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Abstract—Currently, there is no quantitative way to ascertain
how an overcomplete signal representation describes a signal
and its features using terms drawn from a dictionary. Though
sparsity offers a measure of optimality with respect to the
number of terms used, it does not describe how a signal is
represented, or how well-suited a particular dictionary is for
describing the signal. Building upon work that investigates
the interactions between nonorthogonal terms of overcomplete
signal representations, we define and examineinterference in
such representations built by an overcomplete method, such as
matching pursuit. This interference comes from a lack of fit
between a dictionary and the signal, as well as properties of the
decomposition algorithm itself. Such behavior in a representation
can be detrimental to its efficiency and the “meaningfulness” of
its terms. In this paper, we consider interference as a possible way
to gauge such properties of overcomplete signal representations.

I. I NTRODUCTION

Modeling signals that possess a variety of structures with
an orthogonal set of functions is often not ideal in terms of
efficiency. Doing so can “dilute” signal features across the
transform basis, as occurs, for example, in the expansion of
a periodic and impulsive signal using a Fourier basis. Over-
complete methods (OMs) attempt to address these problems
by modeling a signal as a linear combination of terms selected
from a redundant and overcomplete set of functions [1]–[4].
Depending on the application, it is often required that the
resulting representation be sparse, efficient, robust to noise,
meaningful, and perhaps malleable.

OMs can be seen as a generalization of a signal decompo-
sition using terms drawn from a collection of functions, called
the dictionary, which is specified without a restriction on its
orthogonality. When the dictionary is at least redundant (and
usually is overcomplete), there may exist an infinity of possible
representations for a given signal. Particular strategies have
been devised to find solutions, such as matching pursuit (MP)
[1], [2], and basis pursuit (BP) [3]. OMs have proven beneficial
for, among other things, signal coding and compression [5],
[6], and denoising [7].

A unique property of overcomplete signal representations
is that its nonorthogonal terms “interact” when superposed.
In the extreme case, an entire term can disappear—through
destructive interference—in the synthesis, which has led us
to call the interactions between termsdark energy(DE). This

phenomenon has been shown to be caused by characteristics
of the decomposition algorithm, such as greediness, as well
as from a lack of similarity between the dictionary functions
and structures in the signal [8]. Thus, an overcomplete signal
representation exhibiting high DE in specific regions indicates
a lack of efficiency and physical significance [9].

We have shown in [8] that the DE associated with a term
selected by MP decays exponentially as a function of the
iteration, and thus it quickly becomes ambiguous for ascribing
some value to the significance of that term. Instead, we need
to inspect the context of a term of a representation in a
way that is independent of the step at which it was selected.
While the measures of sparsity and “coherence” [10] are
useful for globally describing a representation and a dictionary,
they provide little intuition about how a signal is actually
represented by the dictionary terms. We intend to explore this
by defining and measuring the interference in an overcomplete
signal representation.

After providing a short review of OMs and the concept
of DE, we define interference and propose a measure of it
using the Gramian of part of the representation. We investigate
interference analytically and empirically using decompositions
of four test signals found via MP and a Gabor dictionary. Our
results generalize the ideas in [8] for application to the results
of any OM, and address the ambiguity that arises from using
DE to gauge the physical significance, or “meaningfulness,”
of particular terms in an overcomplete representation.

II. OVERCOMPLETEMETHODS AND DARK ENERGY

Consider aK-dimensional vector spaceXK ∈ CK with
an inner product between two vectorsxi,xj ∈ XK defined
as 〈xi,xj〉. The `2-norm of x ∈ XK is given by ||x||2 =√

xHx where H denotes conjugate transpose. We want to
expressx as a linear combination of vectors from the set
{di ∈ XK : ||di||2 = 1}, described by the matrix (dictionary)
D = [d1|d2| · · · |dN ]K×N . In OMs, usuallyN � K, and
D is called overcomplete (and redundant) when it contains a
subset of columns that is full-rank, i.e., it spansXK .

For OMs, a solution to the following problem is desired:

min{C(s), D(x, r)} subject tox = Ds + r (1)

where C(s) is a cost function of the weightss ∈ CN , and

961



D(x, r) is a measure of distortion. IfD is at least complete,
then there exists at least ones for which x is represented
exactly, i.e., where||r||2 = 0.

Compared with decompositions using orthogonal bases,
OMs have higher computational costs. When maximum spar-
sity is required, i.e.,C(s) ∆= ||s||0 (where this pseudo-norm sig-

nifies the number of nonzero entries ins) andD(x, r) ∆= ||r||2,
the solution of (1) is NP-hard [11]. This can be avoided
by defining C(s) differently, such asC(s) ∆= ||s||1 in BP
[3], in which case a solution can be found using linear
programming. Other methods, such as MP [1], find solutions to
(1) by iteratively minimizing the energy of the residual (error)
D(x, r) ∆= ||r||22, and do not consider any cost function. This
relaxation of conditions reduces the computational complexity,
but the solutions may be suboptimal with respect to the
maximum sparsity possible. Often, an application does not
require the sparsest exact solution to (1).

A. Matching Pursuit

MP iteratively reduces the residual energy at each step by
selecting terms from the dictionary without considering a cost
function C(s). In such a case, we work with an intermediate
approximation ofx

x̃(n) = H(n)a(n), n = 1, 2, . . . (2)

where the matrixH(n) = [h0|h1| · · · |hn−1]K×n is a per-
muted subset ofn columns selected fromD, and a(n) =
[a0, . . . , an−1]T is a vector of the associated coefficients at
the nth iteration of the decomposition process (n is not the
time index of the signal). We refer to{H(n),a(n)} as the
representationof x.

MP builds the representation by selecting a dictionary term
and its weight as follows:

hn = arg max
d∈D

|〈d, r(n)〉| (3)

an = 〈hn, r(n)〉 (4)

where r(n) ∆=x − x̃(n) is the nth-order residual. Note that

r(0) ∆=x ⇒ x̃(0) ≡ 0. After updating the representation,
the new residual is given byr(n + 1) = r(n) − anhn, and
the process is repeated until convergence (or some stopping
criteria are satisfied). When the inner products in (3) and (4)
are defined as dot products (i.e.,〈xi,xj〉

∆=xH
j xi), the new

term and its coefficient minimize the energy of the residual
[1]. Variations of MP build the representation differently (see,
e.g., [2], [4]).

B. Dark Energy in Matching Pursuit

When the dictionaryD is at least redundant, the following
relationship may not hold for everyn:∣∣∣∣x̃(n) + anhn

∣∣∣∣2
2

=
∣∣∣∣x̃(n)

∣∣∣∣2
2

+ |an|2. (5)

In other words, the energy “contributed” by the new termhn

to the current approximatioñx(n) may be more or less than
its actual energy|an|2. If the two sides of (5) differ for some
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Fig. 1. Signalx decomposed by MP and a Gabor dictionary (dilated,
translated, and modulated Gaussian functions). Envelopes of individual terms
(gray lines) of the decomposition show energy preceding the transient, and
the normalized STDE (dark solid line) indicates regions with the most DE.

n, then we sayhn interfereswith the current approximation
x̃(n). The relation in (5) is always true only ifD is an
orthonormal set of nonzero vectors. The magnitude of the
difference between the left- and right-hand sides of (5) is the
DE associated withhn:

Ξ(n + 1) =
∣∣∣∣∣∣∣x̃(n + 1)

∣∣∣∣2
2
−

(∣∣∣∣x̃(n)
∣∣∣∣2

2
+ |an|2

)∣∣∣ . (6)

In a Euclidean vector space this simplifies to [8]

Ξ(n + 1) = 2
∣∣anhT

n x̃(n)
∣∣ ≤ 2||x||22Λ(n+1) (7)

where 0 ≤ Λ < 1. From this expression, we see that DE
quantifies the extent to which the new atomhn is already
present in the current approximatioñx(n); and thatΞ(n + 1)
is bounded by a decaying exponential.

We have investigated various characteristics of DE for audio
signal representations found using MP [8], and have proposed
a short-term measure (STDE) that characterizes how DE is
distributed in a representation with respect to the signal itself
[9]. Figure 1 shows an overcomplete representation of a signal
and its STDE. Many terms with support preceding the signal
onset contribute to the DE observed around that time. These
terms correct for the greediness of MP in the selection of its
first atom (labeled 1). Such behavior is clearly detrimental to
the efficiency of the representation, as well as to the physical
significance of its terms.

III. M EASURING INTERFERENCE

The phenomenon of DE is related to the lack of fit between a
dictionary and the signal, and to the decomposition algorithm
[8], [9]. This suggests that those parts of an overcomplete
signal representation that exhibit larger amounts of DE are less
physically significant than other portions. For instance, in Fig.
1, one would be justified in ascribing a low physical signifi-
cance to those parts of the representation that contribute most
to the STDE (e.g., the left edge of the signal, and before onset),
because those parts function more to correct poor dictionary
term selections, and the incompleteness of the dictionary at
the signal edge. Thus, DE might provide a measure of the
“meaningfulness” of a particular term in a representation.
However, sinceΞ(n+1) is bounded by a decaying exponential,
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Fig. 2. Four test signals. (a) Attack. (b) Bimodal. (c) Sine. (d) Gaussian white noise (GWN).

the significance of DE becomes ambiguous after the initial
iterations. Furthermore, DE only measures the correlation of
the new term with respect to a linear combination of previously
selected terms. We want to understand how a particular term in
an overcomplete representation interacts with all other terms,
and perhaps find and delimit the terms that “correct” aspects of
the representation. This requires a measure that is independent
of the decomposition iteration.

A. Expanding Dark Energy

Consider a signal and a dictionary defined in a Euclidean
vector space, and annth-order representation{H(n),a(n)}
found using some OM. We may induce the DE of themth
term hm−1 for 1 ≤ m ≤ n by expanding (7) and evaluating
the following expression:

Ξ(m) = 2
∣∣∣∣eT

mGA(n)
[

1m−1

0n−m+1

]∣∣∣∣ (8)

whereej is a length-n unit vector with1 in row j, 1m is a
length-m vector of ones,0m is a length-m vector of zeros,
and

GA(n) ∆= diag[a(n)]HT (n)H(n)diag[a(n)] (9)

where diag[a(n)] forms a diagonal matrix from the compo-
nents of the vectora(n). Substitutinga(n) andH(n) into (9)
yields the following symmetric correlation-type matrix for the
(n + 1)st-order representation:

GA(n + 1) =


a2
0 a0a1hT

0 h1 · · · a0anhT
0 hn

a0a1hT
1 h0 a2

1 · · · a1anhT
1 hn

...
...

...
...

a0anhT
nh0 a1anhT

nh1 · · · a2
n

 (10)

where ||hi||2 = 1 has been used. SinceGA(n) depends on
the expansion coefficients, which decay exponentially with the

order of the representation [1], and|hT
i hj | ≤ 1, the upper-left

portion of GA(n) will always be dominant for MP.

B. Gramian of the Representation

We want to examine how the terms in a representation inter-
act separately from the influence of the expansion coefficients
a(n). Toward this end, consider rewriting (9) as

GA(n) = G(n) •A(n) (11)

where• is the Schur product, and we have defined the matrices

G(n) ∆=HT (n)H(n) (12)

A(n) ∆=a(n)aT (n). (13)

Let A(n) > 0 so that any negative sign from (4) is applied
to the termhn. Note thatG(n) is the Gramian ofH(n),
and embodies all inner products between the terms of the
representation. As such,G(n) is a nonnegative symmetric
matrix, and has been described as being sparse without any
particular structure [1]. The DE for termm of an nth-order
estimation (m < n) can be induced fromG(n) by summing
the firstm− 1 entries of rowm, or of columnm, with each
entry weighted by the associated elements inA(n), which is
essentially (8).

A negative element inG(n) signifies that the corresponding
pair of terms destructively interfere in the superposition (i.e.,
||hi + hj ||2 <

√
2), a positive entry signifies constructive in-

terference (i.e.,||hi+hj ||2 >
√

2) and a zero entry is obtained
only for an orthogonal pair of terms (i.e.,||hi +hj ||2 =

√
2).

Clearly, each element ofG(n) lies in the range[−1, 1]; and
if there exists|gij | = |gji| = |hT

j hi| = 1 for i 6= j, then the
decomposition algorithm has reselected a term that is already
present in the representation. The largest magnitude value in
G(n) that is 6= 1 is analogous to the coherency value of a
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Fig. 3. A(n) for overcomplete representations of each test signal in Fig. 2. Black denotes a large value foraiaj , while white signifiesaiaj < 10−4.

dictionary [10], except here it describesH(n) and notD.

C. Measure of Cumulative Interference

The Gramian ofH(n) illustrates how the terms of a
representation interact when combined. If a representation is
orthonormal, then clearlyG(n) = In (size-n identity matrix),
and no terms interfere because (5) is true at everyn. This
suggests the following normalized measure for the cumulative
interference of a representation:

d(G(n), In) ∆=

∣∣∣∣G(n)− In

∣∣∣∣
F√

n(n− 1)
(14)

where||·||F is the Frobenius norm (i.e.,||B||2F =
∑

i,j |bij |2).
This measure can be interpreted as the normalized distance an
overcomplete representation is from an orthonormal represen-
tation. The more interference a representation experiences, the
further away it is from an orthonormal representation. If all
atoms interfere to the maximal extent, which meansH(n)
containsn copies of the same term (positive or negative),
then d(G(n), In) = 1. This is an impossible outcome for
MP, and so we can assumed(G(n), In) < 1 surely. A

better upper-bound can be found. Considering any dictionary
D of N unique unit-norm columns with a coherency of
µD

∆= maxi 6=j |dT
j di| < 1 [10], we see that forn ≤ N

d(G(n), In) ≤
∣∣∣∣DT D− IN

∣∣∣∣
F√

N(N − 1)
<
√

µD < 1 (15)

where equality holds when a representation uses the entire
dictionary, and thus||G(N)||F = ||DT D||F . The coherency
of a dictionary thus describes the maximum interference of
any representation built from it.

As long asD is at least complete for some vector space,
there will always (by definition) exist at least ones such
that x = Ds. While MP guarantees that the representation
it builds iteratively converges to the original signal, it may
take (almost surely) an infinite number of iterations to do so
[1]–[3]. It seems that in such a case, the measure in (14) will
tend to zero sinceg2

ij ≤ µD < 1, ∀i 6= j. For a dictionary
of finite sizeN , however, the denominator in (14) can only
grow to

√
N(N − 1), and thusd(G(n), In) 6= 0 for every

representation built by MP using a finite dictionary that has
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Fig. 4. Gramian ofH(n) of decompositions of the signals in Fig. 2. Negative correlation is black, positive correlation is white, and gray is|hT
i hj | < 10−4.

any degree of interference. This means that in such a limit
for a finite dictionary, a representation exhibiting interference
is always distinguishable from a representation exhibiting no
interference. Future work will determine what happens when
N →∞ in (15) for an infinite dictionary.

IV. COMPUTERSIMULATIONS

We now inspect the behavior ofA(n), G(n), and the
interference measure in (14) for overcomplete representa-
tions found using MP [12] and a dictionary of unit-norm
Gabor atoms (dilated, translated, and modulated truncated
Gaussians). The dictionary is designed using atoms of 8
different lengths, all powers of two from 4 to 512 samples.
Each atom is translated using hops one quarter of its length

(e.g., atoms of length 16 are hopped integer multiples of 4
samples). Atoms are modulated by a number of frequencies
based on their lengths. For instance, atoms of length 16
samples can have the following modulation frequencies:lπ/8
for l = 0, 1, . . . , 8. For a signalx of length K = 1, 024
samples, this dictionary contains a total of 16,870 atoms. Each
signal seen in Fig. 2 is decomposed to a signal-to-residual
ratio (SRR)20 log10(||x||2/||r(n)||2) of 60 dB. This stopping
criterion yields the following representation orders: 94 for
Attack, 63 for Bimodal, 492 for Sine, and 1,467 for GWN.

We calculatedG(n) and A(n) for each representation
using (12) and (13), which are shown in Figs. 3 and 4,
respectively. Observe the exponential decay of the expansion
coefficients a(n), which effectively masks the interactions
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Fig. 5. Cumulative interference measured(G(n), In) for each of the
representations of the signals shown in Fig. 2.

between many terms inGA(n). These interactions are clearly
seen in every iteration in Fig. 4. It is interesting to note that
for each representation, the distribution of interference appears
markedly different at low and high SRRs. The most dramatic
change occurs in the representation of Sine, where a pseudo-
periodic pattern of interference starts around SRR= 28 dB.
This behavior arises because MP begins selecting atoms that
have already been selected from the dictionary. Even though
the residual energy continues to decay, MP reselects the same
atoms many times out of 492 iterations, and by the end the
representation only has 231 unique terms. Such behavior is
surprising considering thatN/K ≈ 16.5, but in this case the
edges of the signal cause problems for MP since the smallest
atom in the dictionary has a scale of4 samples. A similar
effect occurs in the decomposition of GWN, though hereG(n)
is much more sparse. When these signals are tapered with a
Tukey window, this behavior disappears.

For each of these representations, we evaluated the measure
of cumulative interference in (14), again as a function of
the SRR, which is shown in Fig. 5. Observe that for the
representation of Attack,d(G(n), In) remains nearly constant,
while the representation of Bimodal experiences a larger
change. For Sine, there is a change in trend in this measure
at SRR ≈ 28 dB, no doubt related to the phenomenon
seen in Fig. 4. The reselected terms were not included in
calculating this measure. Finally, it is expected that for GWN,
d(G(n), In) ≈ 0 since, by definition, GWN is wideband
and will require the contributions of many Gabor atoms—
each one representing, more or less, a single frequency over
a small support. The interference between such terms should
be minimal compared to the order of the representation, and
thus it will resemble more an orthogonal representation. This
low value ofd(G(n), In) suggests that little benefit is found
using this particularD than an orthonormal basis.

V. CONCLUSION

In general, OMs have been developed with sparsity in mind,
and thus emphasize the importance of representing a signal
with the fewest number of terms drawn from a dictionary.
Sparsity, however, provides little information about how an
OM represents a signal. In this work, we have sought a way
to determine how a signal is represented by the dictionary
terms through inspecting the interactions between them via
the concept of interference, and using the Gramian of part of
the representation.

We have defined interference, proposed a measure of it, and
evaluated the interference in MP decompositions of four test
signals. Such a measure could help determine signal structures
that cause problems in its overcomplete representation, the
extent to which a representation is negatively affected by the
decomposition algorithm and dictionary, and whether there is
room for improvement in the representation itself. The broad
goal of this work is to find a mechanism to guide an OM,
such as MP, in modeling the structures present in a signal
that “makes sense” with respect to the given dictionary. The
residual can then be decomposed using a different dictionary
or method altogether. Future work will include designing local
measures of interference that can be used in this way.
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