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Abstract

We perform a detailed flop and bandwidth analysis of Jos Stam’s
Stable Fluidsalgorithm on the CPU, GPU, and Cell. In all three
cases, we find that the algorithm is bandwidth bound, with the cores
sitting idle up to 96% of the time. Knowing this, we propose two
modifications to accelerate the algorithm. First, a Mehrstellen dis-
cretization for the pressure solver which reduces the running time
of the solver by a third. Second, a static caching scheme that elim-
inates roughly 99% of the random lookups in the advection stage.
We observe a 2x speedup in the advection stage using this scheme.
Both modifications apply equally well to all three architectures.

1 Introduction

Jos Stam’sStable Fluidsfluid simulation algorithm [Stam 1999] has
enjoyed widespread popularity in the computer graphics commu-
nity since its introduction. Many extensions have been proposed,
most of which utilize some form of the core computational ker-
nels of the original Stam algorithm. One of the main advantages
of the algorithm is its speed, so interactive, real-time implementa-
tions are available for both the CPU and GPU ([Stam 2003][Harris
2004][Crane et al. 2007]). All three of these articles are primarily
intended as educational guides, and forgo an analysis of the com-
putational workload and bandwidth requirements of the algorithm.

However, if Stable Fluidsis to be used in a larger interactive ap-
plication, the computational and bandwidth requirements should be
known to as granular a resolution as possible, so that resources can
be budgeted accordingly. In this paper, we perform such an analysis
and find that, despite its numerical nature, the algorithm has a fairly
low arithmetic intensity (Eqns. 2 and 3) and is therefore bandwidth
bound (Section 3). Knowing this, a natural question to ask is what
computations can be performed while waiting for additional data to
arrive from memory. We examine higher orderMehrstellenmeth-
ods [Collatz 1960] as a possible use of this otherwise idle processor
time (Section 4) and find that it can be used to reduce the running
time of the linear solver by 17% in 2D and 33% in 3D.

Most of the stages ofStable Fluidsexhibit highly regular memory
access patterns. The exception is the semi-Lagrangian advection
step, which in the worst case can reduce to a large number of small
random accesses that are not ideal for SIMD hardware. However,
intuition derived from the underlying fluid physics suggests that in
the average case, these accesses should still be highly structured.
We design a simple static caching scheme that exploits this intu-
ition, and observe a 99% cache hit rate (Section 5).

2 Related Works

Many extensions have been proposed forStable Fluidssince its in-
troduction, perhaps the most significant of which is the addition of
free surfaces [Foster and Fedkiw 2001; Enright et al. 2002]. Since
the purpose of this paper is optimization and not extension, we refer
the interested reader to the previous works section of other recent
works for a more complete overview of these techniques [Kim et al.
2007; Klingner et al. 2006].

The viability of various solvers has been demonstrated on parallel
hardware, particularly the GPU. These solvers include Multigrid

[Goodnight et al. 2003], conjugate gradient [Bolz et al. 2003] and
FFT [Moreland and Angel ]. Several GPU-based fluid solvers have
also been proposed, including Lattice Boltzmann computation [Li
et al. 2003], and Smoothed Particle Hydrodynamics [Harada et al.
2007]. These were all “proof-of-concept” implementations how-
ever, so they forgo the type of detailed flop and bandwidth analy-
sis we undertake in favor of discussing higher-level parallelization
strategies.

For brevity, we will forgo summarizing theStable Fluidsalgorithm
here, and instead refer the uninitiated reader to Stam’s excellent
entry-level overview [Stam 2003].

3 Flop and Bandwidth Analysis

In this section, we will perform a flop and bandwidth analysis of
Stable Fluidsso that we can estimate an upper bound on the perfor-
mance we can expect from various hardware. We will track band-
width utilization as optimistically as possible by assuming an ideal
cache where the maximum data reuse is achieved. In practice, this
means that three rows of the computational grid fit in cache, so this
is not an unrealistically optimistic assumption.

In order to simplify the analysis, we will only track quantities to
the leading term. The computational grid is of sizeN2, so oper-
ations that areO(N) such as boundary clamping will be ignored.
Since the Geforce 8, Cell, and Intel SSE4 all support a combined
multiply-add instruction, we will count multiply-adds as a single
flop. This will simplify peak performance calculation later since we
can then divide our totals against chip clock speeds, and do not have
to rely on the somewhat more nebulous peak flop rates reported by
vendors. We will initially track bandwidth on a per-float basis, so
unless otherwise noted,N2 corresponds toN2 floats, not bytes. We
will specifically be analyzing Stam’s open source implementation
[Stam 2003], and paraphrasing that code where appropriate. Both
the GPU code [Harris 2004] and our Cell implementation are based
directly on this code.

3.1 Add Source

The first stage of the algorithm is anadd source function that
adds user-input forces to the velocity and density fields. The loop
takes the form:

for (int j = 0; i < rows; j++)
for (int i = 0; i < columns; i++)

x[i][j] += s * x0[i][j];

The code performs a multiply-add over the entireN2 grid of ve-
locity and the density fields. There is no opportunity for data reuse
here, so for every multiply-add, there are two loads (x[i][j] and
x0[i][j]) and a store (the new value ofx[i][j])). Taking
into account the 2 scalar components of the velocity and the single
density field, the we obtain that following sums:

• Flops:3N2

• Bandwidth:9N2 floats



3.2 Diffusion

Diffusion also occurs over the entire grid for the velocity and den-
sity fields. Stam codes up the inner loop of the diffusion stage as:

x[i][j] = x0[i][j] +
d * (x[i-1][j] + x[i+1][j]+

x[i][j-1] + x[i][j+1]));

This operation is performed on every grid cell forI number of it-
erations, and occurs for both of the velocity fields and the density
field. Therefore, after we calculate the flop and bandwidth usage
for the inner loop, we should multiply it by3IN2. There is one
store tox[i][j], and at least one load,x0[i][j]. There are
seemingly four other loads fromx on the right hand side, but these
are the immediate grid neighbors ofx[i][j]. In the ideal cache
case, most of these elements would already have been loaded into
cache from when thex[i][j-1] row was computed, except for
thex[i][j+1] element. So in the ideal cache case, only this sin-
gle element needs to be loaded.

The three adds on the right hand side of the fourx elements are un-
avoidable, so they add three flops. The multiplication byd and the
addition tox0[i][j] can be folded into a multiply-add, giving a
total of 4 flops. After multiplying everything by3IN2, we obtain
the new totals:

• Flops:(3 + 12I)N2

• Bandwidth:(9 + 9I)N2 floats

3.3 Projection

The projection stage proceeds in three stages: divergence computa-
tion, pressure computation, and the final projection. First the diver-
gence is computed over each grid cell thus:

div[i][j] = -c * (u[i+1][j] - u[i-1][j] +
v[i][j+1] - v[i][j-1]);

The store todiv[i][j] on the left hand side is unavoidable.
However, the loads fromu andv can be amortized in a manner
similar to loads fromx in the diffusion stage. If we assume that
the entire current row foru is loaded all at once into cache, this
translates to one load per element, not two. If we assume that the
j-1 andj rows of thev array are already in cache from compu-
tation over previous rows, we only need to load thej+1th row,
which again translates to one load per element. Thus, divergence
computation takes3N2 floats of bandwidth. The flop count is a
straightforward4N2, since nothing can be folded into a multiply-
add.

Next, pressure is computed by a linear solver. The function called
is exactly the same as the one from diffusion, which we know from
the previous subsection consumes4IN2 flops, and3IN2 floats of
bandwidth.

Last, the divergence-free component is projected out of the velocity
field. The inner loop of this projection is two lines:

u[i][j] += -f * (p[i+1][j)] - p[i-1][j)]);
v[i][j] += -f * (p[i][j+1)] - p[i][j-1)]);

The loads and stores tou andv are unavoidable, and the loads from
p are neighbor accesses that can again be amortized to a single load.
Each line consumes 2 flops: one subtraction betweenp elements,
and a multiply-add. So, the projection stage consumes4N2 flops
and5N2 floats of bandwidth. Pulling all three substages together,
we get a total for the projection stage:

• Flops:(4 + 4I + 4)N2 = (8 + 4I)N2

• Bandwidth:(3 + 3I + 5)N2 = (8 + 3I)N2 floats

The new total for the entire algorithm so far is now:

• Flops:(11 + 16I)N2

• Bandwidth:(17 + 12I)N2 floats

3.4 Advection

The final stage of the solver is advection. Advection occurs for both
the velocity and density fields, so we should again multiply our final
count by three. First, backtraces are computed for each grid cell:

x = i - dt0 * u[i][j];
y = j - dt0 * v[i][j];

While the final values here are stored tox andy, these are local
variables that are not written out to main memory, so they do not
require a store. Aside from this there are loads fromu andv with a
multiply-add each. So the backtrace consumesN2 flops and2N2

floats of bandwidth.

Next the grid indices of the backtrace are computed:

if (x < 0.5f) x = 0.5f;
if (x > columns + 0.5f) x = columns + 0.5f;
i0 = (int)x; i1 = i0 + 1;

if (y < 0.5f) y = 0.5f;
if (y > rows + 0.5f) y = rows + 0.5f;
j0 = (int)y; j1 = j0 + 1;

Theif statements clamp the indices to the boundaries of the grid,
and for simplicity we will ignore these terms. These lines can
be stated as ternaries (x = (x < 0.5f) ? 0.5f : x;) at
any rate, so they would not truly incur branch penalties.

The linesi0 = (int)x; andj0 = (int)y; use an(int)
cast to emulate a floor function. For simplicity we will count these
as a flop each, though the actual number of cycles burned will be
library-dependant. Two additional flops are expended computing
i1 andj1. Since these are all occurring on local variables, the
total count for this section is4N2 flops and zero bandwidth.

Next, interpolation weights for the lookup at computed:

s1 = x - i0; s0 = 1 - s1;
t1 = y - j0; t0 = 1 - t1;

Since these are again operations on local variables, we count as
4N2 flops and zero bandwidth.

Finally, we arrive at the interpolation:

d[i][j] = s0 * (t0 * d0[i0][j0] + t1 * d0[i0][j1]) +
s1 * (t0 * d0[i1][j0] + t1 * d0[i1][j1]);

The store tod is unavoidable. The loads from the arrayd0 are
arranged in a 2x2 neighborhood around the result of the backtrace.
Unfortunately, there is no predicting where the backtrace points to,
so we cannot amortize this memory access, and incur a cost of 4
loads. This issue will be revisited in section 5.

In its current nested form, there are 9 flops per interpolation. With
judicious use of multiply-adds, this can be reduced to 6 flops,
though the details of this are left as an exercise to the reader. The
total for the advection step is then:

• Flops:(1 + 4 + 4 + 6)N2 = 15N2

• Bandwidth:(2 + 5)N2 = 7N2 floats

Advection is applied three times for the velocity and density fields,
so when added to the total counts, we obtain the final count for the
whole algorithm:

• Flops:(56 + 16I)N2



• Bandwidth:(38 + 12I)N2 floats

This same counting method can be applied to 3D to obtain the fol-
lowing totals:

• Flops:(106 + 30I)N3

• Bandwidth:(71 + 15I)N3 floats

In the 3D case, we make the much more generous assumption
that threez slices of the 3D grid fit into cache. However, even
with this overly optimistic assumption, the algorithm is still firmly
bandwidth-bound.

3.5 Peak Performance Estimates

With final flop and bandwidth counts in hand, we can now obtain
rough estimates for the peak performance ofStable Fluidson var-
ious architectures. Note that these arepeakestimates, so we are
assuming peak memory bandwidth is achieved, and flops are fully
pipelined and dispatched at each clock cycle. For the CPU, we use
the specifications for a Xeon 5100 (“Woodcrest”). For the GPU,
we will use the specifications for a Geforce 8800 Ultra. For the
Cell we will use the specifications for an IBM QS20 blade. In both
3rd party CPU and GPU codes, the variableI is fixed to 20, so will
setI = 20 in all of our calculations as well.

A Intel Xeon 5100 runs two cores at 3 Ghz, and is capable of dis-
patching a 4-float SIMD instruction each clock cycle. Thus, we
characterize the peak Xeon performance is 24 GFlops/s. The pub-
lished peak memory bandwidth is 10.66 GB/s [Intel 2007].

The Nvidia Geforce 8800 Ultra runs 128 scalar cores at 1.5 Ghz.
Though some sources cite the peak flop performance as greater than
500 GFlops/s, this only applies to the special case where a multiply-
add and a multiply instruction are dual issued, and the multiply-add
is counted as two flops. Most of the multiplies inStable Fluids
have been folded into multiply-adds, so such dual issues will be
fairly rare for our purposes. Therefore, we characterize the peak
performance of the Geforce 8800 Ultra as 192 GFlop/s. The pub-
lished peak memory bandwidth to graphics memory is 103.7 GB/s
[Nvidia 2007a].

The IBM QS20 Cell blade runs two Cell chips at 3.2 Ghz. Each
Cell has 8 Synergistic Processing Elements (SPEs) which are each
capable of dispatching 4-float SIMD instructions every clock cycle.
While the Cell also includes a Power Processing Element (PPE), it
is usually not used for heavy computation, so its computational ca-
pability is not included in the total. Thus, we characterize the peak
performance of the QS20 blade at 204.8 GFlops/s. The published
peak memory bandwidth is 25.6 GB/s [IBM 2007].

The peak performance estimates in 2D and 3D are given in Table
1. For each architecture, we computed the peak compute-bound
performance by dividing the peak flops per second by the number
of flops necessary per timestep ofStable Fluids(ie the Flops total
from the previous subsection).

Equivalently, we computed the peak bandwidth-bound performance
by dividing the peak gigabytes per second by the number of bytes
per timestep (ie the Bandwidth total from the previous section times
four, to account for four bytes per float). In all cases, the bandwidth-
bound number was smaller, leading us to conclude thatStable Flu-
ids is bandwidth-bound on all three architectures.

According to our 2D estimates, the CPU computation runs 6.65x
faster than data arrives, projecting that the processor is idle more
than 85% of the time. On the GPU, computation is 5.47x faster,
and the cores are idle 82% of the time. On the Cell, computation is
23.66x faster, and the cores are idle 96% of the time.

According to our 3D estimates, the CPU computation runs 4.74x
faster than data arrives, is 79% idle, the GPU runs 3.89x faster than
data arrives, is 74% idle, and the Cell runs 16.8x faster than data
arrives, and is 94% idle.

These sizable idle times make sense if we look at the arithmetic
intensity [Harris 2005] ofStable Fluids. The arithmetic intensity is
defined as:

arithmetic intensity=
Total ops

Total words transferred
. (1)

Using the results of our previous analysis, if we assume the number
of iterationsI is large, we obtain the intensities:

lim
I→∞

(56 + 16I)N2

(38 + 12I)N2
=

4

3
(in 2D) (2)

lim
I→∞

(106 + 30I)N2

(71 + 15I)N2
= 2 (in 3D). (3)

Algorithms runs well on the Cell and GPU when their arithmetic
intensities are much greater than one. As both the 2D and 3D cases
are close to one, the available flops will be underutilized.

3.6 Performance Measurements

We measured the frame rate of CPU [Stam 2003], GPU [Harris
2004], and Cell implementations in order to validate our analysis.
The results can be seen in Table 2. Note that this is not intended as
a benchmark, since the codes are not necessarily optimized. Instead
it is intended as an experimental validation of our analysis. For ex-
ample, if the frame rates obtained exceeded our bandwidth-bound
estimates, it would suggest a flaw in our reasoning. However, as
expected, our predicted theoretical peaks were never exceeded, pro-
viding additional evidence that the algorithm is bandwidth-bound.

There are several points of note in the data. First, the original GPU
code works on 16 bit textures, whereas the CPU and Cell imple-
mentations use 32 bit floating point. We modified the code to use
32 bit textures, and then collected both 16 and 32 bit timings. Per-
haps due to the immaturity of the series 8 drivers, the 16 bit timings
on a Geforce 7900 were superior, so those timings are listed here
instead.

A trend to note on both the GPU and Cell is that as the resolution
is increased, the theoretical peak is more closely approached. This
is probably due to the larger coherent loads that can be performed,
which makes more effective use of the available bandwidth. This
issue will be revisited when designing a caching scheme in Section
5. Finally, we note the 740 Hz plateau observed on the Geforce
7900. This is probably because 16-bit texture copies smaller than
2562 are automatically rounded up to2562, so the bandwidth usage
remains the same even at lower resolutions. This limitation appears
to have been removed on the Geforce 8.

4 Mehrstellen Schemes

The analysis from the previous section, while highly idealized, pro-
vides significant evidence thatStable Fluidsis a bandwidth-bound
algorithm. Knowing this, a natural question to ask is if there are
any useful computations that can be added to the algorithm to fur-
ther occupy the cores while they are waiting for data to arrive from
main memory.

In this section, we investigate Mehrstellen schemes [Collatz 1960],
also known as compact schemes, as a candidate computation to fur-
ther occupy the cores. We choose Mehrstellen schemes because
there is some evidence [Gupta et al. 1997] that they can be used to



Resolution Intel Xeon 5100 (Woodcrest) Nvidia Geforce 8800 Ultra IBM Cell QS20
Compute-bound Bandwidth-bound Compute-bound Bandwidth-bound Compute-bound Bandwidth-bound

642 15583 Hz 2340 Hz 124670 Hz 22767 Hz 132980 Hz 5620 Hz
1282 3896 Hz 585 Hz 31167 Hz 5691 Hz 33245 Hz 1405 Hz
2562 974 Hz 146 Hz 7791 Hz 1423 Hz 8311 Hz 351 Hz
5122 243 Hz 36 Hz 1948 Hz 356 Hz 2078 Hz 87 Hz

10242 61 Hz 9 Hz 487 Hz 89 Hz 519 Hz 21 Hz
20482 15 Hz 2 Hz 122 Hz 22 Hz 130 Hz 5 Hz

643 130 Hz 27 Hz 1037 Hz 267 Hz 1106 Hz 66 Hz
1283 16 Hz 3 Hz 130 Hz 33 Hz 138 Hz 8 Hz
2563 2 Hz 0.4 Hz 16 Hz 4 Hz 17 Hz 1 Hz

Table 1: Estimated peak frames per second ofStable Fluidsover different resolutions for several architectures. Peak performance is estimated
for each architecture assuming the computation is compute-bound (ie infinitebandwidth is available) and bandwidth-bound (ie infinite flops
are available). The lesser of these two quantities is the more realistic estimate.In all cases, the algorithm is bandwidth-bound.

Resolution Intel Xeon 5100 (Woodcrest) Geforce 8800 Ultra (32 bit) Geforce 7900 (16 bit) IBM Cell QS20
Peak Measured Peak Measured Peak Measured Peak Measured

642 2340 Hz 74 Hz 22767 Hz 484 Hz 45534 Hz 740 Hz 5620 Hz 472 Hz
1282 585 Hz 26.7 Hz 5691 Hz 212 Hz 11382 Hz 745 Hz 1405 Hz 347 Hz
2562 146 Hz 6.13 Hz 1423 Hz 65 Hz 2846 Hz 744 Hz 351 Hz 164 Hz
5122 36 Hz 0.296 Hz 356 Hz 18 Hz 712 Hz 355 Hz 87 Hz 49 Hz

10242 9 Hz 0.038 Hz 89 Hz 5 Hz 178 Hz 99 Hz 21 Hz 18 Hz

Table 2: Theoretical peak frames per second (The bandwidth-bound values from Table 1) and actual measured frames per second. None of
the measured times exceed the predicted theoretical peaks, validating the finding that the algorithm is bandwidth bound. A GeForce 7900
was used for the 16 bit timings because the frame rates were uniformly superior to the 8800.

reduce the number of Jacobi iterations necessary to solve a system
of of equations. This would be a quite useful property, as it would
mean we could use a smaller value forI and reduce the overall
work of the entire algorithm.

4.1 A Fourth Order Discretization

Both the diffusion and projection stages ofStable Fluidssolve a
Poisson equation of the form:

∇
2
x = b. (4)

The Laplace operator∇2 is usually discretized to second order ac-
curacy, yielding a system of equations of the following form,

xi−1,j + xi,j−1 − 4xi,j + xi+1,j + xi,j+1 = bi,j , (5)

where the(i, j) indices denote coordinates on the computational
grid. This same equation is perhaps more easily visualized spatially
in its stencil form:

[

0 1 0
1 −4 1
0 1 0

]

x = b (6)

The discretization could be extended from second to fourth order
accuracy by adding more terms from the Taylor expansion in both
thei andj directions:









0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0









x = b (7)

An additional amount of computation has been introduced, but the
spatial extent of the stencil has expanded as well, adding complex-
ity to the memory access pattern. In order to preserve the ideal
caching assumption from our analysis, we would have to assume

[

1 4 1
4 −20 4
1 4 1

]

x =

[

0 1
2

0
1
2

4 1
2

0 1
2

0

]

b

Figure 1: The 2D Mehrstellen discretization.

[

0 1 0
1 2 1
0 1 0

] [

0 0 0
0 1

2
0

0 0 0

]

[

1 2 1
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1 2 1

]

x =

[
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2

0
1
2

3 1
2

0 1
2

0

]

b

[

0 1 0
1 2 1
0 1 0

] [

0 0 0
0 1

2
0

0 0 0

]

Figure 2: The 3D Mehrstellen discretization.

that five lines of the computational grid fit in cache instead of three,
ie that the cache is 66% larger. We would like to avoid making this
broader assumption.

The Mehrstellen scheme (roughly translated, “many points”) [Col-
latz 1960] is an alternate discretization that allows us to increase the
accuracy from second to fourth order without significantly increas-
ing the complexity of the memory access pattern. Instead of adding
more terms to the 1D Taylor expansions, the Mehrstellen scheme
subtracts off an additional viscosity term in a manner similar to the
Lax-Wendroff scheme [Lax and Wendroff 1960]. The Mehrstellen
discretizations for 2D and 3D are shown in Figures 1 and 2. The
spatial support of the stencil on the left hand side is the same as that
of the second order stencil. While the diagonal neighbors toxi,j

have been newly added to the computation, we have already been
assuming that rowsj − 1, j, andj + 1 are in cache, so we should
be able to access all of these diagonal values without adding any
additional bandwidth complexity.



The right hand side of the equation is now more complex, as it re-
quires us to compute a stencil over the values ofb as well. However,
note that we only have to do this once during the divergence com-
putation portion of the projection stage. The inner loop of the linear
solver, where the bulk of the computation and bandwidth consump-
tion takes place, is unaffected.

4.2 Spectral Radius of the Discretization

In a Jacobi solver, the error of the current solution is multiplied
by the spectral radius of the Jacobi matrix every iteration. We can
gauge the error reduction rate of the Mehrstellen discretization by
measuring the spectral radius of its resultant matrix. If the radius
is significantly smaller than that of the second order discretization,
then we should need less Jacobi iterations overall.

The spectral radiusρM of Jacobi iteration using the Mehrstellen
discretization can be obtained with the formula [Demmel 1997],

ρM = max
(

1 −
λM

20

)

(in 2D) (8)

ρM = max
(

1 −
λM

24

)

(in 3D). (9)

where λM is the eigenvalues of the matrices formed by the
Mehrstellen stencils in Figures 1 and 2. The equivalent radius for
the standard Jacobi matrix (ρS) is available analytically

ρS =

∣

∣

∣
cos

Nπ

N + 1

∣

∣

∣
, (10)

whereN is the size of one of the grid dimensions. Note thatρS is
the same in both 2D and 3D.

We computed the spectral radius of several small grid resolutions
in 2D and 3D using both Matlab and SLEPc [SLEPc 2007]. While
we would have liked to compute the radii of larger grids, the mem-
ory requirements of solving the eigenvalue problem (even using a
sparse, iterative method) quickly became prohibitive.

We compare the radii of Mehrstellen Jacobi (ρM ) with the radii of
standard Jacobi (ρS) in Table 3. The differences in radii may seem
negligible, but recall that the error is multiplied by this factor each
iteration, so the difference between the two numbers is amplified
exponentially with each application. We can compute the number
of iterations it would take Mehrstellen Jacobi to achieve an error re-
duction equivalent to 20 iterations of standard Jacobi by computing

Equivalent Mehrstellen iterations=
log

(

ρ20
S

)

log ρM

. (11)

In fact, the number of Mehrstellen iterations necessary is always a
constant fraction of the standard iterations:

Equivalent Mehrstellen iterations
Standard iterations

=
log ρS

log ρM

. (12)

As shown in Table 3, 2D Mehrstellen Jacobi consistently only needs
16 iterations to match the error reduction from 20 iterations of 2D
standard Jacobi. In general, 2D Mehrstellen Jacobi achieves results
equivalent to standard Jacobi using 83% of the iterations. In 3D,
only about 13 iterations are needed, and in general only 66% of the
iterations are needed.

The additional flops necessary to compute the Mehrstellen dis-
cretization should be entirely hidden by memory latency. Since
the Jacobi iterations comprise the bulk of the computation ofStable
Fluids, these reduced iterations translate almost directly to a 17%
speedup in 2D and a 33% speedup in 3D.

We prototyped a Mehrstellen version of 3DStable Fluidson the
CPU. Note that adding this modification to an unoptimized code
will not result in a speedup, since the additional computation will
not be hidden by the memory latency. However, after a reasonable
amount of tuning (loop unrolling, temporary variables to reduce
register dependencies), we observed the expected 33% speedup in
the pressure solve. Figure 5 compares the results of standard Jacobi
with Mehrstellen Jacobi. The results are virtually identical, show-
ing that Mehrstellen Jacobi does not compromise the visual fidelity
of the final result.

Resolution ρM ρS
log (ρS)20

log ρM

log ρS

log ρM

102 0.9517 0.9595 16.70 0.8351
202 0.9866 0.9888 16.69 0.8349
302 0.9938 0.9949 16.44 0.8221
402 0.9965 0.9971 16.56 0.8283
502 0.9977 0.9981 16.51 0.8259
602 0.9984 0.9987 16.24 0.8124
702 0.9988 0.9990 16.66 0.8332
802 0.9991 0.9992 16.67 0.8334
103 0.9401 0.9595 13.38 0.6690
203 0.9833 0.9595 13.38 0.6673

Table 3: Spectral radii of the fourth order accurate Mehrstellen
Jacobi matrix (ρM ) and the standard second order accurate Jacobi
matrix (ρS). The third column computes the number of Mehrstellen
iterations necessary to match the error reduction of 20 standard
iterations. The last column is the fraction of Mehrstellen iterations
necessary to match the error reduction of one standard iteration.

5 Advection Caching

In this section we design a caching scheme that eliminates most
of the small, random accesses to main memory exhibited by the
advection stage ofStable Fluids. Small, incoherent accesses are
best avoided on the GPU and Cell because they exhibit much larger
memory latencies than large, contiguous accesses [Kistler et al.
2006] [Nvidia 2007b]. On the Cell for example, 1 KB accesses
achieve a bandwidth of less than 10 GB/s, which is less than half
of the peak bandwidth of 25.6 GB/s [Kistler et al. 2006]. Our
own numerical experiments on the Nvidia Geforce 8800 Ultra have
shown that similar bandwidth penalties are incurred for small trans-
fer sizes.

5.1 Physical Characteristics

In the general case, designing a caching scheme that works well for
an arbitrary vector field is difficult, since a vector field can always
be constructed that produces the worst case access pattern. The
vector fields producedStable Fluidsare far from arbitrary however,
because they have the characteristics of incompressible flow. There
are additional qualitative reasons to expect that the majority of the
vector field exhibits high spatial locality. WhileStable Fluidssup-
ports arbitrarily large timesteps, in practice the timestep size will
never exceed1

24
seconds, since the speed of film is 24 Hz (theater

projectors run at 48 Hz, but show each frame twice). Games and
TV run at higher rates, usually at least 30 Hz, which results in even
smaller step sizes. Additionally, the projection and diffusion op-
erators smear out the velocity field, so even if large velocities are
introduced into the simulation, they quickly dissipate into smaller
velocities in both space and time. So, the majority of the vectors
in the velocity field should have small magnitudes which are then
further reduced by a factor of at least 24 during the advection step.



Resolution With Cache Without Cache
642 15.91 GB/s 8.01 GB/s
1282 16.45 GB/s 7.98 GB/s
2562 16.54 GB/s 7.98 GB/s
5122 16.5 GB/s 8.18 GB/s
10242 15.54 GB/s 8.16 GB/s

Table 4: Bandwidth achieved by the advection stage on the Cell
with and without the static cache.

Thus, it is reasonable to assume that most of the advection rays
terminate in regions that are very close to their origins.

5.2 A Static Caching Scheme

In order to test this hypothesis, we employed a simple static caching
scheme. Recall the advection interpolation step:

d[i][j] = s0 * (t0 * d0[i0][j0] + t1 * d0[i0][j1]) +
s1 * (t0 * d0[i1][j0] + t1 * d0[i1][j1]);

Prior to beginning computation on rowj of arrayd, we prefetched
the rowsj − 1, j, andj + 1 from thed0 array. While iterating
over the elements of rowj, we first checked to see if the semi-
Lagrangian ray terminated in a 3x3 neighborhood of the origin. If
so, we made use of the prefetchedd0 values for the interpolation.
Else, we performed the more expensive fetch from main memory.
We implemented this caching scheme on the Cell, where DMAs
to main memory can be controlled in a highly granular manner.
An equivalent scheme could be implemented in CUDA, with the
cores performing a parallel prefetch ofd0 to shared memory prior
to beginning a new row.

Two test scenes were constructed to measure the cache hit rate of
the static scheme. In the 2D scene, eight jets of velocity and den-
sity were injected into a5122 simulation at different points and in
different directions in order induce a wide variety of directions into
the velocity field (Table 4 top). In the 3D scene, a buoyant pocket
of smoke is continually inserted into a643 simulation, much like in
[Fedkiw et al. 2001]. In both cases, the diffusion and viscosity con-
stants were set to zero so that the velocities maintained their larger
magnitudes for as long as possible.

The cache miss rates can be seen in Figure 3. For the 2D scene,
the miss rate never exceeds 0.65%, and actually appears to be de-
creasing slightly as time progresses. In the 3D scene, the miss rate
never exceeds 0.44%. In Table 4, we list the effective bandwidths
achieved by the advection stage on the Cell for the 2D scene. We
emphasize that we are not actually eliminating any memory ac-
cesses from the advection stage. We are instead hypothesizing that
most of the memory accesses can be coalesced into a large, coherent
access, and that a simple caching scheme can reap the bandwidth
benefits of this kind of access. Table 4 validates this hypothesis, as
we achieve roughly twice the bandwidth, which translates to a 2x
speedup of the advection stage.

6 Conclusions and Future Work

Through a detailed flop and bandwidth analysis, we have come
to the conclusion thatStable Fluidsis a bandwidth-bound algo-
rithm on current CPU, GPU and Cell architectures. Performance
comparisons of 16 bit and 32 bit GPU codes lend further support
to this conclusion. Using this knowledge, we proposed the use a
Mehrstellen discretization, and found that not only will it further
occupy the idle cores, but it will allow the linear solver to terminate
17% earlier in 2D, and 33% earlier in 3D. We also designed a static
caching scheme for the advection stage that makes more effective
use of the available memory bandwidth. We measured a 2x speedup
in the advection stage using this scheme on the Cell.
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Figure 3: Static advection cache misses in two test scenes.Top:
Misses in the 2D eight jets scene over 686 timesteps. The maxi-
mum percentage of misses was 0.65% and the mean miss rate after
the knee (300 timesteps) was 0.61%.Bottom: Misses in the 3D
scene over 1518 timesteps. The maximum percentage of misses was
0.44%.

Figure 4: Two frames from the 2D caching test scene.

There have been numerous extensions proposed for theStable Flu-
idsalgorithm, the most significant of which is perhaps the handling
of free surfaces [Foster and Fedkiw 2001]. The most obvious future
work is to carry out a similar hardware-aware analysis for each of
these extensions to see if similar opportunities for optimizations can
be identified. Free surfaces use fast marching and level set methods,
which are more challenging to map to parallel hardware in general,
so the analysis becomes correspondingly more challenging as well.

Our analysis of Mehrstellen discretizations only applies to relax-
ation solvers such as Jacobi, Gauss-Seidel, SSOR, and some ver-
sions of Multigrid. It does not apply to preconditioned conjugate
gradient (PCG), which is arguably the more popular solver for non-
realtime applications ofStable Fluids. The convergence rates of
PCG are less well understood however, so a similar analysis would
be challenging. As relaxation solvers are used in other real-time
graphics applications, such the LCP solvers in rigid body simula-
tion [Smith 2007], it would be interesting to see if the results we
obtained here could be applied to these domains as well.
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Figure 5: 3D Smoke rising with standard Jacobi (left) and
Mehrstellen Jacobi (right). The results are virtually identical, but
the pressure solve runs 33%.


