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Boosted Surfaces: Synthesis of Meshes
using Point Pair Generators as Curvature
Operators in the 3D Conformal Model

Pablo Colapinto

Abstract. This paper introduces a new technique for the formulation
of parametric surfaces. Applying translation operations to tangent vec-
tors nov results in null point pairs τ . We treat these null point pairs
as surface and mesh curvature control points which can be interpolated
and exponentiated to construct continuous topological transformations
K of the form e−

τ
2 . Some basic algorithms are proposed, including the

boost which bends a line to a circle of curvature κ, and the twisted
boost which generates the Hopf fibration. We investigate methods to
control curvature in two orthogonal directions u and v and examine a
few distance-based and linear weighting techniques for synthesizing sur-
face patches using multiple curvature control points. We consider the
expressivity of the technique in manipulating meshes, and find that ap-
plying these rotors to mesh points provides a novel and computationally
efficient method for creating boosted forms.

Keywords. Conformal geometric algebra, computer graphics, parametric
surfaces, point pair, special conformal transformation, surface topology,
Hopf fibration.

1. Background: Conformal Geometric Algebra

5-dimensional conformal geometric algebra [CGA] is a compact and expres-
sive representation of 3-dimensional Euclidean space and its admitted trans-
formations. Initially developed by David Hestenes and later outlined by Li,
Hestenes, and Rockwood in [6], CGA maps Euclidean vectors in R

3 into null
vectors in R

4,1 through stereographic projection, providing a basis blade to
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represent the point at infinity. All Euclidean transformations such as transla-
tions, rotations, dilations, and twists, as well as non-Euclidean boosts (some-
times called transversors or special conformal transformations) can be gener-
ated through exponentiation of the various bivector elements in the algebra.
A good introduction to these transforming rotors (i.e. spinors) embedded
in the model can be found in [2]. Alternative non-Euclidean geometries ad-
mitted by the model have been explicity investigated by physicists such as
Anthony Lasenby (for instance in [5]).

For immediate reference, table 1 provides an overview of the basic ele-
ments of the conformal model. Readers seeking a more thorough introduction
to the conformal model are encouraged to explore the references.

2. Goal of the Present Work

In the fields of computer graphics, computer vision, and robotics, much at-
tention has been paid to CGA’s encapsulation of rigid body movements using
dual lines to generate twists, for example in [3]. Sometimes referred to as mo-
tors or screws, twists concatenate rotation and translation operations into one
transformation isomorphic to SE(3), which lends it many uses in kinematics.
In [7], Wareham, Cameron, and Lasenby demonstrate that twists generated
by linear interpolation of dual lines can be used to deform meshes in a direct
and intuitive way.

Less-explored are applications of the more complex and less intuitive
transformation generator, the point pair, which can be exponentiated to
generate boosts. Whereas the twist deformations directly manipulate local
surface normals, the boost deformations described here manipulate global
surface curvature. Building geometric intuition about these curvature opera-
tions is the central goal of this work. While a complete framework of point
pairs as topological operators is not provided here, we suspect that consid-
eration of various forms and formulations of boosting rotors will encourage
futher study in applying these methods to specific design and engineering
problems.

Researchers interested in constructing a full framework should consult
[4], in which Dorst and Valkenburg provide a rigorous mathematical treat-
ment of logarithms and exponentials of point pairs and demonstrate that
orthogonal and commuting point pairs can generate non-trivial trajectories
and “orbits”, including torus knots.

The figures in this paper were created using Versor, the author’s im-
plementation of conformal geometric algebra for graphics synthesis [1].

3. Introduction: Tangent Vectors

The simple boost rotors K in this paper are also called transversions. These
are special conformal operators which can straighten round geometric ele-
ments and bend straight ones, while maintaining invariance of local angles.
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Symbol Geometric State Grade Algebraic Form
Scalar 0 α

Vector 1 a = αe1 + βe2 + γe3

Bivector 2 B = a ∧ b

Trivector 3 I3 = a ∧ b ∧ c

Point 1 p = no + a + 1
2a

2n∞
Point Pair 2 τ = pa ∧ pb

Circle 3 κ = pa ∧ pb ∧ pc

Sphere 4 Σ = pa ∧ pb ∧ pc ∧ pd

Flat Point 2 Φ = p ∧ n∞
Line 3 Λ = pa ∧ pb ∧ n∞
Dual Line 2 λ = B + dn∞
Plane 4 Π = pa ∧ pb ∧ pc ∧ n∞

Dual Plane 1 π = n + δn∞

Minkowski Plane 2 E = no ∧ n∞

Direction Vector 2 tn∞

Direction Bivector 3 Bn∞

Direction Trivector 4 I3n∞

Tangent Vector 2 not

Tangent Bivector 3 noB

Tangent Trivector 4 noI3

Rotor 0, 2 R = e−
θ
2B = cos θ2 − sin θ

2B

Translator 0, 2 T = e−
d
2 n∞ = 1 − d

2n∞

Twist 0, 2, 4 M =eB+dn∞

Dilator 0, 2 D =e
λ
2 E = coshλ

2 + sinhλ
2E

Boost 0, 2 K =e−not = cosh(not) − sinh(not)

Table 1. Basic elements of 3D conformal geometric al-
gebra and their algebraic constructions as outlined in [2].
Subspaces of the model serve as direct and dual represen-
tations of geometric entities such as circles and lines and
planes. Bold symbols represent Euclidean elements, with
lowercase letters representing 1-blade vectors as is the cus-
tom. With e2− = −1 and e2+ = 1, then no = (e− + e+)/2 and
n∞ = (e− − e+) represent the point at the origin and the
point at infinity, respectively.

A component of inversive geometry, boosts can be considered a double reflec-
tion in two spheres with a common point, much the same way a rotation can
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be considered a double reflection in two planes with a common line. Operat-
ing at the origin, boosts can also be constructed through concatenation of a
sequence of operations: inversion in the unit sphere, followed by a translation,
followed by another inversion in the unit sphere. They can be used to realize
the Lorentz group of transformations and thus to model the symmetries of
relativistic physics.1

In the conformal model of R4,1 boost rotors K are generated through
exponentiation of a tangent vector t. As described by Dorst, Fontijne, and
Mann in [2], t is a tangent vector formed by wedging the origin blade with a
Euclidean vector v:

t = no ∧ v = nov (1)

and the exponentiation of this bivector generator is expanded to

K = enov = 1 + nov. (2)

The resulting boost (“transversor”) K is applied to other elements x of
the geometric algebra using the normal “sandwich” product:

x′ = KxK−1 (3)

where x is a geometric element such as a point, circle, line, etc or operator
and K−1 is the inverse of K:

K−1 = K̃/(KK̃) (4)

which is itself defined using the reverse:

K̃ = 1 − nov. (5)

The sandwich product is sometimes written as

x
′
= K[x] (6)

when convenient.
In the case that x is a circle, figure 1 demonstrates what happens as we

increase the length of a coplanar tangent vector t.
In the 5D conformal model of 3D space such transformations are not

limited to the 2D plane. Figure 2 shows the result of transforming along a
tangent orthogonal to the plane of the circle.

1To support our concept of a curvature operation in homogenous coordinates, this paper
uses the notion of a boost more liberally than might be found in a physics paper, where
pure boosts are considered separately from translations and rotations or dilations. Strictly
speaking, these boosted forms may be more precisely described as special conformal trans-
formation forms, and boosting spinors likewise SCT spinors. However the verb boost more
accurately describes the mesh modelling technique that is employed, which relates to the
active techniques of lofting or skinning a surface.
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λ = 1

λ > 1 λ < 1

Figure 1. Transformations of the form σ
′
= KσK−1 with σ

representing a unit circle at the origin on the e12 (xy) plane
and K = eλno∧e1 a boost at the origin applied in the e1 (x)
direction for a range of λ. The circle transforms into a line
when λ = 1. As λ increases past 1, the unit circle has turned
inside-out and reverses orientation. It converges on its own
center point as λ approaches infinity.

λ ∈ [0, 1] λ ∈ [0, 2] λ ∈ [0, 4]

Figure 2. σ
′
= KσK−1 with σ representing a unit circle at

the origin on the e23 (yz) plane and K = eλnoe1 a boost in
the e1 (x) direction orthogonal to the circle (i.e. normal to
the plane of the circle). Surfaces are created by boosting σ
across a range of λ values. From left to right, the range of λ
values increases in each of the three surfaces.

4. Null Point Pairs

As described by Dorst et al in [2], there is an intimate relationship between
tangent vectors and point pairs. Translating a tangent vector away from the
origin gives us a point pair with zero radius. We can homogenize the boost
transformation in 3D space by translating the tangent vector generator before
exponentiating it. Figure 3 depicts a negatively curved surface made in this
way.
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Using translating rotors of the form T = e−
vn∞

2 = 1− vn∞
2 we transform

tangent vectors using the sandwich product:

τ = T tT −1 (7)

where the result τ is a point pair of zero radius and t is a tangent vector nov.
Though null, the point pair will still have a variable weight associated with
it that is determined by the length of the original tangent vector.

The formulation of a homogenous boost is therefore

K = eT tT −1

= eτ = 1 + τ (8)

which has been expanded using Dorst and Valkenburg’s rules for the expo-
nentiation of point pairs:

e−τ = cosh(τ) − sinh(τ) (9)

where cosh(τ) = cosh(|τ |) is a scalar and

sinh(τ) =

{
sinh(|τ |)

|τ | τ if τ2 �= 0

τ if τ2 = 0
(10)

using the l2-norm |τ |.
Translated tangents create null point pairs where τ2 = 0. When we

interpolate these null point pairs later, the resulting point pairs will usually
not be null and we will resort to the definition of sinh(τ) when τ2 �= 0.

Figure 3. A horn formed by boosting a base circle C along
its axis λ = −n∞�C by a boost K, where K = 1 + kτ, k ∈
[0, 1]. To generate the boosting spinor 1 + kτ , we translate
the tangent orthogonal to a circle to a point along the axis
λ and exponentiate using equations 9 and 10. To generate
the mesh, we repeat the transformations across a range of k
(here the range is [0, 1]).
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4.1. A Boost with a Twist: The Hopf Fibration

The canonical Hopf fibration can be constructed by a boost followed by a
twist. The fibration maps the 2-sphere to the 3-sphere by taking each point on
the 2-sphere to a circle fiber, thereby expanding each point by one dimension.
If we map the point at the south pole to a circle, then the anitpodal point at
the north pole is mapped to the axis of that circle. Thus we start by noting
that the fibration of a longitudinal line from pole to pole can be generated by
a rotor which takes a circle to its own axis. To construct this transformation,
we compose a boost which straightens the circle into a line, and a twist which
screws that line into the axis. The combined process of boosting and twisting
is seen in figure 4d.

a) b) c) d)

Figure 4. a) The initial components of the Hopf fibration
are a circle and its axis representing fibers over the south
and north poles of the 2-sphere. b) The circle is boosted into
a line. c) The line is twisted into the axis. d) Composition
of the boost and twist make a fiber bundle over a meridian
of the 2-sphere.

Explicitly, to map the point pθφ with spherical coordinates θ, φ (in radi-
ans) on a 2-sphere to a circle fiber of a 3-sphere, we start with a unit circle C
at the south pole (where φ = −π

2 ) and a base axis Λ = −n∞�κ at the north
pole (where φ = π

2 ). We then define the transversion or boost Kθ,φ which
takes C to a line using equation 2:

Kθ,φ = 1 + kφnovθ (11)

where kφ = 1
2 + φ

π and scales in the range [0, 1] and where vθ is a unit vector
in the plane of the circle. At φ = π

2 , K takes the circle to a line:

Λθ = Kθ,π2
[C]. (12)

The corresponding twist motor Mθ,φ can then be generated by finding
the ratio of the initial axis Λ with the line Λθ. For detailed analysis on how
to find logarithms of motors see for instance [8].

Mθ,φ = e
kφlog( Λ

Λθ
)
. (13)

The full transformation rotor KH can then be defined:

KH
θ,φ = Mθ,φKθ,φ, θ ∈ [0, 2π], φ ∈ [−π

2
,
π

2
]. (14)
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Note that as a product of a twist and a boost, KH is not a simple boost
composed of just a scalar and bivector, but now also contains the 4-blades
e12E, e13E, e23E, e123no, and e123n∞.

Figure 5. Twistor meshes representing the 3-sphere Hopf
fibration generated by application of the transformation ro-
tor KH

θ,φ onto an base circle.

The Hopf fibration plays an interesting role in point pair generators:
antipodal fibers are orthogonal and commute. This means the we can use
them to create the knot orbits described by Dorst and Valkenburg in [4].2

5. Curvature Control

In subsequent formulations we hope to show the usefulness of treating the
boosting rotors as curvature operators. We begin by investigating the use of
translated tangents for direct control of curvature at a point p.

We need to be able to continuously bend a line while fixing one of its
points, as depicted in figure 6.

Figure 6. A normalized line is bent into a circle. The gen-
erator of the transformation is a tangent vector translated
to a point on the line.

Given a normalized line Λ, we bend it into a circle of radius r and
curvature κ = 1

r at point p by applying a boosting rotor of the form:

K = 1 − κτ

2
(15)

2Videos demonstrating this commutation property, which allows us to keep a knot invari-
ant as we smoothly transform the fibers around which it winds, can be viewed online at
https://vimeo.com/wolftype/videos.
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where τ is a zero-sized (null) point pair created by first translating a unit
tangent vector orthogonal to the line to the point p on the line, and then
weighting it by the target curvature. By rotating the originating tangent
vector 180 degrees, we can use the same formula to create a boost that takes
a circle with curvature κ and straightens it into a line. The p−translated and
κ-weighted tangent τ generates a 2κ curvature operator at p.

5.1. UV Surface Curvature

The ability to specify curvature at a point p with an operator K specified in
equation 15 suggests that we can build a UV surface patch with a specific
curvatures in the neighborhood of p, one operating in the u direction and the
other in the v direction.

5.1.1. Translating tangents along u and v. There are a few ways to build such
surfaces with null point pairs. For instance, we can translate two tangents,
one along the u direction and another along the v direction and then sum
them. To each point puv on a plane Π we apply a boost

Kuv = e−(κuτu+κvτv) (16)

where τu = Tu[t] and τv = Tv[t] are the translated tangents and κu, κv

are scalar curvature values. Figure 7 demonstrates the results, which allow
formation of parabolic, elliptic, umbilic and saddle points.

a)
κu > 0
κv = 0

b)
κu > 0
κv > 0
κv �= κu

c)
κu > 0
κv = κu

d)
κu < 0
κv > 0

Figure 7. Local curvatures defined using equation 16: a)
parabolic, b) elliptic, c) umbilic and d) hyperbolic.

5.1.2. Calculating squared distance to u and v osculating circles. We can also
define local curvature based on squared distance to two osculating circles at
p.

Consider local curvatures κu and κv in orthogonal directions u and v on
a plane surface Π. Using equation 15 we create two circles Cu and Cv in the
u and v directions orthogonal to the tangent vector and to each other. We
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boost each point puv on Π according to the inverse of its squared distance d2u
and d2v to these osculating circles.

To calculate this deformation, for each point puv on the surface we
generate a transforming boost Kuv,

Kuv = e
−(κu

d2u
+κv

d2v
)τ

(17)

where τ is the homogenous tangent t normal to the plane and squared dis-
tances d2u and d2v are between puv and the osculating circles Cu and Cv. It
is particularly convenient to use this distance to the circles themselves, as it
creates a natural “falloff” effect.

a)
κu < 0
κv = 0

b)
κu < 0
κv < 0
κv �= κu

c)
κu < 0
κv < 0
κv = κu

d)
κu < 0
κv > 0

Figure 8. Local curvatures defined using equation 17: a)
parabolic, b) elliptic, c) umbilic and d) hyperbolic. Distance-
based weighting makes it difficult to create purely parabolic
deformations, where curvature is exactly zero in one direc-
tion.

Squared distances are calculated using the inner product of the point
and the dual of the circle.

For d2n :
d2n = (puv�C∗

n)2. (18)

Note that for points outside the circle, this formulation of d2 represents
a combined measure of both the shortest distance d2s to the perimeter of the
circle and the curvature of the circle: d2 = (2κ + ds)2.

To transform the point, we first apply the sandwich product and then
normalize the result:

p
′
uv = fn(Kuv[puv]) (19)

where we represent the normalization step as fn:

fn(p) : p �→ p/(−n∞�p). (20)

In an implementation, one can simply divide the result by its no blade
to normalize it.

Figure 8 shows the results of such a formulation, which allows us to
control curvature in u and v directions.
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5.1.3. Generating UV surface patches by adding an additional weighting fac-
tor. Distance-based weighting lends itself to the incorporation of more con-
trol points. Integrating four sets of such generating u, v point pairs allows us
to build up surface patches, as demonstrated in figures 9 and 10. For more
precise control, the formulation utilizes not only distance from the osculating
circles, but also from the location of the null point pair itself:

Kuv = e−
∑4

i=1 Wiτi (21)

where Wi = 1
d2
pi

(κui

d2
ui

+ κvi

d2
vi

) is the weight of the ith point pair and the new

term d2pi is the squared distance from puv to the location of the ith generating
point pair. For a point at p and a point pair at x:

d2p = −2p�x. (22)

In an implementation we usually add some small value to d2p, d
2
u,and d2v

to prevent dividing by zero, as well as some constant k by which to multiply
d2p to control the “falloff” of the deformation.

a) b) c) d)

Figure 9. Surface patches created through independent
control of four uv curvatures. Arrows represent the trans-
lated tangent vectors. Osculating circles are generated in
two orthogonal directions using equation 15. Mesh points
are deformed according to equation 21 to create a) positive
umbilic, b) negative umbilic, c) and d) hyperbolic curvatures.

5.2. Weighting by Inverse Squared Distance to τ

The κu and κv curvature-controlled meshes above demonstrate our ability
to articulate specific curvatures in specific directions at specific locations. In
this section we examine the effects of weighting only by squared distance to
the the point pair. It is a simpler algorithm that does not use orthogonal
osculating circles and yet still creates alluring results.

An n-sized field of point pairs is used to warp a pre-existing mesh. The
point pair generator to be applied to a point p is a sum of n distance-weighted
point pairs:

τp =
n∑
i

1
d2p

τix (23)



82                             P. Colapinto Adv. Appl. Cliff ord Algebras

a) b)

e) d)

Figure 10. Surfaces here are built from addition of multiple
patches from figure 9. a) Hyperbolic saddle points, b) umbilic
points. In c) we apply an assortment of curvature operators.
In d) the tangents point in various directions.

with τix a null point pair at x and the denominator is the squared distance
function d2p = −2p�x. Figure 11 shows various boosted forms created using
this method.

6. Linear Interpolation

For comparison to the squared distance-based methods outlined above, let
us explore the effects of an even simpler technique. Rather than weighting
based on squared distances d2u and d2v to two osculating circles or a squared
distance d2p to a null point pair location, we explore the effects of linear and
bilinear interpolation. We will not distinguish between u and v curvatures
and instead start with something quite basic: we define a line contour by
interpolating across two null point pairs.

Two null point pairs τ1 and τ2 are linearly interpolated:

τt = (1 − t)τ1 + tτ2, t ∈ [0, 1]. (24)
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a)
b)

c)
d)

e)

f)

g)

h)

Figure 11. Warping of a plane (a) and a sphere (b-h) mesh
by integrating multiple point pair generators located near
the mesh. Arrows once again represent the null point pair
generators. To transform each point, we use equation 23
where each generator is weighted based on the inverse of
its squared distance to the original mesh point.

The resulting point pair, τt, is used to generate a boosting rotor Kt =
e−τt/2. This rotor is applied to points pt on the straight line interval connect-
ing the two point pairs.
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We can create the surfaces of figure 12 by using four null point pair gen-
erators and creating affine combinations of them using bilinear interpolation.

τst = (1 − s)((1 − t)τ1 + tτ2) + s((1 − tτ3) + tτ4), t ∈ [0, 1], s ∈ [0, 1]. (25)

A point on a surface is evaluated as in equation 19:

p
′
st = fn(Kst[pst]) (26)

where Kst = e−
τst
2 is the boosting rotor evaluated at s, t using bilinear in-

terpolation, pst is a point on a grid and fn(p) is our normalization function
from equation 20.

Figure 12. Surface patches generated by four boosts. Point
pairs are first created by translating tangents to the four
corners of a grid. At each vertex of the grid, rotors are built
by bilinear interpolation of the corner point pairs. Boosting
spinors are then used to warp that point on the grid.

The linear approach to surface generation is a direct extrapolation of
the method using twist fields described by Wareham, Cameron and Lasenby
in [7]. Both are parametric methods offering intriguing alternatives to nurbs-
based modelling, however we find that the twist-field method leads to more
predictable results. While our results maintain a relationship between the
orientation of the generating point pairs and the curvature of the contour, the
precise relationship is counterintuitive. Until we can implement an absolute
transformation from a tangent vector at the origin that can be interpolated
and exponentiated, we prefer to use the more easily interpretable weight-
based methods outlined above.

7. A Note on Exponentiating the Sum of Point Pair
Generators

Individually, each null point pair generates a dipole warp field around it, as
shown in figure 13. Given two or more point pair generators, we have seen that
we can sum these generators before exponentiating to manipulate curvature
across a surface. Thus we have been able to define a field of dipole boosting
forces.
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Figure 13. A dipole field is created by a boost using equa-
tions 27 and 28.

We must take a moment to distinguish, however, the difference between
this method of summing up all the point pairs before generating a single
transformation, and the typical vector algebra approach to modelling forces,
where one generates a transformation for each generator and then sums up
the displacements. This latter approach is commonly used in modelling elec-
tromagnetic fields, for instance. Since we are primarily interested in manip-
ulating shapes intuitively and consistently, the first method works well: it is
computationally efficient, and provides consistent, controllable results.

To emphasize the difference between these methods, we take a look at
each as they act upon a field of points. A boost generated from a single null
point pair creates a dipole field around it, visualized in figure 13. At each
point puv in a vector field, we calculate the Euclidean displacement vector

vuv = p
′
uv − puv (27)

where p
′
uv = fn(Kuv[puv]) and bold p signifies use of the Euclidean vector

component and
Kuv = e−

τ
d2 (28)

with d2 the squared distance between the translated tangent τ and the point
puv.

Figure 14 demonstrates that when calculating the effect of multiple
dipole generating boosts in a field, the two methods are not equivalent. Thus
while boosts generate dipole fields individually, their sums do not appear to
generate accurate models of physical forces.

It is also important to note that in using the interpolation method of
equation 21 we are not creating suitable bivector splits as outlined in [4].
Typically in our case:

e τ1+τ2 �= eτ1eτ2

τ1τ2 �= τ2τ1.

This is because null point pairs only commute if they are located at
the same point in space, and we are explicity spreading them across a field.
Since we treat τ = τ1 + τ2 as an affinely interpolated 2-blade, the exponent is
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a) p
′
uv = e

−( τa
d2a

+
τb
d2
b

)
puve

( τa
d2a

+
τb
d2
b

) b) p
′
uv = e

− τa
d2a puve

τa
d2a + e

− τb
d2
b puve

τb
d2
b

Figure 14. In each image, two dipole generating point pairs
τa and τb act on a field of points p. We draw a vector field
at each point puv defined by vuv = p

′
uv − puv. The equipo-

tential (dotted) lines of the vector field are also drawn. Two
integration methods are examined. a) Summing generators
weighted by their inverse squared distance to each point,
and then creating a single rotor displacement. b) Calculat-
ing displacements for each generator and then summing the
displacements. Method b) is standard in vector field topol-
ogy. Method a) is the simplified approach used in this paper.
The methods are clearly not equivalent, but our implementa-
tion is cheaper to compute and remains intuitive to control.

not always null in this case, and therefore equation 8 does not hold, since it
only describes null point pair exponentials. We therefore calculate our rotor
using equation 9, solving sinh(τ) using the rules for imaginary, real, and null
τ defined in [4] and repeated here in equation 10.

8. Conclusions and Future Work

CGA offers the graphics researcher the opportunity to discover and exper-
iment with powerful methods for the synthesis of forms. In this paper we
have explored some synthesis techniques through bending and warping using
boosting rotors generated by point pairs. We have seen that such boosting op-
erations can be used to generate the Hopf fibration. We have described specific
formulations for transforming curvature at an arbitrary point by generating
osculating circles, and began to establish a protocol for parametric design
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through curvature control. By interpolating between point pair generators in
a field based on various squared distance and linear metrics we were able to
propose a novel design technique for the generation of surfaces. While a more
rigorous treatment is necessary, the simple fact that we were able to generate
expressive forms through simple extrapolation of methods investigated in the
references lends credance to the inventive powers of geometric algebra.

It is hoped that such formal investigations will provoke more explo-
rations into curvature operations with tangent vectors. For instance, one
could use the commutator product of a point with a point pair to estab-
lish a curvature differential operator, or develop an analytical technique that
decomposes arbitrary forms into a set of weighted basis boosts. The mod-
elling of more complicated topological operations and morphogenetic catas-
trophes should be explored, especially those with biological significance, such
as invagination and intussuceptions. A formulation of implicit surface design
using boosting operators is also desirable. Additionally, we should investi-
gate whether the methods outlined in this paper can be used to directly
model actual physical forces; pneumatic pressures or special cases of electro-
magnetic forces perhaps. Ultimately, such explorations could help establish
a new boost-based framework for artistic and scientific modelling.
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