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Abstract

We propose a domain-decomposition method to simulate articulated deformable characters entirely within a sub-
space framework. The method supports quasistatic and dynamic deformations, nonlinear kinematics and mate-
rials, and can achieve interactive time-stepping rates. To avoid artificial rigidity, or “locking,” associated with
coupling low-rank domain models together with hard constraints, we employ penalty-based coupling forces. The
multi-domain subspace integrator can simulate deformations efficiently, and exploits efficient subspace-only eval-
uation of constraint forces between rotated domains using a novel Fast Sandwich Transform (FST). Examples are
presented for articulated characters with quasistatic and dynamic deformations, and interactive performance with
hundreds of fully coupled modes. Using our method, we have observed speedups of between three and four orders
of magnitude over full-rank, unreduced simulations.

Categories and Subject Descriptors (according to ACM CCS): Simulation and Modeling [I.6.8]: Types of
Simulation—Animation, Computer Graphics [I.3.5]: Computational Geometry and Object Modeling—Physically
based modeling Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—Virtual Reality

1. Introduction

Full-body physics-based character simulations are increas-
ingly common in virtual environments, and the demand for
high-resolution million-element character simulations in an-
imation production is increasing [CJ10]. Various approaches
have been used to support notoriously expensive physics-
based character models, but satisfying the competing goals
of interactive performance and increasingly detailed physi-
cal realism remains a challenge.

In this paper, we extend physics-based subspace deforma-
tion methods to support quasistatic and dynamic articulated
characters. Subspace deformation methods, also known as
dimensional model reduction or reduced-order deformation
methods, can accelerate the simulation of deformable bod-
ies with arbitrary geometries and non-linear material prop-
erties by several orders of magnitude. The speedup usually
occurs because the deformation of a model with N vertices
is restricted to lie in some linear basis of r carefully selected
“displacement modes,” and the size of the implicit system

† e-mail: kim@mat.ucsb.edu

to solve is reduced from N×N to r× r. Since r can be se-
lected independent of N, large speedups can be realized. Un-
fortunately, for character animation, we often want to sim-
ulate expressive deformations of characters with dozens of
joints, as well as secondary deformations—both quasistatic
pose-space deformations as well as dynamic responses. As
the number of modes in a subspace model is increased to
resolve these degrees of freedom (DOF), we see diminish-
ing returns in terms of speed and quality. While the first few
low-order modes may faithfully capture the bulk motion of a
model, higher-order modes resolve spatial detail. Subspace
deformation algorithms often make the monolithic assump-
tion that all modes have global support and lie in the same
frame of reference, so adding new modes adds to the overall
O(r2) cost (or worse), which complicates treatment of more
complex deformable objects, such as articulated characters.
As more modes are added, it becomes clear that paying a
global cost for increasingly localized behavior in a single
frame of reference is not an appealing tradeoff. This limita-
tion significantly complicates the use of subspace methods
in applications such as character animation, where a charac-
ter’s limbs may exhibit locally low-rank tissue deformation
and large rigid motions.
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Figure 1: Pipeline Overview: Given an articulated character, we generate a discrete tetrahedral mesh and decompose it into
bone-associated domains as shown. Each domain’s local-frame deformation subspace is estimated by performing weighted
PCA on a set of deformations obtained from (1) quasistatic deformations computed for a range of character poses, and (2)
linear and derivative modal analysis. Cubature optimization is performed to estimate a reduced-order deformation force for
each domain. The resulting domains are held together by inter-domain coupling forces, whose subspace forces are evaluated
efficiently using Fast Sandwich Transforms (FSTs) to enable interactive simulation.

To address these limitations, we propose a novel nonlin-
ear multi-domain subspace deformation method with N-
independent runtime simulation cost. We partition the simu-
lation mesh into multiple domains, e.g., the limbs, head, and
torso of a character, and attach each to a specific rigid “bone”
frame of reference. For each domain, we estimate a subspace
deformation model, which has “modes” sufficient to real-
ize both quasistatic deformations needed to resolve example
poses, and those needed for dynamic deformations. Since
each deformation mode is restricted to a single domain, the
domain can be expressive while maintaining a modest rank,
and the problem of having to compute global quantities to
capture high-DOF articulated behavior is avoided. Each do-
main’s reduced-order force model is computed using exist-
ing cubature schemes for nonlinear materials [AKJ08].

A major challenge for multi-domain subspace deformation
is to avoiding seam artifacts, e.g., cracks, while coupling do-
mains efficiently. Imposing constraints on all inter-domain
vertex pairs, e.g., using Lagrange multipliers, can easily
over-constrain the reduced-order models, so we instead use
penalty methods which do not explicitly remove DOFs. We
use a flexible multibody formulation of domain decompo-
sition where each domain’s associated rigid translation and
rotation are specified kinematically by the character’s pose,
and then solve for the modal deformation response.

Unfortunately, computing inter-domain coupling forces in-
volves significant N-dependent costs, as inter-domain vertex
positions and penalty (spring) forces must be explicitly com-
puted and resolved in the subspace. Fortunately, we show
that we can compute each domain’s coupling forces and Ja-
cobians in only O(r2) time by introducing a precomputation-
based Fast Sandwich Transform (FST), a simple but useful
technique for exploiting the inherent linear dependence of

articulated inter-domain computations on time-varying rota-
tion matrix (and related) quantities.

We are able to simulate reduced-order versions of quarter-
million-element character models at interactive rates. Hun-
dreds of coupled pose/vibration modes can be efficiently re-
solved by the multi-domain subspace simulator using FST-
based inter-domain constraint resolution. In practice, we ob-
serve thousand-fold speedups over the unreduced simulator.
An overview our of method, and its associated preprocess
and runtime, is shown in Figure 1.

2. Related Work

Various subspace deformation schemes are widely used in
character animation, the most widely used being a geo-
metric deformer by the name of skeletal subspace defor-
mation (SSD) (or linear blend skinning (LBS), linear en-
veloping, etc.), and various extensions have been proposed
to overcome its notorious shortcomings, e.g., of collaps-
ing elbows [LCF00, KCŽO08]. Most relevant are example-
based skinning methods which can support fast animation
of physics and artist generated characters, primarily for qua-
sistatic skins (lacking internal dynamics) and dependent just
on articulation and possibly muscle activation. Pose space
deformation techniques [LCF00, SIC01] allow simulated or
sculpted character deformations to be pre-generated for key
poses (and muscle activations), preprocessed for efficient
evaluation (possibly in graphics hardware [KJP02]), then
interpolated in a potentially high-dimensional space. Such
techniques are now widely used [WPP07, KV08, CJ10], and
have inspired various skinning techniques [MG03, JT05].
In contrast to these quasistatic mesh deformers, we use a
physics-based subspace model which avoids pose-space in-
terpolation, and generalizes to simulate dynamic and novel
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runtime responses; in the absence of dynamics, our method
can be seen as an interpolation-free pose-space deformation
scheme.

Our physics-based character skinning method builds on
prior work in dimensional model reduction [KLM01], also
known as reduced-order modeling, or subspace deforma-
tion methods. These are best popularized by traditional lin-
ear modal analysis methods [Sha90], and have seen exten-
sive use [Sta97, JP02b, HSO03]. To generalize linear modal
analysis beyond linear materials and kinematics, subsequent
work has shown how to support large deformations [BJ05],
as well as nonlinear constitutive materials using cubature
schemes [AKJ08]. Although explicitly integrated cubature
models can support several hundred modes [CAJ09], im-
plicit (or quasistatic) models have O(r3) (or worse [BJ05])
complexity, and also struggle to accommodate articulated
kinematics. Modal warping [CK05] introduces articulation
into linear modal vibration models and is very fast, but the
underlying dynamics are still linear oscillators. In contrast,
we support nonlinear materials, and accurately model ma-
terial articulation and deformation using articulated multi-
domain subspace deformations. Our approach is based on
the multibody formulation of deformable objects [Sha05],
which have a long history in computer graphics for the an-
imation of dynamic and coupled bodies [TPBF87, TW88].
Several previous works have employed floating frame for-
mulations [HSO03, BJ05, KSJP08], but only for a single
domain. In [KJ09], online model reduction is used to es-
timate an EigenSkin-style deformation subspace in the ab-
sence of collisions. In contrast to these works, we ad-
dress the problem of stably coupling nonlinear, articulated,
reduced-order domain models for character animation, and
use multi-domain deformation subspaces derived from both
pose-space and modal-analysis reductions.

Various physics-based dynamic deformation schemes have
been used for character animation, beyond traditional engi-
neering methods. Multi-resolution simulation of deformable
characters was considered in [CGC∗02], with bone-attached
domains linearized in bone frames, and connected with
low-resolution inter-domain vertex constraints; in contrast,
we use a full-resolution discretization to derive a fully
nonlinear subspace deformation model with domains cou-
pled efficiently using fast sandwich transforms. James and
Pai [JP02a] coupled articulated substructures based on pre-
computed Green’s functions [JP99], but resolved inter-
domain constraints and rotation sandwiches at the vertex
level. Skinned characters have been dynamically augmented
in several works. For example, precomputed linear modal
models of decoupled torso domains enable GPU simulation
of jiggling skinned characters driven by rigidbody bone ac-
celerations [JP02b]. In contrast, we address coupled nonlin-
ear multi-domain deformations, with both pose and mode
subspaces. Shape matching methods can also simulate cou-
pled domains [MHTG05], but are unsuitable for animating
dynamic character deformations unless very many shape-

matching degrees of freedom are simulated [RJ07]. Dy-
namic skinned deformation models have been simulated us-
ing frame-based degrees of freedom with unreduced force
evaluation [GBFP11], whereas our frames are specified
piecewise with additional pose- and mode-subspaces used
to enrich reduced-order deformation physics.

The engineering literature on coupled multibody simulation
and substructuring is considerable (for an excellent survey
see [WN03]). Various strategies exist for imposing inter-
domain coupling constraints, and many established full-rank
(i.e. N-dependent) integration methods exist that address
this problem. For example, popular methods such as Fi-
nite Element Tearing and Interconnect (FETI) and its vari-
ants [FLL∗01], and Balancing Domain Decomposition by
Constraints (BDDC) [Doh03], utilize a large number of hard
constraints to ensure that the domain-interface vertices align.
Unfortunately they cannot be applied to the case of sub-
space deformation, because each Lagrange multiplier asso-
ciated with each hard constraint removes a DOF from the
simulation, and subspace methods derive their speed from
the fact they have a very limited set of reduced DOFs. A
subspace simulation would either lock (i.e., cease to deform
adequately), or become over-constrained and produce sin-
gular Jacobians. Other substructuring methods use small-
deformation linear subspaces that limit the range of appli-
cations. In contrast, we impose inter-domain constraints us-
ing penalty forces, and rely on the Fast Sandwich Transform
(FST) to enable efficient large-deformation subspace inte-
gration with articulated domains. Note that the need for FST
does not arise in other non-articulated domain decomposi-
tion applications, such as multi-domain subspace fluids op-
erate on subspace velocity fields in an Eulerian setting with-
out sandwiched dynamic inter-domain rotations [WST09].

In the unreduced simulation setting, quasistatic deforma-
tion models are commonly used when dynamic effects are
of secondary importance [TSIF05]. Reduced-order domain
decomposition has similarities to higher-order finite ele-
ment methods, and inter-domain/element penalty forces are
often used to enforce continuity, e.g., for Discontinuous
Galerkin FEM (DG-FEM) [KMBG08], however, in contrast,
our multi-domain subspaces can produce arbitrarily small
inter-domain seam errors with increasing subspace rank (see
Figure 3). Huang et al. [HLB∗06] proposed an unreduced
domain decomposition method where at most 6 domains are
considered, only linear domain materials are possible, and
interface constraints are handled using Lagrange multipli-
ers. While some speedup is observed over [MG04] due to
cheaper matrix solves, the integration method still has Ω(N)
cost and is interactive only for a couple thousand tetrahedra.

In concurrent work, [BZ11] proposes a reduced-order
domain-decomposition method. It addresses the special case
of passive models that can be partitioned into tree-structured
reduced-order domains that are connected by interfaces
which are small and/or have negligible near-rigid defor-
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mations. Domains are preprocessed individually, and do-
main articulation is determined using a tree-structured re-
cursive approach. In contrast, we optimize our formulation
for secondary deformations of active characters, and spec-
ify domain articulation via character pose. Our domain-
decomposition method supports arbitrarily shaped domains,
arbitrary domain connectivity, and inter-domain interfaces
can be both large and have significant deformations. Inter-
domain continuity constraints are imposed efficiently using
soft constraints and the FST, and domains are preprocessed
together to estimate nontrivial subspaces for both modal dy-
namics and pose-space deformations.

3. Multi-Domain Subspace Deformation

We simulate multi-domain systems comprised of reduced-
order deformable bodies. The single-domain problem is in-
troduced first, then extended to multiple coupled domains.
Computational bottlenecks associated with inter-domain
coupling forces will be described in preparation for the fol-
lowing section (§4) on Fast Sandwich Transforms.

3.1. Single-Domain Formulation

We first describe the traditional case of a single body/domain
simulated using subspace deformations.

Inertial-frame case: For a deformable body with N ver-
tices at undeformed positions p ∈<3N , we denote the vertex
displacements using the vector u ∈ <3N , and the rank-r re-
duced displacements as u = Uq, where U ∈ <3N×r is some
reduced displacement basis (discussed later), and q ∈ <r

are the reduced displacement coordinates. We can assume
that the domain is somehow fixed in this frame of refer-
ence, e.g., to a bone. For compactness, we also introduce
the homogeneous coordinate notations q =

(q
1
)
∈ <r+1 and

U = [U |p], so that the deformed positions x̄=p+u are sim-
ply x̄=Uq. It follows that the reduced-order Euler-Lagrange
equations of motion for the deformable body can be written
as [BJ05, AKJ08]

Mq̈+Cq̇+ fint(q) = fext ,

where M ∈ <r×r and C ∈ <r×r are respectively the re-
duced mass and damping matrices, fext are external forces
projected into the subspace, and the overdots denote differ-
entiation with respect to time; the fint(q) term is the inter-
nal force response, and can correspond to any arbitrary non-
linear constitutive model.

Moving-frame case: Consider a multibody formulation
where each deformable domain also has an associated rigid
translation t ∈ <3 and rotation R ∈ <3×3. The kth vertex’s
position in its domain’s local frame is

x̄k = pk +Ukq = Ukq, (1)

with Uk the 3 rows of U corresponding to the kth vertex. Its
world-frame position is

xk = Rx̄k + t = R(pk +Ukq)+ t = RUkq+ t.

In order to incorporate the dynamics of these rigid compo-
nents into our equations, we use the generalized Newton-
Euler equations [MT92, Sha05],Mtt Rm̃T

tω RMtq
Mωω Mωq

sym. M

 ẗ
ω̇

q̈

=

 fext,t
fext,ω

fext −Cq̇− fint

+
 fqv,t

fqv,ω
fqv


where ω̇ denotes angular acceleration, fext,t and fext,ω de-
note the translational and angular components of the external
force, and

[
fqv,t fqv,ω fqv

]T denotes the quadratic veloc-
ity vector of centrifugal and Coriolis forces; the left hand
side block matrix is the time-varying mass matrix.

For character skinning, let each domain’s rigidbody motion
be specified, e.g., via an attached bone, so we only need to
solve for the deformation coordinates, q, via

Mq̈+Cq̇+ fint(q) = fext + fqv + frigid (2)
where the rigid-frame coupling forces are

frigid =−
(

MT
tqRT ẗ+MT

ωqω̇

)
(3)

which convert prescribed rigid-body (e.g., bone) accelera-
tions into subspace deformation forces [JP02b].

Efficient evaluation: We use the cubature approach of
[AKJ08] to approximate the fint(q) internal deformation
force (and Jacobian) in O(r2) (and O(r3)) time per domain.
As in [KJ09], cubature schemes are evaluated using invert-
ible elements [ITF04, TSIF05] to avoid inversion-related in-
definiteness problems that easily arise in character anima-
tion. We refer the reader to Appendix A for details on evalu-
ating the quadratic velocity force, mass matrix and frigid .

3.2. Multi-Domain Formulation

In the multi-domain setting, the equations of motion for the
ith domain are similar,

Miq̈i +Ciq̇i + fint(qi) = fi
ext + fi

qv + fi
rigid + fi

c (4)
but now include interactions with neighboring domains, j ∈
Ni, via the coupling force,

fi
c = ∑

j∈Ni

fi j
c (5)

which enforces continuity at interface nodes (see Figure 2).

Figure 2: Inter-domain penalty constraints are used to en-
force continuity constraints and avoid seams and cracking
artifacts. Spring-damper penalty forces are used to avoid
over-constraining the subspace dynamics via explicit con-
straints, which could either be infeasible or cause lock-
ing to occur. Efficiently evaluating subspace coupling forces
between rotated domains is achieved using Fast Sandwich
Transforms (§4).
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Figure 3: Inter-domain constraint satisfaction vs domain rank reveals rapid gap-error reduction with increasing domain rank
on the chest and shoulder of a human body mesh. The basis was trained on deformations computed from motion capture data.

3.2.1. Inter-Domain Coupling Forces

Spring coupling forces: In order to avoid locking in the sub-
space models, we apply penalty-force constraints that do not
explicitly remove degrees of freedom. We use linear springs
at interface vertices, k = 1 . . .n, to produce unreduced exter-
nal forces of the form

Fi j
k =−κak

(
xi

k−x j
k

)
(6)

=−κak

(
(RiUi j

k qi + ti)− (R jU ji
k q j + t j)

)
, (7)

where κ is the spring constant, and ak is the effective inter-
facial area for vertex k. Here Ui denotes the displacement
basis for domain i, and Ui j is a submatrix of rows in Ui cor-
responding to vertices along the i, j interface. For simplicity,
we will refer to each domain’s rank as r without loss of gen-
erality, although in practice each domain can have different
rank. The vector of all n spring forces is then

Fi j =−κA
(

RiUi jqi−R jU jiq j + In(ti− t j)
)
, (8)

where A = diagn(akI3) is a diagonal area-weighting matrix;
In ∈<3n×3 is a column vector of n 3-by-3 identity matrices.
For notational clarity we assume that R∈R3×3 can also rep-
resent its block-diagonalized version, diagn(R)∈R3n×3n as
needed without introducing extra “diag” notation. For ex-
ample, the rotated 3-vector entries uk of the displacement
vector, u ∈ R3n, can be written simply as Ru instead of
diagn(R)u; similarly RU≡ diagn(R)U.

Subspace coupling forces: Each interface spring con-
tributes to the domain interface’s coupling force vector, and
has the following mathematical structure

fi j
c =

n

∑
k=1

(Ui j
k )

T (Ri)T Fi j
k (9)

=(RiUi j)T Fi j = (Ui j)T (Ri)T Fi j (10)

=−κ

(
[(Ui j)T AUi j]qi− [(Ui j)T A(Ri)T R jU ji]q j

+ [(Ūi j)T AIn](Ri)T (ti− t j)
)

(11)

These n-vertex summations can be a force (and Jacobian)
evaluation bottleneck for detailed models. While the summa-
tion can be precomputed for some terms, e.g., [(Ui j)T AUi j],
the colored term involves a time-varying quanty (in red)
“sandwiched” between other (blue) matrices which pre-

cludes precomputation. We address their efficient evaluation
using Fast Sandwich Transforms in §4.

Damped coupling forces: In order to avoid undesirable
inter-domain jiggling artifacts due to stiff inter-domain
springs, we can optionally damp inter-domain spring forces
as follows. Specifically, consider the proportional damping
force on vertex k,

di j
k =−κdak

(
ẋi

k− ẋ j
k

)
(12)

=−κdak

(
ṘiUi j

k qi +RiUi j
k q̇i + ṫi (13)

−Ṙ jU ji
k q j−R jU ji

k q̇ j− ṫ j
)

(14)

which leads to a subspace damping force

fi j
c,damp = (RiUi j)T di j (15)

=−κd

(
[(Ui j)T A(Ri)T ṘiUi j]qi− [(Ui j)T A(Ri)T Ṙ jU ji]q j

+[(Ui j)T AUi j]q̇i− [(Ui j)T A(Ri)T R jU ji]q̇ j

+[(Ui j)T AIn](Ri)T (ṫi− ṫ j)
)
. (16)

For sufficiently small Ṙ and ṫ motions, we can approximate
the damping force as

fi j
c,damp≈−κd

[
[(Ui j)T AUi j]q̇i− [(Ui j)T A(Ri)T R jU ji]q̇ j

]
.

(17)
The damping force Jacobian (w.r.t q̇) is straightforward.
Again, Fast Sandwich Transforms are needed to evaluate in-
terface damping forces without n-dependent summations.

4. Fast Sandwich Transforms

A key challenge for multi-domain coupling is to enable effi-
cient inter-domain subspace communication despite rotated
domains. This section shows how to avoid all n-dependent
runtime computations when computing inter-domain cou-
pling forces, and thus avoid considering many thousands of
vertex computations. The basic observation is that the seem-
ingly n-dependent computations are actually linear in the en-
tries of the rotation matrices, which only contain a small,
constant number of terms. By using a carefully structured
preprocess, only r-dependent computations become needed
at runtime. This explicit preprocessing avoids n-dependent
codes that are commonly generated, e.g., by computer alge-
bra systems for automatic force code generation.
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4.1. Rotation sandwiches and other slow fare
Many computations involve multiplication between constant
matrices, like U, which are known ahead of time and can
be pre-multiplied during setup. For example, consider a dot-
product between two 3n displacement vectors, u and v,
which are constant and known before the simulation starts.
Clearly computing uT v = ∑

n
k=1 uT

k vk is n-dependent, but
can be trivially preprocessed away. Similarly, the first term
of (11) has the constant sub-matrix (Ui j)T Ui j ∈ <r×(r+1),
where the two matrices can be premultiplied once at O(r2n)
cost to avoid n-dependent runtime costs.

One tiny sandwich: The situation is a little more compli-
cated if a time-dependent quantity, like a rotation, is “sand-
wiched” in between u and v:

uT Rv = (18)

Here bluish entries are constant, whereas the reddish rota-
tion blocks are not. Unfortunately, the time-dependent ro-
tation is sandwiched between the constant matrices, which
complicates premultiplication, and suggests that O(n) work
is needed at runtime.

Bigger sandwiches: The situation is far worse for many
terms we will meet later – time-varying rotations and the
like are sandwiched between vectors, matrices, and higher-
order tensors. For example, the second term in (11) has a
nonconstant r× (r + 1) matrix with a relative rotation (call
it R) sandwiched inside,
(Ui j)T RUi j = (19)

leading to an O(r2n) runtime evaluation cost.

4.2. The Fast Sandwich Transform
The basic idea of the Fast Sandwich Transform (FST), is
to preprocess away n-dependent computations by exploiting
the linearity of time-varying rotation parameters. The FST
is essentially a preprocess-based fast summation technique.
For example, the simple dot-product computation, uT Rv, is
linear in the only time-varying parameters: the 9 entries of
R. To exploit this linearity, we can introduce the 3x3 basis
matrices

Eµν =

δµ1δν1 δµ1δν2 δµ1δν3
δµ2δν1 δµ2δν2 δµ2δν3
δµ3δν1 δµ3δν2 δµ3δν3

 , µ = 1...3
ν = 1...3

(20)

so that, if the elements of R are Rµν, then we can write
R = EµνRµν, (implied sum over µ, ν) (21)

and thus
uT Rv = uT EµνRµνv =

(
uT Eµνv

)
Rµν (22)

= AµνRµν, (23)
which resembles a dot product. Consequently we can re-
structure the computation during preprocessing to obtain

uT Rv = =

The generalization to sandwiches with constant matrix (or
tensor) “bread” is straightforward,

UT RU = UT EµνRµνU =
(

UT EµνU
)

Rµν (24)

= AµνRµν, (25)
and is now just a linear superposition of 9 r-by-(r+ 1) pre-
computed matrices, Aµν. In this way, we can exploit linearity
to preprocess away sandwiched rotations and similar time-
dependent matrices, e.g., [(Ri)T Ṙ j], for fast n-independent
runtime evaluation. We observe that this process can also be
thought of in terms of tensors, A⊗R, where A ∈ <r×r×9,
R ∈ <9 and ⊗ denotes a mode-3 tensor product.

4.3. Application

Using Fast Sandwich Transforms, all of the afore-mentioned
inter-domain coupling spring forces (§3.2.1) can be eval-
uated in O(r2) time per interface, thereby avoiding n-
dependent vertex force computations at runtime. Specifi-
cally, we precompute one FST to evaluate each interface’s
coupling spring force fi j

c in (11), and another FST to evalu-
ate the damping force fi j

c,damp in (17). Spring-damper force
Jacobians are needed for implicit integration, and can also
be evaluated using the same FSTs. In addition, for each do-
main we can precompute two FSTs to efficiently evaluate the
quadratic-velocity force in (26) (see Appendix A).

5. Character Animation Pipeline

The quality of the character deformation and dynamics de-
pends directly on the quality of the subspace basis in each
domain. We have constructed a pipeline that automatically
constructs a high quality basis given a skeleton embedded in
a tetrahedral mesh. An overview is shown in Figure 1.

5.1. Preprocess
The user can provide a character’s tetrahedral mesh and
skeletal articulation. If no piecewise-rigid rigging is pro-
vided, we constrain the tetrahedra intersected by the bones
of the skeleton to transform kinematically along with the as-
sociated bones, and the mesh is partitioned into body-part
domains by associating each tetrahedron with the nearest
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bone. Alternately, skinning information from automatic rig-
ging software, e.g., Pinocchio [BP07], can be used to gen-
erate a partitioning: we assign each tetrahedron the skinning
weight of the nearest surface vertex, and then assign it to the
bone with the highest relative skinning weight.

Next, we build a subspace basis for each domain. We ran-
domly sample the joint space of the skeleton, but respect the
model’s joint limits to prevent extreme interpenetrations. We
then perform a quasistatic solve over the entire tetrahedral
mesh for each joint configuration. These quasistatic solves
can be computed in parallel. We found full dynamics solves,
e.g., mocap sequences, to be inadvisable: a combination of
large joint accelerations and extreme element inversions tend
to cause the Newton solves to diverge. Principal component
analysis (PCA) is then performed on the simulation subsets
corresponding to each domain, and the most relevant modes
are added to each domain basis. If relevant pose spaces are
available, e.g., using motion capture data, these skeletal con-
figurations can be used in lieu of the random joint samples.

We introduce dynamics information into the basis by
computing a vibration analysis of the entire mesh; we
use weighted linear modal analysis and modal deriva-
tives [BJ05]. Per-domain PCA is again performed on the re-
sults, and the most relevant modes are added to each domain
basis (and orthogonalized for better numerical conditioning).
We found that allocating half of the basis to vibration modes
and half to quasistatic poses works well in practice. Cubature
optimization requires training data that samples the defor-
mation subspace, and we use all projected quasistatic poses
plus an equivalent number of eigenvalue-weighted random
samples from the vibration analysis [AKJ08].

5.2. Runtime Simulation
At runtime, our simulator reads in a new skeleton pose at
each time step and solves for the new deformation. The pose
can come from an arbitrary source, such as motion cap-
ture data or an articulated rigid body solver. Once the sim-
ulator receives the new pose, it transforms any constrained
cubature vertices, and performs a Newton solve to deter-
mine the new deformation and dynamics. Each Newton it-
eration constructs a symmetric block-sparse system (Fig. 5)
that is then solved. The systems we encountered were suf-
ficiently small that a direct Cholesky solver was used on
the resulting matrix, but for larger systems, conjugate gra-
dient could be employed instead. Collisions are detected us-
ing Bounded Deformation Trees [JP04]. Our implementa-
tion uses an IMEX integrator wherein fqv and frigid forces
are integrated explicitly, but subspace dynamics, including
fc and fc,damp, are integrated implicitly, e.g., using implicit
subspace Newmark [BJ05]. The rigid velocities and accel-
erations needed to compute fqv and frigid were obtained by
plugging the translations and rotations into the same update
equations being used by the subspace solver, e.g., also im-
plicit Newmark.

BigEarGuy MocapGuy Armadillo

Figure 5: Block-sparse matrix structure: Each block row
corresponds to one domain, and blue off-diagonal entries
correspond to coupling force Jacobians. For parallelization,
we sent each block row to a separate core.

6. Results

Examples statistics are reported in Table 1, whereas perfor-
mance statistics are given in Table 2. Examples are demon-
strated in Figure 4, and our accompanying video. Timings
were conducted on an 8-core Apple Mac Pro with 2.26 Ghz
Intel Xeon cores (Nehalem, E5520) and 32 GB of RAM.
Full-rank Newton solves for all training examples were run
to two digits of precision. MocapGuy was limited to 15
Newton iterations per frame, whereas BigEarGuy and Ar-
madillo were limited to 75 iterations since their randomized
poses lacked frame-to-frame coherence, and each solution
had to be found essentially from scratch. Temporally coher-
ent poses could reduce the running time of the full-rank solve
(e.g. for MocapGuy), and potentially the overall speedups
in Table 2. We maintain that even with such speedups, our
method remains orders of magnitude faster.

Reduced order implicit and quasistatic solves were limited
to at most 3 Newton iterations per frame. The timestep was
set to ∆t =1/120s in all cases. For the BigEarGuy and Ar-
madillo examples, we used 100 joint samples, 160 linear
modal analysis modes, and 100 modal derivatives. The ex-
amples both set κ = 200 and respectively κd = 0.1,κd =
0.01. For the MocapGuy example, we took advantage of the
large amount of available data and used 3600 motion cap-
ture frames, and set κ = 5000,κd = 0.1. In all of the ex-
amples, we observed that our penalty-based inter-domain
constraint approach was able to sufficiently resolve inter-
domain contacts so that cracks, or other artifacts, were not
apparent (see Figure 3). In the BigEarGuy and Armadillo
examples (see Figure 4), we used the results of an Open Dy-
namics Engine (ODE) [Smi06] simulation, then computed
character deformations for the resulting frame time-series.
Consequently, in the Armadillo examples, vertex-level con-
tact deformations are not fully realized. In the MocapGuy
example, we used motion-capture data provided with the
Pinocchio [BP07] distribution (http://www.mit.edu/
~ibaran/autorig/pinocchio.html)

OpenMP parallelization was used to compute the cubature
and coupling forces (see Table 2), as these stages parallelize
naturally. The block diagonal entries are by far the most ex-
pensive, as they incorporate the cubature stiffness matrices,
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Figure 4: Character examples, top to bottom: Images are high resolution; please zoom in for more detail. The BigEarGuy
model stress-tests our subspace model by undergoing a “jumping-jack” motion that simultaneously exercises all of the articu-
lated skeleton’s joint limits. The MocapGuy model performs a cross-walking motion not seen during the subspace construction
and no visible inter-domain cracks form. The Armadillo model efficiently handles collisions and large accelerations while
falling through an obstacle course. An additional ‘Armadillo pachinko’ example can be seen in the supplemental video.

Model Nodes Tets Domains Interfaces Interface Nodes Joints QS Solve Time (unreduced)
BigEarGuy 36070 181751 6 10 2683 5 507 sec/frame
MocapGuy 54370 269139 17 26 5005 - 263 sec/frame
Armadillo 39152 194788 16 18 4525 13 415 sec/frame

Table 1: Model Statistics: We report the number of tetrahedral elements (Tets) and nodes in the simulation mesh (Nodes),
the number of domains (Domains) and domain-domain interfaces (Interfaces), the number of nodes on the interfaces (not
double-counted in “Nodes”), and joints for jointed characters. Finally the average time for frame-to-frame quasistatic solves
are reported. Dynamics solves would consume more time, since velocities and accelerations would also need to be resolved.

and an eigensystem must be solved for each cubature point
in order to handle element inversion [TSIF05]. We found the
hybrid eigensolver from [Kop08] to be faster than LAPACK.

7. Limitations and Future Work

Although inter-domain gaps do not occur in the final
model by virtue of seam-vertex averaging, a smoother
spatial reconstruction or higher-order interface constraints
may be required to guarantee high-order smoothness
(c.f. [KMBG08]). Our implementation does not currently
detect or resolve self collisions, however contact forces
could be integrated by the system provided the basis is en-
riched, e.g., pose-level self contacts near joints could be
accomodated by using precomputed poses with joint-area
self-contacts resolved. Domain decomposition could be op-
timized to produce domains which reduce simulation costs,
and deformation basis rank for a given error. Instead of a
piecewise-rigid frame formulation, one could use skinned
frames (as in EigenSkin), to provide inherently smoother
frame blending. However this choice would complicate sub-
space dynamics and cubature training; nevertheless, sim-

ilar FST ideas can be applied to that case. Domain de-
composition is ideally suited to parallel implementations,
however the subspace solver is sufficiently fast in our cur-
rent problems that there is limited opportunity for paral-
lel speedups. For example, on an 8-core machine we ob-
serve a 2x-3x speedup in force/Jacobian evaluations. We ex-
pect that larger offline examples with more domains and re-
duced DOFs will provide more opportunities for parallelism,
and challenges for block-sparse linear system solvers. Fi-
nally, muscle activations were not considered herein, but
could easily be included in the pose-space formulation, with
shapes/displacements modeled using a linear superposition
of local-frame body forces.

Appendix A: Efficient evaluation of mass matrices and
quadratic velocity force
We efficiently evaluate the mass matrix and quadratic veloc-
ity vector in O(r2) time as follows.

The quadratic velocity force is given by
fqv =−[UTM · ω̃2 ·U]q− [2UTM · ω̃ ·U]q̇ (26)

where M is the domain’s unreduced mass matrix. Here ω̃
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Model Rank Cubature Tets FST? Coupling (ms) Cubature (ms) Cholesky (ms) FPS Total (ms) Speedup
BigEarGuy 40/240 562 No 167 (85%) 22 (12%) 5.9 (3%) 5.1 196

40/240 562 Yes 3.3 (10%) 22 (64%) 7.6 (23%) 29.6 34 14900x
30/180 404 No 118 (87%) 13 (10%) 2.7 (2%) 7.4 135
30/180 404 Yes 2.1 (11%) 13 (66%) 3.7 (19%) 50.1 20 25300x
20/120 277 No 83 (89%) 8 (9%) 1.2 (1%) 10.7 93
20/120 277 Yes 1.7 (15%) 8 (67%) 1.4 (13%) 90.0 11 46000x

MocapGuy 20/340 1368 No 84 (66%) 34 (27%) 8.2 (6.4%) 7.8 128
20/340 1368 Yes 2.2 (5%) 34 (75%) 8.3 (18%) 22.2 45 5800x

Armadillo 40/640 3748 No 796 (77%) 127 (12%) 107 (10%) 0.96 1040
40/640 3748 Yes 8.3 (3%) 128 (52%) 100 (41%) 4.1 243 1700x
30/480 1060 No 523 (80%) 3.4 (6%) 48 (8%) 1.6 625
30/480 1060 Yes 5.2 (6%) 3.4 (38%) 44 (49%) 11 91 4500x
20/320 728 No 332 (88%) 20 (5%) 17 (4%) 2.7 370
20/320 728 Yes 2.9 (7%) 20 (48%) 14 (33%) 24 42 9900x

Table 2: Performance Statistics: For each example, we report the rank of each domain and the total model rank (summed
over all domains), the number of tetrahedral elements used in the cubature scheme (total for all domains; 5% training error);
and whether or not Fast Sandwich Transforms are enabled (FST?). Timing breakdowns (in milliseconds) are provided, and
percentages of total timestep/frame cost. In all cases, without FST the inter-domain coupling force/Jacobian evaluation is a
bottleneck, but with FST the bottleneck shifts to cubature force/Jacobian evalution and the block-sparse Cholesky solve. The
total frame cost is reported, and compared to the non-subspace quasistatic solver cost (in Table 1), and reveal significant
speedups (1700x—46000x) depending on domain rank. See §6 for further details. OpenMP parallelization was used to obtain
modest 2x-3x speedups on Cubature and Coupling force/Jacobian evaluation; Cholesky solves are not parallelized.

is the auto-block-diagonalized matrix with skew-symmetric
“ω×” 3x3 blocks. The quadratic velocity force is integrated
explicitly, and can be efficiently evaluated using two fast
sandwich transforms (§4), as the colors indicate.

Mass matrix blocks: The modal mass matrix, M is constant
and can be precomputed. However to evaluate the linear-
defo and angular-defo coupling forces, we require Mtq and
Mωq, respectively. First, Mtq = ∑k mkUk, where mk is the
mass of the kth node, is constant and can be trivially pre-
computed. Second, Mωq is the time-dependent rotation-
deformation tensor, defined as,

Mωq = ∑
k

mk ˜̄xkUk, (27)

where Uk are the rows of U corresponding to the kth vertex,
x̄k, and the tilde represents the skew-symmetric cross prod-
uct. This can be stated as:

Mωq = ∑
k

mk

(
p̃kUk +(Ũk ·Uk)⊗q

)
. (28)

The p̃kUk and ŨkUk terms can be precomputed and summed.
A mode-3 product with an<3×r×r tensor must be computed
at runtime, which takes O(r2) time.
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