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Abstract-A sparse atomic estimation involves finding a rep-
resentation of a signal that uses terms with finite support drawn
from an overcomplete dictionary. These terms can constructively
and destructively interfere with each other in the reconstruction,
and some may even disappear. For this reason, we refer to the
interference between atoms in the sparse estimation as "dark
energy" (DE). Building upon our previous work, we present a
short-term measure of DE (STDE) that can be used to examine
the distribution of interference in the signal estimation. We
present results for several signals, and discuss some applications
of this measure.

I. INTRODUCTION

A sparse atomic estimation approximates a signal to a
specified precision by a linear combination of terms with
finite support, called atoms, selected from an overcomplete set,
called a dictionary. Sparse decomposition methods include L1
minimization, such as basis pursuit [1], and greedy iterative
descent strategies, such as matching pursuit (MP) [2]. The
motivations for developing sparse estimations include sparsity,
efficiency, robustness, and meaningfulness. They have found
use in several areas, such as coding [3], source separation [4],
and visualization and transformation of audio signals [5].
Decomposing signals with an overcomplete dictionary using

MP often produces terms that "correct" previous terms through
destructive interference [6]-[9]. Thus, although an atom exists
in an estimation, its superposition in the signal reconstruction
might result in its partial disappearance, thus contributing little
energy to, or even removing energy from, the approximation.
Because of this effect, we refer to the constructive and
destructive interference between terms of an estimation as dark
energy (DE) [9]. We are interested in using this phenomenon to
interpret the signal, examine its coherence with the dictionary,
and evaluate the performance of the decomposition algorithm.

Previously, we formally defined DE, investigated some of its
properties, and studied its behavior for various audio signals
[9]. In this paper, after reviewing sparse atomic estimation
and DE, we build upon these results to create a measure of
the interference within an estimation that is localized with
respect to the signal itself, ultimately denoting where and
to what degree an estimation corrects itself. This short-term
dark energy (STDE) measure could be applied to increase
the efficiency of an estimation and the performance of a
decomposition algorithm by discriminating between portions
of the signal that do and do not "make sense" with respect to
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the dictionary i.e., whether or not signal features are contained
in the dictionary.

II. SPARSE ATOMIC ESTIMATION
The signal vector x of length M can be estimated by a linear

combination of vectors (atoms) selected from the columns of
a dictionary D consisting of N unit-norm vectors of length
M defined a priori, where N > M usually. The nth-order
representation of x is given by

x = G(n)c(n) + r(n) = x(n) + r(n) (1)

where G(n) = [go ... Igni] consists of n columns selected
from the dictionary, and c(n) = [co, . .. , cn_ 1] is a column
vector of the expansion coefficients. The nth-order estimation
is {G(n), c(n)}, which is evaluated to produce the nth-order
approximation x(n) = G(n)c(n). The nth-order residual
r(n) = x-x(n) is that part of x yet to be represented by the
estimation (with r(O) _ x). Note that n refers to the order of
the estimation process, or the decomposition iteration, and is
not a time index.
MP is a simple iterative descent algorithm that solves (1)

[2]. It estimates x by concatenating G(n) with atoms selected
from D based on the following criterion:

gn = arg max IgHr(n) , j = 1, 2,...,N
g=Dej

(2)

where ej is the jth unit vector (with 1 in the jth row), and
the superscript H denotes complex conjugate transpose. The
matrix of selected atoms is updated as G(n+H1) = [G(n) gn],
and the new expansion coefficient is appended to the end
of c(n). The new atom is weighted and subtracted from the
current residual, and the new residual r(n + 1) is used to find
the next atom via (2). To minimize the energy of the residual
at each iteration, the expansion coefficient is computed as

Cn =g Hr(n). (3)
MP continues to build the estimation until convergence, or
when another criterion is met, such as a minimum signal-to-
residual ratio. MP is called "greedy" because it maximizes the
amount of energy it removes from the residual without regard
to past or future iterations, i.e., it is a local optimization.

In this paper, we use a dictionary of real Gabor atoms. A
Gabor atom is a truncated Gaussian window that is scaled,
translated, modulated, and discretized as follows:

g(k; u, s, f, ) = Aw(k -u; s) cos(2rf(k -u)T + ), (4)
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Fig. 1. An example of DE as a function of iteration (estimation order).

for the time index 0 < k < M -1, where T is the sampling
period, 0 < u < M s 2 is the translation in samples,
1 < s < M is the scale in samples, and 0 < f < 0.5
and 0 < X < 2wF are the (normalized) modulation frequency
and phase, respectively. The scalar normalization factor A is
assigned such that ,zc=o" jg(k; u, s, f, X) 12 = 1. The func-
tion w(k; s) is a translated and discretized Gaussian window
truncated to s samples:

(k _S0,,...,s2
w(k;s) {eP( 2(kS)2 els0,e1, ,-1 (5)

where the constant a controls the variance of the window. The
(k + l)st element of g is g(k; u, s, f, 6).

III. INTERFERENCE AND DARK ENERGY

A pair of vectors {gi, gj} "interfere" with each other if

llgi +gj 2# llgij 2
+ llgj l2 (6)

i.e., constructive and destructive interference between two
vectors results in more or less energy, respectively, than that of
their sum. Clearly, any pair of non-orthogonal vectors have this
interference property. We propose that the interference within
a sparse atomic estimation be measured by its DE, which we
have defined specifically for MP and the signal model in (1)
[9]. At the nth iteration, the DE associated with the new atom
gn- 1 is the magnitude of the difference between the energy of
thenewapproximation, x(n) x(n-1)[+Cn-lgn-f1|
and the energy of the approximation that would result if
the new atom was orthogonal to the current approximation,
|x(n -1)|| + Cnc 12. Thus, the DE associated with gn-1
at the nth iteration is

B(n) = |x(n) 2 |x(n -1) 2|2+ |Cn-l |2) (7)
for n > 1, which is equivalent to the magnitude of the
difference of the two sides in (6). Rearranging terms, (7) can
be simplified to [9]

B(n) = 2 Cn-Ign1 x(n- 1), (8)
from which we see that the DE associated with a new atom
is proportional to the amount it already exists in the current
approximation.

K1 k

Fig. 2. The contributions of DE by the atoms to segment Kl are weighted
by the fraction of energy in the corresponding envelopes. The arrows denote
the samples of the envelopes that are used in (I 1).

IV. SHORT-TERM DARK ENERGY

The measure in (8) indicates where interference occurs in
the decomposition process, as seen in Fig. 1. However, we
want to know where it is occurring with respect to the signal
itself. Such a measure can help discriminate between portions
of a signal that "make sense" with respect to the dictionary,
e.g., display less interference, and portions that are difficult
to decompose using the dictionary. Ultimately we want to use
this information to adapt the decomposition algorithm to the
signal, and to optimize its estimation.

Consider partitioning the discrete-time region IC of x into
L segments, i.e., IC U= L K1 where K1 = [k1l, kl+) and
k, < k1+w are the sample indices. We calculate the total DE
of each segment as a weighted sum of the DE associated with
each atom of the estimation. Collecting these totals together
yields the short-term dark energy (STDE). Formally, for an
nth-order estimation, the STDE is given by

L [n

BST(k; n)) ,I[kl,kl+l)(k) E W(Ki;gi-1)B(i)
1=1 i=l

(9)

where W(K1; gi) is a weight in K1 associated with gi, and
I[k1 .kl+l)(k) is the indicator function.

There are many possible weightings. Denote the support of
atom gi as Gi C IC. For example, we might use

W(K1; gi) = C{G nK} I < 1L{fGi} (10)

where LC[k1, kj+±)} = k1+i- k is the Lebesgue measure. In
effect, this weighting assumes that the DE contributed by an
atom is uniformly distributed over its support. For a Gabor
atom, this probably is not appropriate because the degree of
interference near its tail should be less than that near its mean.
Instead, we make the assumption that DE is spread over an
atom in proportion to the energy of its envelope. For a Gabor
atom gi, this weighting is determined by the fraction of energy
of w(k; si) in (5) over Kl:

W(Ki; gi) EZkCK lw(k u; si)

Figure 2 shows an example of this weighting for n = 2.

(1 1)
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(c) Interference during steady state.

Fig. 3. Each of these waveforms (gray) is decomposed by MP into several Fig. 4. The normalized STDE is shown (in black) for the estimation of each
Gabor atoms (the envelopes are shown in black). Arrows point to regions of waveform in Fig. 3. The envelopes of the atoms are scaled relative to the
destructive interference. maximum normalized STDE and are overlaid (using gray lines).

V. EMPIRICAL RESULTS

Figure 3 shows three simple examples of how interfering
terms arise in a sparse atomic decomposition using MP. The
asymmetric signal in Fig. 3(a) is a decaying exponential and
has a sharp attack. The first atom selected by MP (labeled
1) partially extends into the zero-energy region preceding
the attack. To remove the energy introduced in that region,
MP selects several terms in later iterations (denoted by the
arrow) to destructively interfere with and remove that portion
of the initial atom. Figure 3(b) shows the decomposition of
an amplitude-modulated (AM) signal. The first atom selected
by MP inadvertently links the two modes together, which
results in terms that destructively interfere to preserve the
original waveform. The decomposition of a sinusoidal signal
also exhibits interference. Figure 3(c) shows how the first
two atoms overshoot the waveform envelope, and subsequent
atoms destructively interfere to reduce the corresponding error.

Figure 4 shows the STDE for each of these signals using
a partition length of eight samples, i.e., LfK1} = 8. For the
signal with an attack, Fig. 4(a) shows that DE is concentrated
around the attack. Similarly, the concentration of DE between
the two modes of the AM signal is clearly seen. The DE
prior to and after the modes is due to atoms constructively
interfering with the tapered sides of the initial atom. For the
sinusoid, the DE exhibits a much more complex behavior.
Small increases in the DE occur near the centers of the first
two atoms selected, but some of the larger values appear to be
caused by constructive interference, e.g., the atoms centered
around sample k = 900.

Using the same Gabor dictionary, we decomposed a music
signal and found its STDE. The top part of Fig. 5 shows the
wivigram for the signal of a glockenspiel (struck metal bars)
playing a short melody. A wivigram [2], [5] is a superposi-
tion of the Wigner-Ville distribution of each weighted time-
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Fig. 5. An MP decomposition using a Gabor dictionary of a music signal is visualized using a wivigram (top). The log-normalized STDE of the estimation
is shown as the dark line overlaid on the time-domain waveform (bottom). The order of the estimation is n = 41, 293.

frequency atom in an estimation {G(n), c(n)}. This signal is
characterized by sharp attacks and ringing harmonic tones. The
multiresolution representation created by MP contains wide-
band small-scale atoms near the attacks, and large-scale atoms
for the ringing parts. The STDE, calculated using a partition
length of 10 ms (441 samples), is shown superimposed on

the audio waveform at the bottom of the figure. As was seen

for the simple signal in Fig. 3(a), sharp changes in DE occur

near the attacks. In regions that do not have attacks, such as

that beyond 2 s, the change in DE is much more smooth. The
high concentration of DE appearing in the decay around 3 s

appears to be due to constructive interference, which produces
the same effect seen in Fig. 4(c).

VI. DIscusSION AND CONCLUSION

We presented and discussed interference within sparse

atomic estimations, which is a direct result of decomposing
a signal using terms drawn from an overcomplete dictionary.
In previous work, we sought to quantify the degree of inter-
ference in an estimation using DE. In this paper, we extended
those results to create a short-term measure of DE to examine
how interference is distributed throughout an estimation with
respect to the signal itself. The phenomenon of DE and our

measure were illustrated for three simple signals and a more

complex music signal.
Using these measures, we can begin to answer such ques-

tions as: What part and percentage of a sparse atomic es-

timation is used to correct itself? Which terms are physi-
cally relevant to the signal, and which terms are products
of the decomposition algorithm? Which parts of the signal
"make sense" to decompose with the given dictionary? These
questions are directly relevant to increasing the sparsity and
efficiency of an estimation. STDE provides a measure with
which to judge the fit of atoms to particular structures in the

signal being estimated, as opposed to using only the inner
product in (2). Furthermore, given a completed decomposition,
we can review the interference in the estimation and return
to the residual those terms associated with high interference.
Such terms, it can be argued, do not "make sense" with that
portion of the signal they have been chosen to model. We are

currently investigating these extensions and applications.
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