
Bob L. Sturm
Department of Electrical and Computer
Engineering and Media Arts and Technology
Program
University of California, Santa Barbara
Santa Barbara, California 93106 USA
b.sturm@mat.ucsb.edu

46 Computer Music Journal

Adaptive concatenative sound synthesis (ACSS) is
a recent technique for generating and transform-
ing digital sound. Variations of sounds are synthe-
sized from short segments of others in the manner
of collage based on a measure of similarity. In
electroacoustic music, this has been done by
manually locating, categorizing, arranging, and
splicing analog tape or digital samples—a style
termed micromontage (Roads 2001, pp. 182–187).
This is akin to performing granular synthesis by
hand.

Instead, ACSS provides an intuitive way to auto-
mate and control this procedure, freeing time for ex-
perimenting and composing with this flexible
sound-synthesis technique. As an automation of
micromontage methods informed by signal pro-
cessing and extended to databases of any size,
ACSS provides new paths for the art and science of
sound collage. Sound synthesis and design—the
general organization of sound objects—can develop
in directions that are manually prohibitive. Addi-
tionally, ACSS provides a creative interface to
large databases of sound, where the “query-by-
example” paradigm becomes “synthesize-by-
sound-example.”

Through several illustrative examples, including
compositions exploring aspects of the algorithm,
this article attempts to demonstrate the potential of
ACSS for these applications. A brief history of mi-
cromontage and the concepts behind ACSS are pre-
sented. Several implementations are reviewed, and
a new one is demonstrated and compared to these.
Finally, its application to composing in the style of
micromontage is explored and analyzed. In the end,
it is argued that ACSS provides a flexible, intuitive,
and natural way to shape sound.

A Brief History of Micromontage

The notion of creating sound by concatenation is
not far removed from electroacoustic tape works by
composers John Cage, Iannis Xenakis, Bernard
Parmegiani, and James Tenney; the more recent dig-
ital “microsonic” works of Horacio Vaggione and
Curtis Roads; the “plunderphonics” of John Os-
wald; or the “hyperrealism” of Noah Creshevsky.
These composers have manually performed the la-
borious process of selecting and fusing together
even the shortest segments of recorded sound—so
short that their results exist more in the realm of
micromontage than of musique concrète.

In 1952, John Cage composed Williams Mix using
chance operations. The work features a 192-page
score prescribing the arrangement and splicing of
about 600 small pieces of magnetic audiotape
(Kostelanetz 1970, pp. 109–111). Each sound to be
used comes from one of six categories, such as city
sounds, country sounds, electronic sounds, etc. It
took Cage and at least five others nine months to
record and collect sounds and splice pieces of tape
to create a four-minute realization (Kostelanetz
1970, pp. 130)—one of the first electroacoustic
works composed in the United States.

Similarly, in the late 1950s, Iannis Xenakis
spliced together hundreds of short magnetic tape
segments to create Concrèt PH and Analogique B
(Xenakis 1992, pp. 103–109; Roads 2001, pp. 64–
66)—though it is believed Bernard Parmegiani as-
sembled the tape for the latter (Roads 2005). Mr.
Parmegiani used the same technique to construct
parts of his 1967 electroacoustic masterpiece Cap-
ture Ephémère (Parmegiani 2002), which has mo-
ments resembling the characteristic sparkling of
Concrèt PH.

Extensions of this technique into the digital do-
main can be found in the work of Horacio Vaggione
and Curtis Roads. In Schall (Vaggione 1995), com-

Adaptive Concatenative
Sound Synthesis and Its
Application to
Micromontage Composition

Computer Music Journal, 30:4, pp. 46–66, Winter 2006
© 2006 Massachusetts Institute of Technology.

Sturm

posed in 1995, Horacio Vaggione transforms and
arranges thousands of segments of piano sounds to
create a variety of textures and themes (Roads 2001,
pp. 312–316). Software he has recently helped de-
velop for this purpose provides an intuitive and
powerful interface to working with sound at numer-
ous time scales (Vaggione 2005). Within this appli-
cation, a user can isolate, organize, arrange, and
group sound segments, as well as perform transfor-
mations on them. Essentially, it is an interface for
controlling and organizing the “granulation” of
sounds.

Curtis Roads’s work Half-life (Roads 2004), com-
posed in 1998, uses “atoms” of material generated
by pulsar synthesis (Roads 2001, pp. 137–157). Mr.
Roads writes in the liner notes to the recording that
“the strategy was to generate the sounds, to study
and classify the sounds, to pick, choose, and trans-
form the sounds, and finally to connect and layer
the sounds. . . . Half-life was honed in microscopic
detail, on a particle-by-particle basis.” Like Mr. Vag-
gione, Mr. Roads uses custom designed software to
generate material.

Composer Noah Creshevsky applies the idea of
micromontage to create what he calls “hyperreal-
ism,” which he describes as “an electroacoustic
music language constructed from sounds that are
found in our shared environment . . . handled in
ways that are somehow exaggerated or excessive”
(Creshevsky 2003, liner notes). Fundamental to his
style are superhuman performances and the incorpo-
ration of sounds from around the world to create a
“sonic bonanza” (Creshevsky 2005). He takes care in
finding and extracting each sample he uses to “elim-
inate the tiny telltale signs that mark their origins”
(Creshevsky 2001). In his work Borrowed Time
(Creshevsky 1995), composed in 1992, he combines
short fragments of recorded vocal music from com-
positions dating between the 12th and 20th cen-
turies. The composer writes that “[e]ach sample
consists of a solitary musical event, the duration of
which is generally shorter than one second. I gener-
ated melodies, phrases, and harmonic progressions
by arranging and rearranging tiny bits of embryonic
musical matter” (Creshevsky 2001, p. 91).

Other composers such as James Tenney and John

Oswald make use of samples in much the same
way, but with sound sources pregnant with cultural
significance. James Tenney uses the same tape-
splicing techniques as Iannis Xenakis and Bernard
Parmegiani in his 1961 composition Collage #1
(Blue Suede) (Tenney 1992). Here, he humorously
recomposes sound material from Elvis Presley’s ren-
dition of Carl Perkins’s song “Blue Suede Shoes.”
John Oswald’s work in this vein is what he calls
“plunderphonics,” in which tiny but identifiable
pieces of musical culture are used to compose new
work rich in popular signifiers (Holm-Hudson 1997;
Oswald 2001, 2006). His 19-minute work Plexure
(1993) is an incredible assemblage combining over
2,000 fragments of popular music from 1982 to
1992. Some segments come and go just as they can
be identified, and others hang around to provide
motivic material. Interestingly these short samples
are recognized more by their timbre than higher-
level content such as melody or context (Holm-
Hudson 1997).

Compared with the manual labor performed by
these composers, the advantages of automating the
procedure of selecting and concatenating small
sound segments are clear and exciting: the labor in
assembling by hand a desired sound from poten-
tially hundreds of segments is instead spent on ex-
perimentation, fine tuning, and composing with the
results. The “library” from which sounds are se-
lected is limited only by available disk space; for ex-
ample, one could use the complete recorded works
of Beethoven. The idea of automatically transmut-
ing timbre and form is alluring. The concepts be-
hind ACSS are now presented, followed by a review
of several implementations.

Adaptive Concatenative Sound Synthesis

For over two decades, concatenative sound synthe-
sis (CSS) approaches have been popular for realistic
text-to-speech synthesis (Hunt and Black 1996),
herein termed concatenative text-to-speech (CTTS).
By using a database of real speech waveforms seg-
mented into “units”—such as the “j” in “jam,” “a”
in “bat,” and the “z” sound in “is”—these can be

47

concatenated to synthesize the spoken word “jazz.”
Selecting or modifying waveforms based on context,
prosody, and inflection increases the realism. An al-
ternative approach for speech synthesis uses a para-
metric model (Klatt 1987). While more general and
circumventing the need for large waveform data-
bases, parametric models often sound less realistic
than CTTS (Schwarz 2004, pp. 15–22).

There have been many analogous applications of
CSS-like techniques to sound and music synthesis
(Schwarz 2006). As discussed above, some com-
posers have used similar techniques by manually
splicing pieces of analog magnetic tape or pasting
digital samples. Granulation (Roads 2001, pp. 187–
193), a synthesis method similar to CSS, is a type of
granular synthesis that uses grains derived from a
recorded waveform. A close relative of granulation
is brassage (Wishart 1996, p. 53), which generally
focuses on the scrambling of a sound. These tech-
niques have been used to create non-repetitive envi-
ronmental “soundscapes,” e.g., rain and crickets,
from shorter sound examples (Hoskinson 2002). A
more complex implementation considers the statis-
tics of the source, which can, for example, synthe-
size crying babies from a short recording of a single
crying baby with little perceived repetition (Dubnov
et al. 2002).

In a slightly different application, Nick Collins
has devised a program that automatically segments
sound files into beats, and then it concatenates
these to create different styles of electronic dance
music (Collins 2003, 2006). Simon et al. (2005) have
performed outstanding work in the synthesis of
novel realistic performances by concatenating seg-
ments of unrelated performances. They use MIDI
and stylistic rules to inform the selections, transfor-
mations, and concatenations of sound segments. Fi-
nally, Tristan Jehan has used his perceptual sound
segmentation scheme (2004) to create “music cross-
synthesis,” where segments of one song are con-
catenated to imitate another (2006).

Recent work has investigated and evaluated adap-
tive concatenative approaches for synthesizing
sound and music. Like CTTS, sounds are selected
and concatenated according to features (or descrip-
tors) of some “target,” but instead of using text, the
target can be a set of rules, a symbolic score, or an-

other sound. All of these methods have been termed
more generally “data-driven concatenative sound
synthesis” (Schwarz 2004). This article concen-
trates on the approach where, like “photomosaics”
(Silver 2000), a target sound is assembled from other
sounds based on a measure of similarity between
them. For instance, a speech waveform can be ap-
proximated by concatenating units of saxophone in
a way that minimizes the mean squared error of the
original and synthesis. In this way, the analysis
“adapts” to features of the target, much like adap-
tive signal expansions over redundant bases (Mallat
and Zhang 1993). ACSS can be seen as an “adaptive
digital audio effect” (Verfaille and Arfib 2001; Ver-
faille 2003), where features of one sound are used as
control parameters for the synthesis of new sounds
or the transformation of old ones, whether using
concatenation, frequency modulation (Poepel and
Dannenberg 2005), or other methods.

It can be argued that ACSS is not really synthesis
per se, but instead a type of effect. In one sense,
ACSS is granular synthesis or multiple-wavetable
synthesis, and in another it is sound scrambling
(brassage), or a sophisticated version of remixing.
The line between synthesis and effect is difficult to
draw when the sound segments used are brief. The
convention adopted here is that when the result
bears little resemblance to the original, then the
transformation is more synthesis than effect.

It may be helpful at this point to discuss the simi-
larities and dissimilarities of the synthesis methods
already mentioned. Figure 1 is a Venn diagram de-
picting the relationships between CSS (generalized
concatenation of units), ACSS (unit selection, trans-
formation, and concatenation based on features of a
target sound), CTTS (concatenation of real speech
waveforms to create intelligible speech from text),
granular synthesis (creation of sound generally us-
ing waveforms of duration 1–100 msec; Roads 2001,
p. 86), and granulation (granular synthesis using
grains derived from recorded sounds). Obviously,
ACSS and CTTS are subsets of CSS, granulation is a
subset of granular synthesis, and each one overlaps
the others. Whereas granular synthesis focuses on
creating textures from varying densities of grains
with short durations, CSS generally sequences
longer-duration sound units in a monophonic man-

48 Computer Music Journal

Sturm

ner. CTTS, a specialized subset of CSS, shares ele-
ments with all the others: it too can be controlled in
some respects by a given target sound through
analyses of real speech to demarcate units and as-
certain inflection. Moreover, its use of real speech
waveforms is not unlike granulation. ACSS can be
seen as sequential or monophonic granular synthe-
sis, and as CSS driven by features of a sound; but it
can be differentiated from granular synthesis when
it uses waveforms longer than 100 msec.

Implementations of ACSS

At the time the author’s research began, only a few
implementations of ACSS had been created: Mu-
saicing (Zils and Pachet 2001), Caterpillar (Schwarz
2000, 2003, 2004), MoSievius (Lazier and Cook
2003), and Soundmosaic (Hazel 2003). Since about
the year 2000, there has been growing interest in ap-
plying concatenative techniques to sound and mu-
sic synthesis (Schwarz 2006), though not always in
an adaptive way (Freeman 2006).

Musaicing is proposed as an efficient way to ex-
plore and use large sample libraries in music pro-
duction (Zils and Pachet 2001). Here, a “sample”
refers to a sound object that has various high-level
descriptors attached, such as instrument, playing
technique, tempo, etc. By specifying high-level
properties of a desired sequence, appropriate
samples are automatically retrieved from a library,
transformed, and sequenced, thus saving much time
and effort. Using a target sound to provide these

high-level properties, Musaicing can produce imita-
tions of it using any collection of samples. The
problem is posed as one of costs and constraints.
Samples are selected and sequenced according to
how well each satisfies local and global constraints
while minimizing a global cost. A “musaic” is built
by iteratively minimizing the cost of satisfying two
types of constraints: segment and sequence. Seg-
ment constraints are local and include how similar
a sample is to a portion of the target. Sequence con-
straints are global and control the overall combina-
tion of samples, for instance continuity among
selected samples.

Costs are computed with a distance function of a
set of discrete low-level descriptors, which can in-
clude mean pitch, loudness, “percussivity,” and spec-
tral characteristics. The global cost is a weighted
combination of these costs. Finding the optimal so-
lution, i.e., the one that produces a minimum global
cost, requires an exhaustive search and is impracti-
cal. Instead, Musaicing uses a non-exhaustive
method, called adaptive search, to find solutions
that are satisfactory for the purposes at hand. Re-
cent work (Aucouturier and Pachet 2006) has ex-
tended this approach to real-time interactive ACSS.

Inspired by the prospect of large databases of
sound and music, Caterpillar (Schwarz 2004) is per-
haps the most elaborate implementation of ACSS.
Like CTTS, it aims for high-quality synthesis, but
of instrument sounds. Unique to Caterpillar is the
way it defines and uses heterogeneous units. Instead
of using a fixed analysis, it attempts to extract
meaningful units by dynamic time-warping with a
score. Each unit can be further parsed into attack,
sustain, and release. Several descriptors are com-
puted for each unit: continuous features (varying
over the unit) such as pitch, energy, spectral tilt,
spectral centroid, and inharmonicity; discrete fea-
tures (constant over the unit) such as time location,
sound file, and duration; and symbolic features such
as phoneme for a voice signal, instrument, notes
played, and expressive performance instructions. As
in Musaicing, units are selected that minimize a
global cost while satisfying specified constraints,
but another cost is introduced based on the context
of a unit and the context of where it is to be placed.
For instance, placing a transient-type unit into a

49

Figure 1. Venn diagram of
relationships between five
synthesis methods: con-
catenative sound synthesis
(CSS), adaptive concatena-
tive sound synthesis
(ACSS), concatenative
text-to-speech (CTTS),

granular synthesis, and
granulation. ACSS can be
seen as monophonic granu-
lar synthesis when sound
segments are 1–100 msec
(Roads 2001, p. 86).

steady-state region will have a high cost, even
though it might have zero cost for all other con-
straints. Originally, Caterpillar used a path-search
method with k-nearest neighbors (Schwarz 2000),
but the problem was reformulated to use adaptive
search (Schwarz 2003).

One complication with these two implementa-
tions, Musaicing and Caterpillar, is in determining a
set of weights that give “good” results. In both cases,
this is done by hand, but a learning algorithm is an
attractive alternative (Schwarz 2003). Nonetheless,
a user has complete control over how closely and in
what ways the output resembles the target.

MoSievius (Lazier and Cook 2003) is a general-
ized real-time framework for CSS in which a user
specifies what discrete features to match and can di-
rectly control the synthesis using an input device
such as a keyboard. For a faster unit selection pro-
cess than can be provided by adaptive search, they
propose a concept called the “Sound Sieve,” which
is a region in a multi-dimensional feature space de-
fined by the user or from the features of a given
sound. Only units that exist in this region are con-
sidered possible matches, thus reducing the time
spent searching.

Soundmosaic (Hazel 2003) takes a much different
approach than these other implementations. After
segmenting two sounds into homogenous units,
comparisons are made between them using the in-
ner product. For each pair having the largest inner
product, the two units are switched. No windowing
or overlap is used, predictably resulting in choppy
and discontinuous output. While the inner product
can be optimized in the frequency domain, perform-
ing an exhaustive search over all pairs of units
makes the algorithm very slow.

An impressive implementation of ACSS that ap-
peared very recently is Scrambled Hackz by Sven
König (2006). This software, which will be free
and open source, allows one to concatenatively
synthesize in real-time, audio input from popular
music synchronized to the respective music video
frames. A video demonstration by Mr. König suc-
cinctly describes and demonstrates his application
(König 2006).

Currently, with the exception of Soundmosaic,
none of these implementations are available for ex-

ploring ACSS. Though Soundmosaic is freely avail-
able, its slow speed and lack of flexibility in selec-
tion criteria limits its usefulness for the creative
exploration of ACSS. Furthermore, only a few illus-
trative sound examples created with these imple-
mentations can be heard (Hazel 2003; Schwarz
2004; Zils 2006). These reasons motivated the cre-
ation of a new implementation that is fast and flexi-
ble for creative use, and accessible and available to
others interested in exploring ACSS.

MATConcat: ACSS Using MATLAB

MATConcat (Sturm 2004, 2006a) is a free and open-
source implementation of ACSS written in MAT-
LAB. To use it, a working installation of MATLAB
(preferably version 6.0 or higher) is required. MAT-
LAB was selected because of its cross-platform
compatibility, its graphical user interface (GUI) de-
velopment environment, and its continued use as a
tool for teaching media signal processing (Sturm
and Gibson 2005).

The MATConcat algorithm, illustrated in Figure
2, is simple and effective. A user-specified window
and hop size is used to create homogenous units of
audio, of which six discrete descriptors are com-
puted (see Table 1). This creates a six-dimensional
feature vector for every unit of audio. This data is
stored in matrices, herein loosely referred to as
databases, which can be quickly searched by MAT-
LAB. The corpus database contains descriptors of
units to be selected, as well as pointers to their lo-
cations in the original sound files. The target data-
base contains descriptors of the units that will
control the synthesis. Matches are made between
the two databases based on user-selected descrip-
tors and ranges of values, much like the “Sound
Sieve” in MoSievius. In more formal terms, similar-
ity between two k-dimensional feature vectors is
judged by a weighted l1 -norm of their difference.
The corpus vector closest to the target vector
within a search region is selected. Figure 3 shows an
example of the selection process in a two-
dimensional feature space.

Many descriptors are available to quantitatively
describe audio data in both the time and frequency

50 Computer Music Journal

Sturm

domains (Wold et al. 1996; Casey 2001; Arfib,
Keiler, and Zölzer 2002; Tzanetakis 2002, pp. 24–
53; Pope, Holm, and Kouznetsov 2004; Schwarz
2004, pp. 85–108). Currently, MATConcat uses the
six discrete descriptors shown in Table 1, which are
relatively low-level. These descriptors were selected
because they are simple, perceptually significant,
and simple to implement.

Zero-crossings (the number of times a waveform’s
adjacent sample values change sign) is related to the
“noisiness” of a signal. Root-mean-square (RMS) is
the square root of the sum of the squared sample
values, and it provides an approximate idea of loud-
ness. Spectral centroid is the frequency below
which half the energy is distributed and is related to
the perceived brightness of a sound. Spectral rolloff

51

Figure 2. The MATConcat
algorithm. A target sound
and collection of corpus
sounds are analyzed using
a window with a uniform
hop size. This creates a
database of descriptors for

each unit (window) of
sound. In sequential order,
each target unit is com-
pared to the corpus data-
base, and a selection is
made based on the mea-
sure of similarity specified

by the selection criteria.
The matching corpus unit
is extracted from the rele-
vant sound file, windowed,
and added to the synthesis
waveform. Note the syn-
thesis can be done using a

window size (WN
S) and hop

(WH
S) different from those

used for the target and cor-
pus analyses.

Table 1. Discrete Descriptors Used in MATConcat

Descriptor Significance Formula or Algorithm

Zero Crossings General noisiness where

RMS Approximate loudness

Spectral Centroid “Brightness” of sound

Spectral Rolloff General distribution of energy where is R found from:

Harmonicity Degree of harmonic relationships Value of second peak of normalized autocorrelation
among significant partials

Pitch Fundamental frequency Arfib, Keiler, and Zölzer 2002, pp. 339–341

The descriptors are used to quantitatively describe each unit x[n], 0 ≤ n < N – 1, windowed from a real signal sampled at
a rate Fs. Assume N even. X[k] is the discrete Fourier transform of x[n].

X k X k
k

N

k

R [] []≥
=

−

=
∑∑

2 2

0

2 1

0
0 85.

/

SR R
F

N
s= ,

SC
k X k

X k

F

N
k

N

k

N
s= =

−

=

−

∑

∑

[]
[]

1

2 1 2

0

2 1 2

/

/

RMS
N

x n
n

N

= []()
=

−

∑1 2

0

1

sgn ,
,

u u
u() ⎧

⎨
⎩

= − <
≥

1 0
1 0

ZC x n x n
n

N

= − −[]() []()
=

−

∑1
2

1
0

1

sgn sgn ,

is the frequency below which 85 percent (or in some
references 95 percent) of the energy is distributed,
and provides general information about how the
spectrum is distributed. Harmonicity, a measure of
how harmonic a waveform is, is found from the
value of the second peak of a normalized autocorre-
lation (Arfib, Keiler, and Zölzer 2002, p. 367). This
is a common technique for determining if a seg-
ment of speech is voiced, such as a vowel. Finally,
the pitch of a unit is determined by finding the first
major peak in the spectrum, and fine-tuned using
phase information (pp. 339–341).

These six descriptors are shown in Figure 4 for a
1988 recording of the crescendi from the finale of
Mahler’s second symphony. One channel of the
original waveform is shown at top. It can easily be
seen that the RMS follows the amplitude trend of
the waveform. The spectral centroid and harmonic-
ity reveal the parts of the crescendi that are more
pitched than at other times. At these moments
there are four trumpets, four trombones, three bas-
soons, and a contrabassoon playing tutti. Leading up
to the climaxes are tremolos on timpani and rolls
on a snare drum and tam-tam. The apparent failure
of the pitch algorithm is probably due to the percus-
sion; but it also points to the need of a more robust
algorithm, perhaps using harmonicity to demarcate
regions where pitch is meaningful. It might seem

that spectral centroid and rolloff are correlated, but
this is not necessarily so. One can imagine several
different spectral distributions that have the same
centroid but very different rolloffs.

In MATConcat, any combination of these descrip-
tors can be matched, but as this number grows, the
probability of finding satisfactory units obviously
becomes smaller unless the corpus grows in size.
When a match is found, the corpus unit is extracted
from the relevant sound file, windowed, and added
to the synthesis in place of the original target unit.
The synthesis can be done using several window
types, such as Hann and Tukey. This process is re-
peated for a specified set of target units. Unlike
Caterpillar and Musaicing, MATConcat has no con-
cept of context or concatenation costs; it cares only
whether a corpus and target unit have specific de-
scriptors within given ranges of each other.

To make it more manageable and accessible,
MATConcat is completely controlled using a GUI, a
screen shot of which is shown in Figure 5. From the
“File” menu, one can open or create a target or cor-
pus database, as well as save analysis databases and
results. Basic information about the target and cor-
pus analysis databases is shown in the top-left
panes, including total duration of sound material,

52 Computer Music Journal

Figure 3. An example of
searching for vectors (•)
similar to a target (×) in a
two-dimensional feature
space of root-mean square
(RMS) and spectral cen-
troid. Similarity is judged
by weighted l1 -norms of
vector differences. Here,

vectors that fall within a
region of ΔSC × ΔRMS cen-
tered on the spectral cen-
troid and RMS of the target
are possible matches (B
and C). Vector B is selected
even though A is closer in
a Euclidean sense.

Figure 4. Distributions of
six discrete descriptors of a
recording (Mahler 1988) of
the crescendi from the fi-
nale of Mahler’s second

symphony (top). Hann
windows of duration 100
msec (4,410 samples) and
50-percent overlap were
used.

Sturm

number of units, and basic statistics. Each database
can be reanalyzed with settings in the lower-left
pane. Synthesis parameters are specified in the
lower middle pane. Any set of descriptors can be se-
lected, ranges (weights) and offsets given, and syn-
thesis parameters given. Here, the selection criteria
are to first match the spectral centroid within ±10
percent of the target value, and then the RMS
within ±5 percent of 90 percent of the target RMS.
Obviously, the smaller the range the larger the
weight is given to that feature dimension (see Fig-
ure 3). The concept of range is used because it is less
abstract than weights.

After the process runs, the matching results are
shown in the lower-right pane with the synthesis
waveform displayed at the top-right. The matching
results help guide the selection of good descriptor
ranges. As seen in the bottom-right pane of Figure 5,
for target unit 40 there are 157 matches that satisfy
the spectral centroid condition, and three of these

match the RMS condition. Of these, corpus unit 685
is selected and placed in the synthesis using a win-
dow size of 2,048 samples, and an overlap of 1,024
samples (specified in the synthesis parameters
pane). Because this corpus is analyzed with a win-
dow size of 20,000 samples, only the first 2,048
samples are used. This can of course be changed
with the synthesis parameters. For the next target
unit, no acceptable corpus unit is found, and thus it
is left blank in the synthesis because the option to
fill the gap is not selected (hidden from view in the
Options menu).

There are several options available in MATCon-
cat for different outcomes of the selection process. If
no match is found, the program can do nothing, find
the next best match, or extend the previous match
by adding the next corpus unit; if several matches
are found, the program can select the best one, or
choose one at random. There are also synthesis op-
tions that reverse selected corpus units, convolve

53

Figure 5. Screen shot of the
GUI to MATConcat, in the
process of synthesizing.
The top-left panes show in-
formation about the target
and corpus databases. The
bottom-left pane directs

analyses. The bottom-
middle pane provides the
selection criteria and pa-
rameters for the synthesis.
Once a synthesis is fin-
ished, the waveform is dis-
played in the top right, and

matching results are
shown in the lower right.
Under the “File” menu,
one can load, create, and
save databases and syn-
thesis results. The “Op-
tions” menu provides

directives for unit selec-
tion and transformation,
such as forcing the RMS of
the target onto the synthe-
sis, and extending previous
matches if no satisfactory
match is found.

target and corpus units, and force the RMS of target
units on corpus units—in effect transforming the
corpus unit to match the loudness of the target unit.
All of these options can create quite different effects.

Using a plethora of targets and corpora, many ex-
amples (Sturm 2006a) have been generated with
MATConcat. Several of these will now be presented
to demonstrate its performance.

Examples Generated Using MATConcat

Mahler’s percussion crescendi, mentioned previ-
ously, provide a dynamic set of features (Figure 4).
This target has been synthesized with sounds of pri-
mates (Sturm 2006a, Sound Examples A1 and A2), a
chanting Muslim imam (Sound Example A5), an
hour of John Cage’s vocal music (Sound Example
A6), three hours of music from the Lawrence Welk
Show (Sound Example A7), and the four string quar-
tets of Arnold Schönberg (Sound Example A8). Each

of these creates entirely different sonic experiences;
and depending on the selection and synthesis pa-
rameters and options, the impressions of Mahler’s
crescendi can remain or be completely obscured.

For the first example with primates (Sound Ex-
ample A1), the target is analyzed using a Hann win-
dow of duration 46 msec and 50-percent overlap;
the corpus is analyzed using a Hann window of du-
ration 372 msec and 93-percent overlap, providing a
large number of units to search. The RMS and spec-
tral rolloff descriptors are matched to within ±5 per-
cent and ±10 percent, respectively. The synthesis is
made using Hann windows of the same duration
and overlap as the corpus analysis. The primates
“ape” the slowly building crescendi, creating a
sense of increasing hysteria (see Figure 6). At each
climax, a dominant gorilla grunts as lesser simians
scurry. The primates follow the energy and general
spectral trend of the target quite well. By using a
smooth and sufficiently large synthesis window, the
result is realistic. Though the corpus consists of less

54 Computer Music Journal

Figure 6: The waveform of
Mahler’s crescendi, men-
tioned previously, per-
formed by the London
Symphony Orchestra

(Mahler 1988) is shown
above an interpretation by
primates (Sturm 2006a,
Sound Example A1).

Sturm

than fifty samples of primates, none of them sound
repeated—probably due to the redundancy of the
corpus created by the small window hop. Quadru-
pling the synthesis window skip creates crescendi
four times as long (Sound Example A2).

These examples demonstrate the applicability of
ACSS for generating realistic, non-repetitive and dy-
namic environments from sound recordings, as
done with granulation by Hoskinson (2002) and
Dubnov et al. (2002). The difference with ACSS is
that field recordings of crickets, birds, or breaking
ocean waves, for example, can be choreographed to
a target. These sounds can be concatenated to move
through different states of activity, for instance agi-
tation and peace, or consonance and dissonance.

Speech provides interesting targets with its fluid
rise and fall. Two short speech recordings are syn-
thesized by corpora of primates (Sound Examples
B1–B3), J. S. Bach’s Partita for solo flute (Sound Ex-
ample B6), alto saxophone (Sound Example C3), and
three hours of music from The Lawrence Welk Show
(Sound Example C4). By careful choice of selection
criteria and synthesis parameters, the speech can re-
main “intelligible.” A suitably small range of spec-
tral centroid or rolloff can retain much of the
sibilance and breathiness of the original, especially
when using corpora with breathy sounds, such as
saxophones or flutes.

When using speech as the target and corpus, alien
languages appear. This method was used to generate
speech sounds for a short animation featuring a
gnome. Once suitable selection criteria and synthe-
sis parameters were found, a long target sound of
speech was concatenatively synthesized to generate
several minutes of material for the gnome speech
(Example G1). It is extremely difficult to find the
proper selection criteria and synthesis options to
produce speech that does not sound scrambled.
Without attention to the pitch or spectral centroid,
unrealistic speech contours are created; ignoring en-
ergy information results in unrealistic emphasis.
All of these parameters must be used, but in order
to find any matches, the ranges must be relaxed (±5
to 10 percent). In addition, the window size and hop
must be chosen such that recognizable words do not
appear, the speech does not unnaturally overlap,
and the gnome does not sound overactive.

Because of its use of homogenous units, fixed seg-
mentation, and memory-less descriptors, the ability
of MATConcat to handle a polyphonic target is un-
predictable. The beginning of Arnold Schönberg’s
fourth string quartet (Schönberg 1939, mm. 1–5)
provides an interesting example. The first violin
plays the main theme, punctuated by the other
players (see Figure 7). The target analysis and syn-
thesis are performed using a Hann window of dura-
tion 93 msec and 50-percent overlap. The first eight
seconds of this movement are synthesized using
alto saxophone with a pitch range of ±1 percent of
the target (Sound Example D3). In this example, if
no matches are found, the previously selected unit
is extended until the next successful match.

Figure 7 shows the original waveform and sono-
gram aligned to the score and the sonogram of the
synthesis. Only at times 0.0–0.5 sec and 4.2–5.0 sec
does there appear to be any success of the corpus
matching the theme in pitch, which occurs pre-
cisely when only one instrument is playing. All
other moments are marked by attempts to accom-
modate the transients of the strings playing mar-
cato. In the synthesis, the theme is rendered quite
discontinuous, but it can be heard with effort. Many
of the nuances, like the vibrato, are also missing
from the synthesis. Though the theme does not re-
main intact, ACSS still produces aurally and musi-
cally interesting results (Sound Examples D1–D3).

Comparisons of MATConcat to Other ACSS
Implementations

Directly comparing MATConcat with the imple-
mentations of ACSS discussed previously is diffi-
cult owing to their differences in research goals, not
to mention unavailability of code and sound ex-
amples for audition. Whereas Musaicing is moti-
vated by finding efficient means for searching and
using large sample libraries, Caterpillar is moti-
vated by the promise of high-quality musical syn-
thesis from concatenative techniques. Whereas
MoSievius attempts to bring interaction and im-
provisation to real-time audio collage, Soundmosaic
is rough experimental software exploring an inter-
esting idea. All of these implementations, including

55

56 Computer Music Journal

Figure 7. The introduction
to Arnold Schönberg’s
fourth string quartet
(Schönberg 1939, mm. 1–5)
is aligned (by hand) with
the sonogram (top) and
waveform (middle) of the
recording (Schönberg 1994).
Below these is a sonogram

of the result of ACSS
(Sturm 2006a, Sound Ex-
ample D3) matching pitch
(±1 percent) using alto sax-
ophone with units extended
if no match is found. Hann
windows of 93 msec dura-
tion and 50-percent over-
lap were used for both the

analysis and synthesis. For
the sonograms, Hann win-
dows of 46 msec were used
with 75-percent overlap.
ACSS is successful at
matching pitch when the
first violin is unaccompa-
nied. At other times, it at-
tempts to accommodate

the transients created by
the strings playing mar-
cato. (String Quartet No. 4
by Arnold Schönberg copy-
right 1939 [renewed] by G.
Schirmer, Inc. [ASCAP].
International copyright se-
cured. All rights reserved.
Reprinted by permission.)

Sturm

MATConcat, do however share a common interest
in using large databases of sound for creative appli-
cations. Table 2 attempts to compile available de-
tails of each implementation as accurately as
possible.

MATConcat is as much a proof-of-concept and
demonstration of ACSS as it is a tool for generating
material for electroacoustic music. It creates varia-
tions of sounds rather than approximations opti-
mized in some sense. MATConcat is free to use for
anyone with access to MATLAB, and many ex-
amples of its output are available (Sturm 2006a).
Wrapping MATConcat in a GUI facilitates experi-
mentation and data manageability. Performing
ACSS from the command line or using a script can
quickly become burdensome by having to juggle the
parameters and options, and keeping track of results.
The simple and informative interface significantly
aids in producing results. Furthermore, because it is
programmed in a very modular way, MATConcat
can be easily extended to handle other discrete de-
scriptors, synthesis parameters, and options.

Even though it is implemented in MATLAB—
generally considered to be slow and memory-
intensive—it is fast in its analysis and synthesis.
Choosing the strategy of matching discrete descrip-
tors within specified ranges, like “Sound Sieve,”
significantly decreases the time and overhead re-
quired to produce good results, and circumvents the
need for linear programming or adaptive searches. It
is also much faster than computing and searching
correlations. An attempt to use Soundmosaic to
synthesize a 4-sec, monophonic target at 44.1 kHz
sampling rate, using 0.1-sec units selected from a
37-sec corpus (also monophonic and sampled at 44.1
kHz), took almost 11 hours using default settings
(using a 1.25 GHz G4 Apple Powerbook). This lim-
its experimentation to short sounds at low sample
rates. Using MATConcat on the same computer, the
total analysis time for the same signals using the
same window size takes a little over 45 sec. To syn-
thesize the target searching over one descriptor
takes about 15 sec. This time is not significantly af-
fected by increasing the number of descriptors to

57

Table 2. Comparison of ACSS Implementations, Inspired by Schwarz (2006)

Source
Segmentation/ Descriptors Selection Concatenation Code Sound Code

Name Unit type (Features) Process Type Language Speed Examples Available

Musaicing Pre-defined/ Low-level Adaptive ? ? ? Some
(2001) homogeneous discrete search, global

and local
constraints

Caterpillar Alignment/ High- and Path-search or Slight overlap MATLAB ? Some
(2000, 2004) heterogeneous low-level adaptive search, with crossfade

continuous, global and local
discrete, constraints
symbolic

Soundmosaic Fixed/ None Maximum Direct C++ Very slow Some ✓

(2003) homogenous inner product substitution

MoSievius Blind/ Low-level Local search User-defined C++ Real time
(2003) heterogeneous discrete

MATConcat Fixed/ Low-level Local search User-defined,
(2004) homogenous discrete windowed MATLAB Fast Many ✓

Blind segmentation uses audio features for segmentation, whereas alignment segmentation uses a symbolic score to demarcate
units. Fixed segmentation cuts the sound into equal sized, or homogenous, units, and does not attempt to relate them.

compare. Furthermore, the target and corpus do not
need to be analyzed repeatedly; the analyses can be
saved for later use. This is essential when working
with a large number of sound files. An analysis of
about three hours of CD-quality audio using a 46-
msec window and 50-percent overlap takes about 8
hours and results in over 380,000 feature vectors.
Once saved, this information can be quickly loaded
and searched.

An obvious shortcoming of MATConcat is its
lack of richness in demarcating and describing
units. Creating heterogeneous units using score
alignment, such as done in Caterpillar, segmenta-
tion from changes in sound texture (Tzanetakis
2002, pp. 67–71), or perceptual models (Jehan 2004)
is more meaningful and less arbitrary than the uni-
form windowed approach used here. A richer set of
descriptors, including ones with memory such as
differences between units, would certainly aid in
interpreting and working with all signals, includ-
ing polyphonic ones. Furthermore, additional op-
tions in the transformation of units would help
preserve important aspects of the original, such as
string vibrato.

Like the implementations reviewed, MATConcat
is a product of research into using this technique for
sound synthesis, sparked by the interesting idea of
automated collage with large sound databases.
Though MATConcat is neither meant to be a
general-purpose CSS framework like MoSievius
nor an improvement upon the work of others, it is
an attempt to make ACSS accessible and applicable
to computer music composition. Its application to
this end will now be presented.

Micromontage Composition Using ACSS

The applicability of ACSS to computer music com-
position should be quite clear by now. It presents
numerous possibilities for timbrally transforming
any sound. A composer can create a target sound,
for instance using a variety of vocal sound effects,
that provides a stencil on which any sound material
may be dabbed. The labor necessary to do this man-
ually with arbitrary precision has been replaced
with gathering sounds, exploring parameters and

options, and selecting outcomes. When the sound
units extracted are short, the composed results can
stylistically be called micromontage. It should be
emphasized though that micromontage is not
ACSS; the former is a style and technique, whereas
the latter is an algorithm for sound synthesis and
transformation.

In creating micromontage, all of the composers
discussed above work with sound material at levels
of detail requiring incredible patience and strategy
(Roads 2001, pp. 184, 313). Composing with ACSS
to achieve similar effects is a much different experi-
ence. In contrast, ACSS provides an efficient way to
work in the style of micromontage. More time can
be spent experimenting, generating, and composing
with results than ripping, identifying, segmenting,
cataloging, importing, transforming, and finally ar-
ranging samples. Moreover, the amount of sound
material one can work with is unlimited. Several
micromontages created using ACSS and MATCon-
cat are now presented and analyzed.

Dedication to George Crumb: American Composer

The first test of the applicability of ACSS and MAT-
Concat to composition is the three-movement work
Dedication to George Crumb: American Composer
(Sturm 2006a). A short work by George Crumb is
used as the target in all movements. Several hours
of Native American music are grouped into three
corpora: solo voices, aerophones, and groups. Each
movement is assembled from concatenated mate-
rial from one of these corpora. Once the piece was
finished, however, that the lack of an experimental
record—the parameters, observations, and results
made—could not shed light on the process of com-
position using ACSS. A new piece was begun and a
detailed log of its progress kept.

Concatenative Variations of a Passage by Mahler

The composition Concatenative Variations of a
Passage by Mahler (CVM; Sturm 2006a) systemati-
cally explores the idea of timbrally transforming a
passage in an electroacoustic context. CVM uses as

58 Computer Music Journal

Sturm

its subject five interpretations (Mahler 1987, 1988,
1990, 1991, 1995) of Mahler’s dramatic percussion
crescendi mentioned previously. As can be seen
from the waveforms in Figure 8, differences among
them are quite clear in duration, intensity, and
shape. With these “passages” as targets or corpora,
MATConcat is used to explore possibilities and gen-
erate fine-tuned results. These are recorded, catego-
rized, and arranged and transformed within a
multitrack environment to create each variation.
CVM currently consists of eleven variations, with
several others planned.

Table 3 shows details of each variation, including
targets, corpora, and analysis and synthesis settings.
For example, the variation “Gates I” uses the inter-
pretation by Simon Rattle (Mahler 1987) as the tar-
get and a corpus containing 406 sec of a squeaky
gate (recorded by the author at the Rock of Cashel,
Ireland) and trumpet (played by the author). The tar-
get and corpus are analyzed with 23- and 93-msec
windows respectively, with 50-percent overlap in

both cases. The material used in the variation is
synthesized with Hann windows of 93- and 227-
msec durations, both having skips of 46.5 msec. In
one case, the descriptors matched are RMS with a
range of ±2 percent and spectral centroid with a
range of ±1 percent. The only option specified is to
extend the previously selected unit if no match is
found.

The one-minute variation “Boils and Bells” ex-
plores very short synthesis windows and uses over
2,800 segments of 46-msec duration from a corpus
consisting of more than an hour of sound effects.
Done manually, this would obviously require hun-
dreds of hours of work and an uncanny ability to or-
ganize. Apparently, the sound effects most similar
to Mahler’s crescendi are boiling water, bells, a toy
cow, jackhammers, and at the height of the first
crescendo, a man falling off a ladder.

Many trials are run for each variation to explore
the potential of the target, corpus, selection criteria,
synthesis parameters, and the available options.

59

Figure 8. Waveforms of in-
terpretations of the
crescendi from Mahler’s
second symphony by five
different conductors
(Mahler 1987, 1988, 1990,

1991, 1995). Material from
these is used as targets or
corpora for the composi-
tion Concatenative Varia-
tions of a Passage by
Mahler (Sturm 2006a).

Even subtly different selection criteria can produce
unique and interesting results that provide fruitful
avenues for exploration. The variations “Gates I”
and “Gates II” use the same corpus and interpreta-
tion by Simon Rattle, but for the latter, the target is

Mahler’s passage reversed. Both variations match
the same features, but with slightly altered ranges.
It is surprising how different in character they are,
considering they come from the same material.

In rare cases, a musically satisfying outcome from

60 Computer Music Journal

Table 3. Settings and Parameters for each Variation of Concatenative Variations of a Passage by Mahler (Sturm 2006a), in
no Particular Order

Analysis Window
Target and Synthesis Size/Skip (msec)
Duration Corpora and Window Type Selection

Variation (sec) Duration (sec) Target Corpus Size/Skip (msec) Criteria (±%) Settings

Passage I Speech 8 Horvat, Kaplan, 3/1.5 46/23 Hann 3628/23 {SC(5%), SR(5%)}, RM, EM,
Rattle, Solti, {SR(50%), P(80%)} FRMS
Walter 104

Passage II Kaplan 23 Horvat (mm. 193– 11/5.5 11/5.5 Hann 113/23 {RMS(5%), SC(5%)} EM
206) 36

Gates I Rattle 29 Squeaky gate 192, 23/11.5 93/46.5 Hann 93/46.5, {RMS(2%), SC(1%)}, EM
trumpet 214 227/46.5 {RMS(2%), SR(1%)}

Gates II Rattle 29 Squeaky gate, 23/11.5 93/46.5 Hann 93/46.5, {RMS(1%), SC(1%)} EM
(reversed) trumpet (3 pitch 227/46.5

shifted versions)
1621

Creatures Kaplan 36 Various animals 3607, 46/23 500/23, Hann 500/23, {RMS(5%), SR(10%)} –
(modified) primates 438, 372/23, 372/23

birds 3604 113/57

Boils and Bells Walter 13 Sound effects 4080 12/6 46/23 Hann 46/23 {RMS(1%), SC(1%)}, EM
{RMS(0.1%), SC(1%)}

Saxubus Solti 19 Solo alto saxophone 46/23 272/136 Tukey 25% {SC(0.05%)} RM
(Braxton 2000) 1191 408/272

Lix Tetrax Solti 19 “Partita” for flute 123/66.5 93/46.5 Tukey 25% {RMS(0.5%)} –
(reversed) by J.S. Bach (Rampal 363/227

1992) 658

Limbo Kaplan 23; The Lawrence Welk 23/11.5 46/23, Tukey 25% {SC(0.1%), SR(0.1%)}, EM, FRMS
Walter 14 Show 8855 227/113 680/23, {RMS(25%)}, {SC(1%)

680/113 SR(1%)}

A cappella Kaplan 22 Solo pop vocal 46/23 113/56.5 Hann 113/56.5, {RMS(3%), SR(3%)}, EM, RM
(modified) samples 1913 453/56.5 {SC(1%) P(1%)}

Highway to Heaven, Solti 20 AC/DC “Highway to 113/56.5 136/68 Hann 136/68 {RMS(0.1%) ±50%, EM
Stairway to Hell Hell” 209, Led Zeppelin +200%}

“Stairway to Heaven” 483

Key: RMS = root-mean-square, SC = spectral centroid, SR = spectral rolloff, P = pitch; RM = random match, EM = extend match, FRMS =
force RMS

Sturm

ACSS is immediate, in the sense that the output
needs little to no editing. This happened for “Sax-
ubus,” a “recomposition” of the interpretation by
Sir Georg Solti (Mahler 1991) with a 20-minute cor-
pus of Anthony Braxton playing alto saxophone

(Braxton 2000). Seventeen trials were run to hone in
on satisfactory results. Details of each trial are
shown in Table 4. The first six trials (Sound Ex-
amples E1–E6) give frenetic results, to which the
gaps in the fourth trial (Sound Example E4)—cre-

61

Table 4. Details of Each Trial Run to Generate Material for Saxubus.

Synthesis Analysis
Window TypeSize/Skip (ms)
Size/Skip Selection

Trial Target Corpus (msec) Criteria (±%) Options Comments

1 93/46.5 93/46.5 Hann 93/46.5 {SC(1)} – Too active

2 93/46.5 93/46.5 Hann 93/46.5 {SC(1)} RM Too active

3 93/46.5 93/46.5 Hann 93/46.5 {SC(1)} RM Too active; not much different from 2

4 93/46.5 93/46.5 Hann 93/46.5 {RMS(1), SC(1)} – Less fluid with many gaps;
crescendi obvious

5 93/46.5 93/46.5 Hann 93/46.5 {RMS(20), SC(10)} – Interesting moments at height
of crescendi

6 93/46.5 93/46.5 Hann 93/46.5 {RMS(20), SR(10)} – Similar to 5; in general crescendi
too obvious

7 93/46.5 93/46.5 Hann 363/46.5 {SC(1)} – Interesting; synthesis windows too long

8 93/46.5 272/136 Hann 272/136 {SC(1)} RM Nice feel; crescendi not obvious

9 93/46.5 272/136 Hann 272/136 {SR(1)} RM Different results from using SC in 8

10 272/136 272/136 Hann 272/136 {SR(1)} RM Slightly different from 9

11 272/136 272/136 Hann 272/136 {SC(1)} RM Slightly different from 7

12 12/6 272/136 Tukey 25% {SC(0.5)} RM Tukey window has nice effect; too
272/272 few matches

13 12/6 272/136 Tukey 25% {SC(0.5)} RM Longer window, same overlap as 12;
408/272 nice effects

14 93/46.5 272/136 Tukey 25% {SC(0.05)} RM More matches with tighter descriptor
408/272 range and longer target analysis; result

getting closer to something musical

15 93/46.5 272/136 Tukey 25% {SC(0.01)} RM . . . closer . . .
408/272

16 46/23 272/136 Tukey 25% {SC(0.05)} RM This is it!
408/272

17 46/23 272/136 Tukey 25% {SC(0.05)} FRMS, RM Too much like the crescendi
408/272

Key: RMS = root-mean-square, SC = spectral centroid, SR = spectral rolloff; RM = random match, FRMS = force RMS

ated when no match is found—provide effective
contrasts. By extending the synthesis window size
but not the skip (Sound Example E7), the results are
more fluid, but the sound is too dense. Trials 8–11
(Sound Examples E8–E11) test different analysis
window sizes and selection criteria. Trial 12 (Sound
Example E12) uses a very short analysis window
and is the first to use a long Tukey window for the
synthesis. Through a fine-tuning of these settings in
trials 14–17 (Sound Examples E14–E17), the result
in trial 16 immediately stands out as unique. This
result is cropped and arranged with a few short
reprises to form “Saxubus.”

From the two channels of the target, an amusing
hocketted saxophone duet results. The crescendi
transform into gradually increasing activity with
occasional contrasting pauses created when no suit-
able matches are found. The only descriptor
matched in trial 16 is the spectral centroid with a
very small range of ±0.05 percent. Synthesis using
fairly long Tukey windows with 25-percent cosine
lobes creates shorter attacks and decays as opposed
to the gradual fades of Hann windows. The random-
match setting specifies that when more than one
match is found, the selection from these is random.
Together, these settings ensure a diversity of se-
lected units from the corpus. Surprisingly, though
the target and corpus are hardly tonal or rhythmic,
the selection criterion and synthesis parameters
generate a regularly pulsing pedal point.

More often, however, additional work is required
to fashion a satisfying musical experience from the
output of MATConcat. In the output of the only
trial (Sound Example F8) used in “Lix Tetrax,” a
flute playing a long and piercing high A is heard.
This requires some editing to create a much more
pleasing experience. “Lix Tetrax” uses a time-
reversed interpretation (Mahler 1991) as the target,
and the Partita for solo flute by J. S. Bach (Rampal
1992) as the corpus. RMS is matched with a small
range of ±0.5 percent, and a long-duration Tukey
window is used in the synthesis with no extension
of units to fill null matches.

Though the same target as “Saxubus” is used, the
results are superlatively different in both shape and
feel. Mahler’s crescendi are gone, and no portion of
Bach can be recognized save for a few mordents. Mr.

Rampal’s performance has been disassembled and
reassembled in a way that only his essence remains.
The result remains fluid instead of jagged owing to
the window shape and size, and it gives the impres-
sion of an actual performance, though each corpus
unit lasts only 363 msec. Indeed, if this process were
synchronized with the score of the Partita, then a
score of “Lix Tetrax” could be generated in parallel
for real performers. The only problem is in concate-
nating elements of a score as easily as units of sound.

To create forms that are more complex than the
crescendo and decrescendo, Mahler’s passage is re-
arranged to form new targets. The most drastic re-
arrangements occur in the targets for “A cappella.”
One target uses exact repetitions of 400 msec taken
from the brass notes of Gilbert Kaplan’s interpreta-
tion (Mahler 1988). The first few seconds of this tar-
get aligned with the synthesis result are shown in
Figure 9. The output of ACSS creates an exciting
feeling of rhythm instead of direct repetition. At
times it sounds quite realistic, as if performed by
vocalists with an uncanny sense of timing. Though
the target consists of exact repetitions, it would
take 9,200 repetitions of this material before the
features began repeating, because the analysis hop is
only 23 msec.

The only variations that use the interpretations of
Mahler’s passage in the corpus are “Passage I” and
“Passage II.” The former uses a target completely
unrelated: a man saying “Neither this recording nor
any part thereof may be reproduced or used for any
purpose without prior written authority from. . . .”
The target analysis uses extremely short windows
(11 msec), which produces over 5,500 feature vec-
tors. The synthesis uses very long Hann windows
(3.6 sec) and a small skip of 23 msec. These settings
expand the 8-sec target to over 138 sec in the syn-
thesis. The result is an incredibly dense ebb and
flow of drum rolls and horns, sounding like Wagner
carried on the winds and waves of a hurricane, as
one concertgoer said.

Discussion

Each variation in CVM serves as a study of some as-
pect of ACSS, whether it is selection criteria, anal-

62 Computer Music Journal

Sturm

ysis and synthesis window and hop sizes, material
in the target and corpus, or other options such as ex-
tending units when suitable matches are not found.
Mahler’s passage is quite appropriate for this imple-
mentation of ACSS: It is simple, monophonic,
transparent in shape, and has dynamic features. It
provides a fertile ground for planting samples. With-
out the aid of ACSS, it would have taken years to
compose CVM from the dozens of hours of material
used. Thousands of decisions and hours of work
have been assigned to the computer, which is by de-
sign more adept than a human at the mechanical
operation of numerical comparisons and shuttling
of data. That leaves more time to dream of possibili-
ties for future variations.

The incredible amount of labor done by com-
posers John Cage, Iannis Xenakis, James Tenney,
Horacio Vaggione, Curtis Roads, Noah Creshevsky,
and John Oswald, carefully combining by hand
short samples of sound, cannot be reproduced so
easily. Noah Creshevsky has remarked that per-
forming this labor has its benefits: Through becom-

ing so familiar with sound material, interesting
routes for exploration are made manifest (2005).
However, for most variations in CVM, generating
material using ACSS is just one step of the composi-
tional process. Prior to this, several trials must be
run to assess the fertility of all available options; it
is not just a matter of pressing buttons and becom-
ing fortunate. After an intuition of the algorithm is
developed, ACSS becomes a rich tool for quickly
creating imitations and variations of any given
sound for composition.

Because of its use of recorded sound, CSS in gen-
eral poses interesting legal questions. Of the varia-
tions in CVM, only a few contain material that is
not copyright-protected. This raises important legal
questions, especially when the material is as recog-
nizable as in “Limbo” and “Highway to Heaven,
Stairway to Hell.” Though J. S. Bach’s Partita for
flute is not recognizable in “Lix Tetrax,” or An-
thony Braxton’s album For Alto in “Saxubus,” the
recorded performers are still Jean-Pierre Rampal and
Anthony Braxton; and the rights to reproduce any

63

Figure 9. Waveform of the
first seven seconds of “A
cappella” (bottom) and the
target used to generate it
(top). Dashed lines denote
regions of exact repetition

in the target. Because the
synthesis window hop is
2.45 times the target anal-
ysis hop, the synthesis is
2.45 times longer than the
target.

portion of the sound recordings are owned exclu-
sively by them or other entities. An examination of
the legal issues of CSS in general is the topic of an-
other article (Sturm 2006b).

Conclusion

In his “Viewpoints on the History of Digital Synthe-
sis” (1991), Julius O. Smith, III, discusses the shift in
synthesis research from abstract mathematical con-
cepts that predominated the early years of computer
music to more physically informed and natural mod-
els of sound generation. He argues that this has oc-
curred in part because the potential for and ease in
crafting interesting sounds increases when parame-
ters for synthesis are intuitive and natural. He writes:

The most straightforward way to obtain inter-
esting sounds is to draw on past instrument
technology or natural sounds. Both spectral-
modeling and physical-modeling synthesis
techniques can model such sounds. In both
cases, the model is determined by an analysis
procedure that computes optimal model param-
eters to approximate a particular input sound.
The musician manipulates the parameters to
create musical variations. (p. 11)

These observations are equally applicable to
ACSS, where features of an input sound are approxi-
mated by features of other sounds to create interest-
ing variations. In a sense, it can be seen as an
extended form of query-by-example (Wold et al.
1996; Tzanetakis, Ermolinskyi, and Cook 2002) ap-
plied to music composition. Instead of retrieving a
similar piece of audio, it assembles and transforms
many pieces of audio into the sound desired—in a
sense creating an aural “caricature” of the query
(Tzanetakis, Ermolinskyi, and Cook 2002). By inter-
facing this algorithm with large and efficient data-
bases of audio information (Pope, Holm, and
Kouznetsov 2004)—for instance all sound record-
ings made to date—and using better descriptors and
more informed methods of concatenation, a poten-
tially realistic and flexible sound synthesis engine is
possible (Schwarz 2004).

Supported by results from MATConcat and other
implementations presented here, ACSS provides an
efficient way to transform the “brittle, frozen mu-
sic” of samplers (Smith 1991, p. 8) into effective and
expressive music. Indeed, it is quite intuitive and
natural for a composer to ask, “Create a sound that
goes ‘WEEeewooOW-POP’ but played by a violin
and bongo.” With ACSS, this is completely pos-
sible: one can synthesize and compose by imitation
instead of having to program physically unintuitive
and abstract algorithms. Though many sample-level
operations have been relegated to the computer, a
composer still has the task of directing the algo-
rithm and selecting and arranging the results in
meaningful ways.

For any synthesis or transformation method, of
course, the proof of the method is in the hearing.
Curtis Roads (2001) writes: “Scientific tests help us
estimate the potential of a technique of synthesis or
sound transformation. They may even suggest how
to compose with it, but the ultimate test is artistic.
The aesthetic proof of any signal processing tech-
nique is its use in a successful composition”
(p. 301). Through the sound examples and composi-
tions presented above, it has been demonstrated
that even the relatively simple implementation of
ACSS in MATConcat creates effective and intrigu-
ing sound and music. It presents a wide range of
compositional possibilities using thousands of dif-
ferent sounds and thousands of transformations.
ACSS serves well as a massive sample mill, grind-
ing sound into minuscule pieces for reconstitution
into novel expressive forms.

Acknowledgments

Thanks to Noah Creshevsky, John Oswald, Diemo
Schwarz, Stephen Pope, and my advisor Curtis
Roads for their enthusiasm for my work. Thanks to
my wonderful wife Carla, who showed as much ex-
citement as I in hearing Mahler interpreted by pri-
mates. And thanks to the Editor and anonymous
reviewers for many helpful suggestions. This re-
search is supported in part by NSF IGERT in Inter-
active Digital Multimedia Grant No. DGE-0221713.

64 Computer Music Journal

Sturm

References

Arfib, D., F. Keiler, and U. Zölzer. 2002. “Time-Frequency
Processing.” In U. Zölzer, ed. DAFX—Digital Audio Ef-
fects. West Sussex, UK: Wiley, pp. 237–298.

Aucouturier, J.-J., and F. Pachet. 2006. “Jamming with
Plunderphonics: Interactive Concatenative Synthesis of
Music.” Journal of New Music Research 35(1): 35–50.

Braxton, A. 2000. For Alto. Audio compact disc. Chicago:
Delmark DE-420. (Originally recorded in 1969.)

Casey, M. 2001. “MPEG-7 Sound-Recognition Tools.”
IEEE Transactions on Circuits and Systems for Video
Technology 11(6):737–747.

Collins, N. 2003. “Recursive Audio Cutting.” Leonardo
Music Journal 13:23–29.

Collins, N. 2006. “BBCut2: Integrating Beat Tracking and
On-the-fly Event Analysis.” Journal of New Music Re-
search 35(1): 63–70.

Creshevsky N. 1995. “Borrowed Time.” Recorded on
Auxesis: Works by Charles Amirkhanian and Noah
Creshevsky. Audio compact disc. Centaur Records
CRC 2194.

Creshevsky, N. 2001. “On Borrowed Time.” Contempo-
rary Music Review 30(4):91–98.

Creshevsky, N. 2003. Hyperrealism: Electroacoustic Mu-
sic by Noah Creshevsky. Audio compact disc. Mutable
Music MU512.

Creshevsky, N. 2005. Personal communication, 21
March.

Dubnov, S., et al. 2002. “Synthesis of Audio Sound Tex-
tures by Learning and Resampling of Wavelet Trees.”
IEEE Computer Graphics and Applications 22(4):38–48.

Freeman, J. 2006. “Audio Signatures of iTunes Libraries.”
Journal of New Music Research 35(1): 51–61.

Hazel, S. 2003. Soundmosaic Web site, www.thalassocracy
.org/Soundmosaic/ (accessed March 21, 2006).

Holm-Hudson, K. 1997. “Quotation and Context: Sam-
pling and John Oswald’s Plunderphonics.” Leonardo
Music Journal 7:17–25.

Hoskinson, R. 2002. Manipulation and Resynthesis of
Environmental Sounds with Natural Wavelet Grains.
Master’s thesis, University of British Columbia.

Hunt, A. J., and A. W. Black. 1996. “Unit Selection in a
Concatenative Speech Synthesis System Using a Large
Speech Database.” Proceedings of the 1996 IEEE Inter-
national Conference On Acoustics, Speech, and Signal
Processing. New York: Institute of Electrical and Elec-
tronics Engineers, pp. 373–376.

Jehan, T. 2004. “Event-Synchronous Music Analysis/Syn-
thesis.” Proceedings of the COST G-6 Conference on

Digital Audio Effects (DAFx-04). Naples: Federico II
University of Naples.

Jehan, T. 2006. Music Cross-Synthesis Examples,
web.media.mit.edu/~tristan/Blog/Cross_Synthesis_v1.
html/ (accessed March 21, 2006).

Klatt, D. H. 1987. “Review of Text-to-Speech Conversion
for English.” Journal of the Acoustical Society of
America 82(3):737–793.

König, S. 2006. sCrAmBlEd?HaCkZ software demonstra-
tion, www.popmodernism.org/scrambledhackz/ (ac-
cessed September 25, 2006).

Kostelanetz, R., ed. 1970. John Cage. New York: Praeger.
Lazier, A., and P. Cook. 2003. “MoSievius: Feature Driven

Interactive Audio Mosaicing.” Proceedings of the COST
G-6 Conference on Digital Audio Effects (DAFx-03).
London: Queen Mary University of London, pp. 1–6.

Mahler, G. 1987. Symphony No. 2, conducted by S. Rattle.
Audio compact disc. EMI Classics 47962.

Mahler, G. 1988. Symphony No. 2, conducted by G. Kaplan.
Audio compact disc. MCA Classics MCAD 2-11011.

Mahler, G. 1990. Symphony No. 2, conducted by M. Hor-
vat. Audio compact disc. ZYX Music GMBH.

Mahler, G. 1991. Symphony No. 2, conducted by G. Solti.
Audio compact disc. London Records 30804.

Mahler, G. 1995. Symphony No. 2, conducted by B. Wal-
ter. Audio compact disc. Sony Classical 64447.

Mallat, S., and Z. Zhang. 1993. “Matching Pursuit with
Time-Frequency Dictionaries.” IEEE Transactions on
Signal Processing 41(12):3397–3414.

Oswald, J. 1993. Plexure. Audio compact disc. Avant 016.
Oswald, J. 2001. 69plunderphonics96. Audio compact

discs. Seeland Records 515.
Oswald, J. 2006. Plunderphonics Web site, www

.plunderphonics.com (accessed March 21, 2006).
Parmegiani, B. 2002. La mémoire des sons. Audio com-

pact disc. Institut National Audiovisuel, Groupe de
Recherches Musicales 2019.

Poepel, C., and R. Dannenberg. 2005. “Audio Signal Driven
Sound Synthesis.” Proceedings of the 2005 International
Computer Music Conference. San Francisco, California:
International Computer Music Association, pp. 391–394.

Pope, S. T., F. Holm, and A. Kouznetsov. 2004. “Feature
Extraction and Database Design for Music Software.”
Proceedings of the 2004 International Computer Music
Conference. San Francisco, California: International
Computer Music Association, pp. 596–603.

Rampal, J. P. 1992. Le Flûtiste du Siècle. Audio compact
disc. Erato Classics 2292-45830-2.

Roads, C. 2001. Microsound. Cambridge, Massachusetts:
MIT Press.

65

Roads, C. 2004. Point Line Cloud. Audio compact disc.
Asphodel ASP 3000.

Roads, C. 2005. Personal communication, 21 March.
Schönberg, A. 1939. Fourth String Quartet, Op. 37. New

York: Schirmer.
Schönberg, A. 1994. Arnold Schönberg 2: Streichquartette

I–IV, performed by the Arditti String Quartet. Audio
compact disc. Auvidus MO 782024.

Schwarz, D. 2000. “A System for Data-Driven Concatena-
tive Sound Synthesis.” Proceedings of the COST G-6
Conference on Digital Audio Effects (DAFx-00).
Verona, Italy: University of Verona, pp. 97–102.

Schwarz, D. 2003. “The Caterpillar System for Data-
Driven Concatenative sSound Synthesis.” Proceed-
ings of the COST G-6 Conference on Digital Audio
Effects (DAFx-03). London: Queen Mary University of
London.

Schwarz, D. 2004. Data-Driven Concatenative Sound
Synthesis. Ph.D. thesis, Académie de Paris, Université
Paris 6. Available online at recherche.ircam.fr/equipes/
analyse-synthese/schwarz/ (accessed March 21, 2006).

Schwarz, D. 2006. “Concatenative Sound Synthesis: The
Early Years.” Journal of New Music Research 35(1):3–22.

Silver, R. 2000. “Digital Composition of a Mosaic Image.”
United States Patent #6,137,498.

Simon, I., et al. 2005. “Audio Analogies: Creating New
Music from an Existing Performance by Concatenative
Synthesis.” Proceedings of the 2005 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, pp. 65–72.

Smith, J. O. 1991. “Viewpoints on the History of Digital
Synthesis.” Proceedings of the 1991 International
Computer Music Conference. San Francisco: Interna-
tional Computer Music Association, pp. 1–10. Avail-
able online at ccrma-www.stanford.edu/~jos/kna/
kna.pdf/ (accessed March 21, 2006).

Sturm, B. L. 2004. “MATConcat: Concatenative Sound
Synthesis Using MATLAB.” Proceedings of the COST
G-6 Conference on Digital Audio Effects (DAFx-04).
Naples: Federico II University of Naples, pp. 323–326.

Sturm, B. L. 2006a. MATConcat software Web site,
www.mat.ucsb.edu/~b.sturm/research.html/ (accessed
September 25, 2006). Audio examples and composi-
tions discussed in this article are available at www.mat
.ucsb.edu/~b.sturm/CMJ2006/MATConcat.html/ (ac-
cessed September 25, 2006).

Sturm, B. L. 2006b. “Concatenative Sound Synthesis and
Intellectual Property: An Analysis of the Legal Issues
Surrounding the Synthesis of Novel Sounds from
Copyright-Protected Work.” Journal of New Music Re-
search 35(1): 23–33.

Sturm, B. L., and J. D. Gibson. 2005. “Signals and Systems
Using MATLAB: An Integrated Suite of Applications
for Exploring and Teaching Media Signal Processing.”
In Proceedings of the 2005 IEEE Frontiers in Education
Conference. Indianapolis, Indiana: Institute of Electri-
cal and Electronics Engineers, pp. 456–459.

Tenney, J. 1992. James Tenney: Selected Works 1961–
1969. Audio compact disc. Artifact Recordings 1007.

Tzanetakis, G. 2002. Manipulation, Analysis, and Re-
trieval Systems for Audio Signals. Ph.D. thesis, Prince-
ton University.

Tzanetakis, G., A. Ermolinskyi, and P. Cook. 2002. “Be-
yond the Query-By-Example Paradigm: New Query In-
terfaces for Music Information Retrieval.” Proceedings
of the 2002 International Computer Music Conference.
San Francisco: International Computer Music Associa-
tion, pp. 177–183.

Vaggione, H. 1995. Chrysopée Electronique–Bourges. Au-
dio compact disc. Mnémosyne Music Media LDC
2781102.

Vaggione, H. 2005. Personal communication, 21 March.
Verfaille, V. 2003. “Effets Audionumériques Adaptatifs:

Théorie, Mise en Œuvre et Usage en Création Musicale
Numérique.” Ph.D. thesis, Université Aix-Marseille II.

Verfaille, V., and D. Arfib. 2001. “A-DAFx: Adaptive Digi-
tal Audio Effects.” Proceedings of the COST G-6 Con-
ference on Digital Audio Effects (DAFx-01). Limerick:
University of Limerick, pp. 10–14.

Wishart, T. 1996. On Sonic Art. Amsterdam: Harwood.
Wold, E., T. Blum, D. Keislar, and J. Wheaton. 1996.

“Content-based classification, search and retrieval of
audio.” IEEE Multimedia 3(2):27–36.

Xenakis, I. 1992. Formalized Music: Thought and Mathe-
matics in Music. Stuyvesant, New York: Pendragon
Press.

Zils, A. 2006. Musical Mosaicing Web site, www.csl.sony
.fr/~aymeric/ (accessed March 21, 2006).

Zils, A., and F. Pachet. 2001. “Musical Mosaicing.” Pro-
ceedings of the COST G-6 Conference on Digital Au-
dio Effects (DAFx-01). Limerick: University of
Limerick, pp. 39–42.

66 Computer Music Journal

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Generic For Press settings, with no subset fonts.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

