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Abstract. Three contrasting polyphonic musical compositions
based on Zeckendorf representations in the style of music char-
acterized by Fibonacci numbers and the golden ratio are pre-
sented and analyzed.

In A Style of Music Characterized by Fibonacci Numbers and the
Golden Ratio [1], presented at the 13th International Conference on
Fibonacci Numbers and Their Applications (Patras, Greece, 2008),
a tuning system based on the golden ratio and Fibonacci numbers
was introduced. In addition, some general characteristics of a musi-
cal style were described and compositional methods were discussed
using three simple monophonic compositions based on Fibonacci-
related integer sequences as examples. In this paper, the Zeckendorf
representations are shown to be a potentially interesting source for
the composition of polyphonic music.

1. Introduction

Let t ∈ N+ and

φ =

√
5− 1

2
.

In the above mentioned article, a system of equally tempered musical
scales was presented in which the unit interval of each tuning is
φt + 1. Using this system of tunings as a basis, a style of music
was introduced in which each work is a sonification of one or more
mathematical sequences related to the Fibonacci numbers and the
golden ratio. The sonification presents a sequence S in time-order, so
that Si(n) is sonified at time n; the sequence values Si(n) determine
the sonic properties of the note heard at n – musical parameters
mapped to might include frequency, loudness, location etc. The score
in each work includes a point graph of the sequence used as in the
following, in which the unit interval is φ2 + 1.
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0         159.647
1         220.626
2         304.898
3         421.359
4         582.304
5         804.724
6         1112.10
7         1536.89

integer pitch in Hz

time →
Figure 1; from Horizontal Para-Fibonacci Sequence no. 1 (B5 in [2])

2. Characteristics of Compositions Based on Zeckendorf
Representations

Although compositional choices such as tuning and tempo deter-
mine to a great extent the musical result of works based on Zeck-
endorf representations, as will be seen, it is indeed possible to make
generalizations about the most interesting and prominent musical
features of such compositions. These characteristics are directly re-
lated to some of the most fundamental properties of the mathematics
of Zeckendorf representations.

2.1. Mapping Zeckendorf Representations to Musical Pa-
rameters.

Zeckendorf’s theorem [3, 4, 5] guarantees n ∈ N+ can be repre-
sented as

Z(n) =

M∑
j=2

cjFj ,

where cj ∈ {0, 1} and cjcj+1 = 0. This Zeckendorf representation is
minimal in that the least number of Fibonacci numbers (or bits) are
used. We define three functions from this, using wedge brackets <>
to indicate a sequence and curly brackets {} to indicate a set:

Zb(n) = < cj Fj ∈ Z(n) >

Zi(n) = {j Fj ∈ Z(n)}

Zs(n) = {Fj Fj ∈ Z(n)}
Thus, for example,

Z(17) = 1F7 + 0F6 + 0F5 + 1F4 + 0F3 + 1F2.
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Zb(17) = < 1, 0, 0, 1, 0, 1 >, usually written as the bit string 100101
– the sequence of coefficients c and conventional Zeckendorf repre-
sentation of 17

Zi(17) = {2, 4, 7}, the set of Fibonacci indices

Zs(17) = {1, 3, 13}, the set of Fibonacci numbers summing to 17

Zi(n), or Zb(n) (where a black point indicates a 1), can be graphed
as follows:

1 2 3 44 5 66 77 8 99 1010 1111 121212 13 1414 1515 1616 171717 1818 191919 202020 21
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n →
Figure 2

Zs(n) can be graphed as:
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Figure 3

These two functions are suggestive of different compositional ap-
proaches to mapping the Zeckendorf representations to musical pa-
rameters; one can either choose to sonify the representations using
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the indices of the Fibonacci numbers Zi(n) or, alternatively, the Fi-
bonacci numbers Zs(n). The utilization of both of these functions in
compositions based on Zeckendorf representations will be discussed
later.

2.2. Where in the Sequence a Composition Terminates.

The number of representations used in a composition plays a signif-
icant role in characterizing the resulting music. One can differentiate
between two different types of composition in this style: finite and
infinite. Finite works are those meant to be heard in their entirety
and such works must, of course, have a point of termination. In con-
trast, inifinite compositions – which could, for example, be running
continuously for long periods of time as installations in an art gallery
– do not carry this limitation; these are concept works. In the case
of finite compositions, the final representation heard should for aes-
thetic purposes satisfy Z(Fn) or Z(Fn − 1); in the former case the
composition ends on a single note, in the latter it ends with a dense
chord. The works discussed in this paper are exclusively finite.

2.3. Seven Musically Perceivable Mathematical Properties
of Zeckendorf Representations.

As one becomes more familiar with the sound of compositions
based on Zeckendorf representations and, in addition, those based
on the Fibonacci numbers, the Wythoff array (A035513 in [6]), and
the rabbit sequence (A003849 in [6]), also known as the golden string
or infinite Fibonacci word, certain mathematical properties of the
Zeckendorf representations become increasingly audible. In addition
to familiarity with the mentioned sonified mathematical objects, the
perceptibility of such phenomena is dependent on certain features of
the composition being listened to. One important factor influencing
the degree of perceptibility of a certain mathematical property is the
choice of musical parameters mapped to; certain features might be
perceived more clearly in one domain (e.g. pitch or loudness) than
in another, and mapping to multiple domains in a single composi-
tion can increase the clarity of certain features, as will be shown.
Mapping to the pitch domain can be particularly helpful in bringing
out certain features. Another significant factor coming into play is
tempo and, in Heisenbergian fashion, increasing or decreasing the
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tempo will tend to obscure one property while more clearly illumi-
nating another. Some of the most musically relevant mathematical
properties, all of which serve as inspiration in composition, are listed
here in approximate order of how difficult they are to perceive in
music, starting with perhaps the simplest.

2.3.1. Sets Consisting of a Single Element at Fibonacci Indices.
Because Zs(Fj) = {Fj} for j ≥ 2, every time a Fibonacci number
is sonified, only a single note is heard. The audibility of this phe-
nomenon depends primarily on the speed with which the sequence
is rendered; the slower the sequence is rendered, the more audible
it becomes. If the representations are not mapped to the frequency
domain, e.g. in compositions for unpitched percussion instruments,
this feature becomes less audible.

2.3.2. Greatest Integers Occurring in Zi(n) and Zs(n) Repeat Ac-
cording to the Fibonacci Sequence.
Let the function max[S] denote the greatest in a set of integers S.
The sequence < max[Zi(n)] n ∈ N+ > begins

< 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, · · · >,

which is A130233 in [6].
< max[Zs(n)] n ∈ N+ > begins

< 1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, · · · >,

A087172 in [6].
The lengths of the repetitions are also Fibonacci numbers. The

perceptibility of this feature is less dependent on tempo, although
extremely slow tempi will begin to obscure it.

2.3.3. The Rabbit Sequence in the Zeckendorf Representations.
In Figure 2, we see that in each row the blocks of 1s are of the same
length; the blocks of 1s and 0s repeat according to the rabbit se-
quence. As a consequence of [7], the blocks of 1s in row j are of
length Fj−1, and the blocks of 0s are of length Fj . In particular,
we note the bottom row is the rabbit sequence itself 10010100 . . . ,
A003849 in [6]. For row j, we use the substitution rules on the origi-
nal rabbit sequence 1 → 111. . . 1 with Fj−1 1s and 0 → 000. . . 0 with
Fj 0s. This property clearly becomes more audible with increased
tempo and length of sequence, and mapping to the pitch domain will
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help to more clearly illuminate it, although this feature is readily
perceivable in multiple domains.

2.3.4. The Relation Between the Wythoff Array and Zeckendorf Rep-
resentations.
There is an intimate relation between the horizontal para-Fibonacci
sequence Ph(n) (see A035612 in [6], which gives the column in which
an integer n occurs in the Wythoff array) and Z(n). So if we overlay
a graph of the horizontal para-Fibonacci sequence Ph(n) onto Zb(n),
we notice that Ph(n) defines the start of each block of 1s:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

2
3
4
5
6
7
8
9

Zb(n), Ph(n)

n →
Figure 4

The audibility of this phenomenon is primarily dependent on one’s
familiarity with the sound of the horizontal para-Fibonacci sequence.
Faster tempi will also reveal this feature more clearly.

2.3.5. Self-Similarity.
The sequence of Zeckendorf representations displays self-similarity;
because Z(n) is determined by a greedy algorithm,then if x ∈ N+

and x < Fj−1, the recursive relation Zs(Fj +x) = {Fj}∪Zs(x) holds
for j ≥ 2. Faster tempi reveal more clearly the recursive nature of
music based on Zeckendorf representations – the effect of increasing
the tempo and extending the sequence could be compared to the
effect of increasing the resolution and number of iterations in a visual
fractal.

2.3.6. No Consecutive 1s in Zb(n).
In the canonical binary representation Zb(n), no consecutive 1s oc-
cur. When mapping to the pitch domain, this becomes a harmonic
property of the sequence of chords occuring in the piece. If one is
mapping Zi(n), no chords containing two consecutive notes in the
tuning occur; this feature is simpler to perceive if one is mapping
Zi(n) rather than Zs(n), due to the Fibonacci interval spread in
Zs(n) (compare Figure 2 to 3). It is also significantly easier to per-
ceive at slower tempi, where relationships between the consecutive
chords have less effect on harmonic perception.
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2.3.7. The Exhaustive Nature of Zeckendorf Representaitons.
The principle of the exhaustion of a set of finite or infinite possibilities
has been of artistic interest not only to Western classical musicians,
but also to musicians of other cultures such as those of the Indian
Carnatic classical music tradition; composer Kotisvara Ayer (1869-
1938), for example, wrote in each of the 72 mela rāgas present in the
Karnatak system [8]. Baroque composers such as Johann Sebastian
Bach [9] and Johann Mattheson [10] took aesthetic interest in writing
works in which each key existing in the system was methodically
exhausted. Schoenberg’s “method of composition with twelve tones
related only to one another” [11] is an example of an entire method
of composition in which this principle is paramount. The exhaustive
nature of Zeckendorf representations make them an attractive and
rich source of compositional material.

Zb(n) as n varies includes every possible bit string which does not
include two consecutive 1s. Describing the musical experience of such
an exhaustive property is about as difficult as describing the taste of a
certain wine. In any case, there is a sense of completion upon hearing
an entire set of defined finite possibilities. If the last representation
heard is Z(Fj − 1) in a finite composition, then every possible bit
string containing no consecutive 1s up to this length occurs in the
composition. The more representations used in a composition, the
more difficult this exhaustive property is to perceive – the larger
the set of possibilities, the more difficult it is to sense that all have
occurred. The effect of tempo on the perception of this feature will
be subject to future research.

2.4. Tempo Limits and the Threshold of Perceptibility of
Successively Played Tones.

As Curtis Roads states in his book Composing Electronic Music
[12], “When events fly by too quickly they ‘blur’ in our brain.” The
question of just how fast any sequence can be rendered so that each
tone is perceived individually has been part of the author’s work and
is subject to further investigation. If one is mapping values to the
frequency domain, it is clear that sequences can be rendered faster
at higher frequencies because the brain needs somewhere between
one and two full periods periods of a wave to perceive its fundamen-
tal frequency. Another phenomenon that deserves mention here is
the fact that when one renders a sequence at more than around 20
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values per second, a resultant pitch can begin to emerge – a pitch
corresponding directly in frequency to the speed of rendering. This is
due to the fact that the speed of rendering has entered the frequency
range of human hearing, which spans from approximately 16 Hz to
20 kHz. If the attack – the initial onset – of the notes is strong, the
resultant pitch becomes more prominent. Nonetheless, works such
as B155 and B162 in [2] show that a speed of rendering of around 30
notes per second does not necessarily produce an audible resultant
pitch when mapping to high frequencies (in the case of these two
works, above 3212 Hz and 524 Hz respectively).

3. Three Contrasting Works Based on Zeckendorf
Representations

The results obtained using Zeckendorf representations in compo-
sition are infinitely variable, just as they are using any other math-
ematical sequence as a source for compositional material. Compo-
sitional decisions such as tempo and tuning, for example, have a
dramatic effect on the outcome of such music. In order to better
understand what kinds of different results can be achieved, we un-
dertake an analysis of three compositions based on Zeckendorf rep-
resentations. All of the compositions and scores discussed, including
free audio and video files, are available at [2].

3.1. Zeckendorf Representations no. 17.

As the title indicates, 16 pieces based on Zeckendorf representa-
tions had preceded this work, the first of which was completed in
early 2005 (B169 in [2]). Like the 16 works preceding it, Zi(n) was
sonified as opposed to Zs(n). Zi(n) was mapped to two parameters:
pitch and spatial location. This work (B1087 in [2]) exists in both
8-channel and stereo form. A total of F14 = 377 representations are
sonified. It begins with the representation for 1, a requirement in the
style for works based on Zeckendorf representations. Higher integers
are represented by higher pitches, thus the orientation of the work is
said to be ascending. Each Fibonacci number is attributed the dy-
namic level forte (loud). Since the sequence is mapped to the spatial
domain, lower integers are heard as coming from the left and higher
from the right; in the 8-channel version, the sound source moves
clockwise in a circle as the Fibonacci indices j increase. VBAP, or
vector-based amplitude panning, was used in the 8-channel version.
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Delay between the right and left speakers – given in seconds – is used
in the stereo version in addition to panning to simulate the location
of the integers. A negative delay means that the sound is perceived
as coming from the left, hence the left speaker plays .00069 seconds
before the right for the first note of the composition, thereby creat-
ing the illusion that the sound is coming from the left. Attack and
release – also given in seconds – refer to the time at the beginning
and end of a single tone, in which the sound gets louder and quieter.
Without attack and release, one might hear a click before and after
each note. In this case, no additional attack was added to the dy-
namically compressed, low-pass filtered harpsichord sound; a release
of .008 seconds was nonetheless added to the end of each note. All
of the compositions discussed here were created in the software syn-
thesizer Csound [13], originally developed at MIT by Barry Vercoe
based on the family of software synthesizers known as MUSIC-N,
first developed at Bell Laboratories by Max Matthews in 1957. Here
is a slightly modified version of the web-based score for the work:

Collection VIII
Zeckendorf Representations no. 17
Casey Mongoven
November 9, 2008

description of sequence: Zeckendorf representation of n

offset: 1
number of members used: 377
number of channels: 2 (or 8)

piece length: 519.9961 seconds

note value: 1.3793 seconds

orientation: ascending
temperament: phi7 + 1

lowest frequency: 175.45 Hz highest frequency: 263.4 Hz

number of unique frequencies: 13
synthesis technique: raw samples with analog dynamic

compression, digital reverb and low-pass filter

waves: Sperrhake harpsichord, keys Eb3 to Eb4 (retuned to phi7

+ 1)

dynamic: each voice f

simulated spatial location: left to right through panning and

delay (or clockwise with VBAP)

delay: -.00069 to .00069 (8-channel version without delay)
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attack: natural
release: .008
synthesis language used: Csound
note: For the 8-channel version, the speakers should be

arranged in a circle.

Fibonacci index location frequency

2 1 175.45

3 2 181.49

4 3 187.74

5 4 194.21

6 5 200.89

7 6 207.81

8 7 214.97

9 8 222.37

10 9 230.03

11 10 237.96

12 11 246.15

13 12 254.63

14 13 263.40

sequence values used: 1, 10, 100, 101, 1000, 1001, 1010,

10000, ..., 101010101001, 101010101010, 1000000000000

graph:

As indicated, this work used an acoustic instrument as an initial
sound source: the composer’s own Sperrhake harpsichord. Upon
deciding to use the harpsichord, some technical considerations of the
instrument came into play in composition: 1) it was desirable that
each Fibonacci number be represented by a different frequency and
a different string and 2) that the strings used be adjacent to one
another. The tuning φ6+1 ≈ 1.05573 is the closest tuning satisfying
φt+1 to the standard tuning of the harpsichord, which is – at least in
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theory1 – based on 12
√
2 ≈ 1.05946. Nonetheless, in order to avoid too

much similarity to the standard tuning with this familiar instrument,
the harpsichord was tuned to φ7 + 1 ≈ 1.03444 instead. This tuning
imposed restrictions on how many adjacent strings could be retuned
without breaking the strings that needed to be tuned to a higher
frequency; in the end, it was decided that using 13 different tones
representing 13 different integers would be feasible.

The duration for each representation in this work, 1.3793 seconds,
is a speed of rendering at which one who is well practiced is still able
to anticipate each note occurring in the representations. For such
listeners, the properties discussed in 2.3.1 and 2.3.3 are very clearly
perceived. Actually, the moderate tempo employed here represents
a good middle-ground, and all properties discussed in 2.3 can be
perceived in this work to varying degrees.

After calculating the number of occurrences of each Fibonacci
number in the Zeckendorf representations from Z(1) to Z(377), each
tone was recorded individually. The Fibonacci number 1, for exam-
ple, was played and recorded 144 times – in reality a few times more,
as the loudest and quietest notes were selectively removed from the
raw recording. Following this, the order of the notes recorded was
randomized using a true random number generator [15]; this random-
ization was carried out in order to smooth out natural tendencies the
composer may have had in varying the amplitude of each attack in
the course of playing, and in order to randomize any ever-so-slight
variations in tuning which occurred over the course of the recording
process.

It was the composer’s goal in the sound design process to render
the harpsichord practically unrecognizable, yet retain some of its
natural qualities; to this end an analog dynamic compressor, digital
reverb, and a digital low-pass Butterworth filter – with the filter
cut-off sweeping exponentially from the 3rd harmonic partial of the
fundamental frequency of the string used to the 8th over the course of
each note – were applied. The effect of the low-pass filter in this work
is most significant in transforming the sound of the harpsichord, as
it acts to dampen the high frequencies present in the transient – the

1In reality, the tuning of a harpsichord is stretched due to a phenomenon
known as inharmonicity, in which the actual harmonics of a physical string do
not directly correspond to whole number multiples of their fundamental frequency
[14].
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initial attack – of the harpsichord, a feature which is so characteristic
of its sound.

Each note of every chord had to be adjusted by ear individually in
order to compensate for some auditory masking and loudness vari-
ations [16] which naturally occurred when combining the tones; the
goal in this piece was to make each number represented sound at the
dynamic level forte. To this end, both versions of the work were lis-
tened to dozens of times while the composer simultaneously adjusted
the amplitude of each individual note.

The nature of the tuning used, φ7 + 1, combined with the rich
frequency spectra produced in the middle-range of the harpsichord
and the decision to graph Zi(n) instead of Zs(n), result in a dense
sound. The relatively slow speed of 1.3793 seconds per representation
heightens the sense of anticipation of each chord.

3.2. Zeckendorf Representations no. 18.

A significant revision of the composer’s notation was carried out
in late 2009 and early 2010. Instead of the information in the scores
being embedded in the HTML directly, a MySQL database was cre-
ated to store such information and PHP is now utilized to extract
the information and create the web pages for the scores dynamically.
The most significant improvement was to the graph, created using
the canvas element currently in development for HTML5; now when
one hovers with the mouse over a certain number in the graph, the
musical parameters attributed to that number are conveniently dis-
played.

In the following work, the values of Zi(n) are mapped to three
musical parameters: pitch, loudness and location. In this work and
the following, spatial location is given in degrees: -45◦ representing
the left, 0◦ the middle and 45◦ the right.

Collection X
Zeckendorf Representations no. 18
Casey Mongoven
March 12, 2010

description of sequence: MIN0102 Zeckendorf representation of

n

classification of work: audio-visual
offset: 1
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number of members used: 1596
pitch orientation: descending
temperament: phi5 + 1

number of channels: 2
note value: 0.25 seconds

piece length: 399 seconds

synthesis technique: STFT resynthesis and transposition with

fast oscillator bank and low-pass filter

sound source used: red wine glass and Sperrhake harpsichord

string tuned to same pitch recorded with laptop microphone

and mixed

dynamic: p to ff

simulated location: right to left

delay: .00035 to -.00035 seconds

attack: .0055 seconds

release: .0089 seconds

programming languages used: Csound

Fibonacci index frequency Hz dynamic simulated location degrees

2 1063.04387 p 45.0

3 975.117571 p+ 40.6

4 894.463819 mp- 35.5

5 820.481085 mp- 29.7

6 752.617599 mp+ 23.2

7 690.367225 mp+ 16.0

8 633.265693 mf- 8.1

9 580.887133 mf 0.0

10 532.840899 mf+ -8.1

11 488.768657 f- -16.0

12 448.341710 f- -23.2

13 411.258550 f+ -29.7

14 377.242605 f+ -35.5

15 346.040181 ff- -40.6

16 317.418567 ff -45.0

1596 values used of sequence MIN0102 : 1, 10, 100, 101, 1000,

1001, 1010, 10000, 10001, ..., 101010101010100,

101010101010101



14 CASEY MONGOVEN AND RON KNOTT

graph of sequence MIN0102 , 1596 values:

In this stereo work (B1171 in [2]), F17 − 1 = 1596 representations
are heard; every bit string containing no consecutive 1s is heard up
to length 15 (see 2.3.7). As in the last composition, the function
Zi(n) was used. In this work, the speed of rendering is considerably
faster than in the last: .25 seconds per representation. The property
discussed in 2.3.1 is obscured slightly as a result; however, other
properties such as those discussed in 2.3.2 and 2.3.3 are more clearly
revealed.

In this work, natural sound sources were used again, this time
purposely recorded using a cheap built-in laptop microphone – to
additionally color the sound – as opposed to the high-end Neumann
KM 183 microphone used in the previous work. The sound source for
this work was a red wine glass struck with the knuckle on the back of
the composer’s right middle finger. This transparent, bell-like sound
was then combined with the sound of a Sperrhake harpsichord string
(A4) tuned to the same pitch of the glass, 429.4 Hz; in this mixture,
the glass sound was given significantly more strength. The resulting
mixed signal was then analyzed in the frequency domain using the
short-time Fourier transform (STFT), and transposed, low-pass fil-
tered versions of the tone were then synthesized – one transposition
for each Fibonacci number needed.

The tuning used in Zeckendorf Representations no. 18 contains
very close to eight tones per octave. The unit interval φ5 + 1 ≈ 149
cents is located almost exactly in between the standard intervals of
the tempered minor and major second, 150 cents.2 Our familiarity
with standard classical tuning therefore inevitably has a significant
effect on our experience of this work; a bit sequence such as 1010101,
for example, is hardly distinguishable from a tempered, fully dimin-
ished seventh chord in standard tuning. The property discussed in
2.3.6 is quite clearly perceivable in this work despite the faster tempo,

2The logarithmic unit of the cent is defined as 1200
√
2, there are, therefore 1200

cents in the interval of the octave and 100 cents in a minor second.
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due to the somewhat sparse nature of the tuning and the sonification
of Zi(n) as opposed to Zs(n).

3.3. Zeckendorf Representations no. 19.

Collection X
Zeckendorf Representations no. 19
Casey Mongoven
March 19, 2010

description of sequence: MIN0102 Zeckendorf representation on

n

classification of work: audio-visual
offset: 1
number of members used: 34
pitch orientation: ascending
temperament: phi6 + 1

number of channels: 2
note value: 6.69 seconds

piece length: 227.46 seconds

synthesis technique: STFT resynthesis and transposition with

fast oscillator bank

sound source used: red wine glass in studio recorded in

Weimar, Germany; half-speed

dynamic: ppp to f

simulated location: left to right

delay: -.00035 to .00035 seconds

attack: .0377 seconds

release: .0521 seconds

programming languages used: Csound

Fibonacci number frequency Hz dynamic simulated location degrees

1 164.574500 ppp -45.0

2 173.745923 ppp+ -43.2

3 183.428451 ppp+ -41.3

5 204.442344 pp- -37.2

8 240.562032 pp+ -29.9

13 315.491359 p- -15.3

21 486.859990 mp+ 12.0

34 985.328598 f 45.0

34 values used of sequence MIN0102 : 1, 10, 100, 101, 1000,

1001, 1010, 10000, 10001, 10010, 10100, 10101, 100000,

100001, 100010, 100100, 100101, 101000, 101001, 101010,
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1000000, 1000001, 1000010, 1000100, 1000101, 1001000,

1001001, 1001010, 1010000, 1010001, 1010010, 1010100,

1010101, 10000000

graph of sequence MIN0102 , 34 values:

In this work (B1172 in [2]) in contrast to the previous two, Zs(n) is
mapped to musical parameters as opposed to Zi(n). The parameters
mapped to are pitch, loudness and location. As in the previous work,
a (different) red wine glass was used as a sound source – in this case,
the brim of the glass was rubbed with the composer’s right index
finger, which had just been washed with dish-washing soap in order to
facilitate the excitation of the glass’s higher resonant frequencies. As
opposed to the percussive sound in the previous work, the resulting
sound has a sustained quality similar to that achieved when playing
such glasses with a violin bow. The glass sound was recorded in the
composer’s studio in Weimar in 2007 and retains to a great extent
its original tone quality in the composition. Similarly to the previous
work, transpositions of the original recording were created for each
Fibonacci number using STFT.

For those familiar with the sound of interval relations based on the
Fibonacci sequence, the result of mapping Zs(n) as opposed to Zi(n)
is at once clear: the harmony of the entire piece is characterized
by intervallic relationships derived from the Fibonacci sequence. In
addition, the spacing (or location) of the sonified integers and their
loudness is clearly derived from the Fibonacci sequence as well. The
slow, meditative rendering of 6.69 seconds per representation ob-
scures the rabbit sequence and the recursive property discussed in
2.3.3 and 2.3.5 to some extent. In contrast, the properties discussed
in 2.3.1 and 2.3.6 are much more clearly illuminated.
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4. The Graphic Element

A synchronized visualization of the Zeckendorf representations was
produced in the programming language Processing [17] for each work
presented here, in which each representation appears as it is heard in
a point graph. These works can, however, also be experienced with-
out graphics. The intention of the graphic element is to enhance and
reinforce the perceptual clarity of the audio – to serve as an aid in the
sonic illustration of the properties discussed above, for example. In
order to better serve this purpose, a minimalistic approach similar to
that taken for the music was taken to the graphic element. Whereas
in the audio one cannot “look back” at the representations which
have occurred, the visual element does not have this restriction, pro-
vided one can fit all the representations which have occurred on the
screen. The residual visualization of past representations can aid in
the sonic recollection of what has transpired. In compositions based
on Zeckendorf representations, a counter is placed at the top, indicat-
ing the integer currently being represented along with the Fibonacci
numbers summing to that integer. Here is a modified still image
of the penultimate representation in Zeckendorf Representations no.
19 :

Figure 5

5. Other Compositions

Interesting results can be achieved in this style with sequences
derived from Z(n) as well; Ph(n) can, for example, be derived from
Z(n). Other sequences of interest are the number of 1s (A007895) or
0s (A102364) present in Zb(n), and number of runs of equal bits in
Zb(n) (A104324). See compositions B1154, B827 and B1143 in [2].
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The composer has also applied this principle to the closely related
base phi (phinary) representations [18] (see B416 in [2]). Work in
progress includes the Lucas base representations and representations
based on other generalized Fibonacci sequences.
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