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Abstract—We present a fast method for simulating, animating, and rendering lightning using adaptive grids. The “dielectric

breakdown model” is an elegant algorithm for electrical pattern formation that we extend to enable animation of lightning. The

simulation can be slow, particularly in 3D, because it involves solving a large Poisson problem. Losasso, et al recently proposed an

octree data structure for simulating water and smoke, and we show that this discretization can be applied to the problem of

lightning simulation as well. However, implementing the incomplete Cholesky conjugate gradient (ICCG) solver for this problem can

be daunting, so we provide an extensive discussion of implementation issues. ICCG solvers can usually be accelerated using

“Eisenstat’s trick”, but the trick cannot be directly applied to the adaptive case. Fortunately, we show that an ‘almost incomplete

Cholesky’ factorization can be computed so that Eisenstat’s trick can still be used. We then present a fast rendering method based

on convolution that is competitive with Monte Carlo ray tracing, but orders of magnitude faster, and also show how to further

improve the visual results using jittering.

Index Terms—I.3.5.i Physically based modeling

◆

1 Introduction

Lightning effects are an ubiquitous visual effect in sci-
ence fiction and fantasy films. From the birth of the mon-
ster in 1931’s Frankenstein to the lightning from the Em-
peror’s fingers in Return of the Jedi, electrical discharge
has a long history as a dramatic tool in the visual effects
industry.

Despite the popularity of this effect, there has been rel-
atively little research into physically-based modeling of
lightning. The existing research is largely empirical, essen-
tially generating a random tree-like structure that qualita-
tively resembles lightning. The previous work is also lim-
ited to brief flashes of lightning, and provides no method
for animating a dancing, sustained stream of electricity.
Modeling the fractal geometry of electrical discharge and
similar patterns has attracted much attention in physics.
In this article, we adapt the dielectric breakdown model

(DBM) for modeling lightning formation.
The DBM can be very expensive to compute, so we intro-

duce a fast version of DBM using an adaptive mesh. Our
approach is built upon a symmetric discretization of the
Poisson problem, and can produce high quality results in a
fraction of the running time. We show that this approach
is accurate enough for graphical simulation. Its applica-
tions can extend beyond visual effects to more physically
demanding applications, such as commercial flight simula-
tion.

Main Results: In this article, we present the following1

• A physically-based approach based on the dielectric

breakdown model for modeling electrical discharge;
• A novel technique of animating sustained electrical

streams by solving a Poisson equation;

1. A preliminary version of this manuscript appeared as one of the
cover-image articles in [1].

Fig. 1. Lightning In A Bottle: Lightning generated using our
method that has been constrained to the inside of a bottle using our
user parameters.

• A fast, accurate rendering method using a convolution
kernel for describing light scattering in participating
media;

• A parameterization that enables simple artistic control
of the simulation.

• A fast adaptive mesh simulation of the DBM that
drastically improves the running time by up to two
orders of magnitude;

• An ‘almost incomplete Cholesky’ factorization that al-
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lows Eisenstat’s trick [2] to be used in the solver;
• A jittering method that improves the rendering re-

sults.

We also provide extensive implementation details of the
adaptive mesh algorithm.

Organization: The rest of the paper is organized as fol-
lows. A brief survey of related work is presented in Sec. 2.
In Sec. 3, we briefly summarize the physics of lightning
formation. We present the original dielectric breakdown
model as well as our proposed extension in Sec. 4. The
adaptive mesh algorithm is presented in Sec. 5. An effi-
cient rendering method is present in Sec. 6. User param-
eters are presented in Sec. 8, followed by implementation
details and discussion in Sec. 9. Finally, conclusions and
possible directions for future work are given in Sec. 10.

2 Previous Work

Reed and Wyvill present a lightning model based on the
empirical observation that most lightning branches deviate
by an average of 16 degrees from parent branches [3]. A
set of randomly rotated line segments are generated with
their angles normally distributed around 16 degrees. In
subsequent work, modifications are made to this random
line segment model. Glassner [4] performs a second pass
on the segments to add “tortuosity”, and Krus [5] replaces
the normal distribution with a more easily controlled ran-
domized binary tree.

Notably, Sosorbaram, Fujimoto, Muraoka and Chiba [6]
use the dielectric breakdown model (DBM) to guide the
growth of a random line segment tree with a local approxi-
mation of the potential field. But, their approach does not
appear to implement full DBM, as it does not solve the
Laplace equation.

Electric discharges are neither solid, liquid, or gas, but
instead are the fourth phase of matter, plasma. It is a
light source with no resolvable surface, so traditional ren-
dering techniques are not directly applicable. To address
this problem, Reed and Wyvill [3] describe a ray tracing
extension for both a lightning bolt and its surrounding
glow. Alternatively, [6] proposes rendering 3D textures.
Dobashi, Yamamoto and Nishita [7] provide the most rig-
orous treatment of the problem by first presenting the as-
sociated volume rendering integral, and then presenting an
efficient, approximate solution.

In electrical engineering, there are three popular models
of electric discharge: gas dynamics [8], electromagnetics
[9], and distributed circuits [10]. However, none of these
are directly applicable to visual simulation, as they respec-
tively approximate the electricity as a cylinder of plasma,
a thin antenna, and two plates in a circuit.

3 The Physics of Electric Discharge

We classify the physics literature into two categories.
The first deals with the physical, experimentally observed
properties of lightning and related electrical patterns. A
good survey of this approach is given by Rakov and Uman
[11]. The second is a more qualitative approach that char-

acterizes the geometric, fractal properties of electric dis-
charge. A good survey of this approach is given by Vicsek
[12].

3.1 Physical Properties

Electrical discharge occurs when a large charge difference
exists between two objects. In the case of lightning, the
case is usually that the bottom of a cloud has a strong neg-
ative charge and the ground possesses a relatively positive
charge. Electrons possess negative charge, so the charge
difference is equalized when electrons are transferred from
the cloud to the ground in the form of lightning. This
case is referred to as ‘downward negative lightning’. While
other types can exist, downward negative lightning ac-
counts for 90 percent of all cloud-to-ground lightning. For
illustrative purposes, we will show here how to simulate
this most common type of lightning. But, it should be
noted that we can handle the other types of lightning by
trivially manipulating the charge configuration.

Lightning is actually composed of several bolts, or
‘strokes’ in rapid succession. The first stroke is referred
to as the stepped leader. The subsequent strokes, called
dart leaders, tend to follow the general path of the previ-
ous leaders, and generally do not exhibit as much branch-
ing as the stepped leader. We note that while previous
work could in principle simulate this effect using attractor
particles, the method we present in this article provides
a natural, physically consistent method of accounting for
this phenomena.

Lightning is initiated in clouds by an event known as the
initial breakdown. During the initial breakdown, the con-
ductivity in a small column of air jumps several orders
of magnitude, effectively transforming the column from
an insulator to a conductor. Charge then flows into the
newly conductive air. Another breakdown then occurs
somewhere along the perimeter of the newly charged air.
This chain of events repeats, forming a thin, tortuous path
through the air, until the charge reaches the ground.

3.2 Geometric Properties

The physical processes that give rise to the breakdown
are still not well understood. However, a great deal of
progress has been made in characterizing the geometric
shape that the breakdown ultimately produces. Electric
discharge has been observed to have a fractal dimension
of approximately 1.7 [13]. Many disparate natural phe-
nomena share this same fractal dimension, including ice
crystals, lichen, and fracture patterns. Collectively, all the
patterns that share these fractal properties are known as
Laplacian growth phenomena.

There are three commonly known techniques for simulat-
ing Laplacian growth: Diffusion Limited Aggregation [14],
the Dielectric Breakdown Model [13], and Hastings-Levitov
conformal mapping [15]. All three produce qualitatively
similar results. We elect to use the Dielectric Breakdown
Model here because it gives the closest correspondence to
the physical system being simulated and allows the addi-
tion of natural, physically intuitive user controls.
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(a) (b)

Fig. 2. Different charge configurations for simulation. Grey: φ = 0;
Black: φ = 1 On the left is the original initial configuration, on the
right is our lightning initial configuration.

4 The Dielectric Breakdown Model

The Dielectric Breakdown Model, or DBM, was first de-
scribed by Niemeyer, Pietronero, and Wiesmann [13], and
is also sometimes referred to as the η model. We first
present the model described in the original paper, and
then propose a modification to simulate dart leaders and
sustained electric arcs.

4.1 The Laplacian Growth Model

The original charge configuration from [13] is shown in
Figure 2(a). Over a 2D grid, the quantity φ, the electrical
potential at each point, is tracked. First, a negative charge
is placed at the center by setting φ = 0 at the center grid
cell. Then, a circle of positive charge is constructed around
the center charge by setting a surrounding circle to φ = 1.
The potential at the remaining grid cells are then set by
solving the Laplace equation (Eqn. 1) over the grid, with
the center charge and the surrounding circle treated as
boundary conditions.

∇2φ = 0. (1)

The Laplace equation produces a linear system that must
then be solved. There are standard ways of solving the
Laplace equation and the related Poisson equation, the
reader is referred to [16]. In our implementation, we solved
the system using conjugate gradient with an Incomplete
Cholesky preconditioner [17]. However, for high resolution
simulations, the solver can become prohibitively slow, so
we will present an efficient adaptive grid method in Section
5.

Once the Laplace equation has been solved, we construct
a list of all the grid cells that are adjacent to a negative
charge (φ = 0). One of these grid cells is then randomly
chosen as a growth site (i.e. the site of the next break-
down). The chosen cell is set to φ = 0 and is treated as
part of the boundary condition in subsequent iterations.
The probability of a grid cell being chosen is weighted ac-
cording to its potential. The weight function is given in
Eqn 2.

(a) Original configuration (b) η = 1

(c) η = 2 (d) η = 3

Fig. 3. Simulation results from different charge configurations. 3(a) is
result of configuration from Figure 2(a). 3(b) - 3(d) are configura-
tions from 2(b) with various η.

pi =
(φi)

η

∑n

j=1(φj)η
(2)

where i is a cell in the list of adjacent cells, and n is the to-
tal number of cells in the list. The η term is a powerful user
parameter that enables high-level control of the simulation
via a single parameter value. Several different simulations
with different η values are given in Figs. 3(b)-3(d). The
parameter will be discussed more in section 8.

Subsequent iterations proceed by solving the Laplace
equation again over the 2D domain, and again selecting a
growth site according to Eqn 2. The iterations are repeated
until the user obtains the desired results. The technique
generalizes trivially to three dimensions by simply solving
the 3D Laplace equation.

The classic configuration produces a radial discharge, as
shown in Figure 3(a). In order to produce lightning-like
patterns, we instead use the initial configuration shown in
Figure 2(b). We start with a small amount of negative
charge at the top of the 3D domain, representing an initial
branch of lightning. The bottom edge of the domain rep-
resents the ground, and is thus set to positive charge. The
results of running the simulation on this initial configura-
tion with different η are shown in Figures 3(b) - 3(d).

4.2 A Poisson Growth Model

Once we have formed an initial stepped leader, we would
like to have a method for generating subsequent dart lead-
ers that follow the same general path. Since the path
changes slightly with each successive dart leader, a large
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number of dart leaders will produce the ‘dancing’ effect
present in a sustained electric arc.

We hypothesize that the reason that a dart leader follows
the same general path as a stepped leader is because there
exists residual positive charge along the old leader channel
that attracts the new dart leader. In order to simulate this
behavior, we need a method of introducing residual charge
into the simulation.

While DBM can simulate many different kinds of natural
phenomena, we observe that for the case of electricity, the
Laplace equation can be viewed as a special case of the
Helmholtz equation (Eqn 3).

(

∇2 +
(ω

c

)2
)

φ = −4πρ (3)

where ω is angular velocity, c is the speed of light, and ρ is
charge density. The Helmholtz equation is derived directly
from the Maxwell equations for electricity and magnetism,
so it provides a clean connection between fractal growth
and classical physics. The Laplace equation can be viewed
as the case where the charge density is equal to zero and the

relativistic
(

ω
c

)2
term is ignored. As lightning bolts already

have a linear velocity that already approaches the speed of
light, the angular component will be negligible. So, if we
continue to ignore the relativistic term but re-introduce the
charge density term, the electromagnetic Poisson equation
is obtained:

∇2φ = −4πρ. (4)

If we now solve this equation in place of the Laplace equa-
tion, we can produce the desired dart leader behavior. We
define a second grid of values in space, ρ, that is initially
set to zero. This essentially reduces Eqn. 4 to the Laplace
equation for the initial iteration. After we generate our
first bolt, we deposit charge along the leader channel by
setting ρ along the channel to a positive value. When
generating subsequent bolts, the new ρ values will auto-
matically attract the new bolt to the old path. After each
new bolt is generated, we clear the previous ρ field and
repopulate it with charges along the new leader channel.

Fortunately, because the Poisson and Laplace equations
are very similar, the only implementation overhead re-
quired for our modified model is a minor change to the
residual calculation in the conjugate gradient solver. A
similar model has also been proposed in the physics litera-
ture [18] for inhomogeneous dielectric insulators indepen-
dently. For computational efficiency of visual rendering,
we choose to ignore inhomogeneity and treat air as a ho-
mogeneous media.

5 Adaptive Mesh Simulation

While the algorithm from the previous section produces
visually acceptable results, the running time and memory
footprint can be prohibitive, especially in 3D. In practice,
we have found that in order to obtain results where grid
artifacts are not distracting, at least a 2563 grid must be
used. In order to run preconditioned conjugate gradient

(PCG), 7 arrays of this size are necessary. Assuming single
precision, this consumes 469 MB of memory. Increasing the
resolution to 5123 bloats the footprint to an unacceptable
3.7 GB. Even with an efficient conjugate gradient imple-
mentation, the matrix becomes so large that simulations
can take many days.

However, the lightning itself certainly does not grow to
populate all 5123 cells, so if we can use a hierarchical data
structure to place coarse grids in regions far from the light-
ning, it should significantly reduce the memory footprint.
As the number of overall grid cells decreases, the matrix
size decrases as well, and the running time of the simula-
tion improves considerably.

Until recently, solving the Poisson problem over an adap-
tive grid had the caveat that it produced a non-symmetric
matrix, prohibiting the use of PCG. While similar Krylov
subspace methods such as GMRES and BCG could be ap-
plied to the non-symmetric case, these methods have ro-
bustness issues and can fail to converge. Recently, [19]
overcame this limitation by deriving an adaptive grid dis-
cretization that is symmetric, allowing the use of the more
robust PCG. We will review the discretization and provide
extensive implementation details.

5.1 Octree Construction

We elected to use a balanced octree in our simulations,
because it greatly simplifies the implementation of the
solver. A balanced octree is an octree where, given any
leaf node, the size of each neighbor differs by at most a
factor of two. We enforce this property because it con-
strains the maximum number of neighbors of a leaf nodes
to 24. As a leaf node and its neighbors define a row in the
Poisson matrix, this bounds the complexity of performing
an incomplete factorization on a leaf node.

The balancing algorithm is available in [20], but is simple
enough to be described informally. We scan all the leaf
nodes in the octree, and if a leaf is found to violate the
balancing property, we split it, and add its new children to
the list of leaves left to scan.

5.2 A Symmetric Discretization

In this subsection, we review the symmetric discretiza-
tion of [19] and [21]. For simplicity, we will demonstrate
the discretization in 2D.

On a regular grid, the weights given to a grid cell and
its neighbors are shown in Figure 4(a). The symbol ∆x

is the length of one side of the center cell. This is the
traditional Laplace stencil, where the weights are obtained
by Taylor expansion. In contrast, on an irregular adaptive
grid (Figure 4(b)), it is unclear what the weights of the
center and two smaller right cells should be.

Surprisingly, we can simply set the weights of the neigh-
bors to one over the length of the larger cell. For example,
in Figure 4(b), the center cell is larger than the right cells,
so we weight the two right neighbors to −1

∆x
(Figure 4(c)).

The center weight is then set to the negated sum of all
its neighbor weights. Next, consider the case where one of
the neighbors is larger than the center cell (Figure 4(d)).
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(a) (b) (c) (d) (e)

Fig. 4. Stencil weights for an adaptive mesh. (a) Regular grid stencil (b) A cell with more refined neighbors. (c) The cell with symmetric weights
filled in. (d) A cell with a less refined neighbor. (e) The cell with symmetric weights filled in.

1 for k = 1:n

2 A(k,k) = sqrt(A(k,k))

3 for i = k + 1:n

4 if A(i,k) != 0

5 A(i,k) /= A(k,k)

6 for j = k + 1:n

7 for i = j:n

8 if A(i,j) != 0

9 A(i,j) -= A(i,k) * A(j,k)

Fig. 5. Generic Incomplete Cholesky for an n × n matrix A. (From
[22])

In this case, since the right neighbor is larger, we set the
weight correspondingly to −1

2∆x
. Again, the center weight

is then set to the negated sum of all its neighbor weights
(Figure 4(e)). The 3D case is a straightforward extension;
we compute weights in the positive and negative z direc-
tions in the same way, and again set the center cell to the
negated neighbor sum.

According to [19], other choices for the weights exist in
addition to the maximum length. The minimum length, or
a linear combination of the two lengths could be used as
well. All choices lead to symmetric matrices however, and
no choice appears to offer drastically better performance.
So, for simplicity, we used the maximum length.

5.3 Incomplete Factorization

In order for conjugate gradient to converge quickly, a
preconditioner must be used. One of the most popular
preconditioners is the zero-fill incomplete Cholesky fac-
torization [22]. Incomplete Cholesky is usually stated in
general matrix terms (Figure 5). However, it is difficult
to translate this generic algorithm to cell weight relation-
ships over the adaptive grid. A brute force implementa-
tion of this algorithm using a generic sparse matrix library
would be inefficient, as it would be dominated by unnec-
essary pointer dereferences. An efficient implementation
would instead exploit the structure of the matrix, but this
requires a more intuitive understanding of when and where
zeros appear during the factorization. In order to save the
readers the tedious and time-consuming process of solving
many brute force examples to gain this intuition, we will
explicitly describe the relationship here.

(a) (b)

Fig. 6. (a) Natural ordering for a regular mesh. (b) Traversal ordering
for adaptive mesh. Note that cell 9 is not traversed until its two
neighbors in the negative x direction (cells 6 and 8) are traversed.

5.3.1 Traversal Order

In Line 1 of Figure 5, we iterate over the columns of
the matrix. Each grid cell and its weights define a column
of the matrix. For example, the stencils shown in Figs.
4(a), 4(c), and 4(e) each define a column. For the case of
regular mesh, there is an obvious order in which we could
traverse the mesh points (Figure 6(a)). This is known as
the ‘natural ordering’. Alternately we could traverse it in
the reverse order, or perhaps in column-major order. The
point is, there is an obvious ‘scanline’ order in which we
can traverse the cells. For the case of an adaptive mesh,
there is no equally obvious order.

There are definitely incorrect orders in which to traverse
the cells. In Line 9 of Incomplete Cholesky, while factoring
column k, entries in columns k + 1 to n of A are altered
as well. Conversely, columns 1 to k − 1 remain unaltered.
Therefore, before we factor column k, we must be sure that
all the columns in A that are going to change values in col-
umn k have already completed their changes. Otherwise,
we will obtain an invalid factorization.

There are many ways to achieve a valid order, of which
we will describe one. In 2D, we only factor a grid cell if all
its neighbors in the negative x and y direction have already
been factored. In 3D, all the neighbors in the negative z

direction must have been factored as well. A 2D example is
shown in Figure 6(b). It is easily verified that this ordering
meets the criteria of the previous paragraph.
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1 For k = 1:n

2 Weight(k,k) = sqrt(Weight(k,k))
3

4 For i = each neighbor of k
5 If Order(k) < Order(i)
6 Weight(k,i) /= Weight(k,k)

7
8 For i = each neighbor of k
9 If Order(k) < Order(i))

10 Weight(i,i) -= Weight(k,i) * Weight(k,i)
12

13 For i = each neighbor of k
14 If Order(k) < Order(i)
15 For j = each neighbor of k

16 If (Order(k) < Order(j))
17 If (i and j are neighbors)
18 Weight(i,j) -= Weight(k,i) * Weight(k,j)

Fig. 7. Incomplete Cholesky in terms of an adaptive mesh.

(a) (b)

Fig. 8. (a) Example of lines 13-18 of Incomplete Cholesky. Cells b and c
are neighbors, so the product of the weights with the red lines must
be subtracted from the weight denoted in green. (b) Example of
lines 19-21 of Modified Incomplete Cholesky. Cells b and c are not

neighbors, so the product of the two red weights is subtracted from
the center weights of b and c.

5.3.2 Incomplete Cholesky

For the remainder of the section, we will use the follow-
ing notation. Weight(a, b) is the weight between cells a

and b. Weight(a, a) represents the center weight for cell a.
Note that since the matrix is symmetric, Weight(a, b) =
Weight(b, a). Order(a) is the order in which the cell a

is traversed. If Order(a) < Order(b), then b is traversed
after a.

At each cell a, we only store the weights for neighbors n

where Order(a) < Order(n). (Effectively, the weights in
the positive x, y and z directions.) We do this because the
matrix is symmetric, so storing all weights at all the cells
would be redundant. Incomplete Cholesky in terms of this
adaptive mesh notation is given in Figure 7.

Lines 1-6 of Figure 7 correspond fairly directly with
Lines 1-5 of Figure 5. The correspondance between Lines
8-17 of Figure 7 and Lines 6-9 of Figures 5 is less clear. In
Lines 4-6, we assigned new weights to the neighbors in the
positive x, y and z directions. In Lines 8-10, we subtract
the square of these new weights from the center weights of
same neighbor cells.

Lines 13-17 are perhaps the most difficult to interpret,

1 for k = 1:n

2 A(k,k) = sqrt(A(k,k) + delta * A(k,k))
3 for i = k + 1:n

4 if A(i,k) != 0
5 A(i,k) /= A(k,k)
6 for j = k + 1:n

7 for i = j:n
8 if A(i,j) != 0
9 A(i,j) -= A(i,k) * A(j,k)

10 else
11 A(i,i) -= alpha * A(i,k) A(j,k)

Fig. 9. Generic Modified Incomplete Cholesky for an n × n matrix A.
The symbols alpha and delta are relaxation parameters that the
user sets.

1 For k = 1:n

2 Weight(k,k) = sqrt(Weight(k,k) + delta * Weight(k,k))
3

4 For i = each neighbor of k
5 If Order(k) < Order(i)
6 Weight(k,i) /= Weight(k,k)

7
8 For i = each neighbor of k
9 If Order(k) < Order(i))

10 Weight(i,i) -= Weight(k,i) * Weight(k,i)
12

13 For i = each neighbor of k
14 If Order(k) < Order(i)
15 For j = each neighbor of k

16 If (Order(k) < Order(j))
17 If (i and j are neighbors)

18 Weight(i,j) -= Weight(k,i) * Weight(k,j)
19 Else If (i != j)
20 Weight(i,i) -= Weight(k,i) * Weight(k,j)

21 Weight(j,j) -= Weight(k,i) * Weight(k,j)

Fig. 10. Modified Incomplete Cholesky in terms of an adaptive mesh.

so we will provide an example here. In Figure 8(a), we
have two cells, b and c, that are adjacent to cell a, and
also adjacent to each other. In this case, if Order(a) <

Order(b) and Order(a) < Order(c), then we subtract the
product of the two weights shown in red from the weight
shown in green. This must be done for all cases where a has
two neighbors that are traversed after a, and the neighbors
are neighbors of each other as well. On a balanced octree,
there are 16 cases where this occurs. Determining these 16
cases is left as an exercise to the reader.

5.3.3 Modified Incomplete Cholesky

In [19], Losasso et al. report using a preconditioner
“based on an incomplete LU Cholesky factorization that
we modify to ensure that the sum of LU is equal to the row
sum of original matrix.” This corresponds to the Modified
Incomplete Cholesky preconditioner [23]. However, the
version in [23] is often combined with the version in [24].
In practice, we have found this combination of techniques
gives faster results than Incomplete Cholesky alone, so we
will describe the factorization here. The generic Modified
Incomplete Cholesky factorization, using both the tech-
niques from [23] and [24] is shown in Figure 9.

Modified Incomplete Cholesky in terms of an adaptive
grid is shown in Figure 10. Two significant modifications
have been made from the Incomplete Cholesky case. First,



7

a delta parameter has been added to Line 2. Second, Lines
19-21 are new. We illustrate the significance of these new
lines in Figure 8(b). The factorization is the same as be-
fore, except an else has been added to the innermost loop.
If a has two neighbors b and c, and both are traversed after
a, but b and c are not neighbors, the product of the two
weights in red must be subtracted from the center weights
of b and c. Again, determining the explicit cases is left as
an exercise to the reader.

5.4 Eisenstat’s Trick

Applying Incomplete Cholesky (IC) adds an additional
forward and backward substitution step to each conjugate
gradient iteration. For large matrices, this additional over-
head is negligible compared to the computation time saved
by the reduced number of iterations. However, for mod-
est sized matrices such as those produced by a quadtree
lightning simulation, it can have a noticeable impact on
the running time.

This performance impact becomes particularly appar-
ent if we try to implement a SIMD version of ICCG. Most
of the steps of CG map trivially to SSE intrinics, with the
exception of a matrix-vector produce and the already men-
tioned forward and backward solves. These two operations
therefore become the main performance bottlenecks.

Eisenstat [2] described a method of eliminating the
matrix-vector multiply, thus eliminating one of the bottle-
necks. Unfortunately, “Eisenstat’s trick” as it is described
in the original paper only applies to preconditioners with a
very specific structure. The IC preconditioner for a regular
grid fits this structure, but the adaptive version described
in the previous section does not. Fortunately, we have
found that it is possible to construct an approximation to
the IC preconditioner such that Eisenstat’s trick can still
be applied.

Assume we are solving the matrix A, which can be de-
composed to A = L+D+L, where L is strictly lower trian-
gular, and D is a diagonal matrix. Eisenstat’s trick can be
applied if the preconditioner M can be stated in terms of
a diagonal matrix D̂ such that M = (D̂+L)D̂−1(D̂+L)T .
While the IC factorization over a regular grid can in fact
be decomposed into this form, the factorization over the
adaptive grid cannot. Instead, we obtain a factorization
M = (D̂ + L̂)D̂−1(D̂ + L̂)T , where L̂ 6= L.

The origin of this modified L̂ can be traced back to lines
13-18 of Fig. 7. In the regular grid case, lines 6-9 of the
generic IC factorization translate to modifications along
the diagonal. However, as shown by the green line in Fig-
ure 8(a), the adaptive case modifies entries that are off-
diagonal as well. These off-diagonal modifications ‘ruin’
the possibility of the L̂ in the final factorization matching
the original L.

However, nothing prevents us from going ahead and
computing the D̂ matrix for the adaptive case, even if the
final result produces L̂ 6= L. The algorithm to compute
this D̂ is given in Fig 11. If we discard the computed L̂ af-
ter D̂ has been constructed and replace it with the original
L, we can still apply Eisenstat’s trick. The preconditioner

1 For k = 1:n

2 For i = each neighbor of k
3 If Order(k) < Order(i))

4 Weight(i,i) -= Weight(k,i) * Weight(k,i) /
5 Weight(k,k)
6

7 For i = each neighbor of k
8 If Order(k) < Order(i)
9 For j = each neighbor of k

10 If (Order(k) < Order(j))
11 If (i and j are neighbors)

12 Weight(i,j) -= Weight(k,i) * Weight(k,j) /
13 Weight(k,k)

Fig. 11. Computing the D̂ matrix for Eisenstat’s trick over an adaptive
mesh.

that is being applied will not be the exact IC precondi-
tioner, but it will instead be an ‘almost’ IC preconditioner
that lacks the off-diagonal modifications to L depicted in
Fig. 8(a).

We have found that this ‘almost’ IC preconditioner
works well in practice. In modest resolution (512 x 512)
quadtree simulations, the number of iterations required to
converge to working precision remains identical to those re-
quired by the original IC preconditioner. In larger octree
simulations, the preconditioner only requires a handful of
additional iterations. We have found that even the ex-
tra computational cost of these additional iterations does
not outweigh the benefit of having eliminated the matrix-
vector product from the inner CG loop. While it is possible
that for a large enough matrix, the ‘almost’ IC precondi-
tioner will require enough extra iterations that its perfor-
mance benefit is invalidated, we did not encounter such a
case during the course of our simulations.

5.5 Discussion

Using this discretization, we have experienced a
speedups of over two orders of magnitude. We ran two
comparisons for 2000 timesteps using the 3D equivalent of
Fig. 2(b), one on a 1283 mesh and the other on a 2563

mesh. The adaptive 1283 simulation ran 22 times faster,
while the adaptive 2563 simulation ran 150 times faster.
Log plots of the performance are shown in Figure 12.

Despite these obvious gains, the adaptive mesh is still
not a simulation panacea. If large objects are inserted
as boundaries in the grid, the memory footprint of the
simulation can grow quickly. This is because unlike in the
regular grid case, neighbor information per grid cell is not
implicitly known from the grid dimensions, and must be
explictly constructed. A cell can have up to 24 neighbors
(4 neighbors at each of the 6 cube faces), increasing the
memory footprint of a single grid cell by a considerable
96 bytes (A 4 byte pointer for each of the 24 neighbors).
Instead of explicitly storing the neighbors, neighbor queries
could be performed on the octree as necessary, but this is
a tradeoff, as it significantly increases the overall running
time. Explicit storage of the stencil and the incomplete
factorizations raise the same tradeoff issues.

Finally, for the parameters alpha and delta in Modified
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Fig. 12. Logarithmic timing plots of regular grid solver and octree solver.
Both simulations are shown for 2000 timesteps. Over a 1283 grid,
the octree solver ran 22 times faster, and over a 2563 grid, the
octree solver ran 150 times faster.

Incomplete Cholesky, we ran a wide range of tests to de-
termine good parameter values. We found values of alpha

approaching one (alpha ≈ 0.95) and delta values near zero
(delta ≈ 0.05) yielded good results. These findings are
consistent with other studies of these parameters, such as
those of [25].

6 Rendering

For the rendering of electricity, we borrow the method
proposed by Narasimhan and Nayar [26] that produces
spectacular results. In the paper, analytical models are
obtained that reduce the rendering of certain types of par-
ticipating media to a 2D convolution. The results are com-
petitive with expensive Monte Carlo techniques such as
photon mapping, but run in seconds instead of hours. We
will first summarize the pertinent formulae from [26], then
describe how we use it to generate a convolution kernel,
and finally show how we render electricity.

6.1 Atmospheric Point Spread Function

The convolution kernel produced by the method of [26]
is called an Atmospheric Point Spread Function, hereon
referred to as an APSF. The APSF is a series expansion of
the Henyey-Greenstein phase function, a popular function
for describing the scattering of light in participating media.
The basis functions used are Legendre polynomials, whose
series form are shown in Eqn. 5.

Fig. 13. Pinhole camera geometry for generating APSF kernel

Li(x) =
((2i − 1) · x · Li−1(x) − ((i − 1) · Li−2(x))

i
(5)

In order the evaluate the series, the following base cases
are also necessary: L0(x) = 1, L1(x) = x. The full APSF,
I(T, µ), is then given in Eqn. 6.

I(T, µ) =

∞
∑

m=0

(gm(T ) + gm+1(T ))Lm(µ) (6)

where

gm(T ) = e−βmT−αm log T (7)

αm = m + 1 (8)

βm =
2m + 1

m
(1 − qm−1). (9)

A base case is necessary: g0(T ) = 0. The variable q is the
scattering parameter from the Henyey-Greenstein phase
function. Increasing q from 0 to 1 increases the density
of the medium, and can be thought of as transitioning the
weather from clear skies to rain. The optical thickness, T ,
is equal to Rσ, where R is the radial distance from the
viewer, and σ is the extinction coefficient of air. Finally µ

is the cosine of the radial direction θ from the source.

6.2 Generating a Convolution Kernel

The APSF is a three dimensional function that describes
how much light is reaching any point in space around a
point light source. If we can determine how a single point
light spreads out on the image plane, we can then use this
point spread function as a convolution kernel to render a
light source of arbitrary shape.

Assume we want to generate an n× n resolution convo-
lution kernel of physical size M×M . We sample the APSF
according to the geometry in Figure 13. In this figure, we
assume a pinhole camera model where κ = 0.025 meters,
about the width of an eyeball. We also assume the light-
ning stroke is two kilometer away: D = 2000. We treat R

as a user parameter that allows control over the width of
the ‘glow’ around the stroke.

In order to compute the value I(T, µ) at each point on
the kernel, we need to determine a value µ at each sample.
If we assume the point light source projects onto the center
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of the kernel, the µ value at kernel sample (x, y) follows by
trigonometry (Eqns. 10 - 12).

νx,y =

√

(x−n

2
)×M

n
+

(y−n

2
)×M

n
(10)

ωx,y =
κ2D−κ

√
−ν2

x,y
D2+κ2R2+ν2

x,y
R2

κ2+ν2
x,y

(11)

µx,y = π − tan−1 κ
νx,y

− sin−1 D−ωx,y

R
(12)

If
νx,y

κ
> R

D
, then we are outside the desired width of the

glow, and the kernel value should be set to zero. The
APSF only drops off to zero at infinity, so in practice, the
smallest non-zero value of the kernel must be subtracted
from the other non-zero values of the kernel to prevent the
silhouette of the kernel from appearing in the final image.

We are making a simplifying assumption here that all
parts of the lightning bolt are exactly two kilometers away.
While this is not strictly true, unless the bolt spans a very
large physical domain, we believe it is a reasonable approx-
imation. In the extreme case of a lightning bolt originat-
ing from far away and hitting the camera, this assumption
breaks down, and several different depth-dependent ker-
nels must be computed. However, even in this extreme
case, the time required to generate several different ker-
nels is still orders of magnitude less than using a Monte
Carlo renderer.

6.3 Rendering Electricity

Even for large electric discharges like lightning, the
plasma channel is only several centimeters in diameter [11].
We hypothesize that humans perceive that the stroke is
thicker because the the brighter portions of glow exceed
the range perceptible by the human visual system, so they
bleach together into what looks like a thicker bolt.

With this hypothesis in mind, we model the plasma
channel as a series of thin line segments. We then apply the
APSF kernel to a 2D rendering of these line segments to
simulate the glow. If the brightness of the plasma channel
is set correctly, the APSF should produce luminance values
that exceed the range of the display device, creating the
expected thick bolt. In this way, we can remain physically
consistent while avoiding the need for a complex geometric
representation of plasma.

We proceed in three stages. First, we construct a graph
from the simulation. We then assign different luminance
values to each graph edge, as some parts of a lightning
stroke are brighter than others. Finally, we render the
graph edges as line segments and apply the APSF.

6.3.1 Constructing the Graph

We observe that the construction of the lightning stroke
can also be seen as the construction of a directed tree. The
root of the tree is represented by the initial discharge from
the beginning of the simulation. When a grid cell is added
to the lightning stroke, we create a corresponding graph
node, and then search the cell neighbors for one that is
already on the stroke. Such a neighbor must exist, as it is

a necessary condition for the grid cell to have been selected
as a growth site. This neighbor is then set as the parent
node, and the newly added grid cell is recorded as the child.
When a grid cell adjacent to the ground is added, we halt
the simulation. In nature, growth would end at this point
because the charge now has a direct conduit to the ground.

6.3.2 Assigning Wattage

With our tree, we can now assign a separate luminance
value to each line segment. We divide the line segments
into three classes: the main channel, secondary chan-
nels, and side channels. The majority of the charge flows
through the main channel, so it should be brightest. By
inspection of photographs, it is clear that there are dim-
mer but distinct secondary channels in most strokes, and
branching off from the secondary channels, barely percepti-
ble side channels. Locating the main channel is straightfor-
ward. The node corresponding to the grid cell that hit the
ground, along with all its ancestors, constitute the main
channel.

Locating the secondary and side channels is more in-
volved. Every node adjacent to the main channel that is
not on the main channel forms the root to a new tree.
Within each such tree, the charge selects a single preferred
path that becomes the bright secondary channel. It is un-
clear how this path is selected; perhaps the path that had
the largest potential differences during the breakdown pro-
cess is selected. For aesthetic effect, we set the path with
the greatest number of nodes as the secondary channel.
Off of this longest secondary channel, we also add other
‘long’ paths according to a user-defined cutoff. This max-
imizes the length of the dramatic, snaking tendrils that
surround the central channel. All the remaining edges are
now considered to be side channels.

We must now assign a wattage to each edge. While
there exists some data on the wattage of the main channel
(Between 1.3 × 106 Watts / m and 3.9 × 105 Watts / m
according to [11]), we have been unable to find data on the
wattage of secondary or side channels. We have attempted
to estimate the wattages by deconvolving photographs of
lightning, but this method requires a high dynamic range
image of lightning that can resolve the bleached portion of
the stroke, as well as the APSF values corresponding to
the scene. We used heuristic values that brought us into
close qualitative agreement with photographs.

We rendered the line segments and convolved them with
the APSF settings given in Table I. We do not set the main
channel to the wattage given by [11], because in the ab-
sence of tone mapping, this would bleach the entire scene.
The application of tone mapping for rendering lightning
will be investigated in our future work.

7 Jittering

The most noticable rendering artifact is grid regularities
that appear due to insufficient resolution in the simula-
tions. Ideally, a grid cell in the simulation would corre-
spond to one pixel in the final image. In practice, this
sort of resolution is impractical. However, the appearance
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of these artifacts can be greatly reduced by jittering the
simulation results.

When constructing the graph, we usually assume that
the lightning stroke passed directly through the center of
the grid cell. However, as the grid cell is homogeneous, it is
fair to say that the lightning may have passed through any
portion of the cell. Given a grid cell to add to the graph,
instead of selecting the center of the cell every time, we
instead select a random point on the interior of the cell.

Using this simple jittering technique, the appearance of
grid regularities can be reduced for a very small compu-
tational cost. A comparison of lightning strokes with and
without jittering are shown in the right half of Figure 16.
The grid artifacts are especially visible in the secondary
channels of the lower right image, but jittering greatly re-
duces the prevalence of these artifacts.

8 User Controls

Our modified DBM permits user control through four
parameters: an η variable to control the ‘branchiness’ of
the stream, a charge density field ρ to control the path of
the stream, a boundary condition to repel the stream, and
an overall charge configuration to control where the stroke
begins and ends.

The effect of the η variable in Eqn. 2 can be seen in Fig-
ure 3(b) - 3(d). At η = 1, dense branching is observed. As
η increases, the density of the branching decreases. Hast-
ings observes that at η = 4, the stream transitions into
a non-fractal, one-dimensional curve [27]. So, the domain
of the η parameter is effectively in the range of (1, 4). A
physical interpretation of the η is not entirely clear, it can
perhaps be viewed as the ambient resistivity of the air.

As ρ is a 2D field representing the image plane, the user
can ‘paint’ into it any desired charge distribution. The
lightning stroke will then be attracted to this painted path
as described in Section 4.2.

In addition to attracting the electric arc, the user may
want to repel the arc from certain regions. For instance,
there may be an obstacle in the scene that the user does
not want the arc to intersect. This effect can be achieved
by setting the interior of the obstacle to φ = 0. This sets
the charge of the object to the same charge as the arc,
causing the obstacle to repel the arc. However, we must
then be careful in our implementation not to add grid cells
adjacent to the obstacle to the list of candidate growth
sites in Eqn. 2. We demonstrate an extreme example of
this control in Fig. 14. The repulsor texture is shown in
the lower right, with green denoting repulsors and black
denoting valid growth sites.

Figure n M q m T R
17, 16 256 1.0 0.99 200 1.001 200

15 64 1.0 0.9 200 1.1 100

TABLE I

APSF settings used: m corresponds to the number of terms

used in the Legendre series.

Finally, we have only shown two charge configurations:
the circle in Figure 2(a), and the lightning configuration in
Figure 2(b). However, arbitrary charge configurations also
produce electric arcs. The arc can begin from any arbi-
trarily shaped negative region, and terminate at a positive
object. In this way, it is possible to construct an arc be-
tween any two objects in an arbitrary scene.

9 Implementation and Results

We have implemented our algorithms in C++ and
OpenGL. We ran simulations for several scenes on a 2.66
Ghz Xeon processor. Unless otherwise noted, all simula-
tions were performed on a 512 × 512 grid with η = 1 and
ρ = 1000

4π
along the main channel. The renderings were per-

formed in POV-Ray, and then convolved and composited
using ImageMagick.

Note that when implementing Eqn. 5, recursively evalu-
ating the series is an exponential time operation. How-
ever, evaluating from the bottom up, (ie in the order
L0(x), L1(x), L2(x) ...) is a dynamic programming solu-
tion that can be done in linear time. Using this method is
more efficient. Also, as the convolution kernel in subsec-
tion 6.2 is isotropic, it can be performed quickly with two
n × 1 filters instead of one n × n filter.

In Figure 17, we demonstrate how the user can repel the
bolt from arbitrary objects. The lightning must start from
the top of the Cornell Box and find a path to the floor,
while avoiding the two beams in the center. In Figure 17,
we demonstrate how the user can attract the bolt to an
arbitrary object. The magenta electrode in the center is
set to a negative charge, and blue ball is set to a positive
charge. As the blue ball moves, the electric arc follows.

9.1 Comparison to Maya Lightning

We compared our results to those of the most widely
available alternative, the lightning tools in Maya. We com-
pare to both the Maya particle and paint lightning effects.

In Figure 15, we both validate our results by compar-
ing our renderings with a photograph, and compare our
results to the Maya paint effect. The scene was simulated
on a 2563 grid. Most likely, the paint effect uses some-
thing similar to [3]. First, our example displays a degree of
branching that is much closer to that of the photograph.
We tried adjusting the Maya simulation to create more
branches, but the current example is the best we were able
to achieve. Second, in our result, the brightness of the
glow from the side branches varies, whereas the glow in
the Maya example is incorrectly dim and uniform. They
do not appear as tortuous as those in our results and the
photo.

In Figure 16, we animate a dancing electric arc between
two electrodes. We constructed a similar scene in Maya
and compared our results to the particle effect. While
the renderers in Maya and POV-Ray differ, comparing the
high-level features is still useful. The Maya particle ele-
ment generates a base mesh that is blurred by a gaussian
kernel. However, due to the coarseness of the base mesh,
it is difficult to attain the correct blur. Too little, and
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Fig. 14. User controls example: We generated lightning in the shape of the word ZAP. Aside from a simple input texture (inset, lower right)
the simulation proceeded with no user intervention. In the input texture, green denotes a repulsor. To our knowledge, no previous method
can generate such a detailed example with similar ease.

Fig. 15. Validation Left: Results using our algorithm Center: Photograph Right: Results from Maya Lightning. Note that the Maya result has
smaller side branches that lack the glow and tapering brightness of the photo.

the base mesh is visible. Too much, and all the details
are blurred away. Side branches are not handled at all. By
contrast, our results handles side branching, and the APSF
effectively blurs the base mesh away while preserving the
visual tortuosity.

10 Conclusion and Future Work

We have presented a physically based algorithm for the
simulation, animation, and rendering of sustained electric
arcs. We believe that our approach is the most rigorous,
physically consistent method available up to date. How-
ever, there are several areas for refinement.

While the adaptive grid solver can greatly decrease the
memory footprint and running time of the simulation, we
still encounter problems in the presence of complex bound-
aries. In this case, the adaptive solver can perform on par

with or slightly worse than the regular grid case. Alternate
particle-based methods might be able to alleviate some of
these problems.

While our rendering method is physically consistent, it
would be more realistic to use some sort of tone mapping
operator to bring the luminance values back into the range
of the display device. No operator was used here because
we were unsure which would be appropriate. In the tone
mapping literature, a ‘bright’ object is usually daylight or
a lightbulb, so it is unclear if some of these methods would
break down in the presence of luminance values many or-
ders of magnitude brighter.

While the use of the convolution kernel generates im-
pressive results, there are still some unresolved issues. It
assumes the scattering medium is homogeneous, so it does
not explicitly handle the effects of either internal obstacles
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Fig. 16. Electric arc leaping between two electrodes: The images on the top row use our algorithm, and the images on the bottom are
from Maya. Top row: The rightmost was generated with an octree. Note the qualitative similarity to the regular grid results. Bottom

row left to right: The base mesh from Maya particle lightning. The mesh with low glow added; note that jaggies from the base mesh are
visible. The mesh with high glow added; the base mesh has blurred away. Maya particle lightning does not account for side branches.

or clouds. A scene requiring a volume caustic still needs a
Monte Carlo renderer. The approach described in [7] ap-
pears to be the best solution for a scene containing clouds.
While an analytical solution may also be possible for these
cases, one has not yet been found.

Finally, we have only presented one type of Laplacian
growth: electric arcs. The Laplacian growth encompasses
many disparate phenomena, including ice formation, ma-
terial fracture, lichen growth, tree growth, liquid surface
tension, vasculature patterns, river formation, and even
urban sprawl. Modeling of Laplacian growth is well worth
exploring for visual simulation of natural phenomena.
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Fig. 17. Left: Lightning dodging obstacles in a Cornell Box. Top to bottom: The Cornell Box setup; Lightning dodging the first obstacle;
Lightning dodging the second obstacle Right: Lightning following a blue ball. The magenta electrode is set to negative charge, and the blue
ball to positive charge. As the blue ball moves, the arc follows.


