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Abstract
We present a novel algorithm that simulates ice formation. Motivated by the physical process of ice growth,
we develop a novel hybrid algorithm by synthesizing three techniques: diffusion limited aggregation, phase field
methods, and stable fluid solvers. Each technique maps to one of the three stages of solidification. The visual
realism of the resulting algorithm appears to surpass that of each technique alone, particularly in animations of
freezing. In addition, we present a faster, simplified phase field method, as well as a unified parameterization that
enables artistic manipulation of the simulation. We illustrate the results on arbitrary 3D surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling

1. Introduction

Ice, in its many forms, is an integral part of any wintery
scene and directly influences the global climate system. Vi-
sual simulation and animation of ice formation is becom-
ing increasingly popular in the visual effects industry, with
computer-generated ice animations playing a prominent role
in at least three recent films: The Day After Tomorrow, Harry
Potter and the Prisoner of Azkaban, and Van Helsing. The
most commonly used techniques usually involve some clever
combination of particle systems and 2D compositing. While
these techniques can be effective, they are difficult to control
and the results can vary widely.

Very little investigation has been conducted on the mod-
eling of ice formation in computer graphics. Most research
has focused on modeling and simulating dynamic fluid me-
dia such as water and smoke. Relatively few have dealt with
complex phase transition and solidification processes. Fur-
thermore, for certain forms of ice, such as icicles, an ex-
act mathematical model describing the physical process does
not yet exist. By contrast, in the computational physics and
crystal growth communities, an enormous amount of effort
has been devoted to the accurate simulation of solidification
processes, as they play an important role in the design and
evaluation of composite materials. distinct from that of gen-
erating visually plausible simulations in computer graphics.

Main Contributions: In this paper, we present a novel, hy-
brid algorithm that synthesizes three simulation techniques:

diffusion limited aggregation, phase field methods, and sta-
ble fluid solvers. Our algorithm is motivated by the thermo-
dynamics of crystalization, which is commonly broken down
into three stages. Each of the above algorithms can accu-
rately simulate only one stage of the crystalization process,
but by combining all three techniques, we can accurately
simulate the entire process. Additionally, we present a sim-
plification of one of the techniques, the phase field method,
that poses the problem as an advection-reaction-diffusion
equation. We then present an efficient solution method for
this simplified formulation that accelerates the phase field
method by more than a factor of two. Finally, we show how
the simulation can be parameterized to provide intuitive user
control. The main results are as follows:

• A physically-based modeling approach that is inspired by
the thermodynamics of ice formation;

• A novel discrete-continuous method that combines three
techniques: diffusion limited aggregation, phase field
methods, and stable fluid solvers;

• A faster, simplified formulation of the phase field method;
• A unified parameterization of simulations that enables

simple artistic control of visual results.

We demonstrate the flexibility of our algorithm by simu-
lating over arbitrary 3D surfaces of widely varying physical
scale.

Organization: The rest of the paper is organized as fol-
lows. A brief survey of related work is presented in Sec. 2.
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In Sec. 3, we summarize the physics of freezing to moti-
vate our algorithm. The algorithm, along with suggested user
controls, is described in Sec. 4. We present a simplified for-
mulation of the phase field method and an efficient solution
technique in Sec. 5. In Sec. 6, we demonstrate the results of
our simulations. We discuss the limitations and generaliza-
tion of our hybrid algorithm in Sec. 7. Finally, we conclude
with possible directions for future work in Sec. 8.

2. Previous Work

One of the earliest papers in computer graphics on any form
of ice growth is [KG93], which presented a simple approach
for icicle formation. Fearing [Fea00] presented a method for
simulating fallen snow but this method dealt predominantly
with the drift and deposition of snow, not the process of so-
lidification. Recently, Kim and Lin [KL03] presented an ap-
proach for modeling solidification on 2D surfaces using the
phase field method.

Phase fields methods are well known in computational
physics and have been studied in the crystal growth com-
munity for almost 20 years. They were first published in the
context of solidification [Lan86], and successfully used to
simulate snowflake-like growth for the first time in [Kob93].
Notably, level set methods have achieved recent success in
simulating similar structures [GFCO03], and can currently
achieve higher numerical accuracy. However, given the sim-
plicity of implementation and the nearly identical visual re-
sults, we prefer phase field methods in this work.

Diffusion limited aggregation (DLA) is also a popular al-
gorithm for crystal growth. DLA was first developed to sim-
ulate the aggregation of metal particles [WS81], but the algo-
rithm generalizes to the modeling of many other natural phe-
nomena, including snowflake growth [FPV87, NS87]. DLA
has also been used to model liquid surface tension, fracture
patterns, lightning formation, and biological growth patterns
[Vic92]. In the graphics literature, Sumner [Sum01] has suc-
cessfully used the DLA algorithm to model lichen growth.
Dorsey and Hanrahan [DH96] used a similar algorithm, bal-
listic deposition, for modeling metallic patinas.

3. The Process of Solidification

Our hybrid algorithm is motivated by the process of solidifi-
cation. We will first summarize the three stages of freezing,
and then describe how each individual stage can be simu-
lated. In the next section, we will show how these three sim-
ulation techniques can be integrated to account for the entire
process.

3.1. Three Stages of Freezing

Given a free water molecule and an ice crystal, the process
of solidification proceeds in the three stages illustrated in
Figure 1:

• First, the water molecule is transported to the surface of
the crystal. This is called the chemical diffusion stage.

• Second, in order for the water molecule to be considered
frozen, it must form two hydrogen bonds with the crystal.
The molecule walks along the surface of the crystal until
it finds a kink site where it can form these bonds. This is
called the surface kinetics stage.

• Finally, when the molecule forms its hydrogen bonds, it
releases a small amount of heat that then diffuses through
space. This is called the heat conduction stage.

If all three of these processes occur at perfectly balanced
rates, then we encounter the ideal growth case. However,
ideal growth is rarely found in nature, and the process is usu-
ally limited by the slowest of the three stages.

When the first stage is slowest, diffusion limited growth
occurs. An example of this type of growth would be a crys-
tal surrounded by water vapor. If a water molecule happens
to collide with the crystal, then it can find a kink site and
release heat. However, these collisions are a relatively rare
occurrence, so they become the limiting factor.

When the second stage is slowest, kinetics limited growth
occurs. This type of growth can occur when a crystal is sub-
merged in an undercooled liquid. Recall from chemistry that
an undercooled liquid is one whose temperature has slowly
been lowered below its freezing temperature. Since the crys-
tal is already surrounded by water molecules, the chemical
diffusion rate is no longer a factor. Instead, the limiting fac-
tor is the speed at which water molecules can find kink sites
on the surface.

When the third stage is slowest, the crystal growth lit-
erature also refers to the case as kinetics limited growth.
For clarity, we will refer to it here as heat limited growth.
If the crystal is surrounded by a fluid flow, then the flow
of heat around the crystal is altered. This phenomenon in-
fluences the growth of the crystal because the number of
kink sites available on a crystal surface is proportional to
the magnitude of the local heat gradient. Consequently, for
sections of the crystal facing into the flow, heat is pushed
back against the crystal, creating a sharp heat gradient that
promotes growth. Conversely, for sections facing away from
the flow, heat is carried away from the surface, smearing out
the gradient and suppressing growth.

For further details on the stages of solidification, the
reader is referred to [Sai96].

3.2. Diffusion Limited Growth

The diffusion limited growth case can be modeled by diffu-
sion limited aggregation (DLA). The basic DLA algorithm
was first described by Witten and Sander [WS81], and is
simple enough to be described informally. Given a discrete
2D grid, a single particle representing the crystal (or ‘aggre-
gate’) is placed in the center. A particle called the ‘walker’
is then placed at a random location along the grid perimeter.
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(a) (b) (c)

Figure 1: A microscopic view of the three stages of freezing. (a) In chemical diffusion a water molecule arrives at the crystal
(b) During surface kinetics, the molecule walks the surface until it finds a kink site where it can form 2 bonds (c) In heat
conduction it forms hydrogen bonds with the crystal and releases heat.

The particle walks randomly along adjacent grid cells until
it either is adjacent to the crystal or falls off the grid. If it
is adjacent to the crystal, it sticks and becomes part of the
crystal. A new walker is then inserted at the perimeter and
the random walk is repeated. The process repeats until the
aggregate achieves the size the user desires. If we think of
the aggregate as an ice crystal and the walker as a particle of
water, then the correspondence to the diffusion limited case
is straightforward.

The [WS81] algorithm is referred to as an ‘on-lattice’ al-
gorithm because it takes place on a 2D grid. However, on-
lattice algorithms are susceptible to grid anisotropy artifacts.
As shown in Figure 2(a), as the aggregate grows larger, four
distinct arms emerge. These arms have no physical justifi-
cation, and are purely an artifact of the grid representation.
‘Off-lattice’ algorithms have been developed [Mea83] that
do not suffer from this artifact, but they can be more expen-
sive to compute. We use on-lattice DLA because it simplifies
the integration with the phase field methods and the fluid
solver, which also take place on grids.

However, this selection means that our simulation will
suffer from grid anisotropy. Fortunately, it is possible to
make the artifacts correspond to the characteristics of wa-
ter. By simulating on a hexagonal grid instead of a square
grid, we can obtain the 6 distinct arms of a snowflake (Figure
2(b)). This resemblance is no coincidence, because the 2 hy-
drogen bonds necessary for ice formation induces a hexag-
onal lattice. By simulating on a hexagonal grid, we are mir-
roring this aspect of ice.

3.3. Kinetics Limited Growth

The phase field model of solidification [Kob93] simulates
precisely the kinetics limited case: growth of a crystal in an
undercooled melt. This situation may seem rare, but in fact it
frequently occurs. In most natural settings, as water reaches
its freezing temperature, the molecules already located near
a crystal will freeze virtually instantly. However, it will take
some time for the ice front to expand and engulf all the wa-
ter molecules. During this time, the unfrozen molecules will
cool further, becoming undercooled.

(a) (b)
Figure 2: Grid anisotropy in diffusion limited aggregation.
(a) The four arms of a square grid are non-physical. (b) The
six arms of a hexagonal grid mirror the structure of H2O.

The phase field model simulates this process by tracking
two quantities over a grid: temperature, T , and phase, p. This
model easily generalizes to three dimensions. The variable T
tracks the amount of heat within the grid cell. The variable
p tracks the phase of the grid cell, and is defined over the
continuous range [0,1]. The value 0 represents water, and 1
represents ice. We usually think of phase as a binary quan-
tity, so this continuum of phase values can be counterintu-
itive. A continuum of states that is crucial to the solidifica-
tion process exists on the microscopic level, but computing
their values directly would result in an intractably stiff set of
equations. Phase fields alleviate some of the numerical prob-
lems by magnifying the continuum, such that the stiffness is
resolvable on the simulation grid.

The phase field equations are a pair of coupled partial dif-
ferential equations (PDEs):

τ ∂p
∂t

=∇· (ε(θ)2
∇p)−

∂
∂x

(

ε(θ)
∂ε(θ)

∂θ
∂p
∂y

)

+
∂
∂y

(

ε(θ)
∂ε(θ)

∂θ
∂p
∂x

)

+n(p,T )

(1)

∂T
∂t

= ∇
2T +K

∂p
∂t

(2)
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where:
ε(θ) = ε(1+δcos( j(θ0 −θ)) (3)

n(p,T ) = p(1− p)

(

p−
1
2

+m(T )

)

(4)

m(T ) =
α
π

arctan(γ(Te −T ))) (5)

The symbols τ, a, K, ε, δ, θ0, γ, α, and Te are constants.
Unless otherwise noted, the values we used are listed in Ta-
ble 1. These values in the table are taken from [Kob93].
The quantities ∂p

∂t and ∂T
∂t are computed by replacing the

derivatives with finite differences, and the result is then used
to step the simulation using forward Euler integration. Be-
cause the equations are still quite stiff, our timestep is lim-
ited to 0.0002. We will present a simplification that allows a
larger timestep in Section 5. For a more in-depth discussion
of phase field methods, the interested reader is referred to
[KL03, Kob93].

α γ Te j θ0 ε τ δ K

0.9 10.0 1.0 6.0 π
2 0.01 0.0003 0.1 1.5

Table 1: Simulation constants Top: Equation symbols; Bot-
tom: Settings used. For a physical explanation of the param-
eters, see [Kob93].

3.4. Heat Limited Growth

As described in [AMW00], the flow of heat around a crystal
can significantly influence its final shape. We will show how
to produce the same visual characteristics using the fluid
solver described in [Sta99] and [FSJ01]. Such simulators are
commonly available and provides a simple, practical alter-
native for modeling heat limited growth.

4. A Hybrid Algorithm for Ice Growth

In each of the growth types described in section 3, a simpli-
fying assumption is made. Diffusion limited growth assumes
the presence of water vapor, and the absence of liquid water
and fluid flow. Kinetics limited growth assumes the presence
of liquid water, and the absence of vapor and fluid flow. Heat
limited growth assumes the presence of liquid and fluid flow,
but the absence of vapor. These simplifications are apparent
in the results from each algorithm. DLA forms a branch-
ing pattern that can look more like fungus than ice (Figure
6(a)), and phase field methods produce branches that look
too smooth and thick (Figure 6(b)). Adding fluids to either
alone do not alleviate these problems.

It seems that an environment containing all three factors
(vapor, liquid, and fluid flow) would be the most common
case. If ice is forming on a window, there most likely exists
water vapor in the air, moisture on the window, and at least a
small amount of wind. To properly simulate ice growth, we
should account for all of these factors.

We have developed a novel, hybrid algorithm that takes
into account all three factors by coupling the simulation
techniques for each of the three growth types. We will
present the algorithm in three parts: the coupling of phase
field methods and DLA, then phase fields and fluid flow, and
finally DLA and fluid flow.

4.1. Phase Fields and DLA

Three new steps are necessary to integrate phase field meth-
ods with DLA.
• Placement of the walker onto the p (phase) field;
• Release of heat when a walker sticks;
• Introduction of a humidity term.

In the original DLA algorithm, the crystal can only grow
when a walker sticks to the crystal. However, in our hybrid
setting, the phase field simulation may have also altered the
position of the crystal. So, we perform our random walks
on the grid for the p variable in the phase field simulation. If
the walker is adjacent to a cell with p > 0.5, then the particle
sticks, and we set the value of that cell to p = 1.

When a walker sticks, it forms hydrogen bonds with
the crystal, releasing a small amount of heat. The freezing
walker will release less heat than if the liquid has frozen, be-
cause walker itself is already frozen, and the bonds will only
form along the seam between itself and the crystal. We must
modify Equation 2 to account for this heat release:

∂T
∂t

= ∇
2T +K

(

∂p
∂t

)

PF
+L

(

∂p
∂t

)

DLA
(6)

where
(

∂p
∂t

)

PF
is the rate of change in p due to the phase

field simulation, and
(

∂p
∂t

)

DLA
the rate of change due to

DLA. We use a setting of L = K
6 because bonds have only

formed along one face of the hexagonal grid cell.

Lastly, we must introduce a humidity term, H, because
the original DLA simulation does not contain any notion of
time. At every timestep, H walkers are released into the sim-
ulation domain. Increasing H corresponds to increasing the
humidity of the environment. Note that H represents the to-
tal number of walkers released, not just those that stick to
the crystal. The correct setting for H is more of an aesthetic
question than a physical question, and is discussed further in
4.4.

If DLA is performed on a hexagonal grid, then it is pos-
sible to simulate phase fields on a square grid, and inter-
polate between the two representations. However, this ap-
proach will introduce smoothing artifacts into the simula-
tion. This problem can be overcome by running phase fields
on a hexagonal grid as well. The only modification necessary
is to switch from square finite difference stencils to hexag-
onal stencils. The weights on the hexagonal stencil can be
computed by taking the Taylor expansion and solving using

c© The Eurographics Association 2004.



Kim, Henson and Lin / A Hybrid Algorithm for Modeling Ice Formation

0 00

1
2√3 δy 

1
2√3 δy 

-1
2√3 δy 

-1
2√3 δy 

    δx 

δy 

(a)

-18
4 δxδy 

3
4 δxδy 

3
4 δxδy 

3
4 δxδy 

3
4 δxδy 

3
4 δxδy 

3
4 δxδy 

    δx 

δy 

(b)

Figure 3: Finite difference stencils for a hexagonal grid. (a)
y derivative (b) Laplacian. Stencil for x derivative remains
the same.

the method of undetermined coefficients [Atk89]. The sten-
cils are shown in Figure 3.

Integrating phase field methods and DLA may seem in-
correct at first, because if liquid water is present, then kinet-
ics limited growth should dominate. But, if we observe that
kinetics limited growth and diffusion limited growth can co-
exist at different scales, this is no longer true. Because the
vapor particles are much larger than the liquid molecules, the
freezing vapor front will expand much faster than the freez-
ing liquid front. Once the vapor has filled the domain with
branches, the liquid will take over and freeze everything into
a solid plate.

4.2. Phase Fields and Fluid Flow

Anderson, et al. [AMW00] derived a model that couples
the phase field equations and the Navier-Stokes equations.
Rather than using this more complex formulation, we have
found the major features of solidification in a flow can be
captured by simply advecting the heat field with the “Stable
Fluid” solver described in [Sta99].

[AMW00] does not present any simulation results visu-
ally, so we will instead compare our results to those of
[ART02]. Since this paper does not use a phase field model,
exactly matching simulation parameters for comparison is
difficult. From this paper, we observe the following features
of growth in a flow:
• Fast growth in regions facing upstream (into flow)
• Stunted growth in regions facing downstream (away from

flow)
• Asymmetric growth in regions perpendicular to the flow.

We can reproduce all of these features using the coupling of
phase fields methods and a “Stable Fluid” solver.

We treat the crystal as an internal obstacle in the fluid
solver. After each pair of phase field and DLA steps, we set
any grid cell with p > 0.5 to an obstacle in the fluid domain.
We then set the velocities in the obstacle interior to zero, and
along the obstacle boundary to the no-slip condition. The ve-
locity field u is then advanced as described by [Sta99]. For

(a) (b)

Figure 4: A 4-armed dendrite growing in a flow. Left wall is
set to inflow, and other walls are set to outflow. (a) Results
from [ART02] (b) Results from our method.

a lucid description of implementing internal obstacles and
various boundary conditions, please refer to [GDN97].

The resultant velocity field u can be used to advance a
density field. In this case, the density field is the temperature
field T from the phase field simulation. Note that if the fluid
solver implements a diffusion constant for the density field,
it must be set to zero. Observe that the PDE for a temperature
field T (Eqn. 2) and the PDE for a moving density field ρ
(Eqn. 7) both contain the diffusion operator ∇2.

∂ρ
∂t

= −(u ·∇)ρ+κ∇2ρ (7)

If the diffusion constant κ in Eqn. 7 is nonzero, then the tem-
perature field T will incorrectly be diffused twice; once by
Eqn. 2 and once by Eqn. 7. If κ is set to zero in Eqn. 7, the
correct result is obtained.

In the examples of [ART02], the crystals are grown from
a dot of ice in the center. The left wall is set to an inflow
condition, and the other walls are set to an outflow condi-
tion. The equivalent of the j parameter from the phase field
equations is set to 4, meaning that four axis-aligned dendrite
arms are desired. The results of their simulation are shown in
Figure 4(a), and the three growth features mentioned earlier
are clearly visible. The results of our simulation, with simi-
lar settings, are shown in Figure 4(b). Although the features
do not align exactly, our method clearly produces the same
growth features.

4.3. DLA and Fluid Flow

The integration of DLA and simplified fluid flow has been
studied by the physics community in the past. In particu-
lar, [NS91] models the fluid as a uniform velocity field, and
[TDcT92] use Lattice Boltzmann-type cellular automata.
However, we require no such simplification. Since the DLA
and phase field simulations share the p field, integrating
phase field methods and with the fluid solver automatically
integrates DLA with the full set of Navier-Stokes equations.
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Additionally, the fluid velocities should influence the
walker. When the walker is stepped, a random direction is
chosen as before, but the fluid velocity of the current grid
cell is also added to that direction. It seems as though the
velocity should be multiplied by a timestep, but it is unclear
what this timestep should be because DLA lacks any notion
of time. Using the timestep of the overall simulation dt is
not entirely correct, because the timespan simulated by the
particle is then dt ∗ (#o f steps), not just dt. However, scaling
by this value produced acceptable results, so it was used in
our current implementation.

4.4. User Control

Kim and Lin [KL03] suggested a seed crystal map and melt-
ing temperature map as controls for the phase field simula-
tion. Our hybrid algorithm can be effectively controlled us-
ing these same parameters, as well as an additional ‘tunable
morphology’ control, and the humidity term H from section
4.1.

The melting temperature map is a user-specified field
whose values range over [0,1]. A value of 1 indicates fully
promoted growth, 0 indicates fully suppressed growth, and
intermediate values represent varying degrees of desired
growth. The melting temperature map can double as a se-
mantically identical ‘sticking probability’ map for DLA.
When the walker is adjacent to the crystal, a random number
over [0,1] is chosen. If the number is less than a ‘sticking
probability’ [Vic84], then the walker freezes; otherwise, it
continues walking. In basic DLA, the ‘sticking probability’
is essentially set to 1 everywhere.

Additionally, the user may alternately desire different
growth types from the crystal morphology, from the random,
lichen-like growth in Figure 5, to the regular, snowflake-like
growth in Figure 2(b). These effects can be controlled using
the multiple-hit averaging technique of [NS87]. In order for
a grid cell to freeze, n walkers must stick at that cell. In basic
DLA, n = 1, but by increasing n, increasingly regular growth
patterns are obtained.

The humidity control described in 4.1 allows a way of
controlling how ‘branchy’ or ‘frosty’ the results appear. At
very high humidity, we obtain the extreme branchiness of
the DLA algorithm, and at very low humidity, the smooth
features of the phase field algorithm dominate. Usually we
would like the leading edge of the ice front to be very
branchy, with a rapidly thickening front trailing not too far
behind.

5. Faster Phase Field Methods

The performance of our hybrid algorithm is limited by
the timestep restriction of the phase field methods, so a
method for increasing the timestep is desired. [KL03] reports
that midpoint and RK4 are unable to increase the timestep
enough to justify their expense, so techniques other than lin-
ear multistep methods are required.

Figure 5: Isotropic lichen-like growth.

Recall the PDE for phase:

τ ∂p
∂t

= ∇· (ε(θ)2
∇p)−

∂
∂x

(

ε(θ)
∂ε(θ)

∂θ
∂p
∂y

)

+
∂
∂y

(

ε(θ)
∂ε(θ)

∂θ
∂p
∂x

)

+n(p,T )

We first observe that the partial derivative terms can be
thought of as the sum of the entries in a variable coefficient
Hessian matrix. Equations 1 and 2 resemble the reaction-
diffusion equations described in [Tur91, WK91]. However,
only the diagonal entries of the Hessian are used in [WK91].
To see if such a simplification can be applied here, we ran
experiments with a forward Euler implementation, omitting
the −

∂
∂x

(

ε ∂ε
∂θ

∂p
∂y

)

+ ∂
∂y

(

ε ∂ε
∂θ

∂p
∂x

)

term. Although the results
are noticeably smoother, the branching features remained the
same. Informally we can think of this as truncating higher
order terms from the non-linear diffusion operator. A more
formal analysis as to the physical significance of this trunca-
tion is complicated and introduces no additional insight, and
thus is omitted here.

A simplified phase PDE can now be written:

τ ∂p
∂t

= ∇· (ε(θ)2
∇p)+n(p,T )

If we apply the identity ∇· (α2
∇p) = ∇α2

·∇p + α2
∇

2 p,
this becomes:

τ ∂p
∂t

= ∇ε(θ)2
·∇p+ ε(θ)2

∇
2 p+n(p,T ). (8)

This is a non-linear advection-reaction-diffusion equation. If
we now apply a second order accurate temporal scheme, then
we will be able to take larger timesteps. For compactness
of notation, we will abbreviate ε(θ)2 to α, and denote the
value of p at grid coordinate (i, j) and timestep n as pn

i, j .
The schemes will only be shown in the x direction, with the
y direction following by symmetry.

5.1. Second Order Accuracy In Time

The Lax-Wendroff scheme is applied to the advection term
∇ε(θ)2

·∇p. We replace the old scheme:

∂α
∂x

∂p
∂x

≈
αi−1, j −αi+1, j

∆x

pn
i−1, j − pn

i+1, j

∆x
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with the Lax-Wendroff scheme:

∂α
∂x

∂p
∂x

≈
αi−1, j −αi+1, j

∆x

pn
i−1, j − pn

i+1, j

∆x
−

(

αi−1, j −αi+1, j

∆x

)2 pn
i−1, j −2pn

i, j + pn
i+1, j

(∆x)2

Next, the Crank-Nicolson discretization is applied to the
diffusion term, ε(θ)2

∇
2 p. We replace the old method:

α2 ∂2 p
∂x2 ≈ α2

( pn
i−1, j −2pn

i, j + pn
i+1, j

(∆x)2

)

with the Crank-Nicolson scheme:

α2

2

(

pn
i−1, j −2pn

i, j + pn
i+1, j

(∆x)2 +
pn+1

i−1, j −2pn+1
i, j + pn+1

i+1, j

(∆x)2

)

Since this discretization is implicit, a sparse linear system
must now be solved.

In practice, Red-Black Gauss-Seidel iteration is the best
solution method. The system converges to working preci-
sion in less than 10 iterations, so a multigrid solver will not
likely give better performance. Conjugate gradient cannot be
applied because the system is not symmetric, and finding an
optimal relaxation value for SOR is difficult because the ma-
trix eigenvalues change every iteration. For more informa-
tion on iterative solution methods for linear systems, please
see [Dem97].

5.2. Performance Analysis

Using this second-order method, the timestep can be quadru-
pled to 0.0008. If the linear system is solved to working
precision, then no significant performance gain is observed.
However, experiments have shown that solving the system to
within 5×10−3, gives results that are visually indistinguish-
able from the precise solution, and achieves up to a 2.27x
speedup. The results are summarized in Table 2.

Resolution Euler WP RP Speedup

128x128 9 sec 7 sec 4 sec 2.25x
256x256 84 sec 79 sec 37 sec 2.27x
512x512 801 sec 871 sec 392 sec 2.04x

1024 x 1024 6864 sec 8509 sec 3443 sec 1.99x

Table 2: Phase field performance over different resolutions.
Euler timestep is 0.0002, second order timestep is 0.0008.
In WP column, the system is solved to working precision
(10−8). In RP column, the system is solved to reduced pre-
cision (5×10−3). The last column is the speedup of RP over
Euler.

6. Implementation and Results

We implement one step of the hybrid algorithm as:
for 1:H
insert walker onto p field
simulate walker on p field

end
step phase fields
copy p > 0.5 to obstacle field
step fluid velocities
step density/temperature field

The phase field simulation and fluid solver required no sig-
nificant alteration. The DLA simulation was altered to walk
on the p field, insert heat into the T field, and account for
fluid velocities. The p field was copied into the obstacle field
by a high-level class. With C++ implementations of all three
algorithms, only about 100 additional lines of code are nec-
essary to implement the hybrid algorithm on a square grid.
To simulate on a hexagonal grid, more significant changes
are needed, but the size of the code remains about the same.
A displacement map was generated from the simulation re-
sults by accumulating the ∂p

∂t values over the lifetime of the
simulation and normalizing the values to the [0,1] range. The
results were then rendered in 3DS Max 5.

Figure Resolution H Timesteps Sim. Time

7 1024 x 1024 60000 200 2 hrs
6 256 x 256 Variable 300 4 min 16 sec
9 512 x 512 100 1600 4 min 32 sec
10 1024 x 1024 4000 350 3 min 35 sec

Table 3: Timing results for simulation, excluding render-
ing time. For aesthetic effect in Figure 6, the humidity was
started at 300 and increased by 50 after the 75th timestep.

We ran our simulation at various physical scales: the mi-
croscale of a snowflake, the mesoscale of a pint glass, and the
macroscale of an automobile windsheild. Due to the fractal
nature of ice, our algorithm scales naturally among a wide
variety of physical scales.

All of the simulations were run on a 2.66 Ghz Xeon pro-
cessor, with timing results (excluding rendering time) shown
in Table 3. In Figure 6, the inflow fluid velocity along the
top edge was set equal to 0 along the left wall and increased
quadratically to 3.5 approaching the right wall. In Figure 10,
the top edge was set to a parabolic inflow of 3.5 in the cen-
ter and 0 at the ends. The same simulation was used for the
hood, side panel, and windshield. For all simulations, δx, δy
were set to 3

64 to keep the timestep fixed.

7. Results and Discussion

In this section, we present the results of our simulation, dis-
cuss the limitations and generalization of the techniques.

7.1. Comparisons

In Figures 6-10, we show images of a snowflake pattern,
a frozen window pane, simulated (ice) frost forming on a
chilled glass, and ice on a car in a wintery scene. We also
present a side-by-side comparison between images of the
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real scene and the simulated scene for two: the snowflake
and chilled glass.

In Figure 6, we compare the results of visual simulation
from DLA, phase field methods [KL03], and our hybrid al-
gorithm. Notice that the hybrid algorithm is able to repro-
duce more realistic ice growth compared to either DLA or
phase field methods alone.

For Figure 7, the snowflake scene, the inset photograph
shows that the overall shape and distribution of arms has
been reproduced. Most notably, the intricate network of
veins internal to the border of the snowflake have been pro-
duced. Phase fields (i.e. the method of [KL03]) and DLA
can respectively produce the internal veins and the thick-
ened outer border, but neither technique can produce both
features, while our hybrid algorithm produces both.

Validating the chilled glass poses a big challenge, as
chilled glasses frost over almost instantly when removed
from a freezer. For comparison purposes in Figure 8, the ini-
tial conditions of the chilled glass simulation were altered
slightly so that some growth also occurred along the top
edge of the glass. Although a direct comparison is difficult
in the absence of more sophisticated rendering, we note that
the ‘fingering’ of the ice along the leading edge of the frost
has been faithfully reproduced. Away from leading edge, the
frost in the photo has frozen into a solid sheet. Our simu-
lation produces the sheet faithfully as well. The fingering
along the edge is a feature of diffusion limited growth, while
the sheet is a kinetics limited phenomena. Neither DLA nor
phase fields can produce both features, but the hybrid algo-
rithm reproduces both.

Validating results of any physical simulation can be chal-
lenging, but this task is prohibitively difficult for ice forma-
tion, especially for outdoor environments, e.g. on the win-
dow or on the car hood. In such environments, a plethora of
factors can affect the growth of ice pattern in a significant
way at any given time during the formation stage.

7.2. Limitations

Our current implementation is limited by the 2D treatment
of fluid flow, which assumes that the wind velocities are
roughly parallel to the simulation domain. To handle the per-
pendicular case, a full 3D fluid solver is necessary, and we
plan to add this feature to our existing framework. Our algo-
rithm also cannot handle thick features, such as icicles. The
thermodynamics of icicle formation differ from the case pre-
sented here and the surface tension plays a dominant role in
the formation process. Furthermore, the mathematical model
for the physical process of icicle formation is still unknown
and presents an interesting research challenge.

7.3. Generalization

In a general sense, we have developed a novel method of
texture synthesis. Our statement of the phase field equa-

tions as a non-linear advection-reaction-diffusion system
shows that they represent a more general class of phenom-
ena than pure reaction-diffusion. In addition to the competi-
tive morphogens usually present in a reaction-diffusion sys-
tem [WK91], the hybrid algorithm adds two complementary
morphogens operating at different scales.

In the absence of a fluid flow and with isotropic growth
settings, this synthesis method can be considered a Lapla-
cian growth algorithm [NPW84]. With the addition of
anisotropy and fluid flow, it becomes a non-Laplacian
growth [RK93] algorithm. As such, it has the potential to
increase the realism of other Laplacian phenomena, such as
the formation of cracks, the formation of lightning, and the
growth of trees.

8. Conclusions and Future Work

We have presented a novel, hybrid algorithm for modeling
ice formation, a set of parameters for the algorithm, and a
method of accelerating one of its main components. Based
on the simulation results, our hybrid algorithm appears to ac-
count for a more diverse set of growth patterns with a higher
degree of realism than any previous technique.

Several issues still exist for further refinement. An un-
conditionally stable algorithm would be ideal for phase
field methods, but the non-linear nature of the equations
makes the derivation difficult. For DLA, ideally an arbi-
trary anisotropy function could be imposed on a square grid,
but while some impressive recent work has produced true
isotropy on a square grid [Bog01], arbitrary anisotropy re-
mains elusive. For a large humidity, DLA can be the slowest
component of the simulation, so potentially faster alternative
solution methods, such as dielectric breakdown [NPW84]
and Hastings-Levitov conformal mapping [HL98], are worth
investigation.

Finally, we have yet to address the rendering issues asso-
ciated with ice growth. Ice is composed of highly anisotropic
mesofacets that exhibit strong spectral dispersion. As such,
it seems to inhabit a mesoscale in between the macroscopic
features of textures and the microfacet features of BRDFs,
making realistic rendering difficult. Further study is needed
to capture their sparkling, rainbow features.
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Figure 6: Comparison of algorithms Top to bottom: Our
hybrid algorithm; DLA only; phase fields only (method of
[KL03])

Figure 7: Snowflake growth We show how our algo-
rithm can produce microscale detail, such as the arms of a
snowflake. Inset: Photo of a real snowflake.

Figure 8: Validation. Top: Closeup of chilled glass simula-
tion. Bottom: Photograph of ice on a chilled glass.
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Figure 9: Frosty ice forming on a chilled glass. Top to bot-
tom: 160 timesteps; 800 timesteps; 1300 timesteps

Figure 10: Ice Accumulated on a car. Top to bottom: 50
timesteps; 100 timesteps; 125 timesteps
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