
AUGMENTING COMPUTER MUSIC WITH JUST-IN-TIME COMPILATION

Wesley Smith, Graham Wakefield

University of California Santa Barbara
Media Arts and Technology

whsmith|wakefield@mat.ucsb.edu

ABSTRACT

We discuss the potential of just-in-time compilation for
computer music software to evade compromises of flexibil-
ity and efficiency due to the discrepancies between the re-
spective natures of composition and computation and also
to augment exploratory and generative capacity. We present
a range of examples and approaches using LLVM compiler
infrastructure within the LuaAV composition environment
and measure its performance against static compilation.

1. INTRODUCTION

Striking a balance between dynamic flexibility and desir-
able efficiency is one of the fundamental challenges of cre-
ative software design. Maximally efficient code follows or-
dered patterns determined before execution begins, grant-
ing the compiler more freedom for optimization. Software
design therefore typically demands a compromise in order
to break naturally open-ended domains into efficient pre-
compiled modular chunks that can be freely reassembled at
run-time. The price to pay follows from the immutability of
the precompiled chunks and the restriction to a predefined
granularity.

On the other hand, composition is a complex indeter-
minate activity resistant to a priori characterization, a do-
main often explored and defined gradually by provisional
approaches and in reflective manners. Systems cannot an-
ticipate all possible situations flawlessly; ideally they should
evolve in the hands of users [5], [7].

The need to increase flexibility while maintaining effi-
ciency is exacerbated in situations where processing must
not terminate, such as autonomous and interactive genera-
tive systems, and live-coding performance [3], [4]. Extend-
ing the capacity of a program to be redefined at run-time
embodies a shift away from the notion of computer as a
bounded tool for a bounded task toward the notion of an
always-on workspace or environment. Run-time augmenta-
tion is thus relevant to composition in general, since radi-
cally decreasing the latency and maximizing the overlap be-
tween action and perception may increase interactive fluid-
ity and reduce conceptual load.

In this paper we discuss the potential of just-in-time (JIT)
compilation to relax tensions of run-time flexibility and effi-

ciency. JIT compilation allows the compilation of arbitrary
new structures and functions into efficient machine instruc-
tions at run-time, effectively allowing the efficient extension
and redefinition of an active program as part of its execu-
tion. JIT compilation can lead to much greater execution
efficiency than interpreted modular chunks by avoiding the
evaluation of code step by step, reducing address lookups,
optimizing deterministic or probable paths, and translating
operations to platform-specific routines1.

Besides the benefits of efficiency and flexibility, express-
ing abstract algorithms for JIT compilation may also:

• adapt to run-time user/environment demands,
• grant portability between systems [6],
• offer protection against dependency obsolescence.

2. RELATED WORK

The Max family [14] offers a clear example of the compro-
mise between flexibility and efficiency in an always-on en-
vironment. A modular architecture supports the modular as-
sembly of pre-compiled black-box objects into run-time in-
terpreted patches by means of a graphical data-flow idiom.

SuperCollider 3 [10] also grants the user flexibility to
define kernels of state and synthesis function (SynthDefs)
from low-level primitives at run-time. Kernels are created
using the interpreted SCLang language and stored in a byte-
code representation. When instantiated on the SCServer vir-
tual machine, these byte-codes are interpreted to call the
appropriate pre-compiled, optimized library functions and
generate audio data.

Perhaps a closer antecedent to our work is the Kyma
system as described in 1988 [11]. The software featured
a capacity to define synthesis kernels (SoundObjects) pro-
grammatically using the interpreted Smalltalk-80 language,
as highly modular tree-like hierarchical data structures of
generators and transforms. Parsing these data structures at
run-time generates assembly language code (synthesis func-
tion and data registers) for instantiation on a dedicated DSP
microprocessor.

1Note that efficiency is not only to be judged by time: run-time code
generation could adapt algorithms to match available or reduce needed
memory.

Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009

439

Op:
mul

Call:
sine

Call:
sine

Op:
mul

Op:
mul

Value:
0.1

Arg:
time

Value:
500

Arg:
time

FunctionDef:
func(arg time)

Mul

Time 500

Sine Sine

Mul

Time 0.1

Mul

Out

Figure 1. An oscillator with amplitude modulation: synthe-
sis graph (left), and equivalent abstract syntax tree (right.)

3. INTEGRATING LUAAV & LLVM

Before detailing our explorations into the potential of JIT
compilation, we first describe the LuaAV [12] environment
and the LLVM (Low Level Virtual Machine [9]) compiler
infrastructure upon which our investigations were carried
out.

LuaAV is a platform for computational composition and
audiovisual research with which users can define custom ap-
plication environments and execute and manage user-authored
scripts. These scripts make use of the grammar and vocabu-
lary of the Lua language [8] along with extensions we have
provided for timing, audio drivers, windowing and OpenGL,
MIDI, OSC etc.

A persistent issue throughout the development of LuaAV
has been the reconciliation of the static and the dynamic.
Basing our work upon an interpreted dynamic language al-
ready granted extensive run-time re-configurability, such as
dynamic data structures, garbage collection, code evalua-
tion, first-class functions, etc. JIT compilation promises the
extension of this kind of dynamic flexibility to what would
otherwise demand ahead of time compilation, such as effi-
cient synthesis routines.

LLVM offers a flexible, target independent set of C++ li-
braries encompassing compiler workflow, which can be em-
bedded within an executing application for JIT compilation.
The workflow follows the standard design of using a front-
end to convert code expressed in a specific language or for-
mat into in intermediate representation (IR), to apply trans-
formations (such as optimizations) to this IR, and then con-
vert this IR to executable instructions for a particular back-
end target platform.2 The significant contribution of LLVM
is the agnostic portable IR language as linguistic switchbox
connecting all stages of compilation,3 and mirroring this IR

2Back-end JIT targets include x86 and PPC (32/64-bit) and ARM, front-
end parsers exist for C and Objective-C, and the libraries are available for
OSX, Linux and Windows under a BSD-style license.

3The idea is not new: a common intermediate language (UNCOL [13])
was proposed fifty years ago, but not widely implemented. LLVM is a ma-
ture project with support from many groups including Apple and Adobe[1].

Listing 3.1 Code generation of the graph in Figure 1.
a) Concise constructor form (Lua):

local dag = sin(time() * 500) * sin(time() * 0.1)

b) Linearized list of static single assignments (pseudo-assembly):

@1 <- 500
@2 <- time()
@3 <- mul(@1, @2)
@4 <- sine(@3)
@5 <- 0.1
@6 <- time()
@7 <- mul(@5, @6)
@8 <- sine(@7)
@9 <- mul(@4, @8)

c) Generated instructions (LLVM IR):

define double @func(double %time) {
entry:
%multmp = mul double %time, 5.000000e+02
%calltmp = call double @sine(double %multmp)
%multmp1 = mul double %time, 1.000000e-01
%calltmp2 = call double @sine(double %multmp1)
%multmp3 = mul double %calltmp, %calltmp2
ret double %multmp3

}

in the library application programming interface (API.)
To explore the potential of JIT compilation we have em-

bedded the LLVM libraries within LuaAV. We created tem-
plate bindings to make the majority of the LLVM API di-
rectly available to scripts in the Lua language, with which
the following investigations were implemented.

3.1. Expression trees

Expression trees offer a simple yet general form to describe
an algorithm, consisting of a hierarchical directed acyclic
graph (DAG) of operations by connecting outputs to inputs.
They are applicable to computer music in the form of state-
less synthesis generators and are an appealing starting point
for our work since parsing an expression results in an ab-
stract syntax tree (AST) of identical structure (Figure 1.)

In particular, we treat the expression tree as a function of
time, mapping temporal index (a read-only global value) to
sample value output, resulting in a callable function equiva-
lent to the C function signature double (*expr)(const double
t). We make use of Lua’s flexibility to provide succinct con-
structors of expression tree data structures (Listing 3.1a).

To convert the AST into LLVM IR, we linearize the tree
by depth-first traversal to produce a series of single assign-
ment instructions, ensuring that the arguments of each oper-
ator or call have already been assigned (Listing 3.1b.) Since
LLVM IR is static single assignment (SSA), it is straightfor-
ward to define the body of JIT-able function using our bind-
ing (Listing 3.1c.) This native function is then made avail-
able for use within the audio process to synthesize sound.

Storing the synthesis expression as a hierarchical data-

Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009

440

Listing 3.2 Definition and instantiation of a new kernel pha-
sor (cheap cosine by vector rotation.)
local phasor = Synth {

name = "phasor",
default = {

a = 1, b = 0,
rate = 0.01

},
process = function()

a:store(a - b * rate)
b:store(b + a * rate)
out:store(a)

end,
}

-- instantiate this synth:
phasor { rate = 0.1 }

structure opens up a variety of interesting possibilities, such
as the genetic programming of graphs as life-forms within
an evolutionary landscape [2].

3.2. Stateful synthesis graphs

Expression graphs however are limited because they have no
internal state. Extending our model to support stateful ob-
jects such as filters and variable oscillators calls for the run-
time generation of data-structures to maintain state across
function calls, and associated routines to allocate and free
memory appropriately. In order to generate optimal algo-
rithms it is also vital to distinguish immutable state, state
updated at control rates, and state updated per sample.

The parsing and code generation is encapsulated in a
higher-level function Synth which provides a template to de-
fine a synthesis kernel (akin to a Kyma SoundObject or Su-
percollider SynthDef) and register it with the executing ap-
plication. Encapsulating code generation and kernel regis-
tration within a higher level template not only eases the con-
ceptual load on the end-user, it can also provide a good deal
of the memory and type safety essential to avoid crashes in
run-time code generation!

A Synth kernel is defined by a name, an optional set of
default values, and a function to describe the synthesis al-
gorithm in a similar fashion to the previous example. The
Synth function returns a Lua-bound native function to allo-
cate and accurately register an instance of the kernel with the
LuaAV real-time audio synthesis scheduler. Arguments to
this function can specify distinct parameter values for each
instance (see Program 3.2.)

In order to support stateful kernels, the parser from the
previous example was extended to recognize variable nodes
as potential function arguments. Variables have associated
metadata for identification (name), storage (local to parsed
kernel or global to application), rate (constant, control or
signal) and an initial value drawn from the defaults table
if defined. Referencing variables inserts appropriate load
and store instructions to the AST. Prior to code generation,

AST:

create(p) {
 x = alloc(sizeof(P))
 x.a = p.a or 1
 x.b = p.b or 0
 x.rate = p.rate or 0.01
 sched(x, process)
 return x
}

Globals
 out (signal)

Variable
 name
 storage
 rate
 default

Instruction
 operation
 rate
 arguments

Synth:
 name
 defaults
 expression

free(x) {
 unsched_and_free(x)
}

process(x) {
 a = x.a
 b = x.b
 rate = x.rate
 for i = 0 to 63 {
 a = a - b*rate
 b = b + a*rate
 out[i] = a
 }
 x.a = a
 x.b = b
}

struct P {
 a (signal)
 b (signal)
 rate (control)
}

Figure 2. Schematic overview of the code generation and
pseudo-code of the results of Program 3.2.

the parser traverses the AST and promotes the rate of each
instruction the highest rate of all its argument nodes (a form
of type checking/coercion.)

After parsing the code generator traverses the AST and
collates all local storage variables to determine the neces-
sary state for the kernel. The list of local variables is used
to define a data structure (akin to a C struct) and generate
a function to allocate memory and set default values and to
free memory accordingly.

The code generator is then ready to produce the process
function from the AST; this function takes a pointer to the
data structure as its argument. The process function begins
with instructions to load references to this data structure’s
members, followed by all of the non-signal rate instructions.
This is followed by an a inner loop block for signal rate
processing into which all the signal-rate instructions are in-
serted. Global signal pointers in inner loop store instructions
are offset by the loop iterator.

The LLVM optimization passes promote most of the load
and store instructions to register variables where possible,
trim unused code and restructure expressions. In general,
the performance of JIT compiled functions and equivalent
precompiled C++ code is similar.

Several performance measurements are listed in Table
3.2. The Phasor is implemented as in Program 3.2, while the
Biquad implements a minimal two-pole, two-zero filter. The

gcc gcc -03 JIT JIT-opt Synth()
Phasor 1.087 0.717 0.937 0.863 2774.5

Biquad 4.020 2.355 3.670 3.275 3443.7

Table 1: Median time (microseconds) over 1 million tests.

Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009

441

JIT columns measure execution of process() calls (block
size = 64 samples) as JIT-compiled by LLVM, while the gcc
columns measure pre-compiled C++ versions of the same
algorithms. The final column measures the entire Synth()
call. Measured with gcc version 4.0.1, LLVM revision 71029,
on a 2 GHz Intel Core Duo running Mac OS 10.5.6.

3.3. C code generation

While these examples are simple for clarity’s sake, the prin-
ciples can be extended to far more complex structured ob-
jects and methods, and not restricted to the domain of gener-
ating time-domain audio samples. Nevertheless, at a certain
point it may be preferable to specify algorithms with alter-
native syntax.

Within the Lua-LLVM binding we also have a proof of
concept using the Clang front-end for compilation of matrix
processing kernels into LLVM IR. The procesing kernels
describe an element of computation to be applied across a
domain similar to GLSL fragment shaders or Adobe Pixel
Bender kernels.

Kernels are described in a C-like syntax together with
meta-data containing information such as parameter inputs
and what the valid matrix formats for the particular kernel
are. A processing kernel can have an arbitrary number of
parameters along with N input matrices and N output matri-
ces. The current prototype operates on matrices containing
up to 3 dimensions of 1 to 4 channels of data that is either
8-bit or 32-bit per channel. The implementation is similar to
the expression tree implementation described in section 3.1,
except that instead of emitting IR it emits valid C code for
subsequent evaluation and code-generation by Clang.

4. DISCUSSION

We have described a range of approaches to the run-time JIT
compilation of synthesis routines and processing functions.
These approaches free the LuaAV composition environment
from the hard boundary between static and dynamic compu-
tational elements that a bytecode representation entails.

By embedding JIT compilation into the run-time envi-
ronment, we have given it the capacity to augment itself:
admitting new primitives and connections and thus integrat-
ing new qualities into the unfolding computational process.

In general terms, augmentable environments are hetero-
geneous in nature and permit structural feedback that oth-
erwise would not be possible. There is clear potential for
computation to not merely serve the development of new
compositional forms, but to also become a meta-material
worthy of exploration in and of itself. We have only just
begun to explore the possibilities of this class of computa-
tional space, but from our current experiences we feel it to
be a vast and fruitful terrain on which to set out.

5. REFERENCES

[1] “2008 llvm developers’ meeting,” http://llvm.org/
devmtg/2008-08/.

[2] “fastbreeder,” http://www.pawfal.org/Software/
fastbreeder/.

[3] N. Collins, “The analysis of generative music pro-
grams,” Organised Sound, vol. 13, no. 3, pp. 237–248,
2008.

[4] N. Collins, A. Mclean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organized
Sound, vol. 8, no. 03, pp. 321–330, 2003.

[5] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe,
and N. Mehandjiev, “Meta-design: a manifesto for
end-user development,” Communications of the ACM,
vol. 47, no. 9, pp. 33–37, 2004.

[6] M. S. O. Franz, “Code–generation on–the–fly: A key
to portable software,” 1994.

[7] E. Giaccardi and G. Fischer, “Creativity and evolution:
a metadesign perspective,” Digital Creativity, vol. 19,
no. 1, pp. 19–32, 2008.

[8] R. Ierusalimschy, L. de Figueiredo, and W. Celes, “The
evolution of lua,” Proceedings of the third ACM SIG-
PLAN conference on History of Programming Lan-
guages, 2007.

[9] C. Lattner and V. Adve, “The LLVM Compiler Frame-
work and Infrastructure Tutorial,” in LCPC’04 Mini
Workshop on Compiler Research Infrastructures, West
Lafayette, Indiana, 2004.

[10] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[11] C. A. Scaletti and R. E. Johnson, “An interactive en-
vironment for object-oriented music composition and
sound synthesis,” SIGPLAN Not., vol. 23, no. 11, pp.
222–233, 1988.

[12] W. Smith and G. Wakefield, “Computational audiovi-
sual composition using lua,” Communications in Com-
puter and Information Science, vol. 7, pp. 213–228,
2008.

[13] J. Strong, J. Wegstein, A. Tritter, J. Olsztyn, O. Mock,
and T. Steel, “The problem of programming communi-
cation with changing machines: a proposed solution,”
Communications of the ACM, vol. 1, no. 8, pp. 12–18,
1958.

[14] D. Zicarelli, “How i learned to love a program that
does nothing,” Computer Music Journal, vol. 26, no. 4,
pp. 44–51, 2002.

Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009

442

