
Interactive Water Streams with Sphere Scan Conversion

Rama Hoetzlein∗

Department of Computer Science
Media Arts & Technology Program

University of California Santa Barbara

Tobias Höllerer†

Department of Computer Science
Media Arts & Technology Program

University of California Santa Barbara

Figure 1: Interactive water simulation of 2500 particles at 75 fps with surface extraction by sphere scan conversion on the CPU and rendering
of shadow and environment maps on the GPU.

Abstract

Fluid simulations require efficient dynamics, surface extraction and
rendering in order to achieve real time interaction. We present a
novel technique for the surface extraction of stream-shaped fluid
simulations represented as particles. Typical surface extraction
methods for particles combine implicit function evaluation with the
marching cubes algorithm. In our approach, we dynamically up-
date vertex positions in pre-generated geometry to efficiently con-
struct and render fluid surfaces. Cylinders are wrapped to water
streams composed of particles, with simulation and polygonization
on the CPU, and shadows and lighting on the GPU. While limited
to stream-shaped fluids, our technique is significantly faster than
marching cubes, scales well with resolution and number of parti-
cles and, unlike point-based rendering, produces true 3D polygonal
surfaces.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1 Introduction

Early efforts in Computational Fluid Dynamics focused on accu-
racy, stability and performance of simulations. However recent ad-
vances in methods, and modern graphics hardware, have allowed

∗e-mail: rch@umail.ucsb.edu
†e-mail: holl@cs.ucsb.edu

for the simulation of fully interactive fluids at interactive rates. The
performance bottleneck for real time fluids now shifts from simula-
tion to surface extraction and rendering.

The potential of real time fluid simulation presents a range of novel
opportunities in interactive game design, acceleration of film pro-
duction, and in encouraging new directions for fluid dynamics re-
search in engineering. Stable grid-based techniques have allowed
for interactive animation of smoke [Stam 2003]. Free surface
flows, for liquids such as water, require additional computational
resources to track and polygonize the fluid surface. Smoothed par-
ticle hydrodynamics, originally using in astrophysics [Gingold and
Monaghan 1977], has become a valuable technique for liquid sim-
ulation [Monaghan 1992] [Desbrun and Gascuel 1996].

Recently, GPU implementations of smoothed particle hydrodynam-
ics have permitted a much larger number (up to 60k) of simulated
particles in real time [Harada et al. 2007] [Zhang et al. 2007]. In
these examples either point-based rendering or marching cubes is
used to perform surface extraction offline. While point-based ren-
dering can achieve one million points per second with modern hard-
ware, for dynamic data this requires normals to be re-evaluated per
frame, and point-based methods to produce shadow maps [Botsch
et al. 2005]. Marching cubes can be efficiently computed on GPUs,
but typically from static grid-based data volumes [Tatarchuk et al.
2008]. For realistic interactive simulations to become a reality, our
efforts therefore focus on alternatives for direct surface polygoniza-
tion of point-based fluids in motion.

1.1 Related Work

Early methods for fluid simulation avoided surface extraction with
the use of 2D height-field techniques [O’Brien and Hodgins 1995].
Recent applications of height-fields have permitted interactive sim-
ulation of ocean waves [Hinsinger et al. 2002] and object interac-
tions [Yuksel et al. 2007]. Other techniques combine height-fields
with particles to approximate splashing [Iwasaki et al. 2006]. To
correctly render flowing and splashing water, however, requires true

3D surfaces extracted from fluid motion.

The established technique for surface extraction is marching cubes
[Lorensen and Cline 1987] [Bloomenthal 1994], and may be used
either for grid-based or particle-based fluids [Müller et al. 2003].
In the later case, the surface is reconstructed by blending implicit
functions [Blinn 1982]. The performance of basic marching cubes
for particle data sets is O (Pn3). By evaluating the implicit function
only near the surface, the performance can be O(Pn2). However,
run time is still proportional to both the number of particles and grid
resolution. Techniques such as the Fast Marching Method take ad-
vantage of particle locations to track the surface temporally [Triquet
et al. 2001]. Recently, GPU implementations improve performance
but do not greatly improve the scalability of the marching cubes to
large numbers of particles [Goetz et al. 2005]. This is partly due
to the need to generate new topology (i.e. vertex-face connectivity)
for every frame.

Our contribution focuses on a novel real-time technique for direct
polygonization of point-based data sets by taking advantage of the
tubular shape of typical water streams. We present a technique for
polygonizing stream-shaped fluids such as water hoses, facuets, and
fountains by matching individual streams with pre-generated cylin-
ders. Our method can represent fluids beyond height-field tech-
niques without using marching cubes for surface extraction, allow-
ing for shadow maps, environment maps, and other lighting effects
applied to the resulting polygonal surfaces. By taking advantage
of the fixed topology of cylinders, we send face connectivity to the
GPU once, then create a representational surface by deforming only
vertex positions.

2 Methodology

A novel surface extraction technique is presented by fitting and de-
forming cylinders around stream-shaped fluid volumes. Multiple
cylinders are used to wrap independent streams in a fluid simula-
tion. Our technique is motivated by the fact that geometry defor-
mation is faster than generating new topology every frame (as is
done with marching cubes), and consists of five basic steps: 1) Pre-
generate cylinders, 2) Bin sort particles into slices along a selected
V-axis, 3) Group particles into local clusters, 4) Deform cylinders
to wrap each group, and 5) Render deformed cylinders. Cylinders
were selected to represent the surface as most water streams have
a similar overall shape. This technique is therefore best suited to
rendering flowing water such as faucets, water hoses, fire hydrants,
and fountains, and can be combined with conventional height-field
techniques to achieve interactive simulations.

2.1 Sphere Scan Conversion

We begin by pre-generating and discretizing a set of cylinders (Fig-
ure 2). Cylinders are pre-tesselated in the U and V directions, and
vertex-face connectivity is sent to the GPU for all cylinders just
once. The steps of bin sorting, grouping and cylinder deformation
occur on every frame (Figure 3). In general, for each group of fluid
particles representing a connected stream, we scan the particles as
spheres along the V-axis and deform the U-contour of each cross-
sectional plane of a cylinder. In Section 2.2 we discuss the grouping
algorithm used to isolate fluid streams, and in Section 2.3 we define
a radial blending function used to describe the surface contour.

As a pre-processing step, a hash table sort is used to assign fluid
particles to cross sectional bins in linear time. Using preallocation
for memory management, our implementation requires kP inser-
tions total, where P is the number of particles. For each particle
there is some constant overhead (k) due to the fact that a sphere

Figure 2: Pre-generated cylinders are discretized with vertex-face
connectivity sent to the GPU once. Deformed vertex positions are
then sent to the GPU on every per frame.

Figure 3: Steps of sphere scan conversion consisting of cylinder
generation, hash table sort, grouping, vertex deformation and ren-
dering.

may intersect multiple planes, thus each fluid particle may reside in
several bins.

2.2 Grouping

Grouping assigns each fluid particle to a local stream or cluster.
Rather than tracking groups temporally, we regroup spheres dynam-
ically for each frame. The maximum number of groups is limited
by the number of pre-allocated cylinders. In our evaluations, we
used 150 as an upper limit. The radial fountain of Figure 12 uses
94 groups on average over all frames, while the more streamlike
simulations average about 35 groups. Distance is the primary crit-
era for group assignment, along with stream shape and coherence.

Grouping is also used to prevent undercuts in fluid streams. An un-
dercut results when a single stream of particles intersects the same
cross section twice, the simplest example of which is an arch. A
single cylinder, scanning from top to bottom in V, cannot properly
capture this situation. Therefore the grouping algorithm is designed
to avoid this using a blocking mechanism. An example is provided
in Figure 4. We define Gi as the group to which particle pi is as-
signed. Input consists of the particles, bins and preallocated cylin-
ders. Output is a set of groups, where each group is assigned to a
single cylinder.

Each group data structure maintains minimum and maximum ex-
tents in V, particle count, group centroid, and the cylinder mesh
associate with that group. As mentioned, groups and meshes are

Figure 4: Particle D is the first of bin v2 so, according to the group-
ing algorithm, bin v1 is examined for nearby particles. D is assigned
to group 1 due to proximity to A. E is inserted next. E is too far from
D, but close enough to C. However, a cylinder cannot be stretched
down both paths simultaneously, therefore D has blocked group 1 to
prevent undercutting. E is inserted as an isolated particle. Finally,
F is added to form a new group with E.

preallocated from a memory pool. Thus, creating a new group in
the algorithm above simply involves assigning a unique ID from
the pool. Groups do not maintain a list of their particles. Rather,
particles are tagged to a group based on the tags of neighboring par-
ticles. This allows particles to efficiently regroup each frame. At
most, group assignment involves searching for nearby particles in
the current and next higher bin per particle.

The pseudocode for the grouping step follows:

For each bin v0 to vn

For each pj in bin vi

For each pk in the current bin vi.
If |pj − pk| < ε Then

If pk is isolated Then
Create new group wih pj and pk. Exit pk loop.

If pk is assigned Then
Add pj to group Gk. Exit pk loop.

End For
For each pk in bin vi−1 (bin at next higher z)

If |pj − pk| < ε Then
If pk is isolated Then

Create new group wih pj and pk. Exit pk loop.
Else pk is part of group Gk

If Gk is blocked Then
Set pj as isolated. Exit pk loop.

Else Gk is open Then
Add pj to group Gk, block Gk. Exit pk loop.

End For
Clear all group blocks

End For
End For

Grouping, while fast, is the limiting performance bottleneck. In
the worst case, particle Pj must check all particles in the current bin
vi and next bin up, vi−1. Let k be the average number of particles
per bin, which is equivalent to P / Vres for a uniformly falling
stream. Therefore, the total number comparisons required is 2 k
P in the worse case, which is O (P 2 / Vres). However, once a

particle is assigned to a group, which happens as soon as a particle
is within an ε distance of an existing particle, it can exit the inner
loop. Thus, in practice, the average run-time is determined by the
threshold distance ε and by the coherence of the water stream. See
Section 3 for results.

Notice this technique also generates a set of isolated particles.
Where marching cubes typically polygonizes isolated spheres at
grid resolution, this allows those spheres to be rendered with a static
tesselation at a much lower resolution without loss of quality.

Grouping results in discrete boundaries between fluid streams not
present in marching cubes. This, and the dependence on the V-
axis, are limitations of our technique. However, at interactive rates
the boundaries between groups are not noticable. The method de-
scribed is able to efficiently extract a surprising range of fluid be-
haviors, with resulting surfaces similar in shape to marching cubes.

Figure 5: Two functions of theta: smoothed circle maxima (green)
and blended gaussians (blue), compared to an implicit surface con-
tour (red) plotted at f (x, y) = 0.95± 0.01 for input spheres of dif-
ferent radii. Dots represent evaluation of the circle maxima function
f(ui) at the u-section angles ui.

2.3 Cross-Section Deformation

To deform a given cross-section of a cylinder, we consider the plane
of the section and the particles present in a particular bin. For each
cross-section, a sphere defined by each particle will intersect the
plane to produce a set of circles. Using the centroid of the circles as
the origin, we define a radial distance function in polar coordinates
(θ, ϕ) that smoothly approximates the target curve bounding this
set of circles. Rather than sample an implicit function at a subset
of points in the plane, f (x, y) → R, as marching cubes does, we
seek a function that directly specifies a parametric curve, r (θ) →
R2. Grouping has eliminated distant spheres, so only those locally
associated with the centroid will contribute to the curve. We use
the metaballs implicit function as a baseline. The radial function
should ideally match this function at a specific threshold. It should
be continuous, with smooth transitions based on distance and circle
size.

The two functions we experimented with are smoothed circle

maxima and blended gaussians. The former function computes the
maximum of intersections between the unit vectors in the direction
of theta ~Uθ and the circles Ci. The result is discontinuous, how-
ever, so to smooth the curve, a 3-point iterative smoothing kernel
with between ten and 100 iterations is used.

r(θ) = max
[
intersect

(
Ci, ~Uθ

)]
(1)

An alternative is to use a set of gaussians centered on the circles,
with heights hi given by maximum circle distance and widths wi

based on distance and size:

gaussi(θ) = hi e−wi [~Uθ·~Cdir]

hi = Cdist + Cradius

wi = k C2
dist/Cradius

(2)

The gaussians cannot be summed, however, as this would pro-
duce a radial function that extends well beyond the circle maxima.
Instead, the gaussians are blended using a technique similar to lin-
ear alpha-blending in 1D.

r(θ) = blend [gaussi(θ)] (3)

The blend function is listed in Appendix A.

Figure 5 shows these two radial distance functions and an im-
plicit surface plotted at f(x, y) = 0.95 ± 0.014 for comparison.
Blended gaussians are slightly more efficient (using lookup tables
for the exponential) since there is no need to iteratively smooth the
result. Using circle maxima produced more accurate results with
better details, but require several iterations to smooth. In our inter-
active animations we use circle maxima with ten smoothing steps.
While metaballs allow spheres to smoothly disconnect, these func-
tions are radially defined so that spheres in the same group remain
connected. We resolve this by allowing spheres to move from group
to group outside of a fixed distance [see Section 2.2], which can
produce discontinuities along the V-axis.

Unlike marching cubes, the radial functions are only evaluated
at U discrete points per group. These points map directly to pre-
generated parameterized cylinders, with no intermediate geometry.
As multiple groups may exist at a given V, we find Ures can be
usually be much smaller than Vres without greatly affecting visual
detail.

3 Results

Sphere scan conversion was used to simulate falling water streams
with object interactions and splashing. A basic particle simulator
was implemented with attention placed on surface extraction rather
than fluid dynamics. Our method, as determined in early experi-
ments with SPH, should lend itself well to smoothed particle hy-
drodynamics of stream-shaped fluids. Comparisons are made to
both marching cubes and to live video of falling water.

In order to incorporate real time water into a useful real-world
application, such as a game, it will be necessary to carefully balance
fluid simulation on the CPU and GPU with other real time demands.
To demonstrate our technique, we implement particle motion and
surface extraction on the CPU, while leaving the GPU to render
shadows and environment maps.

We expect that sphere scan conversion is most likely to be
used for water stream effects in games, such as hoses, faucets or
fountains with character-water interactions. For large-scale effects
marching cubes produces more accurate results, but scalability is-
sues of GPU-based marching cubes make it unlikely to be a viable
solution for interactive gaming in the near future.

Particles Tss (ms) Tmbmc (ms)
Fss

Fmbmc

643 1283 643 1283

1000 8 410 970 7k 6k 27k
2000 13 2070 3170 9k 14k 31k
3000 18 4560 6580 10k 22k 32k
4000 21 7240 9220 12k 27k 30k
5000 26 19360 22930 13k 32k 35k
6000 28 26690 49340 11k 35k 42k
7000 30 33440 66210 12k 37k 45k
8000 36 40430 120400 13k 38k 48k

Table 1: Performance of our technique is compared to marching
cubes generated from a metaballs implicit function per frame. The
columns show the number of particles P, surface extraction for
sphere scanning in milliseconds Tss, number of faces generated
Fss, and metablob-marching cubes surface extraction Tmbmc for
grid sizes of 643 and 1283, with number of faces generated Fmbmc.
For sphere scanning, Ures and Vres are 20 and 120 respectively.
Rendering time with vertex buffer objects ranges from 3 to 4 ms for
the number of faces generated.

Figure 6: Sphere scan conversion performance with varying U and
V. The number of particles is fixed at 2000.

3.1 Comparison to Marching Cubes

We visually compare results from sphere scan conversion and
marching cubes and evaluate both for performance. A dynamic im-
plicit function using metaballs at fluid particle locations is evaluated
with marching cubes per frame. Our simulations are performed on
a P4 3.2 ghz CPU with a GeForce 8800 GTX graphics card running
OpenGL.

Performance comparisons of our method are made to a marching
cubes implementation by Mizerski [Mizerski 2007], which tracks
surface cells using an infinite support kernel for metaball evalua-
tion. Values for Tmbmc in Table 1 are therefore an order of magni-
tude larger than recent work in this field. An infinite support radius,
shown in Table 1, requires 2000 ms for 2000 particles. Müller gives
a result of 200 ms (5 fps) for 2000 particles using a CPU march-
ing cubes method with a finite support radius [Müller et al. 2003].
Compared to both cases, our method requires only 14 ms for the
same number of particles, and is therefore 10x to 100x times faster
than marching cubes methods on the CPU.

Scalability is discussed in comparison to modern GPU-based
techniques. Tatarchuck performs efficient parallel marching tetra-
hedra on volumetric data using CUDA, achieving 6.3 ms on a 643

grid [Tatarchuk et al. 2008]. As Tatarchuck polygonizes from a
static grid-based volume rather than dynamic points, direct com-

Figure 7: Surface generated for different values of U and V. From left to right, a) U=20, V=60, b) U=60, V=60, c) U=20, V=120, d) U=60,
V=120. All surfaces were generated with 2000 particles.

Figure 8: Surfaces generated for various values of the guassian smoothness parameter k. Resolutions of 40 and 180 were used for U and
V respectively. The values are 0.1, 1.0, 2.5 and 5.0 from left to right. Results are similar for variations in the smoothing iterations with the
blended maxima method.

parisons with scanning spheres in terms of number of particles is
not possible. In our application, the input volume must be recom-
puted per frame using metaballs near the dynamic particle loca-
tions, leading to a theoretical run-time of metaball-marching meth-
ods of O(Pn2). An integrated metaball-marching method on the
GPU would allow such comparisons.

Zhou et al. use an octree representation with level-order traversal
to reconstruct point-based surfaces [Zhou et al. 2007]. They poly-
gonize 300k points at 190 ms with the GPU using an octree data
structure and a Laplacian implicit function evaluated using a con-
jugate gradient solver. While the GPU improves execution times,
these methods are theoretically more expensive than the grouping
and radial function evaluations of our technique. In addition, to
be applicable to fluids represented by smoothed particle hydrody-
namics, direct reconstruction methods must be extended to avoid
interior particles.

We imagine a complete GPU-based implementation of our
method will outperform marching cubes as we show that 3D im-
plicit function evaluation can be an unnecessary intermediate step.
In Section 2.2 we found a worst case run-time for scanning spheres
as O(P 2 / V). Once a particle has been tagged to a group, however,
the next particle may be considered. Thus, the grouping epsilon ε
and inter-particle distance determine actual run time. Average per-
formance is based on particle coherence, which is typically very
high for stream-based fluids. In practice, we observed linear per-
formance relative to the number of particles up to 8000 (Table 1).

Visual comparisons to marching cubes can be found in Figures
10 and 11. The surfaces produced by scan conversion are similar to
those generated by marching cubes. While marching cubes blends
separating streams continuously, one limitation of our method is
that clear boundaries are present between groups. However, these
discontinuities occur only along the V-axis, and at interactive rates
the differences are usually not noticeable.

Cylinder resolution is the primary parameter in surface quality.
Our method simulates 8000 particles at 28 fps (36 ms) with U and
V resolution of 20 and 120. Figure 6 demonstrates how scan con-
version scales with cylinder resolution using 2000 particles, and
Figure 7 gives a visual comparison for selected values of U and V.
Other parameters which affect output include grouping distance and
radial smoothness. The grouping distance ε determines proximity
of connected clusters, and we find this is best set to 1.5 to 2 times
the sphere diameter. Smaller values result in a simulation with more
isolated particles, while larger values cause undesirable bridges to
form between groups. The tension parameter k for gaussian blend-
ing, or smoothing iterations I for circle intersections, adjusts the
smoothness of the radial distance function resulting in more or less
”blobby” looking surfaces (Figure 8).

Unlike marching cubes, which is bounded on all three axes, scan
conversion is unbounded in the horizontal plane (perpedicular to
V-axis). This may be particularly useful in certain situations, such
as water interactions with game characters in open spaces. How-
ever, we notice that scan conversion is least successful when many

particle lies in the same cross sectional plane, in which case there
is insufficient horizontal resolution to capture details. Thus our
current implementation is ideally suited to flowing water streams
with a dominant axis rather than resting water. It should be a
straightforward extension to locally orient the V-axis of the cylin-
der coordinate system to the real-world dominant axis of the water
stream, providing better support for horizontal streams such as fire
hydrants.

As particles splash and scatter they frequently become isolated.
In this common situation, marching cubes will polygonize each
sphere at grid resolution while our system identifies isolated par-
ticles and renders them using pre-tesselated sphere primitives.

Live video of falling water streams was also obtained. Water
from a garden hose was filmed at night with a single light source,
and also in sunlight at 24 fps. We found that falling water in sun-
light casts sharp shadows. In these conditions the contrast of the
shadow is often more visible than the water itself. Scan conversion
produces closed 3D surfaces, lending themselves to shadows, caus-
tics and Z-buffering. Shadow and environment maps are present in
all our real time examples since the GPU is free to take on these
computations in real time.

Resting water in our examples, such as pools or lakes, are sim-
ulated using common height-field techniques [Nishidate and Nik-
ishkov 2005]. Interactions between falling streams and these sur-
faces are simulated by checking particle position against the height-
field and producing an impulse force in the 2D wave equations as
needed. While splashes cannot be generated from the pool, this
allows water streams to flow and splash into the pool.

Comparisons with live video can be found in Figure 13. The
higher detail of real water is apparent when the stream splashes.
The motion of specular highlights with our technique appears to
match live water very well during laminar flow.

3.2 Rendering

Rendering is efficient and straightforward. The vertex-face connec-
tivity for each cylinder is constructed in the pre-allocation stage and
transmitted to the GPU once. Only vertex positions within the Z-
min and Z-max extents of each group are updated per frame. These
extents are also used to specify the start and end face of the poly-
gon buffer to be rendered. While somewhat wasteful of memory,
as the cylinder is predefined over a large Z domain, this improves
performance significantly. Vertex normals are updated per frame by
taking cross products of edges and averaging among multiple faces.
In the future, bin sort, cylinder distortion and normal updates may
be GPU accelerated.

Unlike point-based or surface splatting techniques our method
generates closed, 3D surfaces which can be used for advanced ren-
dering such as caustics, shadows and environment maps. Modern
point-based methods can achieve similar effects at the expense of
GPU fill rate. Botsch el. al. render over one million particles at 62
ms (16 fps) with phong shading and shadows [Botsch et al. 2005].
However, this is achieved with pre-computed gradient buffers on
static data sets. For dynamic point sets it is necessary to recompute
normals per particle using the local neighborhood of each particle.
To our knowledge, this has only been done with NVIDIA’s recent
PhysX fluid demo, with 60k particles at 25 fps without shadows on
the GPU.

4 Conclusions and Future Work

We have presented a novel technique for the surface polygonization
of point-based data sets without the use of marching cubes. Sphere

Figure 9: Generated surface mesh for narrow laminar flow (left)
and a broad fountain (right), showing mesh geometry, and under-
lying particles as spheres. Color indicates grouping. Continuous
streams are represented with a single cylinder. Simulated with 2000
particles.

scan conversion scales well with surface resolution and number of
particles, and is able to polygonize stream-shaped fluids at inter-
active rates using the CPU. A complete solution would implement
both smoothed particle hydrodynamics and sphere scan conversion
on the GPU. This would ideally be compared to a GPU implemen-
tation of marching cubes, with timing measurements that separate
fluid dynamics from implicit function evaluation and polygoniza-
tion. Overall, we expect scanning spheres to perform well when
implemented on the GPU.

The most significant limitation of our technique is the presence
of a dominant axis. We are making promising first steps in transfer-
ring the main insights from our algorithm to a more general SPH-
based water volume visualization in order to render arbitrary sur-
faces without a preferential axis.

Of the five steps in our technique, only grouping is not eas-
ily adapted to GPU parallelism. This could be investigated fur-
ther. Rendering is already GPU-optimized by making use of vertex
buffer objects, and cylinder deformation may be parallelized by in-
dependently deforming cylinder v-sections using vertex shaders. In
the current system, we transmit only updated vertex position infor-
mation to the GPU while face connectivity remains static. In the
future, geometry shaders may allow adaptive resolution of the sur-
face.

With increasingly powerful hardware, the possibility of real time
fluid simulation is becoming a reality. While advances are being
made rapidly in fluid dynamics, with the present technique we hope
to encourage novel solutions to surface extraction and rendering as
well. To our knowledge, our method presents the first real-time
rendering of water streams at interactive rates with shadows, envi-
ronment mapping and interactive control of the stream.

Acknowledgments

Thanks to Zachary Carter for particle system and collision detec-
tion. This research was funded in part by an NSF IGERT grant on
Interactive Digital Multimedia (#DGE-0221713).

A Gaussian Blending

Gaussian blending is designed to produce a contour that approx-
imates the maximum extents of the input circles in polar coordi-
nates. Summation cannot be used, as this would greatly exceed the
maxima, so we adopt a 1D blending strategy based on 2D alpha-
blending.

For each circle Ci

For each θ

gaussi(θ) = e−wi [~Uθ·~Cdir]

gdisti(θ) = gaussi(θ) (Cdist + Cradius)
If gdisti(θ) > ri−1(θ) then

b = (gdisti(θ)− ri−1)/gdisti(θ)
a = αi−1(1− b) + (1− gaussi(θ))b

Else
a = αi−1

End if
ri(θ) = ri−1(θ)a + gdisti(θ)(1− a)
αi(θ) = max(αi−1(θ) + gaussi(θ), 1)

End for
End for

At the gaussian peak, for a circle beyond the previous maxima,
the function ri(θ) is extended to the new maxima (now the farthest
circle). If the circle is less than the previous maxima, α = αi−1 =
1.0 at the peak point, so the function ri(θ) takes on the previous
maxima ri−1(θ). At intermediate points, the circle is blended into
the contour without exceeding the maximum circle extents.

References

BLINN, J. F. 1982. A generalization of algebraic surface drawing.
ACM Trans. Graph. 1, 3, 235–256.

BLOOMENTHAL, J. 1994. An implicit surface polygonizer. In
Graphics Gems IV, P. Heckbert, Ed. Academic Press, Boston,
324–349.

BOTSCH, M., HORNUNG, A., ZWICKER, M., AND KOBBELT,
L. 2005. High-quality surface splatting on today’s
gpus. In Eurographics Symposium on Point-Based Graphics,
IEEE/Eurographics.

DESBRUN, M., AND GASCUEL, M.-P. 1996. Smoothed particles
: A new paradigm for animating highly deformable bodies. In
Computer Animation and Simulation ’96, 61–76.

GINGOLD, R. A., AND MONAGHAN, J. J. 1977. Smoothed par-
ticle hydrodynamics - theory and application to non-spherical
stars. Monthly Notices of the Royal Astronomical Society 181
(Nov.), 375–389.

GOETZ, F., JUNKLEWITZ, T., AND DOMIK, G. 2005. Real-
time marching cubes on the vertex shader. In Eurographics 2005
Short Presentations.

HARADA, T., TANAKA, M., KOSHIZUKA, S., AND KAWAGUCHI,
Y. 2007. Real-time particle-based simulation on GPUs. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 posters, ACM Press, New
York, NY, USA, 52.

HINSINGER, D., NEYRET, F., AND CANI, M.-P. 2002. Interactive
animation of ocean waves. In ACM-SIGGRAPH/EG Symposium
on Computer Animation (SCA).

IWASAKI, K., ONO, K., DOBASHI, Y., AND NISHITA, T. 2006.
Point-based rendering of water surfaces and splashes simulated
by particle-based simulation. In Proceedings of NICOGRAPH
2006.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3D surface construction algorithm. In SIG-
GRAPH ’87: Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 163–169.

MIZERSKI, M., 2007. Marching cubes implementation.
http://www.math.ubc.ca/˜mizerski/, accessed Sept. 2007.

MONAGHAN, J. J. 1992. Smoothed particle hydrodynamics. In
Annu. Rev. Astron. Astrophysics, 30:543.

MULLER, H., AND STARK, M., 1993. Adaptive generation of sur-
faces in volume data.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 154–159.

NISHIDATE, Y., AND NIKISHKOV, G. 2005. Fast water animation
using the wave equaton with damping. In International Confer-
ence on Computational Science, vol. 2, 232–239.

O’BRIEN, J. F., AND HODGINS, J. K. 1995. Dynamic simulation
of splashing fluids. In Computer Animation ’95, 198–205.

STAM, J. 2003. Real-time fluid dynamics for games. In J. Stam.
Real-time fluid dynamics for games. Proceedings of the Game
Developer Conference, March 2003.

TATARCHUK, N., SHOPF, J., AND DECORO, C. 2008. Advanced
interactive medical visualization on the gpu. J. Parallel Distrib.
Comput. 68, 10, 1319–1328.

TRIQUET, F., MESEURE, P., AND CHAILLOU, C. 2001. Fast
polygonization of implicit surfaces. WSCG’2001 (Plzen, Czech
Republic) 2 (feb), 283–290. http://www.wscg.zcu.cz.

YUKSEL, C., HOUSE, D. H., AND KEYSER, J. 2007. Implement-
ing wave particles for real-time water waves with object interac-
tion. In SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches, ACM
Press, New York, NY, USA, 14.

ZHANG, Y., SOLENTHALER, B., AND PAJAROLA, R. 2007. GPU
accelerated SPH particle simulation and rendering. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 posters, ACM Press, New
York, NY, USA, 9.

ZHOU, K., GONG, M., HUANG, X., AND GUO, B. 2007. Highly
parallel surface reconstruction. In Microsoft Technical Report,
MSR-TR-2008-53.

Figure 10: Comparison of sphere scan conversion (left) to marching cubes (right) with 2000 particles, a grid size of 1803, and cylinder
resolution of U=20 and V=180. Group boundaries are visible in still images, but hardly noticable at 75 fps. Opaque shading is used to
emphasize details.

Figure 11: A more complex comparsion showing object interaction and undercut surfaces.

Figure 12: Simulation of a radial fountain using sphere scan conversion with varying flow velocity and 2000 particles. Images were rendered
with transparency, shadows and environment mapping. Notice that isolate spheres are detected and rendering individually.

Figure 13: Comparison of live video (left frames) to sphere scan conversion (right frames)) of a water stream. Simulations run at 75 fps with
2000 particles. Custom GPU shaders were developed to match the lighting conditions. Frame rate was found to be a significant factor in the
percieved realism of the simulation.

