| was interested in the anomaly of repeat titles in the database of items. My first query revealed

that the most commonly repeated titles with unique bibNumbers were simply

1e SELECT spl_2016.subject.subject, COUNT(spl_2016.subject.subject) as count
FROM spl_20816.title

(&)

3 INNER JOIN spl_2@16.transactions ON spl_2@16.title.bibNumber = spl_2016.transactions.bibNumber
4 AND title = 'test’
5 INNER JOIN spl_2016.subject ON spl_2016.subject.bibNumber = spl_2@16.transactions.bibNumber

GROUP BY spl_2016.subject.subject
ORDER BY count DESC;

~N o

and “test’

< >
‘ Result Grid | HH 43 Fiter Rows: I:| | Export: B | Wrap Cell Content: 1A |:I
subject count A
L Result
Historical films 574 Grid
San Frandsco Calif Drama 574
Video recordings for the hearing impaired 574
Dancers Drama 574
Form
Feature films 574 Editor
Fiction films 574
. 574
Science fiction 04 =
Conspiracies Fiction 203 et
Education Fiction 203 v
Result 19 x © Read Only

| became curious about the nature of these ‘test’ entries. My next query was into all subjects of
entries titled “test”. It appeared to me that subject lines seemed only partially random. They

appeared arbitrary and telling.

BmeE ¥ §ea £ Limtto 1000rows ~ | 3 | ¥ Q (1 (3
1 SELECT spl_2016.subject.subject, spl_2@16.transactions.checkOut, spl_2016.transactions.checkIn
FROM spl_2@16.transactions

INNER JOIN spl_2016.subject ON spl_2016.subject.bibNumber = spl_2@16.transactions.bibNumber

L INNER JOIN spl_2016.title ON spl_2@16.transactions.bibNumber = spl_20816.title.bibNumber
5 WHERE spl_2@16.title.title = 'test’
6 ORDER BY CONCAT(IF(spl_2016.transactions.checkIn != NULL, spl_2@16.transactions.checkIn, 10602), ' ', spl_28l16.transactions.checkOut) ASC;
< >
| Resulterid | EH 4% FerRows:| || Bports B | WrepCall Contenti I | Fetch rowes: 4 a
subject checkOut checkin [p—
lesu|
Immigrants Fiction 1570-01-0100:00:00 2008-05-07 12:05:00 Grid
Education Fiction 1970-01-0100:00:00 2008-05-10 17:30:00
Educational tests and measurements Fiction ~ 1970-01-0100:00:00 2008-05-14 17:12:00
Political corruption Fiction 1970-01-0100:00:00 2008-06-06 16:18:00 Form
Conspiracies Fiction 1970-01-0100:00:00 2008-05-16 12:26:00 Editor
Poiitical corruption Fiction 1970-01-0100:00:00 2008-05-17 12:00:00
Education Fiction 1970-01-0100:00:00 2008-05-14 17:12:00
Immigrants Fiction 1970-01-0100:00:00 2008-06-06 16:18:00 Feld
Immigrants Fiction 1970-01-0100:00:00 2008-05-17 12:00:00 Types
Poiitical corruption Fiction 1970-01-0100:00:00 2008-05-03 10:42:00 o
Result 16 x © Read Only

My question became: “Why would someone put a particular subject line for test titles”. So my

next step was to query the timestamps of check ins and check outs associated with each

subject line. | realized that there were only a few subjects, although there were nearly 5000

entries. Someone had put in tests with arbitrarily chosen subject lines, and they were isolated to
a few points in time. Who were these people? Was there some pattern in time that | could track
to discover when they did this?

So my next was to take that data over to Processing and plot it with time on the x axis and
subject categories on the y. That produced this result:

Metamarphosis Juvenile fiction
Science ficti

High school students Fiction
Education Fictian

Great Britain Fiction

Immigrants Fiction

Teenage pregnancy Fiction

San Francisco Calif Drama

Life and death Power over Fiction

Histarical films

Video recordings for the hearing impaired

Dancers Drama

High school students Juvenile fiction

Fiction films

Political corruption Fiction

Teenage pregnancy Juvenile fiction -
Dystopian fiction

Conspiracies Fiction

Citizenship Great Britain Examinations questions i-'l

Gay men Drama

The Following is my Processing Code:
import java.util.*;

Table table;

HashMap<String, PVector> subjectText;
boolean[][] dataGrid;

float cellHeight;

float cellWidth;

void setup() {
/!l initialize window size
size(800,800);

Il construct the display structures
subjectText = new HashMap<String, PVector>();
dataGrid = new boolean[width][height];

// Prepare the intermediate structures

HashMap<Float, ArrayList<String>> dates;

dates = new HashMap<Float, ArrayList<String>>();

table = loadTable("CSVs/SubjectsOverTimeForThingsTitledTest.csv", "header");

// Prepare a variable for keeping track of the max date
float maxDate = 0;

I/ reformat the data into subjectText and dates
for (TableRow row : table.rows()) {
String subject = row.getString("subject");

Il skip empty subject lines
if (subject.isEmpty()){
continue;

}

/I if this particular subject isn't in the hashmap, then add it
if (IsubjectText.containsKey(subject)) {
subjectText.put(subject, new PVector());

}

/I collect all the dates
String checkIinDate = row.getString("checkIn").split(" ", 0)[O];
if (IcheckinDate.equals("NULL")) {

I/ convert the date string into a floating point number

int year = int(checkInDate.split("-", 0)[0]);

int month = int(checkinDate.split("-", 0)[1]);

int day = int(checklInDate.split("-", 0)[2]);

float date = year + month / 12 + day / 365;
// put the date into the dates hashmap if it isn't already
if (Idates.containsKey(date)) {
dates.put(date, new ArrayList<String>());
}
// add that this particular subject was included on that date
dates.get(date).add(subject);
/[update the max date variable with the most max date to date
if (date > maxDate) {
maxDate = date;

}

}
String checkOutDate = row.getString("checkOut").split(" ", 0)[0];

if (!checkinDate.equals("NULL")) {
int year = int(checkOutDate.split("-", 0)[0]);
int month = int(checkOutDate.split("-", 0)[1]);
int day = int(checkOutDate.split("-", 0)[2]);
float date = year + month / 12 + day / 365;
if (Idates.containsKey(checkOutDate)) {
dates.put(date, new ArrayList<String>());
}
dates.get(date).add(subject);
if (date > maxDate) {
maxDate = date;

}
}
}

// Calculate the cell heights and widths
cellHeight = height / subjectText.keySet().size();
cellwidth = width / dates.keySet().size();

/I store the proper y axis value for each subject text line
inti=0;
for (String subject : subjectText.keySet()) {
I/l Figure out where the text goes
float subjectHeight =i * cellHeight;
subjectText.get(subject).set(new PVector(0, subjectHeight));
i++;
}
// set the cells in the dataGrid that fall where the subjects and dates intersect to 'true’
for (Float date : dates.keySet()) {

float normDate = ((date-2008) / (maxDate-2008));
int xPos = floor((width - 1) * normDate);

for (String subject : dates.get(date)){
int yPos = floor(subjectText.get(subject).y);
if (xPos > 0 && yPos > 0}
dataGrid[xPos][yPos] = true;
}
}
}

}

void draw() {
/I clear the screen
background(50);
// draw the subjectText on the screen
for (String subject : subjectText.keySet()) {
text(subject, subjectText.get(subject).x, subjectText.get(subject).y);
}
// draw rectangles at the positions where the subjects and dates intersect (which is where there
are 'true' in the dataGrid)
for (inti=0; i< width; i++){
for (intj = 0; j < height; j++){
if(dataGrid[i][j1{
rect(i,j,cellwWidth,cellHeight);
}
}
}

