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Abstract—Sparse approximation attempts to find an efficient
signal representation by adaptively building a signal vector space
from elements of a usually redundant and overcomplete dictio-
nary of atoms. Often, however, the representations produced by
iterative descent methods, such as orthogonal matching pursuit
(OMP), will contain atoms that are poorly chosen and are later
confused to be features of the signal. Poorly selected atoms bring
about the selection other atoms that serve to correct for previous
choices using destructive interference. This behavior diminishes
the efficiency of a representation. In this paper, we propose
and study a modification of the atom selection in OMP that
takes into account the aforementioned effects. We find that a
pursuit adapting to the interference between atoms can create
a more efficient representation than that created by OMP. The
representations created are more a representation of the signal
and its features and less a reflection of the decomposition process.

I. INTRODUCTION

Recent works on signal processing and data analysis con-
tinue to demonstrate the benefits of sparse approximation (see,
e.g., [1]–[4]). Applications include compressive sampling [5],
coding and compression of audio [6] and image data [7],
denoising and data recovery [8], and content discrimination
and classification [9]–[11]. Sparse approximation often uses a
highly redundant set (dictionary) of functions (atoms) to find
representations of signals that are more efficient and robust
than can be obtained by linear transformations. The freedom
to choose the dictionary provides considerable flexibility, and
much research has been devoted to the benefits of properly
designing or choosing a dictionary (see, e.g., [1]–[4], [7], [8],
[12]–[14]).

The characteristics of a pursuit algorithm are highly depen-
dent upon the dictionary used and the decomposition process.
A pursuit using a dictionary well-correlated with the structures
in a particular signal can generate a very efficient representa-
tion; however, an iterative pursuit that “greedily” selects atoms
can pay a penalty in efficiency, and create representations
with obscured relationships to the features, or content, of a
signal [4], [15]–[17]. If a low-order representation contains
atoms that “correct” some aspects of other atoms, then the
representation is less a reflection of the signal, and more a
symptom that the pursuit and dictionary have not efficiently
described the signal. When this occurs, the representation has
a reduced utility for applications that depend on efficiency and
low distortion, such as audio coding, or on clear relationships
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Fig. 1. Energy distribution in time-frequency domain (top), and the time-
domain signal (gray) overlaid with exaggerated atom envelopes (black) of
15-order representations found using OMP.

between representation features and signal content, such as
tasks of discrimination and classification.

Consider the two representations shown in Fig. 1, created
by orthogonal matching pursuit (OMP) [2] using a redundant
dictionary of Gabor atoms (modulated Gaussian functions) and
Dirac functions (spikes). Observe that these representations
contain atoms that function entirely in a corrective sense. In
Fig. 1(a), atoms placed prior to the signal onset are a direct
result of the left-hand tail of the large-scale atom (arrow).
Similarly, in Fig. 1(b), the first atom selected (arrow) combines
the two modes into one, which requires other atoms to create
the “trough.”

Past approaches to the problem of erroneous features in
sparse approximation have attempted to mitigate their produc-
tion by altering the decomposition process, or by specifying
dictionaries that are more similar to specific signal content.
High-resolution pursuit [4] uses a dictionary in which large-



scale atoms consist of linear combinations of small-scale
atoms (e.g., B-splines). Since each atom is selected based
upon minimizing the worst fit of its smaller-scale constituent
atoms, this approach places restrictions on the contents of
a dictionary. One might use atoms that are more similar to
specific structures in a signal, such as asymmetric damped
sinusoids for speech [12], or modulated Gamma envelopes for
transients [6]. One might also consider using a union of several
dictionaries to provide more choices [18]; however, this can
still lead to problems of correction, and make the pursuit more
costly to perform. Ideally, we want a pursuit to efficiently
represent only those signal structures that “make sense” using
a dictionary, and omit the rest (e.g., those features that can not
be represented without much correction).

In prior work [15]–[17], we have studied this phenomenon
of correction for matching pursuit (MP), and have designed a
measure of it called interference. In this paper, we motivate
using the interference between atoms in a representation
to inform the selection of atoms in a pursuit to avoid or
postpone the correction of atoms. We demonstrate that taking
interference into account, and thus adapting to the interference
in the pursuit, can result in more efficient representations.

II. ORTHOGONAL MATCHING PURSUIT AND
INTERFERENCE

Consider a signal x ∈ CK and a dictionary DN
∆= {di ∈

CK : ||di||2 = 1}Ni=1, described in matrix form as
D = [d1|d2| · · · |dN ]K×N where rank(D) = K and
usually N � K. We express the nth-order representa-
tion of x as Xn = {Hn,a(n), r(n)}, where Hn is a
set of n atoms selected from DN , written in matrix form
as H(n) = [h0|h1| · · · |hn−1]K×(n−1). The column vector
a(n) = [a0, a1, . . . , an−1]T weights the selected atoms, and
r(n) is the residual defined below. The nth-order approxima-
tion of x is x̂(n) ∆= H(n)a(n). OMP updates the representation
elements using the following rules:

Xn → Xn+1 :


Hn+1 = {Hn,hn}
a(n+ 1) = [G(n+ 1)]−1HH(n+ 1)x
r(n+ 1) = x−H(n+ 1)a(n+ 1)

(1)
where G(n) ∆= HH(n)H(n) is the Gramian of the representa-
tion basis Hn (the superscript H denotes complex conjugate
vector transpose), and the OMP atom selection is as follows:

hn = arg max
d∈DN

|dHr(n)|. (2)

By using an overcomplete dictionary, it is generally the case
that G(n) will not be an identity matrix, which implies that
the atoms of a representation “interact” in a linear combination
to form the approximation x̂(n). In previous work, we have
proposed an measure of this interaction [15]: the interference
associated with the mth atom hm ∈ Hn of the nth-order
representation Xn = {Hn,a(n), r(n)} of x is defined as the
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Fig. 2. Separation of atoms in the representations shown in Fig. 1 based on
the sign of interference (3).

following energy:

∆(m) ∆= ||x̂(n)||22 −
(||x̂(n)− amhm||22 + ||amhm||22

)
(3)

= 2Real
{
a∗mhH

m(x̂(n)− amhm)
}

(4)

for m = 0, 1, . . . , n− 1.
Using this definition of interference, we can classify how

an atom of a representation interacts on average with other
atoms in terms of energy. If ∆(m) < 0, then the atom hm

destructively interferes with the others; if ∆(m) > 0, then
it constructively interferes with the others; and if ∆(m) = 0,
then it is orthogonal to the (n−1)th-order approximation. The
separation of atoms of the representations in Fig. 1 based on
the sign of the interference is shown in Fig. 2. Observe that for
Attack, many of the destructively interfering atoms occur prior
to the signal onset. These correct for the first atom selected,



which introduces energy into the residual signal. For Bimodal,
all but three of the atoms of its representation are destructively
interfering. This suggests that most of the terms in its 15-order
representation serve more to correct the approximation rather
than to represent the signal.

III. INTERFERENCE-DRIVEN ADAPTATION IN
ORTHOGONAL MATCHING PURSUIT

The previous examples suggest that an efficient representa-
tion has few terms that require correction, and that an efficient
pursuit will defer corrections until “coherent” aspects of the
signal have been addressed by the pursuit, i.e., those features
that can be represented without much correction. Let us inspect
the interference associated with a new atom if it is selected
by OMP in the updated representation Xn+1. From (1) and
the iterative weight update rule in [2], observe that

∆(d) ∆= 2Real
{
a∗dd

H

(
[H(n)|d]

[
a(n)− adb

ad

]
− add

)}
(5)

where

b ∆= [G(n)]−1HH(n)d (6)

ad
∆=

dHr(n)
||d− dHn

||22
=

dH
H⊥n

r(n)

||dH⊥n ||22
(7)

dHn

∆= H(n)b =⇒ dH⊥n
∆= d− dHn . (8)

This expression simplifies to

∆(d) = 2Real
{
a∗dd

H x̂(n)
}− 2|ad|2||dHn ||22. (9)

The interference of d thus depends on its projection onto the
current approximation x̂(n), and the representation basis Hn.
For real atoms, this can be expressed as

∆(d) = 2
dT r(n)
||dH⊥n ||22

[
dT x̂(n)− ||dHn ||22

||dH⊥n ||22
dT r(n)

]
. (10)

In the pursuit of a representation, let us assume that atoms
which are good candidates to be selected will likely satisfy
||dHn ||22 < ||dH⊥n ||22 ≈ 1. Let us also assume for these atoms
that as the pursuit progresses, |dT r(n)| decreases. With these
in mind, and since the sign of ∆(d) is more of interest than
its exact value, we propose to simplify (10) to

∆′(d) ∆= 2
[
dT r(n)

]
dT x̂(n). (11)

Essentially (11) indicates whether or not d will be construc-
tively or destructively interacting with the representation of x,
and approximately by what amount.

Finally, we may incorporate (11) into the atom selection
criteria of OMP in (2) as a penalty in the following way:

hn = arg max
d∈DN

[
|dT r(n)|+ γ(n)

[
dT r(n)

]
dT x̂(n)

]
(12)

where −∞ < γ(n) < ∞ is an iteration-dependent scalar
that weights the importance of using interference in the atom
selection rule. We see that when γ(n) = 0, the pursuit
update in (1) is just OMP. When γ(n) > 0, the selection

γ(1)

h0

r(1)

x

x̂(1)

Fig. 3. Geometric interpretation of interference-driven adaptation in a greedy
iterative descent pursuit.

rule in (12) will encourage atoms that constructively interfere
with the others (∆(d) > 0), and will discourage atoms that
destructively interfere (∆(d) < 0). The opposite case occurs
when γ(n) < 0.

Figure 3 illustrates how the modified pursuit works. After
the first iteration, OMP selects an atom that has the maximum
projection (magnitude) onto the residual r(1). If a good match
is found, it will be nearly orthogonal to the original signal x.
When γ(1) > 0, interference influences the atom selection by
effectively pulling the residual toward the original signal x
and its first-order approximation x̂(1). The next atom selected
should thus be less orthogonal to the original signal. By
selecting an atom based on its projection onto the residual
and the approximation of the signal, this pursuit essentially
takes into account the information about how it has already
represented the signal.

IV. COMPUTER SIMULATIONS

In the following experiments, we have decomposed the
signals shown in Fig. 1, as well as a sinusoid, using (1) with
(12) and the same overcomplete dictionary of Gabor atoms
and Dirac spikes used in Fig. 1. The interference weight used
is constant:

γ(n) = c ∀n ≥ 0. (13)

Figure 4 shows the signal-to-residual ratio (SRR) as a function
of the pursuit iteration for several positive values of c. The
benefits of incorporating interference in the atom selection
is clearly manifested by a decrease in distortion using fewer
terms, i.e., an increase in the efficiency of the representation.
This effect is much more prominent for Attack than for
Bimodal and Sine. It is clear with Bimodal that the first atom
selected (arrow) spans the support of the entire signal, which
necessitates correction around its center. Since H0 = ∅, there
is no information present to guide the first atom selection.

The relationship between the distortion as a function of
the number of atoms and the value of γ(n) is obviously
complex. Figue 5 shows the isolines of distortion in terms
of the number of atoms required as a function of c (recall
that OMP corresponds to the case of c = 0). For Attack, we
see a dramatic difference in the number of atoms required
to achieve a specific distortion. This difference grows as the
distortion decreases. The other two signals do not show such
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Fig. 4. Residual energy decay as a function of iteration using (12) with (13).

a large difference in terms of the number of atoms found at a
given SRR compared with basic OMP. It is interesting to see
that for Bimodal and c < 0, there exists a slightly more sparse
solution for an SRR of 60 dB, than when c = 0.

The representations created by the modified pursuit can vary
widely depending on the value of c, even if there is little
change in the distortion. This can be seen in Fig. 6, which
shows the time-domain envelopes of the atoms selected by
the pursuit for several values of c. For Attack, we find that
as c increases, the resulting atom distribution appears to adapt
better than OMP to the sharp onset and subsequent decay of
the signal. The error introduced by the first atom preceding
the onset is lessened over time because its energy is reduced
with the reprojection in (1) (it appears to be irrelevant to a
constructive representation of x). We observe this same effect
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Fig. 5. Atoms found for SRR using (12) with (13) as a function of c.

for Bimodal, where the representation becomes more of a
reflection of the signal structures. For the constant envelope
Sine, the ideal behavior of overlapped atoms with uniform
amplitudes is observed for c = 2.

V. CONCLUSION

We have presented a modification to the atom selection
criteria in OMP that takes into account the fact that atoms
selected from redundant and overcomplete dictionaries can
result in less meaningful terms in the signal representation.
By incorporating interference into the criteria used to the
select atoms, we effectively assign a cost to the selection
based on their interaction with the current approximation. We
have empirically shown that the resulting representations can
be more efficient and representative of the signals than those



0 100 200 300 400 500 600

c = 0

1

3

15

Sample k

(a) Attack, X15

0 100 200 300 400 500 600

c = 0

1

2

3

Sample k

(b) Bimodal, X15

0 200 400 600 800 1000

c = 0

1

2

3

Sample k

(c) Sine, X25

Fig. 6. Time-domain atom envelopes of representations created using (12)
with (13) as a function of c. Atom envelopes are exaggerated using the square-
root of the energy.

produced by OMP without interference-driven adaptation. Fu-
ture work will look at increasing efficiency more by rejecting
atoms from the basis based on their interaction with the signal
representation, which we expect to aid cases like Bimodal.
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