the right and left sides of the rectangular region,
respectively, for the previous and the current time step.
Connecting these points with straight lines yields the vertically
adjacent quadrilaterals fitting in a rectangular area. Each of
these quadrilaterals is color coded and contains the tags
associated with the data element they represent.
Tags within each area have the same color, and are scaled
based on their number of occurrences in the current time step.
Tags appearing for the first time are semi-transparent, and
become more and more opaque as they appear successively in
the following time steps. The tags are then positioned using a
bin-packing algorithm which has been customized to take
layout properties in to consideration. Details of the algorithm
are discussed in section 2.3.
Since there may be a large number of tags associated with a
particular category, it may not be possible to display each tag
at a legible size. For this reason we set a lower bound on the
size of the tag, which excludes tags which appear with only a
low frequency, and thus present only a sampling of the set of
tags at any given time.

2.2 Visualizing Historical Data

As time passes, the visual elements representing past time
steps are modified. The tags shrink and disappear and the
polygonal regions are reduced down to stacked bar charts
representing normalized volume of tag information associated
with each data element. Similar to the local view, each slice of
time contains a set of color-coded quadrilaterals representing
categories filling up a rectangle. The left side again represents
the beginning of a time period, and the right side represents
the end of that time period.

Figure 2 Summary of the historical data is provided

around the current time-step of the visualization.

The horizontal axis of the visualization is the time axis, and a
mouse rollover action is used to pick the current time step.
The currently-selected time step has the largest area and its
tags are displayed. Optionally, the width of each time slice is
based on its recentness, or distance to the current time step--

The most recent past time period (previous to the current
time) is largest, and each successive time period in the past
become slimmer. This reflects the idea that a user would be
most interested in recent local fluctuations, but overall be
interested in seeing the more general trend of the activity of
the categories.
The transition between consecutive time steps is smoothly
animated. The polygonal regions change form with smooth
animations as do the tags. If a tag is going to appear in the
next time step, then the visualization animates the color,
position and scale smoothly of the tag so that it is easier to
follow the continuity of the tags over time. Tags that do not
appear in the next time step shrink down and disappear.
Those that were not present in the previous step slowly grow
at their defined position and start with a semi-transparent
color.

2.3 Bin-Packing Algorithm

Bin-packing algorithms are algorithms which attempt to
minimize the amount of space taken up by a set of objects.
Since determining the optimal minimum space is an NP-
complete combinatorial problem, a variety of heuristics have
been developed to find good approximate solutions within a
minimum amount of time [9]. However, in general these
heuristics ignore aesthetic concerns pertinent to information
visualization. We present a customized bin-packing algorithm
which handles these issues while displaying the descriptive
tags. By providing some "slack" space to each of the tags
whereby a tag may be slightly larger or smaller than indicated
by its activity we can specify layout considerations, such as
text justification, amount of space to fill, arrangement
patterns of different size tiles, and quantization of tiles.
The bin-packing algorithm works as follows: 1) the tags are
sized and then sorted by their popularity for a particular data
region; 2) the first, largest tag is positioned within the
centermost space which is large enough to accommodate it; 3)
a set of available regions is then identified as possible positions
in which to place subsequent tags; 4) a subsequent tag is
placed into one of these regions; 5) if it fits then we return to
step 3 using the next most popular tag, after appropriately
culling the list of possible positions that this placement has
invalidated; 6) otherwise we return to step 4 to examine
another possible position; 7) if it does not fit anywhere then
we find the largest of the possible positions that has a similar
aspect ratio as the tag we trying to place and scale it to fit; 8)
we then scale all subsequent tags accordingly; 9) we exit the
layout algorithm once all tags are placed, or once there are no
possible positions in which to place a tag, or once a tag cannot
be scaled to fit within any of the possible tags without being
shrunk beneath a threshold size.
In general, the results of this layout method are quite pleasing.
The most relevant tag is positioned in the center with the
largest size, and less relevant tags are positioned further away
from the center at smaller sizes. Note that it may not be
possible to position the tag in the exact center of the polygon
since the top and bottom segments may be slanted. Also,
because of the possible scaling of the tags during placement,
the sizes of the tags will not necessarily be perfectly

representative of their frequency within the dataset. We have
tried to mitigate this by making all tags with the same or
smaller frequency to be similarly scaled so that the general
informational aspect of the visualization still functions.
Thresholds such as the maximum amount of scaling and the
maximum distance of possible positions from the center are
controlled by a small set of slack variables. In certain datasets
too much or too little slack can adversely affect both the
aesthetic display and informational content.

2.4 Software

TagRiver is written using a custom graphics framework based
on the Java OpenGL bindings [10]. The framework includes a
novel scene hierarchy in which animations are objects that are
attached to geometric objects. Animations are traversed and
updated in a separate loop, similarly to the way geometries
are traversed, updated and finally rendered to the scene.
The Java platform enables TagRiver to be embedded into web
pages via traditional applets or Java WebStart. Alternatively,
TagRiver can be run as a desktop application.

3. DATASET

While TagRiver is meant to be a flexible visualization
technique applicable to a wide variety of data, we use as an
example dataset user profiles gathered from Last.fm [11].
Last.fm is a combination of a social networking site and a
personalized online radio station. Last.fm builds a detailed
profile of each user's musical taste by recording details of all
the songs the user listens to. This information is then publicly
accessible through a web services API. Specifically, it provides
continually-updated information about users' online presence
and also about the songs they have listened to within certain
time frames. Based on this information we map a category to a
particular user, and the total time spent online during a
particular time frame to the activity of the category. We also
can extract all the tags associated with the genres the user is
currently interested in within the specified time frame.
Example TagRiver visualizations utilizing this dataset can be
found at https://svn.mat.ucsb.edu/projects/TagRiver.

4. CONCLUSION

Temporal tags are becoming common datasets in many
websites utilizing folksonomic categorization. TagRiver
presents a novel approach that combines temporal data
visualization and tag cloud visualization techniques. It uses a
novel bin-packing algorithm which organizes tags within
arbitrary polygonal regions based on aesthetic criteria. The
TagRiver visualization smoothly animates over time, keeping
the layout as static as possible, so that both short-term
changes and long-term trends draw attention.

Currently users have limited interaction with the visualization
application. Extending the interactive capabilities of the
application, such as by enabling users to determine the
ordering and the number of categories, are possible next steps.
Conducting user studies and applying the visualization to
other datasets and other online sources are future steps which
will help us to identify and evaluate the strengths and
weaknesses of the visualization.

5. REFERENCES

[1] Havre S., Hetzler E., Whitney P., and Nowell L. 2002

ThemeRiver: visualizing thematic changes in large
document collections. IEEE Transactions on
Visualization and Computer Graphics, vol. 8:1, pp. 9-20

[2] Lee, K., Kim, H., Jang, C., Kim, H. 2008 Folksoviz: a
subsumption-based folksonomy visualization using
wikipedia texts. Proceeding of the 17th international
conference on World Wide Web table of contents,
Beijing, China pp. 1093-1094

[3] Kaser, O. and Lemire, D. 2007 TagCloud Drawing:
Algorithms for Cloud Visualization. In proceedings of
Tagging and Metadata for Social Information
Organization, WWW 2007

[4] Hassan-Montero, Y. and Herrero-Solana, V. Oct 2006
Improving tag-clouds as visual information retrieval
interfaces. In International Conference on
Multidisciplinary Information Sciences and Technologies
(InSciT2006), M´erida, Spain

[5] Bielenberg, K. 2005 Groups in social software: Utilizing
tagging to integrate individual contexts for social
navigation. Master’s thesis, Universit¨at Bremen

[6] Dubinko, M., Kumar, R., Magnani, J., Novak, J.,
Raghavan, P. and Tomkins, A. 2006 Visualizing tags over
time. In 15th International World Wide Web Conference,
pp. 193–202 ACM Press, New York

[7] Russell, T. 2006 cloudalicious: folksonomy over time. In
JCDL’06, pp. 364–364

[8] Wikipedia, 2004 Tag cloud — Wikipedia, the free
encyclopedia. [Online; accessed 4-January-2009]

[9] Sleator, D. A. 1980. 2.5 Times Optimal Algorithm for
Packing in Two Dimensions. Information Processing
Letters, Vol. 10., No. 1

[10] JOGL API at https://jogl.dev.java.net/
[11] Last.fm at http://www.last.fm

