Visualizing Data

Ben Fry

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Visualizing Data
by Ben Fry

Copyright © 2008 Ben Fry. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Ellen Troutman Zaig
Production Editor: Loranah Dimant Cover Designer: Karen Montgomery
Copyeditor: Genevieve d’Entremont Interior Designer: David Futato
Proofreader: Loranah Dimant lllustrator: Jessamyn Read

Printing History:

December 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Visualizing Data, the image of an owl, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN-10: 0-596-51455-7
ISBN-13: 978-0-596-51455-6
[C]

http://safari.oreilly.com
mailto:corporate@oreilly.com

Preface

1.

The Seven Stages of Visualizing Data . . .

Why Data Display Requires Planning
An Example

Iteration and Combination
Principles

Onward

Getting Started with Processing

Sketching with Processing

Exporting and Distributing Your Work
Examples and Reference

Functions

Sketching and Scripting

Ready?

Mapping

Drawing a Map
Locations on a Map
Data on a Map

Using Your Own Data
Next Steps

Table of Contents

14
15
18

.............................. 19

20
23
24
27
28
30

31
32
34
51
53

4, TiMe SerieS ... 54

Milk, Tea, and Coffee (Acquire and Parse) 55
Cleaning the Table (Filter and Mine) 55
A Simple Plot (Represent and Refine) 57
Labeling the Current Data Set (Refine and Interact) 59
Drawing Axis Labels (Refine) 62
Choosing a Proper Representation (Represent and Refine) 73
Using Rollovers to Highlight Points (Interact) 76
Ways to Connect Points (Refine) 77
Text Labels As Tabbed Panes (Interact) 83
Interpolation Between Data Sets (Interact) 87
End of the Series 92
5. Connections and Correlations 94
Changing Data Sources 94
Problem Statement 95
Preprocessing 96
Using the Preprocessed Data (Acquire, Parse, Filter, Mine) 111
Displaying the Results (Represent) 118
Returning to the Question (Refine) 121
Sophisticated Sorting: Using Salary As a Tiebreaker (Mine) 126
Moving to Multiple Days (Interact) 127
Smoothing Out the Interaction (Refine) 132
Deployment Considerations (Acquire, Parse, Filter) 133
6. ScatterplotMaps 145
Preprocessing 145
Loading the Data (Acquire and Parse) 155
Drawing a Scatterplot of Zip Codes (Mine and Represent) 157
Highlighting Points While Typing (Refine and Interact) 158
Show the Currently Selected Point (Refine) 162
Progressively Dimming and Brightening Points (Refine) 165
Zooming In (Interact) 167
Changing How Points Are Drawn When Zooming (Refine) 177
Deployment Issues (Acquire and Refine) 178
Next Steps 180

iv | Tableof Contents

7. Trees, Hierarchies,and Recursion 182

Using Recursion to Build a Directory Tree 182
Using a Queue to Load Asynchronously (Interact) 186
An Introduction to Treemaps 189
Which Files Are Using the Most Space? 194
Viewing Folder Contents (Interact) 199
Improving the Treemap Display (Refine) 201
Flying Through Files (Interact) 208
Next Steps 219
8. NetworksandGraphs 220
Simple Graph Demo 220
A More Complicated Graph 229
Approaching Network Problems 240
Advanced Graph Example 242
Mining Additional Information 262
9. AcquiringData 264
Where to Find Data 265
Tools for Acquiring Data from the Internet 266
Locating Files for Use with Processing 268
Loading Text Data 270
Dealing with Files and Folders 276
Listing Files in a Folder 277
Asynchronous Image Downloads 281
Using openStream() As a Bridge to Java 284
Dealing with Byte Arrays 284
Advanced Web Techniques 284
Using a Database 288
Dealing with a Large Number of Files 295
10. ParsingDatal 296
Levels of Effort 296
Tools for Gathering Clues 298
Text Is Best 299
Text Markup Languages 303

Table of Contents | v

Regular Expressions (regexps) 316
Grammars and BNF Notation 316
Compressed Data 317
Vectors and Geometry 320
Binary Data Formats 325
Advanced Detective Work 328
11. Integrating ProcessingwithJava 331
Programming Modes 331
Additional Source Files (Tabs) 334
The Preprocessor 335
API Structure 336
Embedding PApplet into Java Applications 338
Using Java Code in a Processing Sketch 342
Using Libraries 343
Building with the Source for processing.core 343
Bibliography 345
Index ... 349
vi | Tableof Contents

Preface

When I show visualization projects to an audience, one of the most common ques-
tions is, “How do you do this?” Other books about data visualization do exist, but
the most prominent ones are often collections of academic papers; in any case, few
explain how to actually build representations. Books from the field of design that
offer advice for creating visualizations see the field only in terms of static displays,
ignoring the possibility of dynamic, software-based visualizations. A number spend
most of their time dissecting what’s wrong with given representations—sometimes
providing solutions, but more often not.

In this book, I wanted to offer something for people who want to get started build-
ing their own visualizations, something to use as a jumping-off point for more com-
plicated work. I don’t cover everything, but I've tried to provide enough background
so that you’ll know where to go next.

I wrote this book because I wanted to have a way to make the ideas from
Computational Information Design, my Ph.D. dissertation, more accessible to a wider
audience. More specifically, I wanted to see these ideas actually applied, rather than
limited to an academic document on a shelf. My dissertation covered the process of
getting from data to understanding; in other words, from considering a pile of infor-
mation to presenting it usefully, in a way that can be easily understood and inter-
acted with. This process is covered in Chapter 1, and used throughout the book as a
framework for working through visualizations.

Most of the examples in this book are written from scratch. Rather than relying on
toolkits or libraries that produce charts or graphs, instead you learn how to create
them using a little math, some lines and rectangles, and bits of text. Many readers
may have tried some toolkits and found them lacking, particularly because they want
to customize the display of their information. A tool that has generic uses will pro-
duce only generic displays, which can be disappointing if the displays do not suit
your data set. Data can take many interesting forms that require unique types of dis-
play and interaction; this book aims to open up your imagination in ways that collec-
tions of bar and pie charts cannot.

vii

This book uses Processing (http://processing.org), a simple programming environ-
ment and API that I co-developed with Casey Reas of UCLA. Processing’s program-
ming environment makes it easy to sit down and “sketch” code to produce visual
images quickly. Once you outgrow the environment, it’s possible to use a regular
Java IDE to write Processing code because the API is based on Java. Processing is free
to download and open source. It has been in development since 2001, and we’ve had
about 100,000 people try it out in the last 12 months. Today Processing is used by
tens of thousands of people for all manners of work. When 1 began writing this
book, I debated which language and API to use. It could have been based on Java,
but I realized I would have found myself re-implementing the Processing API to
make things simple. It could have been based on Actionscript and Flash, but Flash is
expensive to buy and tends to break down when dealing with larger data sets. Other
scripting languages such as Python and Ruby are useful, but their execution speeds
don’t keep up with Java. In the end, Processing was the right combination of cost,
ease of use, and execution speed.

The Audience for This Book

In the spring of 2007, T co-taught an Information Visualization course at Carnegie
Mellon. Our 30 students ranged from a freshman in the art school to a Ph.D. candi-
date in computer science. In between were graduate students from the School of
Design and various other undergrads. Their skill levels were enormously varied, but
that was less important than their level of curiosity, and students who were curious
and willing to put in some work managed to overcome the technical difficulties (for
the art and design students) or the visual demands (for those with an engineering
background).

This book is targeted at a similar range of backgrounds, if less academic. I'm trying
to address people who want to ask questions, play with data, and gain an under-
standing of how to communicate information to others. For instance, the book is for
web designers who want to build more complex visualizations than their tools will
allow. It’s also for software engineers who want to become adept at writing software
that represents data—that calls on them to try out new skills, even if they have some
background in building Uls. None of this is rocket science, but it isn’t always obvi-
ous how to get started.

Fundamentally, this book is for people who have a data set, a curiosity to explore it,
and an idea of what they want to communicate about it. The set of people who visu-
alize data is growing extremely quickly as we deal with more and more information.
Even more important, the audience has moved far beyond those who are experts in
visualization. By making these ideas accessible to a wide range of people, we should
see some truly amazing things in the next decade.

vii | Preface

http://processing.org

Background Information

Because the audience for this book includes both programmers and non-
programmers, the material varies in complexity. Beginners should be able to pick it
up and get through the first few chapters, but they may find themselves lost as we get
into more complicated programming topics. If you’re looking for a gentler introduc-
tion to programming with Processing, other books are available (including one writ-
ten by Casey Reas and me) that are more suited to learning the concepts from
scratch, though they don’t cover the specifics of visualizing data. Chapters 1-4 can
be understood by someone without any programming background, but the later
chapters quickly become more difficult.

You’ll be most successful with this book if you have some familiarity with writing
code—whether it’s Java, C++, or Actionscript. This is not an advanced text by any
means, but a little background in writing code will go a long way toward understand-
ing the concepts.

Overview of the Book

Chapter 1, The Seven Stages of Visualizing Data, covers the process for developing a
useful visualization, from acquiring data to interacting with it. This is the framework
we’ll use as we attack problems in later chapters.

Chapter 2, Getting Started with Processing, is a basic introduction to the Processing
environment and syntax. It provides a bit of background on the structure of the API
and the philosophy behind the project’s development.

Chapters 3 through 8 cover example projects that get progressively more
complicated.

Chapter 3, Mapping, plots data points on a map, our first introduction to reading
data from the disk and representing it on the screen.

Chapter 4, Time Series, covers several methods of plotting charts that represent how
data changes over time.

Chapter 5, Connections and Correlations, is the first chapter that really delves into
how we acquire and parse a data set. The example in this chapter reads data from the
MLB.com web site and produces an image correlating player salaries and team per-
formance over the course of a baseball season. It’s an in-depth example illustrating
how to scrape data from a web site that lacks an official API. These techniques can
be applied to many other projects, even if you’re not interested in baseball.

Chapter 6, Scatterplot Maps, answers the question, “How do zip codes relate to geog-
raphy?” by developing a project that allows users to progressively refine a U.S. map
as they type a zip code.

Preface | ix

Chapter 7, Trees, Hierarchies, and Recursion, discusses trees and hierarchies. It cov-
ers recursion, an important topic when dealing with tree structures, and treemaps, a
useful representation for certain kinds of tree data.

Chapter 8, Networks and Graphs, is about networks of information, also called
graphs. The first half discusses ways to produce a representation of connections
between many nodes in a network, and the second half shows an example of doing
the same with web site traffic data to see how a site is used over time. The latter
project also covers how to integrate Processing with Eclipse, a Java IDE.

The last three chapters contain reference material, including more background and
techniques for acquiring and parsing data.

Chapter 9, Acquiring Data, is a kind of cookbook that covers all sorts of practical
techniques, from reading data from files, to spoofing a web browser, to storing data
in databases.

Chapter 10, Parsing Data, is also written in cookbook-style, with examples that illus-
trate the detective work involved in parsing data. Examples include parsing HTML
tables, XML, compressed data, and SVG shapes. It even includes a basic example of
watching a network connection to understand how an undocumented data protocol
works.

Chapter 11, Integrating Processing with Java, covers the specifics of how the Process-
ing API integrates with Java. It’s more of an appendix aimed at advanced Java pro-
grammers who want to use the API with their own projects.

Safari® Books Online

..+ When you see a Safari® Books Online icon on the cover of your

Safa rl “ favorite technology book, that means the book is available online
Bosksontine through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

I'd first like to thank O’Reilly Media for taking on this book. I was initially put in
touch with Steve Weiss, who met with me to discuss the book in the spring of 2006.
Steve later put me in touch with the Cambridge office, where Mike Hendrickson
became a champion for the book and worked to make sure that the contract hap-
pened. Tim O’Reilly’s enthusiasm along the way helped seal it.

x | Preface

I owe a great deal to my editor, Andy Oram, and assistant editor, Isabel Kunkle. With-
out Andy’s hard work and helpful suggestions, or Isabel’s focus on our schedule, I
might still be working on the outline for Chapter 4. Thanks also to those who reviewed
the draft manuscript: Brian DeLacey, Aidan Delaney, and Harry Hochheiser.

This book is based on ideas first developed as part of my doctoral work at the MIT
Media Laboratory. For that I owe my advisor of six years, John Maeda, and my
committee members, David Altshuler and Chris Pullman. Chris also pushed to have
the ideas published properly, which was a great encouragement.

I’d also like to thank Casey Reas, my friend, inspiration, and collaborator on Process-
ing, who has ensured that the project continues several years after its inception.

The content of the examples has been influenced by many courses I've taught as
workshops or in classrooms over the last few years—in particular, my visualization
courses at Harvard University and Carnegie Mellon (co-taught with Golan Levin),
and workshops at Anderson Ranch in Colorado and at Hangar in Barcelona. I owe a
lot to these student guinea pigs who taught me how to best explain this work.

Finally, thanks to my family, and immeasurable thanks to Shannon Hunt for edit-
ing, input, and moral support. Hers will be a tough act to follow while I return in
kind as she writes her book in the coming months.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).
Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.
Constant width
Indicates commands, options, variables, functions, types, classes, methods,
HTML and XML tags, the contents of files, and the output from commands.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values.

Preface | xi

This icon signifies a tip, suggestion, or general note.

*i‘
(152

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Visualizing Data by Ben Fry. Copy-
right 2008 Ben Fry, 978-0-596-51455-6.”

If you think your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596514556

xi | Preface

http://www.oreilly.com/catalog/9780596514556

The author also has a site for the book at:
http://benfry.com/writing

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://lwww.oreilly.com

Preface | xiii

http://www.oreilly.com/catalog/9780596514556
bookquestions@oreilly.com
http://www.oreilly.com

CHAPTER 1
The Seven Stages of Visualizing Data

The greatest value of a picture is when it forces us to
notice what we never expected to see.

—]John Tukey

What do the paths that millions of visitors take through a web site look like? How do
the 3.1 billion A, C, G, and T letters of the human genome compare to those of the
chimp or the mouse? Out of a few hundred thousand files on your computer’s hard
disk, which ones are taking up the most space, and how often do you use them? By
applying methods from the fields of computer science, statistics, data mining,
graphic design, and visualization, we can begin to answer these questions in a mean-
ingful way that also makes the answers accessible to others.

All of the previous questions involve a large quantity of data, which makes it
extremely difficult to gain a “big picture” understanding of its meaning. The prob-
lem is further compounded by the data’s continually changing nature, which can
result from new information being added or older information continuously being
refined. This deluge of data necessitates new software-based tools, and its complex-
ity requires extra consideration. Whenever we analyze data, our goal is to highlight
its features in order of their importance, reveal patterns, and simultaneously show
features that exist across multiple dimensions.

This book shows you how to make use of data as a resource that you might other-
wise never tap. You'll learn basic visualization principles, how to choose the right
kind of display for your purposes, and how to provide interactive features that will
bring users to your site over and over again. You’ll also learn to program in Process-
ing, a simple but powerful environment that lets you quickly carry out the tech-
niques in this book. You’ll find Processing a good basis for designing interfaces
around large data sets, but even if you move to other visualization tools, the ways of
thinking presented here will serve you as long as human beings continue to process
information the same way they’ve always done.

Why Data Display Requires Planning

Each set of data has particular display needs, and the purpose for which you’re using
the data set has just as much of an effect on those needs as the data itself. There are
dozens of quick tools for developing graphics in a cookie-cutter fashion in office pro-
grams, on the Web, and elsewhere, but complex data sets used for specialized appli-
cations require unique treatment. Throughout this book, we’ll discuss how the
characteristics of a data set help determine what kind of visualization you’ll use.

Too Much Information

When you hear the term “information overload,” you probably know exactly what it
means because it’s something you deal with daily. In Richard Saul Wurman’s book
Information Anxiety (Doubleday), he describes how the New York Times on an aver-
age Sunday contains more information than a Renaissance-era person had access to
in his entire lifetime.

But this is an exciting time. For $300, you can purchase a commodity PC that has
thousands of times more computing power than the first computers used to tabulate
the U.S. Census. The capability of modern machines is astounding. Performing
sophisticated data analysis no longer requires a research laboratory, just a cheap
machine and some code. Complex data sets can be accessed, explored, and analyzed
by the public in a way that simply was not possible in the past.

The past 10 years have also brought about significant changes in the graphic capabil-
ities of average machines. Driven by the gaming industry, high-end 2D and 3D
graphics hardware no longer requires dedicated machines from specific vendors, but
can instead be purchased as a $100 add-on card and is standard equipment for any
machine costing $700 or more. When not used for gaming, these cards can render
extremely sophisticated models with thousands of shapes, and can do so quickly
enough to provide smooth, interactive animation. And these prices will only
decrease—within a few years’ time, accelerated graphics will be standard equipment
on the aforementioned commodity PC.

Data Collection

We're getting better and better at collecting data, but we lag in what we can do with
it. Most of the examples in this book come from freely available data sources on the
Internet. Lots of data is out there, but it’s not being used to its greatest potential
because it’s not being visualized as well as it could be. (More about this can be found
in Chapter 9, which covers places to find data and how to retrieve it.)

With all the data we’ve collected, we still don’t have many satisfactory answers to the
sort of questions that we started with. This is the greatest challenge of our information-
rich era: how can these questions be answered quickly, if not instantaneously? We’re

2 | Chapter1: The Seven Stages of Visualizing Data

getting so good at measuring and recording things, why haven’t we kept up with the
methods to understand and communicate this information?

Thinking About Data

We also do very little sophisticated thinking about information itself. When AOL
released a data set containing the search queries of millions of users that had been
“randomized” to protect the innocent, articles soon appeared about how people
could be identified by—and embarrassed by—information regarding their search
habits. Even though we can collect this kind of information, we often don’t know
quite what it means. Was this a major issue or did it simply embarrass a few AOL
users? Similarly, when millions of records of personal data are lost or accessed ille-
gally, what does that mean? With so few people addressing data, our understanding
remains quite narrow, boiling down to things like, “My credit card number might be
stolen” or “Do I care if anyone sees what I search?”

Data Never Stays the Same

We might be accustomed to thinking about data as fixed values to be analyzed, but
data is a moving target. How do we build representations of data that adjust to new
values every second, hour, or week? This is a necessity because most data comes from
the real world, where there are no absolutes. The temperature changes, the train runs
late, or a product launch causes the traffic pattern on a web site to change drastically.

What happens when things start moving? How do we interact with “live” data? How
do we unravel data as it changes over time? We might use animation to play back the
evolution of a data set, or interaction to control what time span we’re looking at.
How can we write code for these situations?

What Is the Question?

As machines have enormously increased the capacity with which we can create
(through measurements and sampling) and store data, it becomes easier to dis-
associate the data from the original reason for collecting it. This leads to an all-too
frequent situation: approaching visualization problems with the question, “How can
we possibly understand so much data?”

As a contrast, think about subway maps, which are abstracted from the complex shape
of the city and are focused on the rider’s goal: to get from one place to the next. Limit-
ing the detail of each shape, turn, and geographical formation reduces this complex
data set to answering the rider’s question: “How do I get from point A to point B?”

Harry Beck invented the format now commonly used for subway maps in the 1930s,
when he redesigned the map of the London Underground. Inspired by the layout of

Why Data Display Requires Planning | 3

circuit boards, the map simplified the complicated Tube system to a series of verti-
cal, horizontal, and 45°diagonal lines. While attempting to preserve as much of the
relative physical layout as possible, the map shows only the connections between sta-
tions, as that is the only information that riders use to decide their paths.

When beginning a visualization project, it’s common to focus on all the data that has
been collected so far. The amounts of information might be enormous—people like
to brag about how many gigabytes of data they’ve collected and how difficult their
visualization problem is. But great information visualization never starts from the
standpoint of the data set; it starts with questions. Why was the data collected,
what’s interesting about it, and what stories can it tell?

The most important part of understanding data is identifying the question that you
want to answer. Rather than thinking about the data that was collected, think about
how it will be used and work backward to what was collected. You collect data
because you want to know something about it. If you don’t really know why you’re
collecting it, you're just hoarding it. It’s easy to say things like, “I want to know
what’s in it,” or “I want to know what it means.” Sure, but what’s meaningful?

The more specific you can make your question, the more specific and clear the visual
result will be. When questions have a broad scope, as in “exploratory data analysis”
tasks, the answers themselves will be broad and often geared toward those who are
themselves versed in the data. John Tukey, who coined the term Exploratory Data
Analysis, said “...pictures based on exploration of data should force their messages
upon us.”” Too many data problems are labeled “exploratory” because the data col-
lected is overwhelming, even though the original purpose was to answer a specific
question or achieve specific results.

One of the most important (and least technical) skills in understanding data is ask-
ing good questions. An appropriate question shares an interest you have in the data,
tries to convey it to others, and is curiosity-oriented rather than math-oriented.
Visualizing data is just like any other type of communication: success is defined by
your audience’s ability to pick up on, and be excited about, your insight.

Admittedly, you may have a rich set of data to which you want to provide flexible
access by not defining your question too narrowly. Even then, your goal should be to
highlight key findings. There is a tendency in the visualization field to borrow from
the statistics field and separate problems into exploratory and expository, but for the
purposes of this book, this distinction is not useful. The same methods and process
are used for both.

In short, a proper visualization is a kind of narrative, providing a clear answer to a
question without extraneous details. By focusing on the original intent of the ques-
tion, you can eliminate such details because the question provides a benchmark for
what is and is not necessary.

* Tukey, John Wilder. Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977.

4 | Chapter1: The Seven Stages of Visualizing Data

A Combination of Many Disciplines

Given the complexity of data, using it to provide a meaningful solution requires
insights from diverse fields: statistics, data mining, graphic design, and information
visualization. However, each field has evolved in isolation from the others.

Thus, visual design—-the field of mapping data to a visual form—typically does not
address how to handle thousands or tens of thousands of items of data. Data mining
techniques have such capabilities, but they are disconnected from the means to inter-
act with the data. Software-based information visualization adds building blocks for
interacting with and representing various kinds of abstract data, but typically these
methods undervalue the aesthetic principles of visual design rather than embrace their
strength as a necessary aid to effective communication. Someone approaching a data
representation problem (such as a scientist trying to visualize the results of a study
involving a few thousand pieces of genetic data) often finds it difficult to choose a rep-
resentation and wouldn’t even know what tools to use or books to read to begin.

Process

We must reconcile these fields as parts of a single process. Graphic designers can learn
the computer science necessary for visualization, and statisticians can communicate
their data more effectively by understanding the visual design principles behind data
representation. The methods themselves are not new, but their isolation within indi-
vidual fields has prevented them from being used together. In this book, we use a pro-
cess that bridges the individual disciplines, placing the focus and consideration on how
data is understood rather than on the viewpoint and tools of each individual field.

The process of understanding data begins with a set of numbers and a question. The
following steps form a path to the answer:

Acquire
Obtain the data, whether from a file on a disk or a source over a network.

Parse
Provide some structure for the data’s meaning, and order it into categories.

Filter
Remove all but the data of interest.
Mine
Apply methods from statistics or data mining as a way to discern patterns or
place the data in mathematical context.
Represent
Choose a basic visual model, such as a bar graph, list, or tree.
Refine
Improve the basic representation to make it clearer and more visually engaging.

Interact
Add methods for manipulating the data or controlling what features are visible.

Why Data Display Requires Planning | 5

Of course, these steps can’t be followed slavishly. You can expect that they’ll be
involved at one time or another in projects you develop, but sometimes it will be four
of the seven, and at other times all of them.

Part of the problem with the individual approaches to dealing with data is that the
separation of fields leads to different people each solving an isolated part of the prob-
lem. When this occurs, something is lost at each transition—Ilike a “telephone game”
in which each step of the process diminishes aspects of the initial question under
consideration. The initial format of the data (determined by how it is acquired and
parsed) will often drive how it is considered for filtering or mining. The statistical
method used to glean useful information from the data might drive the initial presen-
tation. In other words, the final representation reflects the results of the statistical
method rather than a response to the initial question.

Similarly, a graphic designer brought in at the next stage will most often respond to
specific problems with the representation provided by the previous steps, rather than
focus on the initial question. The visualization step might add a compelling and
interactive means to look at the data filtered from the earlier steps, but the display is
inflexible because the earlier stages of the process are hidden. Furthermore,
practitioners of each of the fields that commonly deal with data problems are often
unclear about how to traverse the wider set of methods and arrive at an answer.

This book covers the whole path from data to understanding: the transformation of a
jumble of raw numbers into something coherent and useful. The data under consid-
eration might be numbers, lists, or relationships between multiple entities.

It should be kept in mind that the term visualization is often used to describe the art
of conveying a physical relationship, such as the subway map mentioned near the
start of this chapter. That’s a different kind of analysis and skill from information
visualization, where the data is primarily numeric or symbolic (e.g., A, C, G, and T—
the letters of genetic code—and additional annotations about them). The primary
focus of this book is information visualization: for instance, a series of numbers that
describes temperatures in a weather forecast rather than the shape of the cloud cover
contributing to them.

An Example

To illustrate the seven steps listed in the previous section, and how they contribute
to effective information visualization, let’s look at how the process can be applied to
understanding a simple data set. In this case, we’ll take the zip code numbering sys-
tem that the U.S. Postal Service uses. The application is not particularly advanced,
but it provides a skeleton for how the process works. (Chapter 6 contains a full
implementation of the project.)

6 | Chapter1: TheSeven Stages of Visualizing Data

What Is the Question?

All data problems begin with a question and end with a narrative construct that pro-
vides a clear answer. The Zipdecode project (described further in Chapter 6) was
developed out of a personal interest in the relationship of the zip code numbering
system to geographic areas. Living in Boston, I knew that numbers starting with a
zero denoted places on the East Coast. Having spent time in San Francisco, I knew
the initial numbers for the West Coast were all nines. I grew up in Michigan, where
all our codes were four-prefixed. But what sort of area does the second digit specify?
Or the third?

The finished application was initially constructed in a few hours as a quick way to
take what might be considered a boring data set (a long list of zip codes, towns, and
their latitudes and longitudes) and create something engaging for a web audience
that explained how the codes related to their geography.

Acquire

The acquisition step involves obtaining the data. Like many of the other steps, this
can be either extremely complicated (i.e., trying to glean useful data from a large sys-
tem) or very simple (reading a readily available text file).

A copy of the zip code listing can be found on the U.S. Census Bureau web site, as it
is frequently used for geographic coding of statistical data. The listing is a freely
available file with approximately 42,000 lines, one for each of the codes, a tiny por-
tion of which is shown in Figure 1-1.

Figure 1-1. Zip codes in the format provided by the U.S. Census Bureau

AnExample | 7

Acquisition concerns how the user downloads your data as well as how you obtained
the data in the first place. If the final project will be distributed over the Internet, as
you design the application, you have to take into account the time required to down-
load data into the browser. And because data downloaded to the browser is proba-
bly part of an even larger data set stored on the server, you may have to structure the
data on the server to facilitate retrieval of common subsets.

Parse

After you acquire the data, it needs to be parsed—changed into a format that tags
each part of the data with its intended use. Each line of the file must be broken along
its individual parts; in this case, it must be delimited at each tab character. Then,
each piece of data needs to be converted to a useful format. Figure 1-2 shows the lay-
out of each line in the census listing, which we have to understand to parse it and get
out of it what we want.

string float float character string index index

Figure 1-2. Structure of acquired data

Each field is formatted as a data type that we’ll handle in a conversion program:

String
A set of characters that forms a word or a sentence. Here, the city or town name
is designated as a string. Because the zip codes themselves are not so much num-
bers as a series of digits (if they were numbers, the code 02139 would be stored
as 2139, which is not the same thing), they also might be considered strings.
Float
A number with decimal points (used for the latitudes and longitudes of each
location). The name is short for floating point, from programming nomenclature
that describes how the numbers are stored in the computer’s memory.

8 | Chapter1: The Seven Stages of Visualizing Data

Character
A single letter or other symbol. In this data set, a character sometimes desig-
nates special post offices.

Integer
A number without a fractional portion, and hence no decimal points (e.g., —14,
0, or 237).

Index
Data (commonly an integer or string) that maps to a location in another table of
data. In this case, the index maps numbered codes to the names and two-digit
abbreviations of states. This is common in databases, where such an index is
used as a pointer into another table, sometimes as a way to compact the data
further (e.g., a two-digit code requires less storage than the full name of the state
or territory).

With the completion of this step, the data is successfully tagged and consequently
more useful to a program that will manipulate or represent it in some way.

Filter

The next step involves filtering the data to remove portions not relevant to our use.
In this example, for the sake of keeping it simple, we’ll be focusing on the contigu-
ous 48 states, so the records for cities and towns that are not part of those states—
Alaska, Hawaii, and territories such as Puerto Rico—are removed. Another project
could require significant mathematical work to place the data into a mathematical
model or normalize it (convert it to an acceptable range of numbers).

Mine

This step involves math, statistics, and data mining. The data in this case receives
only a simple treatment: the program must figure out the minimum and maximum
values for latitude and longitude by running through the data (as shown in
Figure 1-3) so that it can be presented on a screen at a proper scale. Most of the time,
this step will be far more complicated than a pair of simple math operations.

Represent

This step determines the basic form that a set of data will take. Some data sets are
shown as lists, others are structured like trees, and so forth. In this case, each zip
code has a latitude and longitude, so the codes can be mapped as a two-dimensional
plot, with the minimum and maximum values for the latitude and longitude used for
the start and end of the scale in each dimension. This is illustrated in Figure 1-4.

The Represent stage is a linchpin that informs the single most important decision in
a visualization project and can make you rethink earlier stages. How you choose to
represent the data can influence the very first step (what data you acquire) and the
third step (what particular pieces you extract).

AnExample | 9

|

min min
24.655691 -124.62608

max max
48.987385 -67.040764

Figure 1-3. Mining the data: just compare values to find the minimum and maximum

Figure 1-4. Basic visual representation of zip code data

10 | Chapter1: The Seven Stages of Visualizing Data

Refine

In this step, graphic design methods are used to further clarify the representation by
calling more attention to particular data (establishing hierarchy) or by changing
attributes (such as color) that contribute to readability.

Hierarchy is established in Figure 1-5, for instance, by coloring the background deep
gray and displaying the selected points (all codes beginning with four) in white and
the deselected points in medium yellow.

Figure 1-5. Using color to refine the representation

Interact

The next stage of the process adds interaction, letting the user control or explore the
data. Interaction might cover things like selecting a subset of the data or changing
the viewpoint. As another example of a stage affecting an earlier part of the process,
this stage can also affect the refinement step, as a change in viewpoint might require
the data to be designed differently.

In the Zipdecode project, typing a number selects all zip codes that begin with that
number. Figures 1-6 and 1-7 show all the zip codes beginning with zero and nine,
respectively.

Another enhancement to user interaction (not shown here) enables the users to
traverse the display laterally and run through several of the prefixes. After typing part
or all of a zip code, holding down the Shift key allows users to replace the last num-
ber typed without having to hit the Delete key to back up.

AnExample | 11

Figure 1-6. The user can alter the display through choices (zip codes starting with 0)

Figure 1-7. The user can alter the display through choices (zip codes starting with 9)

Typing is a very simple form of interaction, but it allows the user to rapidly gain an
understanding of the zip code system’s layout. Just contrast this sample application
with the difficulty of deducing the same information from a table of zip codes and
city names.

The viewer can continue to type digits to see the area covered by each subsequent set
of prefixes. Figure 1-8 shows the region highlighted by the two digits 02, Figure 1-9
shows the three digits 021, and Figure 1-10 shows the four digits 0213. Finally,
Figure 1-11 shows what you get by entering a full zip code, 02139—a city name pops
up on the display.

12 | (Chapter1: The Seven Stages of Visualizing Data

Figure 1-8. Honing in with two digits (02)

Figure 1-9. Honing in with three digits (021)

In addition, users can enable a “zoom” feature that draws them closer to each sub-
sequent digit, revealing more detail around the area and showing a constant rate of
detail at each level. Because we’ve chosen a map as a representation, we could add
more details of state and county boundaries or other geographic features to help
viewers associate the “data” space of zip code points with what they know about the
local environment.

AnExample | 13

Figure 1-10. Honing in further with four digits (0213)

Figure 1-11. Honing in even further with the full zip code (02139)

Iteration and Combination

Figure 1-12 shows the stages in order and demonstrates how later decisions com-
monly reflect on earlier stages. Each step of the process is inextricably linked because
of how the steps affect one another. In the Zipdecode application, for instance:

* The need for a compact representation on the screen led me to refilter the data
to include only the contiguous 48 states.

* The representation step affected acquisition because after I developed the appli-
cation I modified it so it could show data that was downloaded over a slow

14 | Chapter1: The Seven Stages of Visualizing Data

Internet connection to the browser. My change to the structure of the data
allows the points to appear slowly, as they are first read from the data file,
employing the data itself as a “progress bar.”

* Interaction by typing successive numbers meant that the colors had to be modi-
fied in the visual refinement step to show a slow transition as points in the dis-
play are added or removed. This helps the user maintain context by preventing
the updates on-screen from being too jarring.

e N

acquire —» parse — filter ——» mine — represent — refine — interact

Figure 1-12. Interactions between the seven stages

The connections between the steps in the process illustrate the importance of the
individual or team in addressing the project as a whole. This runs counter to the com-
mon fondness for assembly-line style projects, where programmers handle the techni-
cal portions, such as acquiring and parsing data, and visual designers are left to
choose colors and typefaces. At the intersection of these fields is a more interesting
set of properties that demonstrates their strength in combination.

When acquiring data, consider how it can change, whether sporadically (such as
once a month) or continuously. This expands the notion of graphic design that’s tra-
ditionally focused on solving a specific problem for a specific data set, and instead
considers the meta-problem of how to handle a certain kind of data that might be
updated in the future.

In the filtering step, data can be filtered in real time, as in the Zipdecode application.
During visual refinement, changes to the design can be applied across the entire sys-
tem. For instance, a color change can be automatically applied to the thousands of
elements that require it, rather having to make such a tedious modification by hand.
This is the strength of a computational approach, where tedious processes are mini-
mized through automation.

Principles

I'll finish this general introduction to visualization by laying out some ways of think-
ing about data and its representation that have served me well over many years and
many diverse projects. They may seem abstract at first, or of minor importance to the
job you’re facing, but I urge you to return and reread them as you practice visualiza-
tion; they just may help you in later tasks.

Principles | 15

Each Project Has Unique Requirements

A visualization should convey the unique properties of the data set it represents. This
book is not concerned with providing a handful of ready-made “visualizations” that
can be plugged into any data set. Ready-made visualizations can help produce a
quick view of your data set, but they’re inflexible commodity items that can be
implemented in packaged software. Any bar chart or scatter plot made with Excel
will look like a bar chart or scatter plot made with Excel. Packaged solutions can
provide only packaged answers, like a pull-string toy that is limited to a handful of
canned phrases, such as “Sales show a slight increase in each of the last five years!”
Every problem is unique, so capitalize on that uniqueness to solve the problem.

Chapters in this book are divided by types of data, rather than types of display. In
other words, we’re not saying, “Here’s how to make a bar graph,” but “Here are sev-
eral ways to show a correlation.” This gives you a more powerful way to think about
maximizing what can be said about the data set in question.

I’'m often asked for a library of tools that will automatically make attractive represen-
tations of any given data set. But if each data set is different, the point of visualiza-
tion is to expose that fascinating aspect of the data and make it self-evident.
Although readily available representation toolkits are useful starting points, they
must be customized during an in-depth study of the task.

Data is often stored in a generic format. For instance, databases used for annotation
of genomic data might consist of enormous lists of start and stop positions, but those
lists vary in importance depending on the situation in which they’re being used. We
don’t view books as long abstract sequences of words, yet when it comes to informa-
tion, we’re often so taken with the enormity of the information and the low-level
abstractions used to store it that the narrative is lost. Unless you stop thinking about
databases, everything looks like a table—millions of rows and columns to be stored,
queried, and viewed.

In this book, we use a small collection of simple helper classes as starting points.
Often, we’ll be targeting the Web as a delivery platform, so the classes are designed
to take up minimal time for download and display. But I will also discuss more
robust versions of similar tools that can be used for more in-depth work.

This book aims to help you learn to understand data as a tool for human decision-
making—how it varies, how it can be used, and how to find what’s unique about
your data set. We’ll cover many standard methods of visualization and give you the
background necessary for making a decision about what sort of representation is
suitable for your data. For each representation, we consider its positive and negative
points and focus on customizing it so that it’s best suited to what you’re trying to
convey about your data set.

16 | Chapter1: The Seven Stages of Visualizing Data

Avoid the All-You-Can-Eat Buffet

Often, less detail will actually convey more information because the inclusion of
overly specific details causes the viewer to miss what’s most important or disregard
the image entirely because it’s too complex. Use as little data as possible, no matter
how precious it seems.

Consider a weather map, with curved bands of temperatures across the country. The
designers avoid giving each band a detailed edge (particularly because the data is
often fuzzy). Instead, they convey a broader pattern in the data.

Subway maps leave out the details of surface roads because the additional detail adds
more complexity to the map than necessary. Before maps were created in Beck’s
style, it seemed that knowing street locations was essential to navigating the subway.
Instead, individual stations are used as waypoints for direction finding. The impor-
tant detail is that your target destination is near a particular station. Directions can
be given in terms of the last few turns to be taken after you exit the station, or you
can consult a map posted at the station that describes the immediate area
aboveground.

It’s easy to collect data, and some people become preoccupied with simply accumu-
lating more complex data or data in mass quantities. But more data is not implicitly
better, and often serves to confuse the situation. Just because it can be measured
doesn’t mean it should. Perhaps making things simple is worth bragging about, but
making complex messes is not. Find the smallest amount of data that can still con-
vey something meaningful about the contents of the data set. As with Beck’s under-
ground map, focusing on the question helps define those minimum requirements.

The same holds for the many “dimensions” that are found in data sets. Web site traf-
fic statistics have many dimensions: IP address, date, time of day, page visited, previ-
ous page visited, result code, browser, machine type, and so on. While each of these
might be examined in turn, they relate to distinct questions. Only a few of the vari-
ables are required to answer a typical question, such as “How many people visited
page x over the last three months, and how has that figure changed each month?”
Avoid trying to show a burdensome multidimensional space that maps too many
points of information.

Know Your Audience

Finally, who is your audience? What are their goals when approaching a visualiza-
tion? What do they stand to learn? Unless it’s accessible to your audience, why are
you doing it? Making things simple and clear doesn’t mean assuming that your users
are idiots and “dumbing down” the interface for them.

Principles | 17

In what way will your audience use the piece? A mapping application used on a
mobile device has to be designed with a completely different set of criteria than one
used on a desktop computer. Although both applications use maps, they have little
to do with each other. The focus of the desktop application may be finding locations
and print maps, whereas the focus of the mobile version is actively following the
directions to a particular location.

Onward

In this chapter, we covered the process for attacking the common modern problems
of having too much data and having data that changes. In the next chapter, we’ll dis-
cuss Processing, the software tool used to handle data sets in this book.

18 | Chapter1: The Seven Stages of Visualizing Data

CHAPTER 2
Getting Started with Processing

The Processing project began in the spring of 2001 and was first used at a workshop
in Japan that August. Originally built as a domain-specific extension to Java targeted
at artists and designers, Processing has evolved into a full-blown design and proto-
typing tool used for large-scale installation work, motion graphics, and complex data
visualization. Processing is a simple programming environment that was created to
make it easier to develop visually oriented applications with an emphasis on anima-
tion and provide users with instant feedback through interaction. As its capabilities
have expanded over the past six years, Processing has come to be used for more
advanced production-level work in addition to its sketching role.

Processing is based on Java, but because program elements in Processing are fairly
simple, you can learn to use it from this book even if you don’t know any Java. If
you’re familiar with Java, it’s best to forget that Processing has anything to do with it
for a while, at least until you get the hang of how the API works. We’ll cover how to
integrate Java and Processing toward the end of the book.

The latest version of Processing can be downloaded at:
http://processing.org/download

An important goal for the project was to make this type of programming accessible
to a wider audience. For this reason, Processing is free to download, free to use, and
open source. But projects developed using the Processing environment and core
libraries can be used for any purpose. This model is identical to GCC, the GNU
Compiler Collection. GCC and its associated libraries (e.g., libc) are open source
under the GNU Public License (GPL), which stipulates that changes to the code
must be made available. However, programs created with GCC (examples too
numerous to mention) are not themselves required to be open source.

http://processing.org/download/

Processing consists of:

* The Processing Development Environment (PDE). This is the software that runs
when you double-click the Processing icon. The PDE is an Integrated
Development Environment with a minimalist set of features designed as a sim-
ple introduction to programming or for testing one-off ideas.

e A collection of commands (also referred to as functions or methods) that make
up the “core” programming interface, or API, as well as several libraries that sup-
port more advanced features, such as drawing with OpenGL, reading XML files,
and saving complex imagery in PDF format.

* A language syntax, identical to Java but with a few modifications. The changes
are laid out in detail toward the end of the book.

* An active online community, hosted at http://processing.org.

For this reason, references to “Processing” can be somewhat ambiguous. Are we talk-
ing about the API, the development environment, or the web site? T'll be careful to
differentiate them when referring to each.

Sketching with Processing

A Processing program is called a sketch. The idea is to make Java-style programming
feel more like scripting, and adopt the process of scripting to quickly write code.
Sketches are stored in the sketchbook, a folder that’s used as the default location for
saving all of your projects. When you run Processing, the sketch last used will auto-
matically open. If this is the first time Processing is used (or if the sketch is no longer
available), a new sketch will open.

Sketches that are stored in the sketchbook can be accessed from File — Sketchbook.
Alternatively, File - Open... can be used to open a sketch from elsewhere on the
system.

Advanced programmers need not use the PDE and may instead use its libraries with
the Java environment of choice. (This is covered toward the end of the book.) How-
ever, if you're just getting started, it’s recommended that you use the PDE for your
first few projects to gain familiarity with the way things are done. Although Process-
ing is based on Java, it was never meant to be a Java IDE with training wheels. To
better address our target audience, its conceptual model (how programs work, how
interfaces are built, and how files are handled) is somewhat different from Java’s.

Hello World

Programming languages are often introduced with a simple program that prints
“Hello World” to the console. The Processing equivalent is simply to draw a line:

line(15, 25, 70, 90);

20 | Chapter2: Getting Started with Processing

http://processing.org

Enter this example and press the Run button, which is an icon that looks like the Play
button on any audio or video device. The result will appear in a new window, with a
gray background and a black line from coordinate (15, 25) to (70, 90). The (0, 0) coor-
dinate is the upper-lefthand corner of the display window. Building on this program to
change the size of the display window and set the background color, type in the code
from Example 2-1.

Example 2-1. Simple sketch

size(400, 400);
background(192, 64, 0);
stroke(255);

line(150, 25, 270, 350);

This version sets the window size to 400x400 pixels, sets the background to an
orange-red, and draws the line in white, by setting the stroke color to 255. By
default, colors are specified in the range 0 to 255. Other variations of the parameters
to the stroke() function provide alternate results:

stroke(255); // sets the stroke color to white

stroke(255, 255, 255); // identical to stroke(255)

stroke(255, 128, 0); // bright orange (red 255, green 128, blue 0)
stroke (#FF8000); // bright orange as a web color

stroke(255, 128, 0, 128); // bright orange with 50% transparency

The same alternatives work for the fill() command, which sets the fill color, and
the background() command, which clears the display window. Like all Processing
methods that affect drawing properties, the fill and stroke colors affect all geometry
drawn to the screen until the next fill and stroke commands are executed.

A

It’s also possible to use the editor of your choice instead of the built-in
editor. Simply select “Use External Editor” in the Preferences window
.::‘ (Processing — Preferences on Mac OS X, or File — Preferences on
* Windows and Linux). When using an external editor, editing will be
disabled in the PDE, but the text will reload whenever you press Run.

Hello Mouse

A program written as a list of statements (like the previous examples) is called a basic
mode sketch. In basic mode, a series of commands are used to perform tasks or cre-
ate a single image without any animation or interaction. Interactive programs are
drawn as a series of frames, which you can create by adding functions titled setup()
and draw(), as shown in the continuous mode sketch in Example 2-2. They are built-
in functions that are called automatically.

Sketching with Processing | 21

Example 2-2. Simple continuous mode sketch

void setup() {
size(400, 400);
stroke(255);
background(192, 64, 0);
}

void draw() {
line(150, 25, mouseX, mouseY);

}

Example 2-2 is identical in function to Example 2-1, except that now the line follows
the mouse. The setup() block runs once, and the draw() block runs repeatedly. As
such, setup() can be used for any initialization; in this case, it’s used for setting the
screen size, making the background orange, and setting the stroke color to white.
The draw() block is used to handle animation. The size() command must always be
the first line inside setup().

Because the background() command is used only once, the screen will fill with lines
as the mouse is moved. To draw just a single line that follows the mouse, move the
background() command to the draw() function, which will clear the display window
(filling it with orange) each time draw() runs:
void setup() {
size(400, 400);
stroke(255);
}

void draw() {
background(192, 64, 0);
line(150, 25, mouseX, mouseY);
}
Basic mode programs are most commonly used for extremely simple examples, or for
scripts that run in a linear fashion and then exit. For instance, a basic mode program
might start, draw a page to a PDF file, and then exit.

Most programs employ continuous mode, which uses the setup() and draw()
blocks. More advanced mouse handling can also be introduced; for instance, the
mousePressed() method will be called whenever the mouse is pressed. So, in the
following example, when the mouse is pressed, the screen is cleared via the
background() command:
void setup() {
size(400, 400);
stroke(255);
}

void draw() {
line(150, 25, mouseX, mouseY);

}

22 | Chapter2: Getting Started with Processing

void mousePressed() {
background(192, 64, 0);
}
More about basic versus continuous mode programs can be found in the Program-
ming Modes section of the Processing reference, which can be viewed from Help —
Getting Started or online at http://processing.org/reference/environment.

Exporting and Distributing Your Work

One of the most significant features of the Processing environment is its ability to
bundle your sketch into an applet or application with just one click. Select File —
Export to package your current sketch as an applet. This will create a folder named
applet inside your sketch folder. Opening the index.html file inside that folder will
open your sketch in a browser. The applet folder can be copied to a web site intact
and will be viewable by users who have Java installed on their systems. Similarly, you
can use File - Export Application to bundle your sketch as an application for Win-
dows, Mac OS X, and Linux.

The applet and application folders are overwritten whenever you export—make a
copy or remove them from the sketch folder before making changes to the index.html
file or the contents of the folder.

More about the export features can be found in the reference; see http://processing.
org/reference/environment/export.html.

Saving Your Work

If you don’t want to distribute the actual project, you might want to create images of
its output instead. Images are saved with the saveFrame() function. Adding
saveFrame() at the end of draw() will produce a numbered sequence of TIFF-format
images of the program’s output, named screen-0001.tif, screen-0002.tif, and so on. A
new file will be saved each time draw() runs. Watch out because this can quickly fill
your sketch folder with hundreds of files. You can also specify your own name and
file type for the file to be saved with a command like:

saveFrame("output.png")

To do the same for a numbered sequence, use #s (hash marks) where the numbers
should be placed:

saveFrame("output-#i.png");

For high-quality output, you can write geometry to PDF files instead of the screen, as
described in the section “More About the size() Method,” later in this chapter.

Exporting and Distributing Your Work | 23

http://processing.org/reference/environment/
http://processing.org/reference/environment/export.html
http://processing.org/reference/environment/export.html

Examples and Reference

While many programmers learn to code in school, others teach themselves. Learning
on your own involves looking at lots of other code: running, altering, breaking, and
enhancing it until you can reshape it into something new. With this learning model
in mind, the Processing software download includes dozens of examples that demon-
strate different features of the environment and API.

The examples can be accessed from the File - Examples menu. They’re grouped into
categories based on their functions (such as Motion, Typography, and Image) or the
libraries they use (such as PDF, Network, and Video).

Find an interesting topic in the list and try an example. You’ll see commands that are
familiar, such as stroke(), line(), and background(), as well as others that have not
yet been covered. To see how a function works, select its name, and then right-click
and choose Find in Reference from the pop-up menu (Find in Reference can also be
found beneath the Help menu). That will open the reference for that function in your
default web browser.

In addition to a description of the function’s syntax, each reference page includes an
example that uses the function. The reference examples are much shorter (usually
four or five lines apiece) and easier to follow than the longer code examples.

More About the size() Method

The size() command also sets the global variables width and height. For objects
whose size is dependent on the screen, always use the width and height variables
instead of a number (this prevents problems when the size() line is altered):

size(400, 400);

// The wrong way to specify the middle of the screen
ellipse(200, 200, 50, 50);

// Always the middle, no matter how the size() line changes

ellipse(width/2, height/2, 50, 50);
In the earlier examples, the size() command specified only a width and height for
the new window. An optional parameter to the size() method specifies how graph-
ics are rendered. A renderer handles how the Processing API is implemented for a
particular output method (whether the screen, or a screen driven by a high-end
graphics card, or a PDF file). Several renderers are included with Processing, and
each has a unique function. At the risk of getting too far into the specifics, here are
examples of how to specify them with the size() command along with descriptions
of their capabilities.

24 | Chapter2: Getting Started with Processing

size(400, 400, JAVA2D);
The Java2D renderer is used by default, so this statement is identical to
size(400, 400). The Java2D renderer does an excellent job with high-quality 2D
vector graphics, but at the expense of speed. In particular, working with pixels is
slower compared to the P2D and P3D renderers.

size(400, 400, P2D);
The Processing 2D renderer is intended for simpler graphics and fast pixel opera-
tions. It lacks niceties such as stroke caps and joins on thick lines, but makes up
for it when you need to draw thousands of simple shapes or directly manipulate
the pixels of an image or video.

size(400, 400, P3D);
Similar to P2D, the Processing 3D renderer is intended for speed and pixel oper-
ations. It also produces 3D graphics inside a web browser, even without the use
of a library like Java3D. Image quality is poorer (the smooth() command is dis-
abled, and image accuracy is low), but you can draw thousands of triangles very
quickly.

size (400, 400, OPENGL);
The OpenGL renderer uses Sun’s Java for OpenGL (JOGL) library for faster ren-
dering, while retaining Processing’s simpler graphics APIs and the PDE’s easy
applet and application export. To use OpenGL graphics, you must select Sketch
— Import Library - OpenGL in addition to altering your size() command.
OpenGL applets also run within a web browser without additional modifica-
tion, but a dialog box will appear asking users whether they trust “Sun Micro-
systems, Inc.” to run Java for OpenGL on their computers. If this poses a
problem, the P3D renderer is a simpler, if less full-featured, solution.

size(400, 400, PDF, "output.pdf");
The PDF renderer draws all geometry to a file instead of the screen. Like the
OpenGL library, you must import the PDF library before using this renderer.
This is a cousin of the Java2D renderer, but instead writes directly to PDF files.

Each renderer has a specific role. P2D and P3D are great for pixel-based work, while
the JAVA2D and PDF settings will give you the highest quality 2D graphics. When
the Processing project first began, the P2D and P3D renderers were a single choice
(and, in fact, the only available renderer). This was an attempt to offer a unified
mode of thinking about drawing, whether in two or three dimensions. However, this
became too burdensome because of the number of tradeoffs that must be made
between 2D and 3D. A very different expectation of quality exists for 2D and 3D, for
instance, and trying to cover both sides in one renderer meant doing both poorly.

Examples and Reference | 25

Loading and Displaying Data

One of the unique aspects of the Processing API is the way files are handled. The
loadImage() and loadStrings() functions each expect to find a file inside a folder
named data, which is a subdirectory of the sketch folder.

The data Folder

The data folder addresses a common frustration when dealing with code that is tested
locally but deployed over the Web. Like Java, software written with Processing is sub-
ject to security restrictions that determine how a program can access resources such as
the local hard disk or other servers via the Internet. This prevents malicious developers
from writing code that could harm your computer or compromise your data.

The security restrictions can be tricky to work with during development. When run-
ning a program locally, data can be read directly from the disk, though it must be
placed relative to the user’s “working directory,” generally the location of the applica-
tion. When running online, data must come from a location on the same server. It
might be bundled with the code itself (in a JAR archive, discussed later, or from
another URL on the same server). For a local file, Java’s FileInputStream class can be
used. If the file is bundled in a JAR archive, the getResource() function is used. For a
file on the server, URL.openStream() might be employed. During the journey from
development to deployment, it may be necessary to use all three of these methods.

With Processing, these scenarios (and some others) are handled transparently by the
file API methods. By placing resources in the data folder, Processing packages the files
as necessary for online and offline use.

File handling functions include loadStrings(), which reads a text file into an array of
String objects, and loadImage(), which reads an image into a PImage object, the con-
tainer for image data in Processing.

// Examples of loading a text file and a JPEG image

// from the data folder of a sketch.

String[] lines = loadStrings("something.txt");

PImage image = loadImage("picture.jpg");
These examples may be a bit easier to read if you know the programming concepts of
data types and classes. Each variable has to have a data type, such as String or
PImage.

The String[] syntax means “an array of data of the class String.” This array is cre-
ated by the loadStrings command and is given the name lines; it will presumably be
used later in the program under that name. The reason loadStrings creates an array
is that it splits the something.txt file into its individual lines. The second command
creates a single variable of class PImage, with the name image.

26 | Chapter2: Getting Started with Processing

To add a file to a Processing sketch, use the Sketch -+ Add File command, or drag the
file into the editor window of the PDE. The data folder will be created if it does not
exist already.

To view the contents of the sketch folder, use the Sketch - Show Sketch Folder com-
mand. This opens the sketch window in your operating system’s file browser.

In the file commands, it’s also possible to use full path names to local files, or URLs
to other locations if the data folder is not suitable:

// load a text file and an image from the specified URLs
String[] lines = loadStrings("http://benfry.com/writing/map/locations.tsv");
PImage image = loadImage("http://benfry.com/writing/map/map.png");

Functions

The steps of the process outlined in the first chapter are commonly associated with
specific functions in the Processing API. For instance:

Acquire

loadStrings(), loadBytes()
Parse

split()
Filter

for(), if (item[i].startsWith())
Mine

min(), max(), abs()
Represent

map(), beginShape(), endShape()
Refine

fill(), strokeWeight(), smooth()
Interact

mouseMoved(), mouseDragged(), keyPressed()

This is not an exhaustive list, but simply another way to frame the stages of visualiza-
tion for those more familiar with code.

Libraries Add New Features

A library is a collection of code in a specified format that makes it easy to use within
Processing. Libraries have been important to the growth of the project because they
let developers make new features accessible to users without making them part of the
core Processing API.

Functions | 27

Several core libraries come with Processing. These can be seen in the Libraries sec-
tion of the online reference (also available from the Help menu from within the
PDE); see http://processing.org/reference/libraries.

One example is the XML import library. This is an extremely minimal XML parser
(based on the open source project NanoXML) with a small download footprint
(approximately 30KB) that makes it ideal for online use.

To use the XML library in a project, choose Sketch — Import Library —» xml. This
will add the following line to the top of the sketch:

import processing.xml.*;

Java programmers will recognize the import command. In Processing, this line also
determines what code is packaged with a sketch when it is exported as an applet or
application.

Now that the XML library is imported, you can issue commands from it. For instance,
the following line loads an XML file named sites.xml into a variable named xml:

XMLElement xml = new XMLElement(this, "sites.xml");

The xml variable can now be manipulated as necessary to read the contents. The full
example can be seen in the reference for its class, XMLElement, at http://processing.org/
reference/libraries/xml/XMLElement.html.

The this variable is used frequently with library objects because it lets the library
make use of the core API functions to draw to the screen or load files. The latter case
applies to the XML library, allowing XML files to be read from the data folder or
other locations supported by the file API methods.

Other libraries provide features such as writing QuickTime movie files, sending and
receiving MIDI commands, sophisticated 3D camera control, and access to MySQL
databases.

Sketching and Scripting

Processing sketches are made up of one or more tabs, with each tab representing a
piece of code. The environment is designed around projects that are a few pages of
code, and often three to five tabs in total. This covers a significant number of
projects developed to test and prototype ideas, often before embedding them into a
larger project or building a more robust application for broader deployment.

This small-scale development style is useful for data visualization in two primary sce-
narios. The most common scenario is when you have a data set in mind, or a ques-
tion that you’re trying to answer, and you need a quick way to load the data,
represent it, and see what’s there. This is important because it lets you take an inven-
tory of the data in question. How many elements are there? What are the largest and
smallest values? How many dimensions are we looking at? We’ll return to this notion
of exploring data in future chapters.

28 | Chapter2: Getting Started with Processing

http://processing.org/reference/libraries/
http://processing.org/reference/libraries/xml/XMLElement.html
http://processing.org/reference/libraries/xml/XMLElement.html

In the second scenario, the desired outcome is known, but the correct means of rep-
resenting the data and interacting with it have not yet been determined.

The idea of sketching is identical to that of scripting, except that you're not working
in an interpreted scripting language, but rather gaining the performance benefit of
compiling to Java class files. Of course, strictly speaking, Java itself is an interpreted
language, but its bytecode compilation brings it much closer to the “metal” than lan-
guages such as JavaScript, ActionScript, Python, or Ruby.

Processing was never intended as the ultimate language for visual programming;
instead, we set out to make something that was:

* A sketchbook for our own work, simplifying the majority of tasks that we
undertake

* A programming environment suitable for teaching programming to a non-
traditional audience

* A stepping stone from scripting languages to more complicated or difficult lan-
guages such as full-blown Java or C++

At the intersection of these points is a tradeoff between speed and simplicity of use.
If we didn’t care about speed, it might make sense to use Python, Ruby, or many
other scripting languages. That is especially true for the education side. If we didn’t
care about making a transition to more advanced languages, we’d probably avoid a
C++ or Java-style syntax. But Java is a nice starting point for a sketching language
because it’s far more forgiving than C/C++ and also allows users to export sketches
for distribution via the Web.

Processing assembles our experience in building software of this kind (sketches of
interactive works or data-driven visualization) and simplifies the parts that we felt
should be easier, such as getting started quickly, and insulates new users from issues
like those associated with setting up Java.

Don’t Start by Trying to Build a Cathedral

If you’re already familiar with programming, it’s important to understand how Pro-
cessing differs from other development environments and languages. The Processing
project encourages a style of work that builds code quickly, understanding that
either the code will be used as a quick sketch or that ideas are being tested before
developing a final project. This could be misconstrued as software engineering her-
esy. Perhaps we’re not far from “hacking,” but this is more appropriate for the roles
in which Processing is used. Why force students or casual programmers to learn
about graphics contexts, threading, and event handling methods before they can
show something on the screen that interacts with the mouse? The same goes for
advanced developers; why should they always need to start with the same two pages
of code whenever they begin a project?

Sketching and Scripting | 29

In another scenario, if you’re doing scientific visualization, the ability to try things
out quickly is a far higher priority than sophisticated code structure. Usually you
don’t know what the outcome will be, so you might build something one week to try
an initial hypothesis and build something new the next based on what was learned in
the first week. To this end, remember the following considerations as you begin
visualizing data with Processing:

* Be careful about creating unnecessary structures in your code. As you learn
about encapsulating your code into classes, it’s tempting to make ever-smaller
classes because data can always be distilled further. Do you need classes at the
level of molecules, atoms, or quarks? Just because atoms go smaller doesn’t
mean that we need to work at a lower level of abstraction. If a class is half a page
long, does it make sense to have six additional subclasses that are each half a
page long? Could the same thing be accomplished with a single class that is a
page and a half in total?

* Consider the scale of the project. It’s not always necessary to build enterprise-
level software on the first day. We’re asking questions about data, so figure out
the minimum code necessary to help answer that question.

* Do you really need to use a database? If you’re manipulating half a gigabyte of
data and have a gigabyte of RAM, can you shove the data into memory and play
with it directly? If so, use that option; it lets you avoid developing a schema for
the database before you actually know what you’re doing (or want to do) with
the data.

* Do you need to start with all the data? Having collected precious terabytes of
potentially useful information, do you need all of it to answer your first round of
questions? A small percentage, which will require less infrastructure, is usually
enough to indicate whether a larger project is even worth pursuing.

The point is to delay engineering work until it’s appropriate. The threshold for where
to begin engineering a piece of visualization software is much later than for tradi-
tional programming projects because there is a kind of “art” to the early process of
quick iteration.

Of course, once things are working, avoid the urge to rewrite for its own sake. A
rewrite should be used when addressing a completely different problem. If you’ve
managed to hit the nail on the head, you should refactor to clean up method names
and class interactions. But a full rewrite of already finished code is almost always a
bad idea, no matter how “ugly” it seems.

Ready?

In this chapter, we covered the basics of the Processing environment, as well as a bit
of the philosophy behind the environment itself and the type of software built with
the language. In the next chapter, we’ll get started representing our first data set.

30 | Chapter2: Getting Started with Processing

CHAPTER 3
Mapping

This chapter covers the basics of reading, displaying, and interacting with a data set.
As an example, we’ll use a map of the United States, and a set of data values for all
50 states. Drawing such a map is a simple enough task that could be done without
programming—either with mapping software or by hand—but it gives us an exam-
ple upon which to build. The process of designing with data involves a great deal of
iteration: small changes that help your project evolve in usefulness and clarity. And
as this project evolves through the course of the chapter, it will become clear how
software can be used to create representations that automatically update themselves,
or how interaction can be used to provide additional layers of information.

Drawing a Map

Some development environments separate work into projects; the equivalent term
for Processing is a sketch. Start a new Processing sketch by selecting File » New.

For this example, we’ll use a map of the United States to use as a background image.
The map can be downloaded from http://benfry.com/writing/map/map.png.

Drag and drop the map.png file into the Processing editor window. A message at the
bottom will appear confirming that the file has been added to the sketch. You can also
add files by selecting Sketch — Add File. A sketch is organized as a folder, and all data
files are placed in a subfolder named data. (The data folder is covered in Chapter 2.)

Then, enter the following code:

PImage mapImage;

void setup() {

size(640, 400);

mapImage = loadImage("map.png");
}

31

http://benfry.com/writing/map/map.png

void draw() {
background(255);
image(mapImage, 0, 0);

Finally, click the Run button. Assuming everything was entered correctly, a map of
the United States will appear in a new window.

Explanation of the Processing Code

Processing API functions are named to make their uses as obvious as possible.
Method names, such as loadImage(), convey the purpose of the calls in simple lan-
guage. What you may need to get used to is dividing your code into functions such
as setup() and draw(), which determine how the code is handled. After clicking the
Run button, the setup() method executes once. After setup() has completed, the
draw() method runs repeatedly. Use the setup() method to load images, fonts, and
set initial values for variables. The draw() method runs at 60 frames per second (or
slower if it takes longer than 1/60th of a second to run the code inside the draw()
method); it can be used to update the screen to show animation or respond to mouse
movement and other types of input.

Our first function calls are very basic. The loadImage() function reads an image from
the data folder (URLs or absolute paths also work). The PImage class is a container
for image data, and the image() command draws it to the screen at a specific
location.

Locations on a Map

The next step is to specify some points on the map. To simplify this, a file contain-
ing the coordinates for the center of each state can be found at http://benfry.com/
writing/map/locations.tsv.

In future chapters, we’ll explore how this data is read. In the meantime, some code
to read the location data file can be found at http://benfry.com/writing/map/Table.pde.

Add both of these files to your sketch the same way that you added the map.png file
earlier.

The Table class is just two pages of code, and we’ll get into its function later. In the
meantime, suffice it to say that it reads a file as a grid of rows and columns. The class
has methods to get an int, float, or String for a specific row and column. To get
float values, for instance, use the following format:

table.getFloat(row, column)

Rows and columns are numbered starting at zero, so the column titles (if any) will be
row 0, and the row titles will be column 0.

32 | Chapter3: Mapping

http://benfry.com/writing/map/locations.tsv
http://benfry.com/writing/map/locations.tsv
http://benfry.com/writing/map/Table.pde

In the previous section, we saw how displaying a map in Processing is a two-step
process:

1. Load the data.
2. Display the data in the desired format.

Displaying the centers of states follows the same pattern, although a little more code
is involved:

1. Create locationTable and use the locationTable.getFloat() function to read
each location’s coordinates (x and y values).

2. Draw a circle using those values. Because a circle, geometrically speaking, is just
an ellipse whose width and height are the same, graphics libraries provide an
ellipse-drawing function that covers circle drawing as well.

A new version of the code follows, with modifications highlighted:

PImage mapImage;
Table locationTable;
int rowCount;

void setup() {
size(640, 400);
mapImage = loadImage("map.png");
// Make a data table from a file that contains
// the coordinates of each state.
locationTable = new Table("locations.tsv");
// The row count will be used a lot, so store it globally.
rowCount = locationTable.getRowCount();

}

void draw() {
background(255);
image(mapImage, 0, 0);

// Drawing attributes for the ellipses.
smooth();

fill(192, o0, 0);

noStroke();

// Loop through the rows of the locations file and draw the points.
for (int row = 0; row < rowCount; row++) {
float x = locationTable.getFloat(row, 1); // column 1
float y = locationTable.getFloat(row, 2); // column 2
ellipse(x, y, 9, 9);
}
}

The smooth(), fill(), and noStroke() functions apply to any drawing we subse-
quently do in the draw() function. Later, we’ll look at the aspects of drawing you can
control; here T'll just mention that the fill() function assigns red, green, and blue
elements to the color. I've chosen to show all of the circles in red.

LocationsonaMap | 33

Figure 3-1 shows the map and points for each location.

Figure 3-1. U.S. map and centers of states

Data on a Map

Next we want to load a set of values that will appear on the map itself. For this, we
add another Table object and load the data from a file called random.tsv, available at
http://benfry.com/writing/map/random.tsv.

It’s always important to find the minimum and maximum values for the data,
because that range will need to be mapped to other features (such as size or color) for
display. To do this, use a for loop to walk through each line of the data table and
check to see whether each value is bigger than the maximum found so far, or smaller
than the minimum. To begin, the dataMin variable is set to MAX_FLOAT, a built-in value
for the maximum possible float value. This ensures that dataMin will be replaced
with the first value found in the table. The same is done for dataMax, by setting it to
MIN_FLOAT. Using O instead of MIN_FLOAT and MAX_FLOAT will not work in cases where
the minimum value in the data set is a positive number (e.g., 2.4) or the maximum is
a negative number (e.g., —3.75).

The data table is loaded in the same fashion as the location data, and the code to find
the minimum and maximum immediately follows:
PImage mapImage;

Table locationTable;
int rowCount;

34 | Chapter3: Mapping

http://benfry.com/writing/map/random.tsv

Table dataTable;
float dataMin = MAX_FLOAT,;
float dataMax = MIN_FLOAT;

void setup() {
size(640, 400);
mapImage = loadImage("map.png");
locationTable = new Table("locations.tsv");
rowCount = locationTable.getRowCount();

// Read the data table.
dataTable = new Table("random.tsv");

// Find the minimum and maximum values.
for (int row = 0; row < rowCount; row++) {
float value = dataTable.getFloat(row, 1);
if (value > dataMax) {
dataMax = value;

if (value < dataMin) {
dataMin = value;

}
}
}
The other half of the program (shown later) draws a data point for each location. A
drawData() function is introduced, which takes x and y coordinates as parameters,
along with an abbreviation for a state. The drawData() function grabs the float value
from column 1 based on a state abbreviation (which can be found in column 0).

The getRowName() function gets the name of a particular row. This is just a conve-
nience function because the row name is usually in column 0, so it’s identical to
getString(row, 0). The row titles for this data set are the two-letter state abbrevia-
tions. In the modified example, getRowName() is used to get the state abbreviation for
each row of the data file.

The getFloat() function can also use a row name instead of a row number, which
simply matches the String supplied against the abbreviation found in column 0 of
the random.tsv data file. The results are shown in Figure 3-2.

The rest of the program follows:

void draw() {
background(255);
image(mapImage, 0, 0);

smooth();
fill(192, 0, 0);
noStroke();

DataonaMap | 35

Figure 3-2. Varying data by size

for (int row = 0; row < rowCount; row++) {
String abbrev = dataTable.getRowName(row);
float x = locationTable.getFloat(abbrev, 1);
float y = locationTable.getFloat(abbrev, 2);
drawData(x, y, abbrev);
}
}

// Map the size of the ellipse to the data value
void drawData(float x, float y, String abbrev) {
// Get data value for state
float value = dataTable.getFloat(abbrev, 1);
// Re-map the value to a number between 2 and 40
float mapped = map(value, dataMin, dataMax, 2, 40);
// Draw an ellipse for this item
ellipse(x, y, mapped, mapped);
}
The map() function converts numbers from one range to another. In this case, value
is expected to be somewhere between dataMin and dataMax. Using map() repropor-
tions value to be a number between 2 and 40. The map() function is useful for hid-
ing the math involved in the conversion, which makes code quicker to write and
easier to read. A lot of visualization problems revolve around mapping data from one
range to another (e.g., from the min and max of the input data to the width or height
of a plot), so the map(') method is used frequently in this book.

36 | Chapter3: Mapping

Another refinement option is to keep the ellipse the same size but interpolate
between two different colors for high and low values. The norm(') function maps val-
ues from a user-specified range to a normalized range between 0.0 and 1.0. The
percent value is a percentage of where value lies in the range from dataMin to
dataMax. For instance, a percent value of 0.5 represents 50%, or halfway between
dataMin and dataMax:

float percent = norm(value, dataMin, dataMax);

The lerp() function converts a normalized value to another range (norm() and lerp()
together make up the map() function), and the lerpColor() function does the same,
except it interpolates between two colors. The syntax:

color between = lerpColor(color1, color2, percent)

returns a between value based on the percentage (a number between 0.0 and 0.1)
specified. To make the colors interpolate between red and blue for low and high val-
ues, replace the drawData() function with the following:

void drawData(float x, float y, String abbrev) {
float value = dataTable.getFloat(abbrev, 1);
float percent = norm(value, dataMin, dataMax);
color between = lerpColor(#FF4422, #4422CC, percent); // red to blue
fill(between);
ellipse(x, y, 15, 15);
}

Results are shown in Figure 3-3.

°
@ ® L]
@ e 5 = o . 4 .0;
o e °
- A = : .00.'.:0
® o0 e - 5
e ®
. ¢
' 3
°

Figure 3-3. Varying data by color

DataonaMap | 37

This illustrates the problem with interpolating between two unrelated colors. Two
separate colors make sense for positive and negative values (see the next section
“Two-Sided Data Ranges” and Figure 3-6), but the idea of purple as an in-between
value is confusing to read because it’s difficult to say just how red or blue the values
are—everything becomes a muddy purple. If using two different colors, a better
option is to provide a neutral value in between the two colors, such as white or

black.

On the other hand, to make color interpolation work, it’s better to employ a pair of
similar colors. For instance, blue and green provide an alternative gradation of val-
ues that is easier to read than the red-to-purple-to-blue range. Replace the lerpColor
line with the following:

color between = lerpColor(#296F34, #61E2F0, percent);

and take a look at the result in Figure 3-4.

)]
@ & L]
& R g
® ® 4
® &
@
&
® . ®_ oo
@& |
® ®
® 3 &
o0 ©®
Lo
@
]

Figure 3-4. Varying data by color: better color choices

The interpolated values tend to be “muddy” because the interpolation is calculated
in RGB color space. To preserve the saturation and brightness of colors, a better
option is the HSB color space, particularly when dealing with colors that are similar
in hue. A fourth parameter to lerpColor() allows you to change the color space used
for interpolation:

color between = lerpColor(#296F34, #61E2F0, percent, HSB);

Changing to the HSB color model improves brightness and contrast; see Figure 3-5.

38 | Chapter3: Mapping

RGB and HSB Color Spaces

The HSB color space defines colors based on hue, saturation, and brightness instead of
the red, green, and blue values used in RGB. The RGB color space has more to do with
how color is represented by computer screens than how we actually perceive color.
Intermediate steps in each of the hue, saturation, and brightness components of a color
provide better interpolation because each of the perceptual aspects of the color are bro-
ken apart—the shift in the hue component is separated from the shift in saturation and
the shift in brightness.

In the RGB color space, a gray value occurs whenever the R, G, and B components are
identical (or at least similar). In RGB space, the color halfway between orange (255,
128, 0) and light blue (0, 128, 255) is gray (128, 128, 128). So using lerpColor() in
RGB mode would cause the orange to become more gray at each step, until it reaches
gray; then, it would slowly move from gray to blue. Not too pleasing to look at.

On the other hand, RGB mode is preferred when there are significant changes in hue.
For instance, if you begin at red and interpolate to green in HSB space, you’ll iterate
through all the spectrum colors in between: from red, to orange, then to yellow, and
finally to green.

®
@ @
@ @ @
&
- & . ‘
&
® ° z ® *:;. Y
& & ®
® @
o0 ®
@
]

Figure 3-5. Varying data by color: better color space

But the color mix is still lacking, so next let’s look at other options.

Data on a Map

39

Two-Sided Data Ranges

Because the values in the data set are positive and negative, a better option would be
to use separate colors for positive or negative while changing the size of each ellipse
to reflect the range. The following replacement for drawData() separates positive and
negative values as well as indicating the magnitude (absolute value) of each value.

In this case, positive values are remapped from O through the maximum data value
into a value between 3 and 30 for the diameter of the ellipse. Negative values are
mapped in a similar fashion, where the most negative (dataMin) will be mapped to
size 30, and the least negative (0) will be mapped to size 3. Positive values are drawn
with blue ellipses and negative values with red; see Figure 3-6.

Figure 3-6. Magnitude and positive/negative

void drawData(float x, float y, String abbrev) {
float value = dataTable.getFloat(abbrev, 1);
float diameter = 0;
if (value »= 0) {
diameter = map(value, 0, dataMax, 3, 30);
fi11(#333366); // blue
} else {
diameter = map(value, 0, dataMin, 3, 30);
Fi11(#EC5166); // red
}

ellipse(x, y, diameter, diameter);

40 | Chapter3: Mapping

Figure 3-6 is much easier to read and interpret than the previous representations;
however, we’ve used up two visual features (size and color) on a single dimension of
the data. For a simple data set such as this one, it’s not a problem, but if we look at a
pair of data values, we would want to use color for one dimension of the data and
size for the other. In some cases, showing one variable two ways can be helpful for
reinforcing the meaning of the values, but it’s often done without consideration. The
approach used in Figure 3-6 would be an appropriate solution if the difference
between positive and negative values was our primary or secondary interest.

To preserve size for another aspect of the data, another option would be to map the
transparency of the ellipses to their relative values. Transparency is also referred to as
alpha transparency or usually just alpha. It’s controlled by an optional second param-
eter to the fill() function; 0 means that the entire background shows though the
object, whereas 255 means the object is totally opaque.

Yet another revision of the drawData() function shows how transparency is con-
trolled; see Figure 3-7.

&
o
g L ¢
o @
E= L o
@
B
e ° o
@
#®

Figure 3-7. Magnitude and positive/negative using transparency

void drawData(float x, float y, String abbrev) {
float value = dataTable.getFloat(abbrev, 1);
if (value »>= 0) {
float a = map(value, 0, dataMax, 0, 255);
£i11(#333366, a);
} else {
float a = map(value, 0, dataMin, 0, 255);

DataonaMap | 41

fil1(#EC5166, a);

}
ellipse(x, y, 15, 15);

}
Transparency can be useful for features at a glance, but it doesn’t provide a lot of dif-
ferentiation between the values (as can be seen here). For this particular data set, Fig-
ures 3-2 and 3-6 provide the best solutions in terms of visual design. The others are
included to show alternatives and demonstrate the thinking process behind visual
refinements.

Provide More Information with a Mouse Rollover (Interact)

Adding a small amount of interaction can help make a display more useful, and this
feature shows how Processing makes mouse information readily available. As the
mouse hovers above a particular state, additional information about that location
can be revealed.

To show the extra information as text, a font is required. Use the Create Font option
under the Tools menu. For this example, a typeface named Univers Bold was chosen
from the list, and the size was set to 12. (Univers may not be available on your
machine, so choose any font you’d like.)

Clicking OK adds a file named Univers-Bold-12.vlw to the data folder. Now when
the sketch is exported as an applet or application, the font can be used on other
machines, even if Univers is not installed on them.

Adding these lines to setup() sets the font:

PFont font = loadFont("Univers-Bold-12.vIw");
textFont(font);

Because fonts are loaded from files, loadFont() should be used only inside setup()
(and not from the draw() method); otherwise, the font will be loaded repeatedly and
slow down the program.

A w
The location of the loadFont() call reiterates a valuable principle that
as may guide you when placing other function calls. The setup() method
N
112! runs only once, when a browser or other program loads a sketch. The
" draw() method runs repeatedly (several times a second) so that
sketches can be updated over time and animated.

The textFont() command sets the current font.

The rollover itself is handled by checking the distance between the mouse and the
data point. If the mouse is within a certain range of the point, the text appears. The
distance is calculated with the dist() function, and because this will calculate the
radius between the location and the mouse, we issue ellipseMode(RADIUS) to draw
the data points before dist(). Using the radius also helps because it can be used to

42 | Chapter3: Mapping

place the text above the data point: the distance to the bottom of the text will be the
radius plus a few pixels of space. As the default ellipseMode is DIAMETER (and a radius
is half a diameter), we’ll adjust the preceding map() function to use the values 1.5
and 15 instead of 3 and 30:
void drawData(float x, float y, String abbrev) {
float value = dataTable.getFloat(abbrev, 1);
float radius = 0;
if (value >= 0) {
radius = map(value, 0, dataMax, 1.5, 15);
fi11(#4422CC); // blue
} else {
radius = map(value, 0, dataMin, 1.5, 15);
fill(#FF4422); // red

}
ellipseMode(RADIUS);

ellipse(x, y, radius, radius);

if (dist(x, y, mouseX, mouseY) < radius+2) {
£i11(0);
textAlign(CENTER);
// Show the data value and the state abbreviation in parentheses.
text(value + " (" + abbrev + ")", x, y-radius-4);
}
}
The parameters to text() are a bit complex. The first argument—which is the text to
display—combines the data itself (value) with the state abbreviation (abbrev), enclos-
ing the abbreviation in parentheses. The second and third parameters specify the x
and y position of the text. The vertical location is y-radius-4, which is the y-
coordinate at the center of the circle, minus the radius to get to the edge of the cir-
cle, minus four more pixels.

Because the mouse cursor extends to the right and downward, we’ve placed the text
above the circle to prevent the arrow from covering up the data itself. This is a gen-
eral problem with rollovers that we’ll return to later: rollover text or the means for
selecting it can obscure the data underneath.

With the rollover, you might want to bring in additional types of data as well. An
additional data file that maps abbreviations to the full state name can be found at
http://benfry.com/writing/map/names.tsv.

The table in this data file will be used in conjunction with the others to look up
names for the individual states. More commonly, this particular data would be found
in the same data file as the others, but it’s useful to introduce the idea of joining mul-
tiple sets of data. Joining data frequently is necessary, and the opportunity to com-
bine data sets from different sources is a powerful aspect of data visualization.

First, add a nameTable declaration after the locationTable declaration at the begin-
ning of the code:

Table nameTable;

DataonaMap | 43

http://benfry.com/writing/map/names.tsv

Handling Mouse Interaction

In more sophisticated programs, it’s common to package how elements are drawn into
an individual class—a set of code that groups together related functions and variables.
For instance, each state could be an instance of a class that contains the name, data
value, and location on screen for each state. Mouse interaction would be handled by a
function inside the class that checks whether the mouse location is near the location
value for the state. We’ll see this method used in later chapters.

The Processing API provides few high-level elements—there is currently no Shape class

that handles such things automatically. Instead, the APl is designed so that such classes
are either unnecessary or simple for others to build into their own projects.

Next, load the nameTable along with the others inside the setup() function:
nameTable = new Table("names.tsv");

Finally, when drawing the text for the rollover, grab the full name from the table and
display it:

String name = nameTable.getString(abbrev, 1);

text(name + " " + value, x, y-radius-4);
With the longer text showing, sometimes the parts of the text will appear behind
other points because the states are all drawn in order. Because Massachusetts is
drawn after Connecticut, the dot for Massachusetts will cover the rollover text for
Connecticut. To change this behavior, first draw the data points for all the states,
and then draw the rollover text for the current selection. When drawing each state,
we’ll check to see whether the mouse is in the vicinity, and if so, that state is a candi-
date for having its name drawn.

You might also notice that when using the mouse in the area of smaller states (such
as those in the Northeast), several names will show up. To handle this, we’ll keep
track of the state that is closest to the mouse and show only the information for that
state. As each state is drawn, we’ll check whether the distance from the state’s loca-
tion to the mouse is the smallest found so far, and if so, store its X and Y position
along with the text to show at that position. These three variables will be updated as
each data point within range of the mouse is drawn. After the data points have fin-
ished drawing, the text can be drawn at that particular X and Y point.

The mouseX and mouseY variables are updated on each trip through draw(). Because
the draw() method runs repeatedly (at around 60 frames per second), updates for the
rollover happen almost instantaneously.

The top of the program remains unchanged, but the draw() and drawData() func-
tions are replaced with the following:

44 | Chapter3: Mapping

// Global variables set in drawData() and read in draw()
float closestDist;
String closestText;
float closestTextX;
float closestTextY;

void draw() {
background(255);
image(mapImage, 0, 0);

closestDist = MAX_FLOAT;

for (int row = 0; row < rowCount; row++) {
String abbrev = dataTable.getRowName(row);
float x = locationTable.getFloat(abbrev, 1);
float y = locationTable.getFloat(abbrev, 2);
drawData(x, y, abbrev);

}

// Use global variables set in drawData()
// to draw text related to closest circle.
if (closestDist != MAX FLOAT) {
£111(0);
textAlign(CENTER);
text(closestText, closestTextX, closestTextY);
}
}

void drawData(float x, float y, String abbrev) {

float value = dataTable.getFloat(abbrev, 1);

float radius = 0;

if (value »>= 0) {
radius = map(value, 0, dataMax, 1.5, 15);
fi11(#4422CC); // blue

} else {
radius = map(value, 0, dataMin, 1.5, 15);
Fil1(#FF4422); // red

}

ellipseMode (RADIUS);

ellipse(x, y, radius, radius);

float d = dist(x, y, mouseX, mouseY);
// Because the following check is done each time a new
// circle is drawn, we end up with the values of the
// circle closest to the mouse.
if ((d < radius + 2) & (d < closestDist)) {
closestDist = d;
String name = nameTable.getString(abbrev, 1);
closestText = name + " " + value;
closestTextX = x;
closestTextY = y-radius-4;

Data on a Map

45

Updating Values over Time (Acquire, Mine)

A static map isn’t particularly interesting, especially when there’s the possibility of an
interactive environment. In addition, data values are often dynamic. They might
change every second, every hour, or every year, but in each case, we’ll want to depict
the change over time. For example, we can replace the data with random values each
time a key is pressed. Again, because draw() is called repeatedly, the values shown
on screen will update immediately.

The code in this section provides an initial illustration of how to handle user inter-
action, a theme I'll expand in the book.

One problem with changing data is that the minimum and maximum values need to
stay fixed. You’ll need to figure out the absolute values for each because recalculat-
ing dataMin and dataMax each time new data is found will make the data points
appear out of proportion to the previous set of values. For this example, we’ll set the
minimum and maximum values to —10 and 10, when the variables are first declared
at the beginning of the program:

Table dataTable;

float dataMin = -10;
float dataMax = 10;

This change means that the code to find the minimum and maximum values can be
removed from the setup() method.

The following code builds on the previous step and adds a function to randomize the
data values each time the Space bar is pressed:
void keyPressed() {
if (key == " ") {
updateTable();

}
}

void updateTable() {
for (int row = 0; row < rowCount; row++) {
float newValue = random(dataMin, dataMax);
dataTable.setFloat(row, 1, newValue);

}
}
The random() function takes a minimum and maximum value, and returns a value
starting with the minimum, up to but not including the maximum. The setFloat()
function overwrites the old value from the data table with the new random value.

When running this code, press the Space bar once to see a new set of data appear.
You might also notice that the rollovers now look a bit silly because the randomized
values might have six or seven digits of precision. This can be changed with the nf()
function, which is used to format numbers for printing.

46 | Chapter3: Mapping

The basic form of nf(') specifies the number of digits to the left and right of the deci-
mal point. Specifying 0 for either position means “any” number of digits. So, to allow
any number of digits to the left of the decimal point and two digits to the right, the
line that sets closestText changes from:

closestText = name + + value;
to the following;:
closestText = name + " " + nf(value, 0, 2);

The name for nf() is intentionally terse (if a bit cryptic) because it’s almost always
used in situations when it’s being concatenated to another part of a String. Two
related functions are:

nfp()
Requires each number to be shown with a + or - sign.

nfs()
Pads values with spaces to fill out the number of digits specified. This is useful in
some situations for lining up values in vertical columns.

Because we care about positive and negative, nfp() is probably best suited for our
purpose. This turns “North Dakota 6.15234534” into “North Dakota +6.15”, which
is far more readable.

Instead of randomizing the data, updateTable() could be used to load a new set of
values from another data source, whether another file or a location online. For
instance, the following URL can be used to read a new set of data from the Web:

http://benfry.com/writing/map/random.cgi

At this location is a simple Perl script that generates a new set of values and sends
them over a CGI connection. The code follows, with comments for those not famil-
iar with Perl syntax:

#!/usr/bin/perl

An array of the 50 state abbreviations

@states = ('AL', 'AK', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE', 'FL', 'GA',
"HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD',
'MA*, 'MI', 'MN', 'MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ',
‘NM', 'NY', 'NC', 'ND', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC',
'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', "WV', 'WI', 'WY');

A CGI script must identify the type of data it's sending;

this line specifies that plain text data will follow.
print "Content-type: text/plain\n\n";

Loop through each of the state abbreviations in the array.
foreach $state (@states) {

DataonaMap | 47

http://benfry.com/writing/map/random.cgi

Pick a random number between -10 and 10. (rand() returns a
number between 0 and 1; multiply that by 20 and subtract 10.)
$r = (rand() * 20) - 10;

Print the state name, followed by a tab,
then the random value, followed by a new line.
print "$state\t$r\n";

}

To use this URL, the code for the updateTable() function changes to the following:

void updateTable() {
dataTable = new Table("http://benfry.com/writing/map/random.cgi");
}
Even though this script just produces randomized data, the same model could be
used in actual practice, where a data set is generated online—perhaps from a data-
base or something else that is accessible only through a network connection.

Smooth Interpolation of Values over Time (Refine)

When updating data, it’s important to show users the transition over time. Interpo-
lating between values helps users track where the changes occur and provides con-
text for the change as it happens. The way to think about interpolation is that your
data values are never “equal” to some number; rather, they’re always “becoming” or
“transitioning to” another value.

For this, we use another class called an Integrator. The contents of the code will be
explained shortly, but for the time being, it can be downloaded from http://benfry.
com/writing/map/Integrator.pde.

This code implements a simple physics-based interpolator. A force is exerted by
which a value can “target” another, in the manner of a spring (more about this later).
The important thing to understand is that an Integrator object represents a single
data value. When the Integrator is constructed, an initial value is set:

Integrator changingNumber = new Integrator(4);
To make the value transition from 4 (its initial value) to —2, use the target() method:
changingNumber.target(-2);

This has no effect yet on the display. For the value to update, you must call the
update() method of the Integrator:

changingNumber.update();

Usually this is done at the beginning of draw(). The target() method is called when-
ever a state changes, and the constructor is used inside setup(). The Integrator has
a value field that always holds its current value. To set the diameter of an ellipse
based on the changing value, a line like this would be used inside draw():

ellipse(x, y, changingNumber.value, changingNumber.value);

48 | Chapter3: Mapping

http://benfry.com/writing/map/Integrator.pde
http://benfry.com/writing/map/Integrator.pde

Because our state example uses 50 values, we need to create an array of Integrator
objects inside setup(), update each of them at the beginning of setup(), and
target() them to new values each time the display changes, effectively producing
an animation. Instead of using getFloat() to read values from the dataTable object,
the dataTable object will be used to target() the Integrator list.

The modified code looks like this:

PImage mapImage;
Table locationTable;
Table nameTable;

int rowCount;

Table dataTable;
float dataMin = -10;
float dataMax = 10;

Integrator[] interpolators;

void setup() {
size(640, 400);
mapImage = loadImage("map.png");
locationTable = new Table("locations.tsv");
nameTable = new Table("names.tsv");
rowCount = locationTable.getRowCount();

dataTable = new Table("random.tsv");

// Setup: load initial values into the Integrator.
interpolators = new Integrator[rowCount];
for (int row = 0; row < rowCount; row++) {
float initialvValue = dataTable.getFloat(row, 1);
interpolators[row] = new Integrator(initialvalue);
}

PFont font = loadFont("Univers-Bold-12.viw");
textFont(font);

smooth();
noStroke();
}

float closestDist;
String closestText;
float closestTextX;
float closestTexty;

void draw() {
background(255);
image(mapImage, 0, 0);

DataonaMap | 49

// Draw: update the Integrator with the current values,
// which are either those from the setup() function

// or those loaded by the target() function issued in
// updateTable().

for (int row = 0; row < rowCount; row++) {
interpolators[row].update();

}
closestDist = MAX FLOAT;

for (int row = 0; row < rowCount; row++) {
String abbrev = dataTable.getRowName(row);
float x = locationTable.getFloat(abbrev, 1);
float y = locationTable.getFloat(abbrev, 2);
drawData(x, y, abbrev);

}

if (closestDist != MAX_FLOAT) {
£i11(0);
textAlign(CENTER);
text(closestText, closestTextX, closestTextY);
}
}

void drawData(float x, float y, String abbrev) {
// Figure out what row this is.
int row = dataTable.getRowIndex(abbrev);
// Get the current value.
float value = interpolators[row].value;

float radius = 0;

if (value »>= 0) {
radius = map(value, 0, dataMax, 1.5, 15);
fi11(#4422CC); // blue

} else {
radius = map(value, 0, dataMin, 1.5, 15);
Fil1(#FF4422); // red

}

ellipseMode (RADIUS);

ellipse(x, y, radius, radius);

float d = dist(x, y, mouseX, mouseY);
if ((d < radius + 2) & (d < closestDist)) {
closestDist = d;
String name = nameTable.getString(abbrev, 1);
// Use target (not current) value for showing the data point.
String val = nfp(interpolators[row].target, 0, 2);
closestText = name + " " + val;
closestTextX = x;
closestTextY = y-radius-4;

50 | Chapter3: Mapping

void keyPressed()
if (key == " ")
updateTable()

1

}
}

void updateTable() {
for (int row = 0; row < rowCount; row++) {
float newValue = random(-10, 10);
interpolators[row].target(newvalue);
}
}
The changes will transition very quickly, and there are two ways to handle this. The
first is to adjust the frame rate of your application, which may be very high. By
default, the frame rate is capped to 60 frames per second (fps). When building ani-
mated graphics, it’s important to keep an eye on the frame rate to avoid situations in
which a faster computer runs your code too quickly. Simply setting the maximum
frame rate lower results in a more visually pleasing presentation. This line, added to
the end of setup(), sets the maximum to 30 fps:

frameRate(30);

Another option is to use the Integrator class’s own parameters. We mentioned that
the Integrator class uses math for simple physics that simulate a spring. The target
value is the resting length of the spring. The other parameters are defined in terms of
physical properties, which include the damping (how much friction exists to prevent
the changes from being too wobbly) and the degree of attraction (how quickly the
value will become another). You can set the damping and attraction in the construc-
tor. The default damping is 0.5 and the attraction is 0.2. Even without modifying the
frameRate() setting, changing the constructor can make things move much more
slowly:

interpolators[row] = new Integrator(initialvalue, 0.5, 0.01);
Cutting down the damping makes things bouncy:

interpolators[row] = new Integrator(initialvalue, 0.9, 0.1);

Using Your Own Data

The file format presented in this chapter is straightforward, so try replacing the
random.tsv file with your own data based on the 50 states. It’s remarkably easy to
plot your own values to individual locations. You’ll probably still use the map() func-
tion, but you don’t have to use ellipses or colors to plot your data points. You could
draw an image at each location, varying its size based on the data. Or some points
could be hidden or reorganize themselves in various ways. The points might refer to
anything from chain coffee shops per capita to poverty levels in each state.

Using YourOwnData | 51

Taking Data from the User

Not everyone wants to employ data relating to the United States, but the same tech-
nique is sound for any type of data mapped to particular points. In later chapters,
we’ll get into mapping latitude and longitude coordinates, as well as using shape
data for locations, but even the simple example presented in this chapter can be used
in many other ways.

The following code reads from the names.tsv file and asks the user to indicate a loca-
tion for each in turn, by clicking the mouse where the user wants the data to be
placed. Start this example as a separate sketch. It requires a map.png file, a names.tsv
file, and the Table.pde file used throughout this chapter. The map image and names
file can be replaced with data of your choice, and this code produces a locations.tsv
file that can be added to the data folder of the new sketch:

PImage mapImage;
Table nameTable;

int currentRow = -1;
PrintWriter writer;

void setup() {
size(640, 400);
mapImage = loadImage("map.png");
nameTable = new Table("names.tsv");
writer = createWriter("locations.tsv");
cursor (CROSS); // make easier to pinpoint a location
println("Click the mouse to begin.");
}

void draw() {
image(mapImage, 0, 0);

void mousePressed() {
if (currentRow != -1) {
String abbrev = nameTable.getRowName(currentRow);
writer.println(abbrev + "\t" + mouseX + "\t" + mouseY);

}

currentRow++;

if (currentRow == nameTable.getRowCount()) {
// Close the file and finish.
writer.flush();
writer.close();
exit();

} else {
// Ask for the next coordinate.
String name = nameTable.getString(currentRow, 1);
println("Choose location for " + name + ".");

}

}

52 | Chapter3: Mapping

Next Steps

In this chapter, we learned the basics of reading, displaying, and interacting with a
data set. The chapters that follow delve into far more sophisticated aspects of each,
but all of them build on the basic skills you’ve picked up here.

NextSteps | 53

CHAPTER 4
Time Series

The time series is a ubiquitous type of data set. It describes how some measurable
feature (for instance, population, snowfall, or items sold) has changed over a period
of time. Edward Tufte credits Johann Heinrich Lambert with the formal introduc-
tion of the time series to scientific literature in the 1700s."

Because of its ubiquity, the time series is a good place to start when learning about
visualization. With it we can cover:

* Acquiring a table of data from a text file

* Parsing the contents of the file into a usable data structure

* Calculating the boundaries of the data to facilitate representation

* Finding a suitable representation and considering alternatives

* Refining the representation with consideration for placement, type, line weight,
and color

* Providing a means of interacting with the data so that we can compare variables
against one another or against the average of the whole data set

For a straightforward data set, let’s turn to the U.S. Department of Agriculture
(USDA) for statistics on beverage consumption. Government sites are a terrific
resource for data; see Chapter 9 for more information about them and other sources
of data.

Most methods will be implemented “by hand” in this section. Further down the line,
we’ll make generalized code to handle different scenarios, such as reading a table
from a file or placing labels and grid lines on a plot.

* Tufte, Edward R. The Visual Display of Quantitative Information. Cheshire, Conn.: Graphics Press, 1983.

54

Milk, Tea, and Coffee (Acquire and Parse)

The data set we use was originally downloaded from http://www.ers.usda.gov/Data/
FoodConsumption/FoodAvailQueriable.aspx.

The page lets you define a query to download a data set of interest. The site claims
that the data is in Excel format, but a glance at the contents of the resulting file
shows that it’s only an HTML file with an .xIs extension that fools Excel into open-
ing it. Rather than getting into the specifics of how to download and clean the data, 1
offer an already processed version here:

http://benfry.com/writing/series/milk-tea-coffee.tsv

This data set contains three columns: the first for milk, the second for coffee, and the
third for tea consumption in the United States from 1910 to 2004.

To read this file, use this modified version of the Table class from the previous
chapter:

http://benfry.com/writing/series/FloatTable.pde

The modified version handles data stored as float values, making it more efficient
than the previous version, which simply converted the data whenever getString(),
getFloat(), or getInt() were used.

Open Processing and start a new sketch. Add both files to the sketch by either drag-
ging each into the editor window or using Sketch — Add File.

Cleaning the Table (Filter and Mine)

It’s necessary to determine the minimum and maximum of each of the columns in
the pre-filtered data set. These values are used to properly scale plotted points to
locations on the screen.

The FloatTable class has methods for calculating the min and max for the rows and
columns. These methods are worth discussing because they are important in later
code. The following example calculates the minimum value for a column (comments
denote important portions of the code):
float getColumnMax(int col) {
// Set the value of m arbitrarily high, so the first value

// found will be set as the maximum.
float m = MIN_FLOAT;

// Loop through each row.
for (int row = 0; row < rowCount; row++) {

// Only consider valid data elements (see later text).
if (isvalid(row, col)) {

Cleaning the Table (Filter and Mine) | 55

http://www.ers.usda.gov/Data/FoodConsumption/FoodAvailQueriable.aspx
http://www.ers.usda.gov/Data/FoodConsumption/FoodAvailQueriable.aspx
http://benfry.com/writing/series/milk-tea-coffee.tsv
http://benfry.com/writing/series/FloatTable.pde

// Finally, check to see if the value
// is greater than the maximum found so far.
if (data[row][col] > m) {
m = data[row][col];
}
}
}

return m;
}
The isValid() method is important because most data sets have incomplete data. In
the milk-tea-coffee.tsv file, all of the data is valid, but in most data sets (including
others used in this chapter), missing values require extra consideration.

Because the values for milk, coffee, and tea will be compared against one another, it’s
necessary to calculate the maximum value across all of the columns. The following
bit of code does this after loading the milk-tea-coffee.tsv file:

FloatTable data;
float dataMin, dataMax;

void setup() {
data = new FloatTable("milk-tea-coffee.tsv");

dataMin = 0;
dataMax = data.getTableMax();
}

Sometimes, it’s also useful to calculate the minimum value, but setting the minimum
to zero provides a more accurate comparison between the three data sets. The mini-
mum for this data set is 5.1, and the values for the tea column hover around 6, so
using 5.1 as the dataMin value would produce a chart that looked as though the bev-
erage history included periods of no (or nearly no) tea consumption in the U.S. In
addition, if the value is 6, it’s important that the relative difference seen by the viewer
is not just 0.9, but that it shows the full range from 0 up to 5.1 and how it compares
to a value of 6.

Each row name specifies a year, which will be used later to draw labels on the plot.
To make them useful in code, it’s also necessary to get the minimum and maximum
year after converting the entire group to an int array. The getRowNames() method
inside FloatTable returns a String array that can be converted with the int() casting
function:

FloatTable data;
float dataMin, dataMax;

int yearMin, yearMax;
int[] years;

void setup() {
data = new FloatTable("milk-tea-coffee.tsv");

56 | Chapter4: Time Series

years = int(data.getRowNames());
yearMin = years[0];
yearMax = years[years.length - 1];

dataMin = 0;
dataMax = data.getTableMax();

A Simple Plot (Represent and Refine)

To begin the representation, it’s first necessary to set the boundaries for the plot
location. The plotX1, plotY1, plotX2, and plotY2 variables define the corners of the
plot. To provide a nice margin on the left, set plotX1 to 50, and then set the plotX2
coordinate by subtracting this value from width. This keeps the two sides even, and
requires only a single change to adjust the position of both. The same technique is
used for the vertical location of the plot:

FloatTable data;
float dataMin, dataMax;

float plotX1, plotY1;
float plotX2, plotY2;

int yearMin, yearMax;
int[] years;
void setup() {
size(720, 405);
data = new FloatTable("milk-tea-coffee.tsv");
years = int(data.getRowNames());
yearMin = years[0];

yearMax = years[years.length - 1];

dataMin = 0;
dataMax = data.getTableMax();

// Corners of the plotted time series

plotX1 = 50;
plotX2 = width - plotX1;
plotY1 = 60;
plotY2 = height - plotYi;

smooth();
}
Next, add a draw() method that sets the background to a light gray and draws a
filled white rectangle for the plotting area. That will make the plot stand out against
the background, rather than a color behind the plot itself—which can muddy its
appearance.

ASimple Plot (Represent and Refine) | 57

The rect() function normally takes the form rect(x, y, width, height), but
rectMode (CORNERS) changes the parameters to rect(left, top, right, bottom), which
is useful because our plot’s shape is defined by the corners. Like other methods that
affect drawing properties, such as fi11(') and stroke(), rectMode() affects all geom-
etry that is drawn after it until the next time rectMode() is called:

void draw() {
background(224);

// Show the plot area as a white box.
Fi11(255);

rectMode (CORNERS);

noStroke();

rect(plotX1, plotY1, plotX2, plotY2);

strokeWeight(5);

// Draw the data for the first column.
stroke(#5679C1);

drawDataPoints(0);

// Draw the data as a series of points.
void drawDataPoints(int col) {
int rowCount = data.getRowCount();
for (int row = 0; row < rowCount; row++) {
if (data.isValid(row, col)) {
float value = data.getFloat(row, col);
float x = map(years[row], yearMin, yearMax, plotXi, plotX2);
float y = map(value, dataMin, dataMax, plotY2, plotY1);

point(x, y);

}
}
Because the data is drawn as points using the drawDataPoints() method, a stroke
color and weight are set. This method also takes a column index to draw as a param-
eter. The results are in Figure 4-1. For the first step, I've shown only the first column
of data (the values for milk consumption).

The map() function does most of the work. The x coordinate is calculated by map-
ping the year for each row from yearMin and yearMax to plotX1 and plotX2. Another
option would be to use the row variable, instead of the year:

float x = map(row, 0, rowCount-1, plotX1, plotX2);

But a value for row would be less accurate because a year or two might be missing
from the data set, which would skew the representation. Again, this data set is com-
plete, but often that is not the case.

58 | Chapter4: Time Series

.
.e
- o0 Wt teateatt Leve sassss

Figure 4-1. One set of points over time

Labeling the Current Data Set (Refine and Interact)

Missing from the previous code is an indicator of the currently visible column of data
(whether milk, tea, or coffee) and a means to swap between each of the three. For
this, we add a variable to keep track of the current column, and another for the font
used for the title. And few lines of code are added to the draw() method to write the
name of the column with the text() method:

FloatTable data;
float dataMin, dataMax;

float plotX1, plotYi;
float plotX2, plotY2;

int currentColumn = 0;
int columnCount;

int yearMin, yearMax;
int[] years;

PFont plotFont;

void setup() {
size(720, 405);

Labeling the Current Data Set (Refine and Interact) | 59

data = new FloatTable("milk-tea-coffee.tsv");
columnCount = data.getColumnCount();

years = int(data.getRowNames());
yearMin = years[0];
yearMax = years[years.length - 1];

dataMin = 0;
dataMax = data.getTableMax();

// Corners of the plotted time series

plotX1 = 50;
plotX2 = width - plotX1;
plotY1l = 60;

plotY2 = height - plotYi;

plotFont = createFont("SansSerif", 20);
textFont(plotFont);

smooth();

void draw() {
background(224);

// Show the plot area as a white box.
Fi11(255);

rectMode (CORNERS);

noStroke();

rect(plotX1, plotY1, plotX2, plotY2);

// Draw the title of the current plot.

fill(o);

textSize(20);

String title = data.getColumnName(currentColumn);
text(title, plotX1, plotY1 - 10);

stroke (#5679C1);
strokeWeight(5);
drawDataPoints(currentColumn);

}
The text() line draws the text 10 pixels above plotY1, which represents the top of
the plot, and the drawDataPoints() line uses currentColumn instead of just 0. Results
are shown in Figure 4-2.

The createFont() function is used to create a font from one of the built-in typefaces.
The built-in typefaces are Serif, SansSerif, Monospaced, Dialog, and DialogInput;
they map to the default fonts on each operating system. On Mac OS X, for instance,
SansSerif maps to Lucida Sans, whereas on Windows it maps to Arial. The default
fonts are useful when you don’t want to deal with the Create Font tool, but the font

60 | Chapter4: Time Series

Milk

(T

Figure 4-2. Time series with data set labeled

choices are not particularly inspiring, and they don’t guarantee consistent output
across different operating systems. For instance, making pixel-level decisions with a
built-in font is a bad idea because the shaping and spacing of the characters can be
significantly different on other operating systems.

One advantage of using createFont() is that the text will look smooth at any size,
unlike a font used with loadFont(), which may be distorted as it is resized.

It is possible to use createFont() to specify something besides a built-in font, but
there’s no guarantee that the font will be installed on another user’s system. This can
be useful for testing, after which you can use the Create Font tool before deploy-
ment. The name of a font used by createFont() should be identical to how it is listed
in the Create Font tool. You can also get a list of the available fonts with the PFont.
list() method, which returns a String array. The following will print the list of all
available fonts to the console:

println(PFont.list());

v
NN

If you have a lot of fonts installed on your system, there might be a
. long delay before they are listed.
‘3

as
[
N

The createFont () method can also be used with a TrueType (.t¢f) or OpenType (.otf)
file added to the data folder. Most TrueType fonts will work, but OpenType support
varies by platform. Be mindful of copyrighted fonts when using this method in a
sketch for public distribution.

Labeling the Current Data Set (Refine and Interact) | 61

A simple means of swapping between columns of data is to add a keyPressed()
method, which will automatically run any time a key is pressed:

void keyPressed() {
if (key = '[") {
currentColumn--;
if (currentColumn < 0) {
currentColumn = columnCount - 1;

}
} else if (key == ']") {
currentColumn++;
if (currentColumn == columnCount) {
currentColumn = 0;
}
}
}
This method will rotate through the columns as the user presses the [and | (bracket)
keys. When the number gets too big or too small, it wraps around to the beginning
or end of the list. Because columnCount is 3, the possible currentColumn values are 0,
1, and 2. So, when currentColumn reaches a value less than zero, it wraps around to 2
(columnCount - 1).

Drawing Axis Labels (Refine)

An unlabeled plot has minimal utility. It clearly displays relative up or down swings,
but without a sense of the time period or amounts to indicate the degree of swing,
it’s impossible to know whether values have changed by, say, 5% or 50%. And some
indication is required to explain that the horizontal axis represents the year and the
vertical axis represents actual volumes: the amount consumed of a particular bever-
age, measured in gallons per capita per year.

There are clever (and complicated) means of selecting intervals, but for this project,
we will pick the interval by hand. Choosing a proper interval and deciding whether
to include major and minor tick marks depends on the data, but a general rule of
thumb is that five intervals is at the low end, and more than ten is likely a problem.
Too many labels make the diagram look like graph paper, and too few suggests that
only the minimum and maximum values need to be shown.

The most important consideration is the way the data is used. Are minute, year-by-
year comparisons needed? Always use the fewest intervals you can get away with, as
long as the plot shows the level of detail the reader needs. Sometimes no labels are
necessary—if values are only meant to be compared against one another. For
instance, you might dispense with labels if you want to show only upward and
downward trends. Other factors, such as the width of the plot, also play a role, so
determining the correct level of detail usually requires a little trial and error.

62 | Chapter4: Time Series

Year Labels

Creating the year axis is straightforward. The data ranges from 1910 to 2004, so an
interval of 10 years means marking 10 individual years: 1910, 1920, 1930, and so
on, up to 2000. Add the yearInterval variable to the beginning of the code before
setup():
int yearInterval = 10;
Next, add the following function to draw the year labels:
void drawYearlabels() {
i11(0);
textSize(10);
textAlign(CENTER, TOP);
for (int row = 0; row < rowCount; row++) {
if (years[row] % yearInterval == 0) {
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
text(years[row], x, plotY2 + 10);
}
}
}
The fill color is set to black, the text size to 10, and the alignment to the middle so
that the year number centers on the position of the data point for that year.

Two lines in this code deserve further consideration. The first is the line that makes use
of the %, or modulo, operator. A modulo operation returns the remainder from a divi-
sion. So, for example, 7 % 2 is equal to 1, and 8 % 5 equals 3. It’s useful for drawing
labels because it provides a way to easily identify a year ending in 0. Dividing 1910 by
10 returns 0, so a label is drawn, whereas dividing 1911 by 10 produces 1, and so it
continues until the loop reaches 1920, which also returns 0 when divided by 10.

A second parameter to textAlign() sets the vertical alignment of the text. The
options are TOP, BOTTOM, CENTER, and BASELINE (the default). The TOP and CENTER
parameters are straightforward. The BOTTOM parameter is the same as BASELINE when
only one line of text is used, but for multiple lines, the final line will be aligned to the
baseline, with the previous lines appearing above it. When only one parameter is
used, the vertical alignment resets to BASELINE.

The resulting image is shown in Figure 4-3.

v
NN

To draw text that does not bump into the elements above it, you need

to know the height of the tallest character in the font. Typographers

s refer to this as the ascent. Traditionally, the ascent of a font is the

" height to the top of a capital H character. Characters such as the capi-
tal O or a capital B are in fact slightly taller than the letter H and dip
slightly below the baseline—the bottom line from which text is drawn.
The ascent value essentially refers to the optical height of the font,
which is the height perceived by our eyes.

Drawing Axis Labels (Refine) | 63

Milk

. . .
.. . .
. o L Tteenea®t Lene sssses

1910 1820 1930 1540 1950 1960 1970 1980 1990 2000

Figure 4-3. Time series with labeled x-axis

Simple grid lines can also help the presentation by identifying each interval. The fol-
lowing modifications add a grid to the drawYearLabels() function:

void drawYearlabels() {
fil1(0);
textSize(10);
textAlign(CENTER, TOP);

// Use thin, gray lines to draw the grid.
stroke(224);
strokeleight(1);

for (int row = 0; row < rowCount; row++) {
if (years[row] % yearInterval == 0) {
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
text(years[row], x, plotY2 + 10);
line(x, plotY1, x, plotY2);
}
}
}

Figure 4-4 shows the result.

Notice that because the fill color does not affect lines, and a stroke color does not
affect text, it is not necessary to use noFill() or noStroke() in this method.

With a separate method to draw the year labels, it makes sense to put the code that
draws the title into its own method. The drawTitle() method takes this code from
the draw() function. Just replace the title drawing code inside draw() with:

drawTitle();

64 | Chapter4: Time Series

Milk

. . .
. e .e .
. o LT teeneatt Lene sasese

1810 1920 1530 1540 1950 1960 1570 1980 1980 2000

Figure 4-4. Time series with vertical grid

and then add the following method to the code:
void drawTitle() {
£i11(0);
textSize(20);
textAlign(LEFT);
String title = data.getColumnName(currentColumn);
text(title, plotX1, plotY1l - 10);
}
Because the drawYearLabels() function changes the text alignment, a line is added to
reset to textAlign(LEFT) before drawing the title. Otherwise, the title would appear
centered at plotX1 on the next trip through the draw() method, inheriting the text
alignment settings from the previous draw().

Labeling Volume on the Vertical Axis

The vertical axis can be handled the same way as the horizontal, but it is a bit trick-
ier. A quick println(dataMax) added to setup() tells us that the maximum value is
46.4. Intervals of 10 will again suffice, this time producing only 5 divisions (as
opposed to 10 in the horizontal):

int volumeInterval = 10;

With a dataMax value of 46.4 and intervals of 10, rounding up dataMax to the nearest
interval will make the maximum value on the plot 50, making it a little easier to read
changes in vertical values. To do so automatically, divide dataMax by volumeInterval.

Drawing Axis Labels (Refine) | 65

The result is 4.64. Next, use ceil(), which rounds a float up to the next int value
(in this case, 5), called the ceiling of a float. Then, set dataMax to the rounded value
multiplied by volumeInterval. That calculation took a few sentences to explain, but
the code consists of a one-line change to setup():

dataMax = ceil(data.getTableMax() / volumeInterval) * volumeInterval;

To draw the labels, create a loop that iterates from the minimum to maximum data
values. Use an increment of volumeInterval to draw a label at each interval:

void drawVolumelabels() {
fi11(0);
textSize(10);
textAlign(RIGHT, CENTER);

for (float v = dataMin; v < dataMax; v += volumeInterval) {
float y = map(v, dataMin, dataMax, plotY2, plotY1);
text(floor(v), plotXi - 10, y);
}
}

When you’re drawing the text label, the floor () function removes decimals from the
number value because there’s no need to write 10.0, 20.0, 30.0, etc. when 10, 20,
and 30 will suffice. If dataInterval included decimal points, the nf() method could
be used instead to format the value to a specific number of decimal places.

A w

o The text() method can draw int or float values instead of just String
.‘s‘ objects. For float values, it is best to use the nf(') method to first con-
T Gk vert the float to a specific number of decimal places. By default, text()

will format a float to three decimal places. That is different from Java,
which can have many digits in the decimal place for a float, because
using just a few digits is usually more useful for a graphical display. To
get the full 4-, 8-, or 15-digit version of the float value, use the str()
function to convert the float to a String. For Java programmers, using
str() is equivalent to String.valueOf().

The x-coordinate of the label text is the lefthand edge of the plot minus a few pixels.
Also note the use of textAlign() to vertically center the text.

With the vertical centering, the label drawn at 0 is visually a little too close to the year
markers below. In its current state, this example is not detailed enough to be used for
real analysis and is better at showing upward and downward trends. In that context,
it’s clear from a glance that the bottom of the plot is 0, so the bottom label could be left
out completely. The same goes for the top value, which gets close to the title. To leave
these out, alter the first value drawn by adding a volumeInterval to dataMin, and end
the loop at v < dataMax instead of v <= dataMax so that the 50 won’t be drawn:
void drawVolumelabels() {

£i11(0);

textSize(10);

textAlign(RIGHT, CENTER);

66 | Chapter4: Time Series

float dataFirst = dataMin + volumeInterval;
for (float v = dataFirst; v < dataMax; v += volumeInterval) {
float y = map(v, dataMin, dataMax, plotY2, plotY1);
text(floor(v), plotXi - 10, y);
}
}

In other cases, it might not be appropriate to remove upper and lower values. If
dataMin were something other than 0, or the intervals more awkward than simple
intervals of 10, viewers might be confused without the minimum and maximum val-
ues. In such cases, the maximum value (50) can be vertically aligned to the top of the
plot, and the minimum value (0) to the bottom, rather than centered vertically like
the rest of the labels:
void drawVolumelabels() {
£i11(0);
textSize(10);

for (float v = dataMin; v <= dataMax; v += volumeInterval) {
float y = map(v, dataMin, dataMax, plotY2, plotY1);
if (v == dataMin) {
textAlign(RIGHT); // Align by the bottom
} else if (v == dataMax) {
textAlign(RIGHT, TOP); // Align by the top
} else {
textAlign(RIGHT, CENTER); // Center vertically

text(floor(v), plotX1i - 10, y);
}
}
Horizontal lines can be fashioned in the same manner as those for the year. Choos-
ing whether to use a horizontal or vertical grid depends on the axis with data that is
most important to be measured. If this plot is being used to analyze exact changes in
milk consumption, the horizontal gridlines will better help with identifying changes.
But if the purpose is to compare upward and downward trends across different years
(for instance, to understand how milk consumption changed during and after World
War 1), the vertical gridlines are more valuable. For this data set, it’s most interest-
ing to compare changes over the years, so we’ll stick with vertical lines.

Instead of gridlines, small tick marks near the labels on the vertical axis can be pro-
duced with the same technique, by drawing a short line just outside the edge of the
plot. Minor gridlines or tick marks can be drawn by including a variable for a second
interval that’s a multiple of the first and incrementing by that interval in the loop.
The following modification to drawVolumeLabels() adds major and minor tick marks
to the volume axis:

int volumeIntervalMinor = 5; // Add this above setup()
void drawVolumelabels() {

fil11(0);
textSize(10);

Drawing Axis Labels (Refine) | 67

stroke(128);
strokeleight(1);

for (float v = dataMin; v <= dataMax; v += volumeIntervalMinor) {
if (v % volumeIntervalMinor == 0) { // If a tick mark
float y = map(v, dataMin, dataMax, plotY2, plotY1);
if (v % volumeInterval == 0) { // If a major tick mark
if (v == dataMin) {
textAlign(RIGHT); // Align by the bottom
} else if (v == dataMax) {
textAlign(RIGHT, TOP); // Align by the top
} else {
textAlign(RIGHT, CENTER); // Center vertically

text(floor(v), plotX1 - 10, y);
line(plotX1 - 4, y, plotX1, y); // Draw major tick

} else {
line(plotX1 - 2, y, plotX1, y); // Draw minor tick
}
}
}
}
The result with the tick marks and vertical labels is shown in Figure 4-5.
Milk
50
40 o
2 . .. = 0."..'"...
.
10
0
1810 1820 1530 1540 1950 1960 1870 1980 1920 2000

Figure 4-5. Tick marks on the vertical axis

Strictly speaking, the minor tickmarks in this example are not very informative. They
can be removed to avoid visual clutter; simply comment out the line that draws the
minor ticks.

68 | Chapter4: Time Series

Bringing It All Together and Titling Both Axes

So far, anyone looking at this diagram should be able to guess that it has something
to do with milk from 1910 to sometime after 2000. To further explain the plot, the
next step is to provide titles for the year and volume axes. Informative axis titles are
important for the people viewing your data.

The year axis title is simple: just a piece of text centered between plotX1 and plotX2.
After centering the text in both directions with textAlign(CENTER, CENTER), the text is
drawn centered between plotY1 and plotY2. To fit both, the values for plotX1 and
friends must be changed to make room for the labels. In this case, eyeballing the
placement is sufficient, though textWidth() could be used to accurately size the left-
hand margin, and textAscent() could do the same for the label below.

For the vertical axis, it might be tempting to rotate the title on its side, but more
often than not it is more effective at giving your viewer eyestrain than it is at commu-
nicating. I've kept the text horizontal and broken the label into three lines by insert-
ing newline characters (\n) into the string.

Figure 4-6 shows our progress.

Milk
50
.
o
.
40 _—
- '..u.“'.
- . '.
R e T Ter tteense®t seee®t *assses
U i o 0
Gallons ~ ‘-._._,_.“
consumed ™ o,
per capita *on,

o
1910 1220 1830 1540 1850 1960 1870 1980 1880 2000

Year

Figure 4-6. Axis labels

Here’s the code listing for the program thus far, with the lines highlighted that were
altered to display the titles:

FloatTable data;
float dataMin, dataMax;

Drawing Axis Labels (Refine) | 69

float plotX1, plotYi;
float plotX2, plotY2;
float labelX, labely;

int rowCount;
int columnCount;
int currentColumn = 0;

int yearMin, yearMax;
int[] years;

int yearInterval = 10;
int volumeInterval = 10;
int volumeIntervalMinor = 5;

PFont plotFont;

void setup() {
size(720, 405);

data = new FloatTable("milk-tea-coffee.tsv");
rowCount = data.getRowCount();
columnCount = data.getColumnCount();

years = int(data.getRowNames());
yearMin = years[0];
yearMax = years[years.length - 1];

dataMin = 0;
dataMax = ceil(data.getTableMax() / volumeInterval) * volumeInterval;

// Corners of the plotted time series
plotX1 = 120;

plotX2 = width - 80;

labelX = 50;

plotY1 = 60;

plotY2 = height - 70;

labelY = height - 25;

plotFont = createFont("SansSerif", 20);
textFont(plotFont);

smooth();

void draw() {
background(224);

// Show the plot area as a white box
Fi11(255);

rectMode (CORNERS);

noStroke();

rect(plotX1, plotY1, plotX2, plotY2);

70 | Chapter4: Time Series

drawTitle();
drawAxisLabels();

drawYearLabels();
drawVolumelabels();

stroke(#5679C1);
strokeWeight(5);
drawDataPoints(currentColumn);

void drawTitle() {
fill(0);
textSize(20);
textAlign(LEFT);
String title = data.getColumnName(currentColumn);
text(title, plotX1, plotYl - 10);

void drawAxislabels() {
£il1(0);
textSize(13);
textLeading(15);

textAlign(CENTER, CENTER);

// Use \n (aka enter or linefeed) to break the text into separate lines.
text("Gallons\nconsumed\nper capita"”, labelX, (plotYit+plotY2)/2);
textAlign(CENTER);

text("Year", (plotXi+plotX2)/2, labelY);

void drawYearlabels() {
fi11(0);
textSize(10);
textAlign(CENTER, TOP);

// Use thin, gray lines to draw the grid.
stroke(224);
strokeWeight(1);

for (int row = 0; row < rowCount; row++) {
if (years[row] % yearInterval == 0) {
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
text(years[row], x, plotY2 + 10);
line(x, plotY1, x, plotY2);
}
}
}

void drawVolumelabels() {
fi11(0);
textSize(10);

Drawing Axis Labels (Refine)

Al

stroke(128);
strokeWeight(1);

for (float v = dataMin; v <= dataMax; v += volumeIntervalMinor) {
if (v % volumeIntervalMinor == 0) { // If a tick mark
float y = map(v, dataMin, dataMax, plotY2, plotY1);
if (v % volumeInterval == 0) { // If a major tick mark
if (v == dataMin) {
textAlign(RIGHT); // Align by the bottom
} else if (v == dataMax) {
textAlign(RIGHT, TOP); // Align by the top
} else {
textAlign(RIGHT, CENTER); // Center vertically

text(floor(v), plotXi - 10, y);
line(plotX1 - 4, y, plotX1, y); // Draw major tick

} else {
// Commented out; too distracting visually
//1line(plotX1 - 2, y, plotX1, y); // Draw minor tick

}

}
}
}

void drawDataPoints(int col) {
for (int row = 0; row < rowCount; row++) {
if (data.isValid(row, col)) {
float value = data.getFloat(row, col);
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
float y = map(value, dataMin, dataMax, plotY2, plotY1);
point(x, y);

void keyPressed() {
if (key == '[") {
currentColumn--;
if (currentColumn < 0) {
currentColumn = columnCount - 1;

}

} else if (key == ']") {
currentColumn++;
if (currentColumn == columnCount) {

currentColumn = 0;

}

}

}

72

| Chapter4: Time Series

Choosing a Proper Representation (Represent and
Refine)

A series of points can be difficult to follow if they’re not connected. It’s not as easy to
compare milk and coffee in these images, for instance, because the predominant dif-
ference between the two plots is that the coffee values are far more erratic than those
for milk. Instead of a specific shape, the points make an indeterminate cloud that is
difficult to make sense of at a quick glance.

When values are truly a series and there is no missing data, it’s possible to use a line
graph and simply connect the points. The beginShape() and endShape() methods
provide a means for drawing irregular shapes. The vertex() method adds a single
point to the shape. To connect the dots in a line, replace the point() method with
vertex().

Three examples follow that show the basic drawing modes of beginShape() and
endShape(). See Figure 4-7. Using noFill() will produce the image at left, and the
default fill and stroke settings will produce the image in the center. The CLOSE param-
eter in the endShape() method handles the connection of the final point to the first,
so that the stroke completely outlines the shape. Always use endShape (CLOSE) when
closing a shape because the alternative—repeating the first point—may cause unex-
pected visual defects.

Figure 4-7. Examples using beginShape() and endShape()

// Leftmost image: fill disabled and the default stroke
noFill();

beginShape();

vertex(10, 10);

vertex(90, 30);

vertex(40, 90);

vertex(50, 40);

endShape();

// Center image: default fill (white) and stroke (black)
beginShape();

vertex(10, 10);

vertex(90, 30);

vertex(40, 90);

vertex(50, 40);

endShape();

Choosing a Proper Representation (Represent and Refine) | 73

// Rightmost image: default fill and stroke, closed shape
beginShape();
vertex(10, 10);
vertex(90, 30);
vertex(40, 90);
vertex(50, 40);
endShape (CLOSE) ;
To represent a time series, we want a simple line with no fill, so we’ll use the nofill()
form of the shape. The following method is a variation of drawPoints() that draws the
data with beginShape() and endShape(), with the alterations highlighted:
void drawDatalLine(int col) {
beginShape();
int rowCount = data.getRowCount();
for (int row = 0; row < rowCount; row++) {
if (data.isValid(row, col)) {
float value = data.getFloat(row, col);
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
float y = map(value, dataMin, dataMax, plotY2, plotY1);
vertex(x, y);

}

}
endShape();

Inside draw(), comment out the line that reads:
drawDataPoints(currentColumn);
by placing a pair of slashes (//) in front of it. On the line that follows, add:

noFill();

drawDataline(currentColumn);
The noFill() command is important; without it, the shape would have a strange black
background because the fill was last set to black in the prior lines that draw the text
label for the plot. This version of the code produces the image shown in Figure 4-8.

It could also be used to draw all three series (milk, tea, and coffee) on a single plot.
To do this, call drawDatalLine() once for each of the three columns, and set a differ-
ent stroke color for each.

It’s also easy to mix lines and points in the representation to create a background line
that highlights the individual data points. To do so, set the stroke weight to
something smaller while drawing the lines and keep the thicker weight for the points.
Modify the end of draw(') to read as follows:

stroke(#5679C1);
strokeWeight(5);
drawDataPoints(currentColumn);
noFill();

strokeWeight(0.5);
drawDataline(currentColumn);

74 | Chapter4: Time Series

Milk

50

40

30
Gallons
consumed
per capita

10

o
1810 1220 1830 1540 1850 1860 1870 1980 1880 2000

Year

Figure 4-8. Continuously drawn time series using vertices

The result appears in Figure 4-9.

Milk

50

40 o

Gallons -~ '
consumed
per capita

10

o
1910 1220 1830 1940 1850 1960 1870 1580 1880 2000

Year

Figure 4-9. Combined dots and continuous line

Note that the functions themselves should not be merged, as other shape commands
(such as point()) are not permitted inside a beginShape() and endShape() block.

Choosing a Proper Representation (Represent and Refine) | 75

Depending on how you use this code, it may be important to draw the points after
the lines. For example, if you set the stroke of the line to a light gray, it would be best
to draw the blue points on top of the line so that the points are not bisected by an
odd gray line (which has poor contrast with blue).

Using Rollovers to Highlight Points (Interact)

The lines and points combination is overkill for this data set: there are so many data
points horizontally that the individual dots (at a size of five pixels) are nearly the size
of the space allotted for each data point (around seven pixels), leaving only two pix-
els between them. Another option is to highlight individual points when the mouse is
nearby. This is technique is nearly identical to the one used at the end of the previ-
ous chapter, and the function looks like the following:

void drawDataHighlight(int col) {
for (int row = 0; row < rowCount; row++) {
if (data.isvalid(row, col)) {
float value = data.getFloat(row, col);
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
float y = map(value, dataMin, dataMax, plotY2, plotY1);
if (dist(mouseX, mouseY, x, y) < 3) {
strokeWeight(10);
point(x, y);
fi11(0);
textSize(10);
textAlign(CENTER);
text(nf(value, 0, 2) + " (" + years[row] + ")", X, y-8);

The stroke weight for the point is set to 10 because the weight used in the
drawDataPoints() method (5) would not contrast enough with the rest of the image.
Similarly, the stroke weight for the lines is set to 2, rather than the 0.5 stroke used
when combining drawDatalines() and drawDataPoints(), because it should stand
out more. But strokeWeight(2) is still thinner than the strokeWeight(5) used when
the drawDatalines() method is run by itself because if the line itself is too thick, the
rollover won’t be prominent enough.

The modified draw() method to draw the highlight follows:

void draw() {
background(224);

// Show the plot area as a white box.
f111(255);

rectMode (CORNERS);

noStroke();

rect(plotX1, plotY1, plotX2, plotY2);

76 | Chapter4: Time Series

drawTitle();
drawAxisLabels();

drawYearLabels();
drawVolumelabels();

stroke(#5679C1);

noFill();

strokeleight(2);

drawDataLine(currentColumn);

drawDataHighlight(currentColumn);
}

An image of the result is shown in Figure 4-10.

Milk

40

33.00 (1968)

30
Gallons
consumed
per capita

o
1910 1220 1830 1540 1850 1960 1870 1580 1880 2000

Year

Figure 4-10. Time series with user-selected highlight

Ways to Connect Points (Refine)

Connecting the points with a curve is often a better option because it prevents the
spikiness of the plot from overwhelming the data itself. The curvevertex() function
is similar to the vertex() function, except that it connects successive points by fit-
ting them to a curve.

The drawDataCurve() method, a modification of drawDataline(), follows:

void drawDataCurve(int col) {
beginShape();
for (int row = 0; row < rowCount; row++) {
if (data.isValid(row, col)) {
float value = data.getFloat(row, col);

Ways to Connect Points (Refine) | 77

float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
float y = map(value, dataMin, dataMax, plotY2, plotY1);

curveVertex(x, y);

// Double the curve points for the start and stop

if ((row == 0) || (row == rowCount-1)) {
curveVertex(x, y);

}
}

endShape();
}
To draw a curve with curveVertex(), at least four points are necessary because the
first and last coordinates in curveVertex() are used to guide the angle at which the
curve begins and ends. In this particular example, doubling start and stop points will
work fine. In other cases, additional points can be used to maintain continuity
between two connected curves.

The results of using a smooth curve can be seen most clearly when comparing the
coffee data drawn with vertex() and curveVertex() in Figure 4-11.

Showing Data As an Area

Another variation of drawDatalLine() draws the values as a filled area. Before calling
endShape(), add the lower-right corner and then the lower-left corner to complete
the outline of the shape to be filled. And instead of endShape() with no parameters,
use endShape (CLOSE) to close it, reconnecting it to the first vertex.

The new drawDataArea() function is:

void drawDataArea(int col) {
beginShape();
for (int row = 0; row < rowCount; row++) {
if (data.isValid(row, col)) {
float value = data.getFloat(row, col);
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
float y = map(value, dataMin, dataMax, plotY2, plotY1);
vertex(x, y);
}
}

// Draw the lower-right and lower-left corners.
vertex(plotX2, plotY2);

vertex(plotX1, plotY2);

endShape(CLOSE) ;

78 | Chapter4: Time Series

Coffee

50
40
30
Gallons
consumed
per capita
10
1]
1910 1820 1930 1940 1950 1860 1970 1980 1980 2000
Year
Coffee
50
40
Gallons
consumed
per capita
10
o
1810 1820 1830 1540 1850 1860 1970 1880 1980 2000
Year

Figure 4-11. Comparison of the use of vertices (top) and curve vertices (bottom)

Ways to Connect Points (Refine)

79

Next, modify the end of the draw() method to replace the stroke(#5679C1) line with
f111(#5679C1), and change noFill() to noStroke(); drawing an outline around an
already filled shape is unnecessary:

noStroke();

Fi11(#5679C1) ;
drawDataArea(currentColumn);

The new plot is shown in Figure 4-12.

Milk

Gallons
consumed
per capita

10

o
1210 1220 1830 1940 1850 1960 1870 1980 1880 2000

Year

Figure 4-12. Filled time series

This makes a more attractive plot, and because the data set considers the actual vol-
ume of consumption—that is, the vertical axis starts at 0—it makes sense to fill the
area beneath the data points. Whenever filling a plot, consider whether the data
being shown refers to some kind of actual area or volume. For instance, it would not
be appropriate to fill the area beneath a plot of temperature because the lower bound
is arbitrary (unless you’re measuring temperatures above absolute zero). A graph of
rainfall, however, refers to the actual volume or amount that can be measured
upward from “none,” making it a candidate for a filled plot.

Further Refinements and Erasing Elements

The highest priority of any information graphic is to place the data it represents first
and foremost. A filled area can seem too much like the background, so sometimes
it’s best to remove the background. Without the gray background, the grid lines
become awkward without some kind of box around them to contain the plot. A box

80 | Chapter4: Time Series

adds no additional usefulness, just clutters the composition, so a better option is to
remove the background and make the gridlines part of the graphic itself by setting
their color to white. To draw the gridlines on top of the data, move the
drawYearlLabels() method after drawDataArea() inside draw() so that the grid lines
will be drawn after the filled shape. The new draw() method is very sparse:

void draw() {
background(255);

drawTitle();
drawAxisLabels();
drawVolumelabels();

noStroke();
111(#5679C1) ;
drawDataArea(currentColumn);

drawYearLabels();

}

Inside drawYearLabels(), use stroke(255) instead of stroke(224) to make the grid-
lines white. The results are shown in Figure 4-13.

Milk

50

i -
30
Gallons
consumed
per capita
20
10 -
g

1510 1820 1830 1940 1850 1960 1570 1980 1980 2000

Year

Figure 4-13. Unboxed plot with reverse-color gridlines

Such minimization of graphic elements has long been the province of those who
champion a “less is more” approach to design. Edward Tufte later popularized this
approach in his series of books on information graphics.

Ways to Connect Points (Refine) | 81

Discrete Values with a Bar Chart (Represent)

When values are discrete and cannot be shown in a series, a bar chart might be more
suitable. A common example is when data is missing and therefore does not repre-
sent a complete series. Drawing a bar chart is a matter of using rectangles instead of
individual points, and then drawing the data centered at each horizontal location.

The following replacement for drawDataArea() creates a bar chart:

float barWidth = 4; // Add to the end of setup()

void drawDataBars(int col) {
noStroke();
rectMode(CORNERS);

for (int row = 0; row < rowCount; row++) {
if (data.isValid(row, col)) {
float value = data.getFloat(row, col);
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
float y = map(value, dataMin, dataMax, plotY2, plotY1);
rect(x-barWidth/2, y, x+barWidth/2, ploty2);

}
}
}
Here, the barWidth variable makes the bars four pixels wide. Calculating widths for a
bar chart can be done with algebra (by dividing the distance between plotX2 and
plotX1 by the number of rows of data) or by trial and error.

It’s also necessary to disable the lines drawn in drawYearlabels() because vertical
grid lines will conflict with the bars.

Unfortunately, this is too much data to show at this width, resulting in the vibrating
texture shown in Figure 4-14, which looks more like a swatch of patterned fabric.

This example highlights an important consideration: when deciding on a representa-
tion, use a bar chart only when there’s enough room to leave clear gaps between bars.

Once a bar chart is laid out properly, the method of using white grid lines in
Figure 4-13 could be better utilized to highlight the divisions on the left axis by eras-
ing thin horizontal lines across the plot. Like the version that sliced the area plot into
individual decades, this would provide another cue to help the viewer quickly read
data values.

82 | Chapter4: Time Series

Milk

50

30
Gallons
consumed
per capita
20 I“‘
0
540

1510 1820 1830 1 1850 1960 1570 1980 1980 2000

&

=]

Year

Figure 4-14. Overly busy bar chart

Text Labels As Tabbed Panes (Interact)

Using keys to navigate an interface should be used only during testing. A more
sophisticated method is to use on-screen buttons, as users expect from a modern
interface. This section describes how to replace the drawTitle() function with
drawTitleTabs() to introduce a series of tabbed panel—one for each data series.

Adding the Necessary Variables

The tabTop and tabBottom variables specify the upper and lower edge of the tabs. The
tabLeft and tabRight variables store the coordinates for the left and right edges of
each tab so that we can detect mouse clicks inside the tabs. The tabPad variable spec-
ifies the amount of padding on the left and right of the tab text:

float[] tabLeft, tabRight; // Add above setup()

float tabTop, tabBottom;
float tabPad = 10;

Text Labels As Tabbed Panes (Interact) | 83

Drawing Tabs Instead of a Single Title

The important part of this method keeps track of a value named runningX to calcu-
late the positions of each tab. The width of each tab is calculated using textWidth(),
and the tabPad value is added to provide padding on the sides:

void drawTitleTabs() {
rectMode (CORNERS) ;
noStroke();
textSize(20);
textAlign(LEFT);

// On first use of this method, allocate space for an array
// to store the values for the left and right edges of the tabs.
if (tabLeft == null) {

tabLeft = new float[columnCount];

tabRight = new float[columnCount];

}

float runningX = plotXi;
tabTop = plotYl - textAscent() - 15;
tabBottom = plotY1;

for (int col = 0; col < columnCount; col++) {
String title = data.getColumnName(col);
tablLeft[col] = runningX;
float titleWidth = textWidth(title);
tabRight[col] = tabLeft[col] + tabPad + titleWidth + tabPad;

// 1f the current tab, set its background white; otherwise use pale gray.
fill(col == currentColumn ? 255 : 224);
rect(tabLeft[col], tabTop, tabRight[col], tabBottom);

// If the current tab, use black for the text; otherwise use dark gray.
fill(col == currentColumn ? 0 : 64);
text(title, runningX + tabPad, plotY1l - 10);

runningX = tabRight[col];
}
}

This piece of code also introduces the conditional operator, identified by the ?. The
conditional statement:

fill(col == currentColumn ? 0 : 64);
is equivalent to writing:

if (col == currentColumn) {
£i11(0);

} else {
fill(64);

}

84 | Chapter4: Time Series

The benefit of the former is compact code: a single line instead of five. The condi-
tional operator is most useful in situations such as this one, where a simple if test is
used to control something straightforward like the fill color. In this case, it can be
argued that the shorter code is more readable than all five lines. However, use the con-
ditional operator sparingly because overuse can result in code that is difficult to read.

Handling Mouse Input

Next, we’ll add the mousePressed() method, which tests whether the mouse is inside
one tab or another. This method is a simple matter of iterating through each tab and
checking the mouseX and mouseY coordinates against the variables that contain the
boundaries of each tab rectangle. If the mouseY value is in the correct range, mouseX is
tested against each tableft and tabRight value. If inside, the value of currentColumn
is updated with the setColumn() method:
void mousePressed() {
if (mouseY > tabTop & mouseY < tabBottom) {
for (int col = 0; col < columnCount; col++) {
if (mouseX > tablLeft[col] &8 mouseX < tabRight[col]) {
setColumn(col);
}
}

}
}

void setColumn(int col) {
if (col != currentColumn) {
currentColumn = col;

}
}
The setColumn() method is expressed in a separate piece of code because it will be
modified in the next section, and the keyPressed() method should simply be
removed.

Finally, the result is shown in Figure 4-15.

Better Tab Images (Refine)

The tabs in Figure 4-15 look pretty boring, but some tweaking of the text, the col-
ors, and a line here and there could improve them. Another option is to load the tabs
from a series of image files. Three separate image files would be used for the non-
selected state of the tabs, and three others would be used for the selected state. Then,
instead of setting the fill differently for the rectangle and the text title, one of the six
images would be used in its place. A modified version of the code looks like this:

float[] tabLeft, tabRight; // Add above setup()

float tabTop, tabBottom;

float tabPad = 10;
PImage[] tabImageNormal;

Text Labels As Tabbed Panes (Interact) | 85

Milk Tea Coffee

Gallons
consumed
per capita

10

o
1910 1820 1830 1540 1850 1560 1870 1980 1880 2000

Year

Figure 4-15. Clickable tabs
PImage[] tabImageHighlight;

void drawTitleTabs() {
rectMode (CORNERS);
noStroke();
textSize(20);
textAlign(LEFT);

// Allocate the tab position array, and load the tab images.
if (tablLeft == null) {

tabLeft = new float[columnCount];

tabRight = new float[columnCount];

tabImageNormal = new PImage[columnCount];

tabImageHighlight = new PImage[columnCount];

for (int col = 0; col < columnCount; col++) {
String title = data.getColumnName(col);
tabImageNormal[col] = loadImage(title + "-unselected.png");
tabImageHighlight[col] = loadImage(title + "-selected.png");

}
}

float runningX = plotXi;

tabBottom = plotY1;

// Size based on the height of the tabs by checking the
// height of the first (all images are the same height)
tabTop = plotY1 - tabImageNormal[o].height;

for (int col = 0; col < columnCount; col++) {
String title = data.getColumnName(col);
tableft[col] = runningX;
float titleWidth = tabImageNormal[col].width;

86 | Chapter4: Time Series

tabRight[col] = tabLeft[col] + tabPad + titleWidth + tabPad;

PImage tabImage = (col == currentColumn) ?
tabImageHighlight[col] : tabImageNormal[col];
image(tabImage, tabLeft[col], tabTop);

runningX = tabRight[col];
}
}

When preparing the images, be sure to keep their heights the same. As with the text
version, the widths of the titles can vary, but the width of the selected versus non-
selected version should always be the same. The images should be named based on
the title of each column, so, in this case, the following six files are used:

* Milk-selected.png

* Tea-selected.png

* Coffee-selected.png

* Milk-unselected.png

* Tea-unselected.png

* Coffee-unselected.png
For those who want to use standard interface components instead of making their
own, later chapters cover integrating Processing with Java code. Custom compo-

nents are useful when a unique interface is preferred, but they are less helpful if a
standard interface is more appropriate for your audience.

Interpolation Between Data Sets (Interact)

Chapter 3 showed how to interpolate between values in a data set with the use of the
Integrator class. Download itfrom http://benfry.com/writing/series/Integrator.pde.

The changes are identical to those in the previous chapter. First, declare the array of
Integrator objects before setup():

Integrator[] interpolators;
Inside setup(), create each Integrator and set its initial value:

interpolators = new Integrator[rowCount];

for (int row = 0; row < rowCount; row++) {
float initialValue = data.getFloat(row, 0);
interpolators[row] = new Integrator(initialValue);
interpolators[row].attraction = 0.1; // Set lower than the default

}

The attraction value is set to 0.1 (instead of the default, 0.2) so that the interpola-
tion occurs at a less frantic pace.

Interpolation Between Data Sets (Interact) | 87

http://benfry.com/writing/series/Integrator.pde

In draw(), each Integrator is updated:

for (int row = 0; row < rowCount; row++) {
interpolators[row].update();
}
Next, for whatever variation of the drawData() function you would like to use,
replace its data.getFloat() line. The original looks like this:

float value = data.getFloat(row, col);
Change the line to the following to use the interpolated values:
float value = interpolators[row].value;

Finally, modify setCurrent() to set each Integrator to target the value for the cur-
rent column:

void setCurrent(int col) {
currentColumn = col;

for (int row = 0; row < rowCount; row++) {
interpolators[row].target(data.getFloat(row, col));
}
}

The final code, with modifications highlighted, follows:

FloatTable data;
float dataMin, dataMax;

float plotX1, plotYi;
float plotX2, plotY2;
float labelX, labely;

int rowCount;
int columnCount;
int currentColumn = 0;

int yearMin, yearMax;
int[] years;

int yearInterval = 10;

int volumeInterval = 10;

int volumeIntervalMinor = 5;
float[] tabLeft, tabRight;
float tabTop, tabBottom;
float tabPad = 10;

Integrator[] interpolators;

PFont plotFont;

void setup() {
size(720, 405);

88 | Chapter4: Time Series

data = new FloatTable("milk-tea-coffee.tsv");
rowCount = data.getRowCount();
columnCount = data.getColumnCount();

years = int(data.getRowNames());
yearMin = years[0];
yearMax = years[years.length - 1];

dataMin = 0;
dataMax = ceil(data.getTableMax() / volumeInterval) * volumeInterval;

interpolators = new Integrator[rowCount];

for (int row = 0; row < rowCount; row++) {
float initialValue = data.getFloat(row, 0);
interpolators[row] = new Integrator(initialValue);
interpolators[row].attraction = 0.1; // Set lower than the default

}

plotX1 = 120;
plotX2 = width - 80;
labelX = 50;
plotY1l = 60;

plotY2 = height - 70;
labelY = height - 25;

plotFont = createFont("SansSerif", 20);
textFont(plotFont);

smooth();

void draw() {
background(224);

// Show the plot area as a white box
fi11(255);

rectMode (CORNERS);

noStroke();

rect(plotX1, plotY1, plotX2, plotY2);

drawTitleTabs();
drawAxisLabels();

for (int row = 0; row < rowCount; row++) {
interpolators[row].update();

}

drawYearLabels();
drawVolumelabels();

noStroke();
fil1(#5679C1);
drawDataArea(currentColumn);

Interpolation Between Data Sets (Interact)

89

void drawTitleTabs() {
rectMode (CORNERS);
noStroke();
textSize(20);
textAlign(LEFT);

// On first use of this method, allocate space for an array
// to store the values for the left and right edges of the tabs.
if (tablLeft == null) {

tabLeft = new float[columnCount];

tabRight = new float[columnCount];

}

float runningX = plotX1;
tabTop = plotYl - textAscent() - 15;
tabBottom = plotYi;

for (int col = 0; col < columnCount; col++) {
String title = data.getColumnName(col);
tableft[col] = runningX;
float titleWidth = textWidth(title);
tabRight[col] = tabLeft[col] + tabPad + titleWidth + tabPad;

// If the current tab, set its background white; otherwise use pale gray.
fill(col == currentColumn ? 255 : 224);
rect(tablLeft[col], tabTop, tabRight[col], tabBottom);

// If the current tab, use black for the text; otherwise use dark gray.
fill(col == currentColumn ? 0 : 64);
text(title, runningX + tabPad, plotY1l - 10);

runningX = tabRight[col];

void mousePressed() {
if (mouseY > tabTop && mouseY < tabBottom) {
for (int col = 0; col < columnCount; col++) {
if (mouseX > tablLeft[col] &8 mouseX < tabRight[col]) {
setCurrent(col);
}
}
}
}

void setCurrent(int col) {
currentColumn = col;

for (int row = 0; row < rowCount; row++) {
interpolators[row].target(data.getFloat(row, col));
}
}

90 | Chapter4: Time Series

void drawAxislLabels() {
£i11(0);
textSize(13);
textlLeading(15);

textAlign(CENTER, CENTER);

text("Gallons\nconsumed\nper capita", labelX, (plotYi+plotY2)/2);
textAlign(CENTER);

text("Year", (plotXi+plotX2)/2, labelY);

void drawYearlLabels() {
£i11(0);
textSize(10);
textAlign(CENTER);

// Use thin, gray lines to draw the grid
stroke(224);
strokeWeight(1);

for (int row = 0; row < rowCount; row++) {
if (years[row] % yearInterval == 0) {
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
text(years[row], x, plotY2 + textAscent() + 10);
line(x, plotY1, x, plotY2);
}
}
}

void drawVolumelabels() {
fi11(0);
textSize(10);
textAlign(RIGHT);

stroke(128);
strokeWeight(1);

for (float v = dataMin; v <= dataMax; v += volumeIntervalMinor) {
if (v % volumeIntervalMinor == 0) { // If a tick mark
float y = map(v, dataMin, dataMax, plotY2, plotY1);
if (v % volumeInterval == 0) { // If a major tick mark
float textOffset = textAscent()/2; // Center vertically
if (v == dataMin) {
textOffset = 0; // Align by the bottom
} else if (v == dataMax) {
textOffset = textAscent(); // Align by the top
}
text(floor(v), plotX1 - 10, y + textOffset);
line(plotX1 - 4, y, plotX1, y); // Draw major tick
} else {
//line(plotX1 - 2, y, plotX1, y); // Draw minor tick

Interpolation Between Data Sets (Interact)

void drawDataArea(int col) {
beginShape();
for (int row = 0; row < rowCount; Trow++) {
if (data.isValid(row, col)) {
float value = interpolators[row].value;
float x = map(years[row], yearMin, yearMax, plotX1, plotX2);
float y = map(value, dataMin, dataMax, plotY2, plotY1);
vertex(x, y);
}

}
vertex(plotX2, plotY2);

vertex(plotX1, plotY2);
endShape(CLOSE);

End of the Series

In this chapter, we looked at the most common form of data plot: the time series. The
point was to get comfortable with functions such as map(), pick up some principles on
how to choose a representation, and see how a few lines of code can help produce an
alternate representation or a more refined appearance. The techniques implemented
here are useful for nearly any type of plot, as the algebra for placement and consider-
ations for use will be identical across all other data sets that we examine.

Developers familiar with Processing or Java might want to make this code into a
class. Classes are a useful means for encapsulating data sets. For instance, this code
could be made into a class named TimeSeries to handle arbitrary data stored in a
table. This might be a useful abstraction, but keep in mind how you customize the
code once it’s in a class. The final version of the program listing in this chapter is just
over 200 lines (a little more than three printed pages). Once you’ve moved this code
into a 200-line class, how do you keep it flexible? Do you modify it directly or sub-
class it? Is it necessary to create a new subclass for each new type of representation,
when each new representation is between 5 and 20 lines apiece? Always weigh such
decisions in terms of how the code will be used. If only one representation is
required for your particular project, why bother maintaining multiple subclasses?
Just do the representation right the first time. And when reusing the code in your
next project, you’ll probably change at least 10% of the base code anyway, so there’s
no need to maintain several subclasses. As our projects become more complicated,
we’ll do more to encapsulate code into modular units, while doing our best to avoid
needless levels of abstraction.

92 | Chapter4: Time Series

Of course, there are libraries that allow you to plot data in a number of ways, partic-
ularly for simple things such as time series or bar charts. For Java coders, JFreeChart
is a widely used example (see http://www.jfree.orgljfreechart). JFreeChart is a nice
tool for basic charting and graphing, but it doesn’t allow the kind of flexible customi-
zation taught here—which you are hopefully coming to appreciate. This book
intends to teach you the starting point for drawing basic representations, such as a
plot or chart, and then goes on to show how they can be manipulated in a more
sophisticated manner than can be done with standard tools.

End of the Series | 93

http://www.jfree.org/jfreechart/

CHAPTER 5
Connections and Correlations

Data that varies across multiple dimensions is common, and it can be difficult to rep-
resent in traditional charts that exploit only the two dimensions of the screen or
printed page. In particular, you often have an independent variable and a dependent
variable that change over time. Many techniques for representing change exist, but
one of the most engaging ways is animation.

In this chapter, we’ll create a display of baseball results to explore how relationships
can be instantly and powerfully conveyed through the spatial arrangement of data,
visual elements such as icons and lines, and most significantly, the use of animation.
You don’t have to understand baseball to understand this chapter; it’s less about the
game than it is about the numbers and depicting those numbers.

The display used in this chapter is uniquely suited to the baseball data provided and
the relationships within that data. You might choose to use a different sort of dis-
play for your data, but you can learn a lot by following the use of font, color, stroke
weight, and other parameters shown here. The example demonstrates how to keep
the basic goal of a display in mind and how to choose each element to meet that
goal. Along the way, we’ll see how to parse text data and convert it from simple
plain-text files to internal formats that are easy for our program to mine. We’ll also
study how to mix text data (including numeric data) with lines and other visual ele-
ments and how to correlate parameters, such as dates, with physical screen positions
that allow the user to control the display using the mouse.

Changing Data Sources

Data collection is significantly more involved here than in the other chapters, and
we’ll spend a lot more time learning about parsing HTML pages to acquire data, as
well as exploring tools for parsing text data.

At times, the methods we’re using will seem very specific to the data set we’re look-
ing at, which leaves us open to the danger of URLs changing or pages going out of

94

date. But therein lies the point of the chapter: when the data source does change,
you’ll use similar methods to parse the updated information, and you need to under-
stand how this process works so that you can effectively handle the new data. Chap-
ters 9 and 10 also cover data acquisition and parsing in greater detail and provide a
helpful guide for common practices. The same methods can be applied to all man-
ner of information sources—even those that have nothing to do with baseball.

Problem Statement

In 2004, the Boston Red Sox won the World Series after an 86-year championship
drought. As a Red Sox fan, this was a bittersweet victory in the sense that the Sox
were the second-highest-paid team in baseball and had just now managed to win a
championship. With a total salary budget of around $133 million dollars, they
weren’t exactly young upstarts. That made me curious about the relationships
between raw salaries and the general performance of the individual teams across the
league.

For instance, George Steinbrenner, the owner of the New York Yankees, had in
recent years been accused of trying to “buy” the World Series trophy by assembling a
collection of highly paid all-stars. On the other hand, the performance of the Oak-
land Athletics (the A’s) had in prior years far exceeded their overall salary. In the
book Moneyball (W.W. Norton & Company), Michael Lewis tells the story of how
Billy Beane, the general manager (GM) of the A’s, made use of statistics to pursue
players who had promising numbers but were below the radar because they weren’t
always standouts in the traditional sense.

Bill James was one of pioneers of statistics-oriented thinking in regards to baseball,
first with his analytical sports columns and later with The Bill James Baseball
Abstract, first published in 1977. Similar ideas led to the founding of the Society for
American Baseball Research (SABR), from which came the term for this numbers-
driven approach to the game, sabermetrics. The extent to which statistics can be
applied to sports remains a controversial topic, pitting the appreciation of the intan-
gible, underlying traits of highly talented people against a perceived reduction of
noble games to mere mathematics.

As with any narrative, Moneyball presents an over-simplification of the system, as
does the simple relationship of total salaries in a given year to performance-to-date.
More complex factors come into play, including how contracts work over multiple
years, the health of a team’s farm system (their minor-league teams), and scoring
methods for individual players. The original version of this project was thrown
together while watching a game on television and should not be ranked alongside the
many professional analyses of sports statistics.

However, a win is a win, and as a gross measure, showing the simple correlation
between team salaries and standings can be quite revealing, particularly to observe

Problem Statement | 95

shifts over the course of a season. Non-baseball fans also seem to enjoy this demon-
stration because wins and losses can be understood without intimate knowledge of
the game, and because it fuels a popular discussion topic: that of the seemingly limit-
less salaries paid to professional athletes.

Preprocessing

In the examples so far, the data has been reasonably clean. That is rare; most data
sets you find will need some amount of preprocessing before they’re even usable.
Returning to the seven-step process outlined in Chapter 1, it’s not uncommon to first
take a data set through the acquire, parse, filter, and mine steps, only to return to the
beginning of the process and go through each step again with the resulting clean set
of data (acquiring the clean data, parsing it, filtering and mining, etc.). For this chap-
ter, we’ll be preprocessing the data, and then starting all over again to represent the
results.

Retrieving Win/Loss Data (Acquire)

Increasingly, many organizations make data available through web services, APIs,
and acquisition methods (known by acronyms such as REST and SOAP) that distrib-
ute data in a neatly packaged format (usually XML-formatted text). When available,
such services can be extremely useful, and they are a good starting point when deal-
ing with a provider’s data.

But most data still appears in the form of HTML-formatted tables, which may be
attractive to human readers but is difficult for programs to understand. Although the
sites may look relatively structured from our perspective, they are quite unstruc-
tured from the point of view of a program trying to organize and perform calcula-
tions on the data. Extracting the data from the HTML with a program is often called
screen-scraping.

To get such data, you have to look at the HTML and write code to parse it. Luckily,
most HTML is machine-generated and therefore is in a pretty regular format. You
just have to locate the table you want among the JavaScript and other HTML tags
used to display the web page.

The main hurdle you face is that the web site designers can change the format on a
whim and with a click of a button in some web page layout tools. Upon complaints
from users of your program that it no longer works, you’ll have to rush back to the
site where you got your data to see what change they introduced. REST and SOAP
eliminate this problem; they represent an implicit commitment by the data’s provid-
ers that they won’t change their means of publishing data, even if they decide to
change how the data is displayed.

96 | Chapter5: Connectionsand Correlations

Data source for baseball statistics

To find win/loss records for each team, we turn to MLB.com, the web site of Major
League Baseball. The standings page, found at http://mlb.mlb.com/mlb/standings/
index.jsp and illustrated in Figure 5-1, is a suitable place to get the information.

[2inicilt=g < || Scoreboard Stard nps

T T

2007 m Regular Season = Wild Card

Select favorite team Ej

Stancings as of | Apr i) 15 [3) 200

Spring Training

Save changes & exit

‘Go" (‘Back to tocay”

American Le

Bostor 4 BOD B-4 wz 31 33 7-3 414 v LAA, W B-0 &MB v LAA, W T-2
Toronto 5 583 B4 Wi 43 32 75 415 v DET, W21 417 v BOS, T.07P
Baltimore & 500 10 B4 w3 4.2 24 66 414 v KC, W B-4 416 @TB WE-T
MNew York B 455 15 48 L1 23 33 74 415 @ OAK L 45 417 v CLE, T:05P
Tampa Bay T 47T 20 48 W1 -2 4.5 57 415 @ MIN, W 6-4 4M6vBAL LTS

wiwma oy nmowm

Cleveland 3 G8r - w2z 4.2 241 83 4115 v CWS, W 2-1 4117 @ NYY, T:05P
Detroit 5 543 05 B4 LY -1 64 -2} 415 @TOR, L1-2 4116 v KC, W 12.5
Mirresota 5 .8 45 55 U 6-4 11 -2} 415vTB L4-6 417 @ SEA, 10:05P
Chicago E 45 220 55 L2 2.3 3.3 58 415 @CLE, L1-2 47 v TEX, B.11P
Karsas City 8 250 45 2B La 24 1-5 4.8 414 @BAL, L 4-B 416 @ DET, L 512
w L = J O
Seaitle 5 3 85 53 w2 4.2 -1 a4 415 v TEX, W 148 &/17 v MIN, 10:05P
Los Angeles E & 500 10 48 L3 5.2 1-4 57 414 @ BOS, L0-B 416 @BOS, L2-7
Oaklard B 7T A2 153 55 W 33 34 &7 415 v NYY, W 5-4 417 v LAA, 10:05P
Texas & T _Mr 20 55 Lz 4.2 1-5 57 415 @ SEA, L B-14 417 @ CWS, B:11P

W L 0 ROAD X WL LAST GAME NEXT GAME

Atlarta E 3._r 3 W 53 30 &5 415 v FLA, WB-4 416 @WSH, L1-5
MNew York T 4 B8 18 64 11 32 4z 83 414 v WSH, L 2-6 417 @ PHI, T:05P
Florida B 5 M5 2280 55 L1 3.3 3.2 T4 415 @ATL, L4-8 416 @ HOU, LIVE Iy
Philadelphia 3 B 2139 B0 X W 1-4 24 56 4114 v HOU, W B-5 &/17 v NYM, 7.05P
Washington 2 8 .2680 6B BT W 1-8 2:3 210 414 @ NYM, W 8-2 416 v ATL. W51

L D O LAST GAME NEXT GAME
Cincinnati ¥ 5§ .6B B4 Wi 4.z 3.3 88 4115 @ CHC, W 1-0 416 v MIL, LB-10
Milwaukes 6 5 .85 08 655 UL 33 3-2 56 415 @ STL. L 210 416 @ CIN, W 10-6
St. Louis B 5 .545 05 84 W 1-4 51 85 415w MIL, W 10-2 418V PIT,L2:3
Houstor 4 B 400 20 486 LY 1-5 31 48 414 @ PHI, L 5-8 41MBv FLA LIVE g
Pittsburgh 4 & 400 20 46 L4 o-4 4z 48 413v SF L5B 416 @ STL, W 3-2
Chicago 4 T 34 25 48 L1 1-4 33 85 4/15v CIN, L 0-1 416 v SD, W 12-4

L C 0 LAST GAME NEXT GAME
Arizora 8 4 g2 82 w2 4.2 5-2 85 4/15v COL, W 6-4 416 v LAD, LIVE 1
Los Angeles B 4 66T 05 B2 Wi 4.2 4z 84 415v 8D, We-3 416 @ ARI, LIVE i
Sar Diego T 580 15 55 11 4.2 33 66 415 @ LAD, L 3-9 416 @ CHC, L 4-12
Colorado a8 F .ar 35 46 L2 21 3-6 6-6 415 @ AR, L 4-8 416 v SF, L0-B
San Frarcisco 3 7 .30 45 ¥ W 1-5 22 37 413 @PIT, WB-5 416 @ COL. W8-0

Figure 5-1. The MLB.com standings page for 2007

We'll use this page to explore the general problem of extracting data from web sites
that are not deliberately designed to facilitate such extraction.

Preprocessing | 97

http://mlb.mlb.com/mlb/standings/index.jsp and
http://mlb.mlb.com/mlb/standings/index.jsp and

Screen-scraping requires the following general process:

1. Navigate to the page that contains the data. Because there will be lots of header
and footer material, make a note of unique text or HTML tags that will reliably
identify, even as the page is updated, the starting point of the data you want. In
this case, our program can assume the table starts after the text American League,
specifically beneath the table heading East.

It’s important to choose unique and stable identifiers. For instance, although it
might be tempting to use the first data element in the table, Boston, as a starting
point, it won’t work because the “Select favorite team” pop-up menu already
contains a “Boston” entry that will throw off your search.

2. Choose View Source from the browser’s menu and take a look at the code. Use
the Find command to look for your identifiers (e.g., “American League” or
“East”) to see where the data begins. In most cases, the data will begin near the
identifier you’ve chosen. In our data (and in most other web pages with interest-
ing data, because they’re arranged in tabular form), the identifying portions will
be part of an HTML <TABLE> tag, with the data stored inside a <TD> and </TD>
pair.

To make things trickier, in this example, the relevant HTML is actually built
using JavaScript. The location near American League, where we might normally
find the data, instead contains lines that use a pair of functions named
buildTitleRows() and buildRows():
<div style="padding-top:15px;">
<h1>American League</h1>
<img src="/mlb/images/al_symbol.gif" width="38" height="31"
alt="American League" border="0" align="absmiddle" />
</div>

</td>
</tr>

<script>datakxists();</script>

<script>buildTitleRows("ale"); </script>
<tbody id="ale"><script>buildRows (standings_rs_ale); <script><tbody>

<script>buildTitleRows("alc"); </script>
<tbody id="alc"><script>buildRows (standings_rs_alc); <script><tbody>

<script>buildTitleRows("alw"); </script>
<tbody id="alw"><script>buildRows (standings_rs_alw); <script><tbody>

<tr>
<td colspan="16" style="padding-top:15px;">
<h1>National Leaguew<hil>
<img src="/mlb/images/nl symbol.gif" width="38" height="31"
t="National League" border="0" align="absmiddle" />
</td>
</tr>

98 | Chapter5: Connectionsand Correlations

<script>buildTitleRows("nle");</script>
<tbody id="nle"><script>buildRows(standings_rs_nle);</script><t/body>

<script>buildTitleRows("nlc");</script>
<tbody id="nlc"><script>buildRows(standings_rs_nlc);</script><t/body>

<script>buildTitleRows("nlw");</script>
<tbody id="nlw"><script>buildRows(standings_rs_nlw);</script><t/body>

An educated guess will tell you that ale is an abbreviation for the American
League East division, alc stands for American League Central, and so on. (A
less-educated guess could ascertain the same by noting that this is the American
League [AL] table, with subheadings East, Central, and West, abbreviated E, C,
and W.)

. If the web page we were interested in contained our data directly in its HTML,
we could write a program that read lines from the page and parsed them to
remove the data. But in this case, we need to derive our data from JavaScript
output, so we have to look at the JavaScript code to find how that program
stores the data.

Another use of the Find command reveals lines that load each array from indi-
vidual .js (JavaScript) files:

<script
src="/components/game/year_2007/month_04/day_15/standings_rs_ale.js"
type="text/javascript">/* " */</script>

<script
src="/components/game/year_2007/month_04/day_15/standings_rs _alc.js"
type="text/javascript">/* " */</script>

<script
src="/components/game/year_2007/month_04/day_15/standings_rs_alw.js"
type="text/javascript">/* " */</script>

<script
src="/components/game/year_2007/month_04/day_15/standings_rs nle.js"
type="text/javascript">/* " */</script>

<script
src="/components/game/year_2007/month_04/day_15/standings_rs nlc.js"
type="text/javascript">/* " */</script>

<script
src="/components/game/year_2007/month_04/day_15/standings_rs nlw.js"
type="text/javascript">/* " */</script>

<script src="/components/game/year 2007/month_04/day_15/
<script src="/components/game/year 2007/month 04/day 15/
<script src="/components/game/year 2007/month_04/day 15/
<script src="/components/game/year 2007/month_04/day_15/
<script src="/components/game/year 2007/month 04/day 15/

The URL for the first item reads:
/components/game/year 2007/month_04/day 15/standings_rs_ale.js

Preprocessing | 99

Because a forward slash is found at the beginning, the reference points to the
root of the site, http://mlb.mlb.com, meaning that the full URL is http://mlb.mib.
com/components/game/year_2007/month_04/day_15/standings_rs_ale.js.

If the text did not begin with a slash, the URL would instead be relative to the
original page number, meaning that you would have to append it to the direc-
tory of the page that referred to it (http://mlb.mlb.com/mlb/standings/index.jsp),
which would make the new URL http://mib.mlb.com/mlb/standings/components/
gamelyear_2007/month_04/day_15/standings_rs_ale.js.

So, our data will come from three JavaScript files representing results for the three
American League divisions:

http://mlb.mlb.com/components/gamelyear_2007/month_04/day_15/standings_rs_
ale.js
http://mlb.mlb.com/components/gamelyear_2007/month_04/day_15/standings_rs_
alc.js
http://mlb.mlb.com/components/gamelyear_2007/month_04/day_15/standings_rs_
alw.js

and three more files for the National League (NL) teams:

http://mlb.mlb.com/components/gamelyear_2007/month_04/day_15/standings_rs_
nle.js
http://mlb.mlb.com/components/gamelyear_2007/month_04/day_15/standings_rs_
nlc.js
http://mlb.mlb.com/components/gamelyear_2007/month_04/day_15/standings_rs_
nlw.js

Unpacking the Win/Loss files (Mine and Filter)

Entering the first URL for standings_rs_ale.js into a browser will display the Java-
Script source file. To parse the data, we are particularly interested in the structure
that the JavaScript program gives to that data. This structure is defined by a
standings_rs ale array:

var standings_rs_ale = [{

w: '6',
elim: '-',
rs: '51',
div: 'ale',

gameid: '2007_04_16_anamlb_bosmlb_1',
status: 'F',

pre: null,

last10: '6-4',

onerun: '1-0',

xtr: '0-0',

nextg: '4/16 v LAA, W 7-2',

vsW: '4-3",

ra: '28',

gh: '-',

100 | Chapter5: Connectionsand Correlations

http://mlb.mlb.com
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/mlb/standings/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/mlb/standings/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_ale.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_alc.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_alw.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_nle.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_nlc.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_nlw.js
http://mlb.mlb.com/components/game/year_2007/month_04/day_15/standings_rs_nlw.js

wrap:
" /NASApp/mlb/news/wrap.jsp?ymd=20070414&content_id=18983908vkey=wrapup20058fext=.
jsp&c_id=mlb’',

home: '3-1',

code: 'bos',

pct: '.600",

league _sensitive team name: 'Boston’,
vsC: '2-1",

vsE: '0-0',

vsR: '5-4",

vsL: '1-0',

xwl: '7-3",

strk: 'W2',

1: '4',

lastg: '4/14 v LAA, W 8-0',

interleague: '0-0',

team: 'Boston',

road: '3-3'

b A
Web developers might recognize this as JavaScript Object Notation (JSON) syntax.
We won’t get into the specifics of JSON here; see Chapter 10 for more information.

The previously shown code encompasses the content for the first team, and four
additional blocks in the same format follow. We need only a few fields from the
information. The field we’ll use the most is the two- or three-digit code that identi-
fies the team, which we’ll use to index other kinds of data:

code: 'bos',
Next, we need the line for wins:

w: '6',
and the line for losses:

1w,
We also want a team name to show in the interface, and luckily there is a variable
named team that looks like it might do the trick. However, it lists New York as the value
for the New York Yankees, which won’t be useful when trying to differentiate the Yan-

kees from the Mets, who also hail from New York. Instead, the league sensitive
team_name value will be more useful. For instance, the entry for the Mets reads:

league sensitive team name: 'NY Mets',

As in the previous section, where we looked for some salient string or character that
we could use to find the start of our data, we now want to find something that differ-
entiates one team from another. In the JSON format of the standings rs_ale array, a
{ character begins each block of data for a new team. Each time that character is
found, our program can retrieve information for a new team. Similarly, when the
program finds the corresponding closing } character, it can add the new team’s infor-
mation to its own list. Grabbing the data for all of the teams is simply a matter of

Preprocessing | 101

parsing the information properly. The code in the next section reads one of the files
and parses the data into attribute and value pairs.

There are several publicly available JSON parsers we could use to read the data. But
because the data shown here is so simple, using a formal parser would be overkill,
making the program run more slowly and increasing its download size.

Introducing regular expressions

The following function will read from one of the js files discussed in the previous
sections and print each team code that it finds, followed by the win-loss record for
that team. The code introduces regular expressions, which are extremely useful when
parsing data:

void parseWinLoss(String[] lines) {
Pattern p = Pattern.compile("\\s+([\\w\\d]+):\\s'(.*)",?2");
String teamCode = "";
int wins = 0;
int losses = 0;

for (int i = 0; i < lines.length; i++) {
Matcher m = p.matcher(lines[i]);

if (m.matches()) {
String attr = m.group(1);
String value = m.group(2);

if (attr.equals("code")) {
teamCode = value;

} else if (attr.equals("w")) {
wins = int(value);

} else if (attr.equals("1")) {
losses = int(value);

}

} else {
if (lines[i].startsWith("}")) {
// This is the end of a group; print the values.
println(teamCode + " " + wins + "-" + losses);

}
}
}
}
If you’re not already familiar with them, regular expressions can take a long time to
get used to, but their usefulness makes it worth the initial difficulty. To understand
what the code is doing, let’s start by looking at the format of the original data.
Because the code takes advantage of the presence of blank spaces, I'm including
them in the format’s representation here:

[space] [attribute name] : [space] ' [value] ',

102 | Chapter5: Connectionsand Correlations

This sort of template is common when parsing data, and it can be handled with a
regular expression (or regexp). A regexp is defined by a pattern, such as the one just
shown, and a matcher, which checks the pattern against some input data.

A pattern is made up of a series of symbols that identify whitespace, characters,
numbers, and how many of each are expected. Although the way I represented the
pattern with words and square brackets makes it easier for humans to read, the
regexp APIs of programming languages use a more precise format. The symbols used
in regexps initially appear as a confusing mess, but after some time, you’ll become
familiar with them (in other words, they’ll be less confusing, even if they still look
like a mess). The pattern \\s+([\\w\\d]+):\\s' (.*)",? in the code that started this
section has the following meaning;:

\\s+
This part matches the space at the beginning of the line. It’s made up of two dif-
ferent tokens that are meaningful in regexps:

\s
This means “any whitespace character.” But why is the backslash doubled?
In Java and other C-like languages, a backslash is used to identify special
characters in a String (e.g., \t for Tab or \n for newline). Similarly, an actual
slash is specified by a double slash: \\.

+

This means to look for one or more characters. This makes our regexp more
robust because the programmer who wrote the JSON we’re parsing might
put an arbitrary number of space characters at the start of the line.

([\W\\d]+)
This portion matches the attribute name (such as w or team). The most powerful
part of this string is the enclosing parentheses, which mark that set of characters
as a group. This means the program can later point to and extract the matching
characters.

Inside the grouping parentheses are a set of square brackets, which denote a
character class. This is a way to match a variety of different characters that can
appear at this point in the input text. Our particular character class matches two
types of characters:
\w

Any word character (i.e., a letter)
\d

Any digit (0-9)
So [\\w\\d] means “any word or digit character.” The + at the end specifies “one
or more,” just as it did previously in our string \\s+.

This is literally just the colon character, which is found after the variable name.

Preprocessing | 103

\\s
Matches a single whitespace character (the space after the colon).

Matches the single quote at the beginning of the variable’s value.

(-*)
This part matches the value found inside the single quotes. We’ve already seen
what the grouping parentheses mean. Inside these parentheses are:

. (period)
Matches anything. Any character is possible in the input.

Specifies zero or more of the character that precedes it (similar to how the +
operator matches one or more of that character).

Matches the closing single quote after the variable’s value.

Matches the optional comma at the end of the line. Similar to + and *, the ?
modifier specifies “zero or one” matches.

To use a regexp in Java, we first create a Pattern object, as seen in the first line of the
method. Next, we iterate through each line of the input data and attempt to match it
to the Pattern. Inside the loop, the Matcher object holds the result of our attempt to
match input. The matches() method returns true if the specified lines[i] value fits
the pattern. Next, we use the group() method to retrieve each group that was cap-
tured by the parentheses in our regexp. The first group is the attribute (or variable
name), and the second group is the value (the variable contents).

If the line does not match, the final part of the method checks whether the line
begins with a }, which specifies a break between data from two teams, at which point
the values collected so far are printed to the console with println.

A complete program to acquire and parse the data for all six divisions from MLB.
com follows. It creates two text files—one for the standings and one for the team
codes and team names:

import java.util.regex.*;

PrintWriter standings;
PrintWriter teams;

void setup() {
String base = "http://mlb.mlb.com/components/game" +
"/year 2007/month_04/day 15/";

standings = createWriter("standings.tsv");
teams = createWriter("teams.tsv");

104 | Chapter5: Connectionsand Correlations

parseWinLoss(loadStrings(base + "standings rs ale.js"));
parseWinLoss(loadStrings(base + "standings_rs_alw.js"));
parseWinLoss(loadStrings(base + "standings rs alc.js"));

parseWinLoss(loadStrings(base + "standings_rs _nle.js"));
parseWinLoss(loadStrings(base + "standings rs nlw.js"));
parseWinLoss(loadStrings(base + "standings rs nlc.js"));

// Finish writing and close each file.
standings.flush();

standings.close();

teams.flush();

teams.close();

println("Done.");

void parseWinlLoss(String[] lines) {
Pattern p = Pattern.compile("\\s+([\\w\\d]+):\\s'(.*)",?");
String teamCode = "";
int wins = 0;
int losses = 0;
String teamName = "";

for (int i = 0; i < lines.length; i++) {
Matcher m = p.matcher(lines[i]);

if (m.matches()) {
String attr = m.group(1);
String value = m.group(2);

if (attr.equals("code")) {
teamCode = value;
} else if (attr.equals("w")) {
wins = int(value);
} else if (attr.equals("1")) {
losses = int(value);
} else if (attr.equals("league sensitive team name")) {
teamName = value;

}

} else {
if (lines[i].startsWith("}")) {
// This is the end of a group; print the values.
standings.println(teamCode + TAB + wins + TAB + losses);
teams.println(teamCode + TAB + teamName);
}
}
}
}

Preprocessing

105

The resulting standings.tsv file reads:

bos
tor
bal
nyy
tb

sea
ana
oak
tex
cle
det
min
Cws
kc

atl
nym
fla
phi
was
ari
la

sd

col
st

cin
mil
stl
hou
pit
chc

A PA, PP OOONWUINOOWOWWWO NOOWULU NI OVUT OYOYUT UTUT OYN O
OO UVTUTUIT N U D OWOoOOUTDR WWOU UTWNN N Ow -~ Oooyul b

~

And the teams.tsv file contains:

bos Boston

tor Toronto

bal Baltimore
nyy NY Yankees
tb Tampa Bay
sea Seattle

ana LA Angels
oak Oakland

tex Texas

cle Cleveland
det Detroit

min Minnesota
CWS Chi White Sox
kc Kansas City
atl Atlanta

nym NY Mets

fla Florida

phi Philadelphia
was Washington
ari Arizona

106 | Chapter5: Connectionsand Correlations

la LA Dodgers

sd San Diego

col Colorado

st San Francisco
cin Cincinnati
mil Milwaukee

stl St. Louis

hou Houston

pit Pittsburgh
chc Chi Cubs

The team names file can be downloaded here:
http://benfry.com/writing/salaryper/teams.tsv

along with the example standings file:
http://benfry.com/writing/salaryper/standings.tsv

The code downloads each file for April 15, 2007, but it is easy to change the date.
Instead of the following code block:

String base = "http://mlb.mlb.com/components/game" +

"/year_2007/month_04/day_15/";

use a combination of the Processing methods year(), month(), and day(), along with
nf() to pad the numbers to the proper number of digits:

String base = "http://mlb.mlb.com/components/game" +

"/year " + nf(year(), 4) +

"/month_" + nf(month(), 2) +
"/day_" + nf(day(), 2) + "/";

Retrieving Team Logos (Acquire, Refine)

Team names make for a boring display. Our output will be much more appealing if
we show team logos. Finding team logos on the MLB.com site (or any other site, for
that matter) illustrates another bit of useful detective work: determining the pattern
for a series of image files.

The first task is to find a possible logo image. For instance, the scoreboard page at
http://mlb.mlb.com/mlb/scoreboard has logos for several teams. To determine a loca-
tion, right-click one of the images, select Copy Image Location (or its equivalent in
whatever web browser you are using), and use that location to open a new page.
Right-clicking on the Chicago Cubs image, for instance, produces this URL:

http://mlb.mlb.com/mlb/images/team_logos/logo_chc_small.gif

The chc is the three-letter team code found earlier when downloading team data,
which suggests that logos for the remaining 29 teams can be found by replacing those
three letters with different codes. The list of codes is one column of the teams.tsv file
created in the previous step. Therefore, to give our program access to team logos,
we’ll automate the retrieval of the images here.

Preprocessing | 107

http://benfry.com/writing/salaryper/teams.tsv
http://benfry.com/writing/salaryper/standings.tsv
http://mlb.mlb.com/mlb/scoreboard
http://mlb.mlb.com/mlb/images/team_logos/logo_chc_small.gif

In a new sketch, add the teams.tsv file and begin with the following code to read the
file and load the teams into a String array named teams:

String[] teams;

void setup() {
String[] lines = loadStrings("teams.tsv");
teams = new String[lines.length];
for (int i = 0; i < lines.length; i++) {
String[] pieces = split(lines[i], TAB);
// The three digit code for the team is the first column
teams[i] = pieces[0];
}
}
The presence of the word _small in the title of the http://mlb.mlb.com/mib/images/
team_logos/logo_chc_small.gif file suggests that there are images of other sizes. I took
a stab at finding them on the http://mlb.mlb.com web site by substituting the suffixes
_large and _medium, but neither worked. It may even be possible to look at the
directory that contains the logos (http://mlb.mlb.com/mlb/images/team_logos) and get
a file listing, but that generally works only for smaller or less professional web sites.

Of course, the locations for the images are subject to change at any time (and often
will because there’s no reason for MLB.com to keep them the same for others using
their data), which is why we are taking the time to go through the process of figuring
out the image locations. In an ideal situation, of course, the MLB would make this
data available through a web service.

If we can’t easily find the images we want by using our intuition and digging around
the site, the next alternative is to use a search engine. Do a search for the first part of
the URL and see what sort of results turn up. Thus, doing a search for “mlb/images/
team_logos/” reveals several additional possibilities:

http://mlb.mlb.com/mlb/images/team_logos/logo_atl_small.gif
http://mlb.mlb.com/mlb/images/team_logos/50x50/atl.gif
http://mlb.mlb.com/mlb/images/team_logos/logo_bal_79x76.jpg
http://mlb.mlb.com/mlb/images/team_logos/51x21/bos_standings_logo.gif

A different web site shows yet another format:
http://losangeles.angels.mlb.com/mlb/images/team_logos/100x100/ana.gif

The similarities in the directory structure suggest that the site is merely an alias, and
a quick test confirms that the following URL works in an identical manner:

http://mlb.mlb.com/mlb/images/team_logos/100x100/ana.gif

For each of the URLs in question, the two- or three-digit team code appears between
a prefix and suffix specific to the image size and location. In the case of the small
logos, the URLs look like:

http://mlb.mlb.com/mlb/images/team_logos/logo_team_small.gif

108 | Chapter5: Connectionsand Correlations

http://mlb.mlb.com/mlb/images/team_logos/logo_chc_small.gif
http://mlb.mlb.com/mlb/images/team_logos/logo_chc_small.gif
http://mlb.mlb.com
http://mlb.mlb.com/mlb/images/team_logos/
http://mlb.mlb.com/mlb/images/team_logos/logo_atl_small.gif
http://mlb.mlb.com/mlb/images/team_logos/50x50/atl.gif
http://mlb.mlb.com/mlb/images/team_logos/logo_bal_79x76.jpg
http://mlb.mlb.com/mlb/images/team_logos/51x21/bos_standings_logo.gif
http://losangeles.angels.mlb.com/mlb/images/team_logos/100x100/ana.gif
http://mlb.mlb.com/mlb/images/team_logos/100x100/ana.gif

With all this in mind, a short program can download each set of images:

String[] teams;

void setup() {
String[] lines = loadStrings("teams.tsv");
teams = new String[lines.length];
for (int i = 0; 1 < lines.length; i++) {
String[] pieces = split(lines[i], TAB);
// The three-digit code for the team is the first column.
teams[i] = pieces[0];

}

grablLogos("small", "http://mlb.mlb.com/mlb/images/team logos/logo ", " small.gif");
grabLogos("50x50", "http://mlb.mlb.com/mlb/images/team_logos/50x50/", ".gif");
grablLogos("79x76", "http://mlb.mlb.com/mlb/images/team logos/logo ", " 79x76.jpg");
grablogos("standings", "http://mlb.mlb.com/mlb/images/team logos/51x21/",
"_standings_logo.gif");
grablogos("100x100", "http://mlb.mlb.com/mlb/images/team_logos/100x100/", ".gif");
}

void grablogos(String folder, String prefix, String suffix) {
String extension = suffix.substring(suffix.length() - 4);
for (int i = 0; 1 < teams.length; i++) {
String filename = folder + "/" + teams[i] + extension;
String url = prefix + teams[i] + suffix;
println("Downloading " + url);
saveStream(filename, url);

}
}
The teams array contains the list of the 30 team codes. The grablLogos() method iter-
ates through each team, downloading images based on the specified prefix and suffix.
The saveStream() method loads the data from a particular web address and writes it
back to the disk (it’s equivalent to using the built-in function loadBytes(), followed
by saveBytes()). Because the image may be a .jpg or .gif file, the grabLogos() method
uses substring() on the source filename to determine which extension to use when
naming the downloaded file.

In the end, the small directory contains the images whose size and proportion are
most appropriate for our display. Start a new sketch, and use Sketch - Show Sketch
Folder to add these to the data folder.

Retrieving Salary Data (Acquire, Parse, Filter)

The next step is to find a list of the salaries for each of the teams. There appears to be
no such feature on MLB.com, but the USA Today web site makes available a list of
team payrolls here:

http:/fusatoday.com/sports/baseball/salaries/totalpayroll.aspx?year=2007

Preprocessing | 109

http://usatoday.com/sports/baseball/salaries/totalpayroll.aspx?year=2007

The simplest method of getting this information is to copy it from your web browser
and paste it into an open document in your spreadsheet application of choice. If
you’re lucky, the table will be interpreted as tab-delimited and the columns will be
preserved when pasted into the spreadsheet.

Another option is to use the import or link feature of your spreadsheet application.
This also can be done with Excel, but we’ll use OpenOffice.org because anyone can
download it for free. Create a new Calc document and choose Insert - Link To
External Data.... Paste the USA Today URL listing the payrolls into the first text field
that reads “URL of external data source.” Pressing the Enter key will populate the list
of “Available tables/ranges.” Scroll down and select HTML__BBSalTable from the
list, as shown in Figure 5-2.

External Data l|

URL of external data source

http: ffusatoday, comfspartsibaseballisalaries tatalpayraoll, aspxye » E]
(Enter the URL of the source document in the local file system or Internet | Cancel

here.)
Help

Available tables/ranges

HTML__BBSearch
HTML_11
HTML_12 -

[] Update every

Figure 5-2. Entering web data into an OpenOffice.org spreadsheet

Click OK to import the data. That will pick up more of the web page than necessary,
but scrolling down to the 17th row and expanding columns A and B reveals the list
of teams, shown in Figure 5-3.

Delete all rows and columns except for the team name and the salary, and replace
each team name with its two- or three-letter code. The commas and dollar signs also
need to be removed (a quick Find and Replace will take care of that). Finally, save
the file as plain text in TSV format as salaries.tsv. A completed version of the salaries
file can be found at http://benfry.com/writing/salaryper/salaries.tsv.

Of course, parsing the page and downloading the table could be handled in code, but
the amount of information (30 team salaries) and the frequency at which it’s updated
(once a year) does not warrant an algorithmic solution.

110 | Chapter5: Connectionsand Correlations

http://usatoday.com/sports/baseball/salaries/totalpayroll.aspx?year=2007
http://benfry.com/writing/salaryper/salaries.tsv

Untitled? - OpenOffice.org Calc
File Edit Wiew Insert Format Tools Data ‘Window Help
BreHo 2 BEER V= ih@- & 6-
M Times Mew Roman w10 B B Il i=s===
a1 # B = |
) A | B I i o
_13’__| Team Total payroll
16 | Hew York Vankees $129 639,045 00
19 | Boston Red Sox $143.026,214.00
20 | Hew ¥orkMets $115,231,663.00
21 | Los Angeles Angels $109,251,333.00
22 | Chicago White Jox $102.671,833.00
23 | Los Angeles Dodgers $108,454,524.00
24 | Seattle Mariners $106,440,833.00
25 | Chicago Cubs $99 470,332 00
26 | Detroit Tigers $55,120,369 00
27 | Baltimore Orioles $93,554,202 00
28 | 3t Louis Cardinals $90,286,223 00
29 | 3anFraneisco Giants $90,219,056.00
30 | Philadelphia Phillies $89,428,213.00
31 | Houston Astros $87,759,000.00
e Atlanta Prawac 2T 700 B33 0N

Figure 5-3. Team salary data in an OpenOffice.org spreadsheet

Convert Data by Hand or Write a Program?

As a rule of thumb, I write code only when the time to write the code is less than or
equal to double the amount of time it takes to do a process by hand. That is, if it takes
three hours to do it by hand and I can implement it in code in six hours or less, I prefer
to use code so that the results can be easily updated. As a corollary, however, in situa-
tions like the one presented in this chapter, the page structure will likely change more
than the data itself. In such cases, writing a parser is usually a waste of time.

Using the Preprocessed Data (Acquire, Parse, Filter,
Mine)

In the previous steps, we managed to download files that represent the team names
and logos, their salaries, and their standings on a given day. Now that we have deter-
mined how to handle each type of information and have preprocessed parts of it,
we’ll pull it together into a single application. The goal of this section is to gather the
data that previous sections put in plain text files, and then bring them into data
structures that are convenient for our program to use.

Using the Preprocessed Data (Acquire, Parse, Filter, Mine) | 111

Team Names and Codes

First, we’ll load the team names using the setupTeams() method. This is similar to
examples we've seen in earlier chapters, in which we acquire the data from a pre-
processed file through loadStrings(), followed by split(), to break a line into indi-
vidual columns:

int teamCount = 30;

String[] teamNames;

String[] teamCodes;
HashMap teamIndices;

void setupTeams() {
String[] lines = loadStrings("teams.tsv");

teamCount = lines.length;
teamCodes = new String[teamCount];
teamNames = new String[teamCount];
teamIndices = new HashMap();

for (int i = 0; i < teamCount; i++) {
String[] pieces = split(lines[i], TAB);
teamCodes[i] = pieces[0];
teamNames[i] = pieces[1];
teamIndices.put(teamCodes[i], new Integer(i));
}
}

int teamIndex(String teamCode) {
Integer index = (Integer) teamIndices.get(teamCode);
return index.intValue();

}

When creating the teamCodes and teamNames arrays, we have to provide an ordering
that can be used to anchor the data. When we’re loading the salary information from
an input file, we don’t know the exact order in which the teams will be found. The
same is true for the win-loss standings, which will change from day to day. We
anchor both lists to the same order by mapping the teamCode to a particular team
index (numbered 0 to 29), which ensures that data from each source is connected
properly.

To map a teamCode to an integer index, we use a HashMap. The HashMap class is a dic-
tionary that connects two pieces of data, each an Object. The put() method adds a
new entry to the map, whereas the get() method retrieves it. Because only objects
can be used in HashMap structures, it’s necessary to wrap the int for the team’s index
in an Integer object, which we created for this purpose. The intValue() method
extracts the original int from the Integer object. This is encapsulated by the
teamIndex function so that we don’t have to think about the HashMap or Integer
classes when writing the rest of the code.

112 | Chapter5: Connectionsand Correlations

What'’s the Difference Between int and Integer?

In Java, an int is a primitive type (such as float and char) that contains a simple value,
one that can be stored by most computers in a single element of memory in a native
format. In contrast, Integer is an object, which is a composite set of data elements.

The distinction can be confusing and often leads people to ask why the language
designers didn’t make everything an object. The answer is that objects create signifi-
cant (and unnecessary) overhead whenever primitive types such as int can be used. For
example, in a for loop with thousands of iterations, it would be silly to dereference an
Integer object used for the counter on each iteration. Because the int refers to a spe-
cific value, only one step is required to read or change it.

An object refers to a location in memory, so the first step in using it should be to check
whether the specified location is valid. The number might be stored in a variable called
value, so once the location in memory is determined to be correct, a check can be made
to find the location of the value variable (and whether or not it exists). Then, the vari-
able itself can be manipulated in some manner. Although it may not sound like much,
this sort of thing really makes a difference when dealing with thousands of values.

Scripting languages often use objects for all values, which can contribute to their lack
of speed. Especially in cases of languages that are not “typed,” each piece of data must
first be converted to the proper native data format of the system as it is used. To give a
simplistic example, a language might store each item of data as a string, and then con-
vert it to an integer in any context where the value is used as an integer (such as count-
ing in our for loop). This process can be even more time consuming.

Team Salaries

We will organize the salary data as a list of ranked values, just like the team stand-
ings. The parameters for ranked data are:

* A list of the values to be ranked (the amount of each team’s payroll).

« A list of how those values will be shown to the user (the number formatted as a
dollar amount with commas, e.g., $34,140,182).

* A list of the rank for each item, and a sorting order to be used when ranking. For
instance, a higher payroll amount has a negative connotation, whereas a higher
win-loss average has a positive connotation. In some cases, having the data in
ascending order might be more useful; in others, a descending order is better.

* A means of keeping track of the highest and lowest values.

The ranked list is useful for salary data as well as the win-loss standings. It will also
be useful when adapting this project to other types of data. Because a ranked list can
be a useful general-purpose data structure, and because it requires a bit of code to
sort the information and calculate its minimum and maximum values, I’ve created a
RankedList class that encapsulates the general means of handling ranked data.

Using the Preprocessed Data (Acquire, Parse, Filter, Mine) | 113

We've used classes in other examples (such as the Table class in Chapter 3), and like
the others, it’s not really necessary to understand the specifics of how this class
works, only how it connects to the rest of the code. Download this class from the
book’s site and add it to your sketch:

http://benfry.com/writing/salaryper/RankedList.java

The parameters I've described are stored in the value, title, and rank arrays. To use
the class for salary data, one need only extend the class. To do this, create a
Salarylist class in a new tab. Its only contents are:

class Salarylist extends RankedList {

SalaryList(String[] lines) {
super(teamCount, false);

for (int i = 0; 1 < teamCount; i++) {
String pieces[] = split(lines[i], TAB);

// First column is the team's 2- or 3-digit team code.
int index = teamIndex(pieces[0]);

// Second column is the salary as a number.
value[index] = parseInt(pieces[1]);

// Make the title in the format $NN,NNN,NNN.
int salary = (int) value[index];
title[index] = "$" + nfc(salary);

}
update();

}
}
The main task in this code is to convert data from the particular format in which we
put it during preprocessing—a text file with simple tab-separated lines—into the
arrays defined by the RankedList class. This is a common task in data processing: to
obtain data from an external source and transport it easily, you store it in a simple
text format. But to process it programmatically, use a general-purpose library (often
written by someone else) that expects the data to be in a more rigorous, possibly
binary format.

The SalarylList method is the constructor for the class, controlling how an object is
initialized. The super method calls the constructor of the parent class (known as the
superclass). In this case, it runs RankedList(teamCount, false) to create a list with 30
entries in descending order (if the second argument to the super method were true,
the data would be sorted in ascending order).

The rest of the code resembles our other parsing functions, except that it fills the
value, title, and rank array for the values read from an array of Strings loaded from
a file. The title variable for each is set to a dollar sign followed by the payroll num-
ber with commas inserted by the nfc() method.

114 | Chapter5: Connections and Correlations

http://benfry.com/writing/salaryper/RankedList.java

After parsing the information, the update() method calls a function inside
RankedList that takes care of sorting the data and calculating the minimum and max-
imum values.

Back in the main tab, the setupSalaries() method creates the Salarylist:

Salarylist salaries;

void setupSalaries() {
String[] lines = loadStrings("salaries.tsv");
salaries = new SalarylList(lines);

}

Win-Loss Standings

The win-loss record is handled in a similar fashion. First, a modified version of our
preprocessing code acquires and parses the standings data for a given day:

String[] acquireStandings(int year, int month, int day) {
String filename = year + nf(month, 2) + nf(day, 2) + ".tsv";
String path = dataPath(filename);

File file = new File(path);

if (!file.exists() || (file.length() == 0)) {
println("Downloading standings file " + filename);
PrintWriter writer = createWriter(path);

String base = "http://mlb.mlb.com/components/game" +
"/year " + year + "/month " + nf(month, 2) + "/day " + nf(day, 2) + "/";

// American League (AL)

parseStandings(base + "standings_rs_ale.js", writer);
parseStandings(base + "standings_rs alc.js", writer);
parseStandings(base + "standings rs alw.js", writer);

// National League (NL)

parseStandings(base + "standings rs nle.js", writer);
parseStandings(base + "standings_rs_nlc.js", writer);
parseStandings(base + "standings_rs nlw.js", writer);

writer.flush();
writer.close();

}

return loadStrings(filename);

}

void parseStandings(String filename, PrintWriter writer) {
String[] lines = loadStrings(filename);
Pattern p = Pattern.compile("\\s+([\\w\\d]+):\\s'(.*)",?2");
String teamCode = "";

int wins = 0;

int losses = 0;

Using the Preprocessed Data (Acquire, Parse, Filter, Mine) | 115

for (int i = 0; i < lines.length; i++) {
Matcher m = p.matcher(lines[i]);

if (m.matches()) {
String attr = m.group(1);
String value = m.group(2);

if (attr.equals("code")) {
teamCode = value;

} else if (attr.equals("w")) {
wins = parseInt(value);

} else if (attr.equals("1")) {
losses = parselnt(value);

}

} else {
if (lines[i].startsWith("}")) {
// This is the end of a group, write these values
writer.println(teamCode + TAB + wins + TAB + losses);

}
}
}
}
For data from May 2, 2007, the acquireStandings() method looks for a file named
20070502.tsv. 1f the file is not present, it downloads the data from MLB.com and
parses it to create a filtered version that contains only the team code followed by the
number of wins and then the number of losses.

This code is nearly identical to the standalone version discussed earlier in the pre-
processing steps. One difference is in the use of a File object and the dataPath()
method. The dataPath() method gives a full pathname to a file found in the data
directory. This is useful when interfacing between Processing and Java file methods
because the concept of a data folder is specific to Processing. The File class is used in
Java to store a reference to a particular file (or directory) and includes several useful
methods, such as exists(), which we use here to determine whether the file is avail-
able. Here we also check to see whether the file’s length (size) is zero, which can hap-
pen if the acquireStandings method is interrupted and the file is not completely
written.

In a new tab called StandingsList, write a similar piece of code as the constructor for
Salarylist:

class StandingsList extends RankedList {

StandingsList(String[] lines) {
super(teamCount, false);

for (int i = 0; i < teamCount; i++) {
String[] pieces = split(lines[i], TAB);
int index = teamIndex(pieces[0]);
int wins = parseInt(pieces[1]);
int losses = parselnt(pieces[2]);

116 | Chapter5: Connectionsand Correlations

value[index] = (float) wins / (float) (wins+losses);
title[index] = wins + "-" + losses;

}

update();

}
}

And back in the main tab, initialize the standings data by loading it from the correct
web page based on the current day and putting it into the internal format by initializ-
ing a Standingslist:

Standingslist standings;

void setupStandings() {
String[] lines = acquireStandings(year(), month(), day());
standings = new StandingsList(lines);

}

Team Logos

All that remains now is to load the logo images for each team. They were down-
loaded earlier in the preprocessing step into a folder named small. Add this folder to
the data folder of your sketch, and add the following code to your program:

PImage[] logos;

float logoWidth;
float logoHeight;

void setuplogos() {
logos = new PImage[teamCount];
for (int i = 0; i < teamCount; i++) {
logos[i] = loadImage("small/" + teamCodes[i] + ".gif");
}
logoWidth = logos[0].width / 2.0;
logoHeight = logos[0].height / 2.0;

The setuplLogos() function also fiddles with how the logos are represented. Each
logo obtained from the MLB.com site is 38 pixels wide and 45 pixels high. Some
quick math tells us that 45 pixels times 30 teams (1,350 pixels) will not fit on the
screen, or at least is unnecessarily large. However, half that height is just perfect for a
1024 x 768 display. Because the size of the logo images might change over the years
(or with a different data set), we don’t assume a particular size, but instead set the
logoWidth and logoHeight variables to half the size of the first logo loaded.

Finishing the Setup

The setup() method brings this all together and defines a font for showing the data.
We'll begin with just the generic SansSerif font, but will change it later:

Using the Preprocessed Data (Acquire, Parse, Filter, Mine) | 117

PFont font;

void setup() {
size(480, 750);

setupTeams();
setupSalaries();
setupStandings();
setuplogos();

font = createFont("SansSerif", 11);
textFont(font);
}
Make sure to run setupSalaries() before setupStandings() because we use the sal-
ary in setupStandings() as a tiebreaker when sorting the standings.

Displaying the Results (Represent)

Looking at what we’ve done so far, we can begin to fashion a simple representation to
show each row of data with the team name and logo, win-loss record, and salary.
Given two major variables (win-loss record and salary), it might seem reasonable to
use the x- and y-axes. However, the question we have in mind is not simply “Do salary
and performance correlate?,” so an X and Y scatterplot is a less useful representation.

Our question implies a ranking because we’re comparing teams. Ranking usually
means a list, so we’ll start by sorting the two lists in descending order, and then we’ll
connect each team’s win-loss record to its salary with a line. The connecting lines—
not the individual win-loss record or salary—becomes the outstanding element of
the display. This is appropriate for our original question, because the lines show the
relationships we’re interested in. And after creating the basic display in this section,
the rest of the chapter uses various techniques to emphasize the impact of the lines.

We begin with a few constants, which are variables prefixed with static final
because they will not change while the sketch is in use. We haven’t bothered using
constants in previous projects because the code has been short, but for more compli-
cated projects, it’s important to start thinking about variables that can be abstracted
out from the code. Placing a constant at the beginning of the sketch makes it easy to
find and alter them. For instance, to change the row height we’d know where to
look, and would need to change only a single line, rather than the multiple locations
in the code that depend on the value for the row height. It also makes the code eas-
ier to read for others because when a value is a constant, that implies that its value
will only be read and not set anywhere in the code.

Because the logo height is 22.5 pixels, we’ll make each row 23 pixels tall. We’ll want
to center everything at the middle of the row, so the HALF_ROW_HEIGHT variable will
also come in handy:

118 | Chapter5: Connectionsand Correlations

static final int ROW_HEIGHT = 23;

static final float HALF_ROW HEIGHT = ROW_HEIGHT / 2.0;

static final int SIDE PADDING = 30;
The text size set earlier is about half the height of each row. This creates easy-to-
read, double-spaced text. The text itself needn’t be particularly large or prominent
because it is not as important as the correlation line itself.

The SIDE_PADDING variable is used to set a border around the display, adding some
whitespace to the edges. The amount should be more than the row height so that it
looks intentional, but not so large as to waste space.

The draw() method reads as follows:

void draw() {
background(255);
smooth();

translate(SIDE_PADDING, SIDE PADDING);

float leftX = 160;
float rightX = 335;

textAlign(LEFT, CENTER);

for (int i = 0; i < teamCount; i++) {
fi11(0);
float standingsY = standings.getRank(i)*ROW HEIGHT + HALF_ROW_HEIGHT;
image(logos[i], 0, standingsY - logoHeight/2, logoWidth, logoHeight);
text(teamNames[i], 28, standingsY);
text(standings.getTitle(i), 115, standingsY);

float salaryY = salaries.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;

stroke(0);
line(leftX, standingsY, rightX, salaryY);

text(salaries.getTitle(i), rightX+10, salaryY);
}
}
The translate() method moves the coordinate system over slightly, giving us a
white border: (0, 0) will now be (30, 30), so nothing will be drawn in the left or top
30 pixels of the image.

The leftX and rightX values could also be constants (e.g., static final int LEFT X =
160;), but we’ll leave them as variables in case we later want to dynamically figure
out the position of each column. The implementation used here determines the X-
coordinates by trial and error; a better idea would be to base the positions on the
maximum width of each column of text plus a little extra padding.

The textAlign() method left-aligns and vertically centers each row of text.

Displaying the Results (Represent) | 119

A loop iterates through each team index (represented by i). The text() method
draws the team name, aligned to the left, and then the standings value (e.g., 40-29),
centered next to it.

The standingsY and salaryY variables are calculated by multiplying the rank of the
given team by the row height, then adding HALF_ROW_HEIGHT so that the line shows up
in the center.

The resulting image looks like Figure 5-4.

& Baston 40-21 $189,639,040
‘ LA Angels 40-23 £143,026,208
_d Cleveland 37-23 $115,231,664
a New York Mets 36-24 §109,251,336
T san Diego 36-25 $108,671.832
B Detroit 35-26 £108,454,528
4 Arizona 36-27 £106,460,832
= LA Dodgers 35-27 £99.670.336
e Seattle 32-26 £95.180,368
@ Oakland 33-28 £93,554 B0B
S Atlanta 34-29 £90.286.824
B Milwaukee 33-29 £90.219,056
Philadelphia 32-30 £89.428.216
™ Florida 31-32 £87.,759,000
@ Colorado 30-32 £87.290,832
W Minnesota 29-31 $81,942,800
7 NY Yankees 29-311 £79.366,944
¥ Toronto 29-32 £71.,439.504
é Baltimare 29-33 £70.986,496
“M% San Francisco 28-33 £68.904,976
W= Tampa Bay 27-33 £6B8.318,672
@ Chi Cubs 27-33 £67,116,496
i Chi White Sox 26-32 £61,673,268
uh St. Louis 26-33 §£58,110,568
#== Houstan 26-35 £54.424 000
B washington 26-36 $52,067,544
w Pittsburgh 26-36 $3B8,537,832
' Cincinnati 24-39 £37.347.500
@ Texas 23-39 £30.507.000
‘ Kansas City 23-40 £24,123 500

Figure 5-4. Sample team ranking

From Figure 5-4, we can pick out several interesting facts. For instance, both the
Boston Red Sox and the LA Angels pay handsomely and get results that seem to vali-
date the costs. But the highest salaries are paid by the New York Yankees, who are
woefully unrewarded for this generosity. Individual results like this can be found in
the figure, but it doesn’t yield much in the way of overall patterns.

120 | Chapter5: Connectionsand Correlations

Returning to the Question (Refine)

When you reach the refinement stage of your visualization project, always return to
the original question. In this chapter, we’re most concerned with how salaries relate
to performance for each team. The visualization in Figure 5-4 does not quite reach.
The team logos are the most prominent visual elements (because they’re in color),
but they offer only a starting point for conveying the relationships. Meanwhile, the
lines (the most important feature) are about as informative as a pile of sticks.

Highlighting the Lines

The first metric for the original question is whether teams are spending their money
well. At its most basic, this is a yes or no question, so it will be important to high-
light it as such with the representation. Teams spending their money well have a line
that gets lower as it moves from left to right (connecting a high ranking in the stand-
ings to a low salary), whereas teams wasting money have lines that move upward
from left to right. By using a color for each scenario, we can highlight the answer to
the Boolean question of how well the team is performing. Color is a good choice in
this case because we need only a pair of colors, and the detail being shown with the
color is more important than any other feature in the diagram. To apply the colors,
replace the stroke(0) line with the following:

if (salaryY >= standingsY) {

stroke(33, 85, 156); // Blue for positive (or equal) difference.
} else {

stroke(206, 0, 82); // Red for wasting money.
}

The result is shown in Figure 5-5.

But even with colors, the lines still don’t have enough variation to instantly convey
the key point to the viewer. We need to find a more salient form of variation to help
viewers differentiate between elements and determine which shapes are related to
one another.

To introduce more variation into the lines, we can vary the stroke weight based on
the team’s salary. We could do the same thing with the record, but payroll is more
intuitive, as it refers to “bigger” or “smaller” teams. We don’t think of standings as
big or small, but we do think about monetary amounts in these terms.

The variation is handled with the map() method, mapping the minimum salary to a
very thin stroke (0.25) and the largest salary to a nice, thick line. Add this code
before the line() statement to scale the line weights in proportion to each team’s
salary.

Returning to the Question (Refine) | 121

% Boston a0-21 — $189,639,040
K 1A angels 40-23 — T 5143026208
& Cleveland 37-23 mhﬁ““=~a=m‘~ﬂ S 5115231664
€ NewYork Mets 36-24 77— 510,251,336
% Ssan Diego 36-25 | 108,671,832
B petroit $108,454,528
4 Arizona £106,460,832
= LA Dodgers §99,670.336
© seare 595,180,368
) oakland $93,554.808
s Atlanta 590,286,824
B Milwaukee $90,219.056
= Philadelphia $89.428.216
™ Florida $87,759,000
A Colorado $87,290.832
¥ Minnesota $81,942,800
7 NY Yankees $79.366.944
Toronto §71,439,504
& paltimare $70.986.496
=M San Francisco $68.904,976
= Tampa Bay $68.318.672
© chicubs $67,116,496
S Chiwhite Sox 361,673,268
& st Louis $58,110,568
#e= Houston $54,424,000
B washington 52,067,544
¥ Pittsburgh $38,537,832
= Cincinnati $37,347.500
& Texas $30,507,000
@ Kansas City §24,123,500

Figure 5-5. Sample ranking with color to show results

float weight = map(salaries.getValue(i),
salaries.getMinValue(), salaries.getMaxValue(),
0.25, 6);

strokeWeight(weight);

Figure 5-6 shows the results.

The image is getting more readable than the original in Figure 5-4, but still more can
be done.

122 | Chapter5: Connections and Correlations

Boston 40-21 $189.639,040
LA Angels 40-23 $143,026,208
Cleveland 37-23 — $115,231,664
New York Mets 36-24 §109,251,336
5an Diego 36-25 5108,671,832
Detroit 35-26 108,454,528
Arizona 36-27 “ " $106,460,832

LA Dodgers 35-27 $99.670.336
Seattle 32-26 $95.180.368
Oakland 33-28 §93.554 808
Atlanta 34-29 $90.286.824
Milwaukee 33-29 §90.219.056

Philadelphia 32-30 589428216
Florida 31-32 587.759.000
Colorado 30-32 $87.290.832

Minnesota 29-31 L, //, " £81.942 800
‘,\

NY Yankees 29-31 $79.366.944

P27 P iCOIPHAGR»E

¥ Toronto 20-32 ' §71.439.504
& Baltimare 29-33 $70.986.496
“M% San Francisco 28-33 568,904,976
=== Tampa Bay 27-33 ‘ £6B8.318,672
© chicubs 27-33 “" $67,116,496
§ chiwhitesox 26-32 \\ $61,673.268
o st Lauis 26-33 . | §58,110,568
@ Houstan 26-35 $54,424.000
& washington 26-36 — / 52,067,544
¥ Pittsburgh 26-36 Ao - $38,537.832
= Cincinnati 24-39 // TN~ $37,347,500
& Texas 23-39 // $30,507,000
@ xansasciy 23-40 $24,123,500

Figure 5-6. Sample ranking with line widths to show results

A Better Typeface for Numeric Data

Instead of the generic SansSerif font, a better option is Matthew Carter’s Georgia.
We'll also increase the size a notch to match the amount of vertical space used by the
original font because 11 point SansSerif has the same height as 12 point Georgia:

font = createFont("Georgia", 12);

Carter designed this typeface for Microsoft in 1993 as part of their web core fonts ini-
tiative because Microsoft’s typography group sought better screen fonts that could
differentiate Windows and other Microsoft products from their competitors. The
web core fonts package was available as a free download. Georgia is a default font on
Windows systems, and it is installed along with Microsoft software (such as Office)
on Mac OS X. Because it’s reasonably safe to expect that the font is installed on other
machines, we don’t have to use Processing’s Create Font tool. On Linux, the fonts

Returning to the Question (Refine) | 123

are available from a SourceForge project that repackages the fonts for easy installa-
tion. This package is also available as part of some Linux distributions.

http://sourceforge.net/projects/corefonts
http://sourceforge.net/project/showfiles.php?group_id=34153

The font is a good option because it has elegant non-lining numerals, also called old
style figures, which have variable widths and extend below the font’s baseline. Their
use makes the number-rich display a little more attractive. The disadvantage in this
case is that the numbers won’t be identical widths, making them more difficult to
compare.

Usually, fixed-width digits are helpful because right-aligning a series of numbers
makes it easy for readers to scan a column and compare their magnitude at a quick
glance. In this display, however, the exact numbers (for example, whether the Yan-
kees are being paid $189,639,045 or $189,638,042) are less important because the
numbers are already shown in rank order along the vertical axis, so we can sacrifice a
little bit of readability.

The text still carries too much visual weight, so it needs to be faded a bit. Replacing
the fi11(0) statement with fi11(128) makes the text gray and helps balance it with
the colored lines, appropriately returning the greatest visual importance to the lines
themselves.

Taken together, the new version of the draw() method follows, with altered portions
highlighted:

void draw() {
background(255);
smooth();

translate(SIDE_PADDING, SIDE PADDING);

float leftX = 160;
float rightX = 335;

for (int i = 0; i < teamCount; i++) {
fill(128);
float standingsY = standings.getRank(i)*ROW_HEICHT + HALF_ROW_HEIGHT;
image(logos[i], 0, standingsY - logoHeight/2, logoWidth, logoHeight);
textAlign(LEFT, CENTER);
text(teamNames[i], 28, standingsY);
textALlign(RIGHT, CENTER);
text(standings.getTitle(i), leftX-10, standingsY);

float salaryY = salaries.getRank(i)*ROW _HEIGHT + HALF_ROW_HEIGHT;
if (salaryY »>= standingsY) {

stroke(33, 85, 156); // Blue for positive (or equal) difference.
} else {

stroke(206, 0, 82); // Red for wasting money.

}

124 | Chapter5: Connectionsand Correlations

http://sourceforge.net/projects/corefonts/
http://sourceforge.net/project/showfiles.php?group_id=34153

float weight = map(salaries.getValue(i),
salaries.getMinValue(), salaries.getMaxValue(),
0.25, 6);

strokeleight(weight);

line(leftX, standingsY, rightX, salaryY);

ill(128);
textAlign(LEFT, CENTER);
text(salaries.getTitle(i), rightX+10, salaryY);
}
}

Figure 5-7 shows the display.

Boston 40-21 8189,630,040
LA Angels 40-23 $143.026,208
Cleveland a7-23 — 8115,231,664
New York Mets 36-24 £100,251,336
San Diego 36-25 $108,671,832
Detroit a5-26 £108,454,528
Arizona ab-27 “ " $106,460,832
LA Dodgers 3527 “ ‘ 899,670,336
Seattle a2-26 895,180,368
Oakland 33-28 893,554,808
Atlanta 34-29 S90,286,824
Milwaukee 33-20 L\ $00,210,056
Philadelphia 32-30 — ‘\‘ 5 ' 889,428,216
Florida 31-32 ‘ /] $87,759.000

887,290,832

Colorado 30-32 /{“."
Minnesota 2g-31 L, N ’ £81,042,800
V‘Ié"‘\‘r . ?

NY Yankees 29-31 $79,366,044

A i \S
Toronto 2g-32 ' $71439,504

Baltimore 29-33 870,086,406
San Francisco 28-33 868,004,076
Tampa Bay 27-33 868,318,672
Chi Cubs 27-33 "‘“ $67,116,406
Chi White Sox 26-32 N\ s61673.268
St. Louis 26-33 858,110,568
Houston 26-35 854,424,000
Washington 2636 — - 852,007,544
Pittshurgh 26-36 > - —————— $38:537,832
Cincinnati 24-39 N $37,347,500
Texas 23-39 £30,507,000
Kansas City 23-40 824,123,500

G EQirPr2»0 i L UD2TPICOIPHAGU»E

Figure 5-7. Sample ranking that highlights lines

Returning to the Question (Refine) | 125

A Word About Typography

The dash used between the win-loss record looks a little wimpy because dashes are
so small. A better solution is to use the en dash character by changing this line from
the StandingsList constructor:

title[index] = wins + + losses;

to read as follows:
title[index] = wins + "\u2013" + losses;

Robert Bringhurst’s The Elements of Typographical Style (Hartley and Marks Publish-
ers) defines the en dash as suitable for use when separating values that can be bro-
ken with the word “to.” In this case, the 40-21 next to the Red Sox can be stated as
“the Red Sox have a record of 40 to 21,” making the en dash suitable for this situa-
tion. Using the en dash also has the benefit of ensuring that the vertical position of
the dash aligns nicely with the horizontal lines of the number characters that it sepa-
rates (for instance, the middle of a “3” and the horizontal stroke of a “4”).

The en dash is specified by "\u2013", a Unicode escape sequence. A Unicode escape
is a \u followed by four hex digits representing the character’s number in the Uni-
code character set. Other types of dashes can be used, such as the em dash, "\u2012",
or the minus sign, "\u2212".

Sophisticated Sorting: Using Salary As a Tiebreaker
(Mine)

Another alteration to the StandingsList is to improve how ties are handled. When
two teams have an identical record (not an uncommon occurrence, especially early in
the season), the tie should go to the team with the lower salary.

Inside RankedList, sorting is performed by a function that compares two elements in
the list. This is common for most sorting algorithms, which invoke a comparison
function that returns zero if the items are identical, a positive value if the first is
greater, and a negative value if the second is greater.

Writing a new compare() method lets us specify a more sophisticated sort. In the
modified method, the compare() method of the superclass (RankedList) is called first.
If the comparison is nonzero, the items are not identical and we don’t need to per-
form further comparison. But if the values are identical, the comparison function
from the salaries object is used. Because values for a and b refer to the same team in
both the standings and salaries (they were ordered using the teamIndex() function as
they were loaded), the comparison works:

class StandingsList extends RankedList {

StandingsList(String[] lines) {
super(teamCount, false);

126 | Chapter5: Connectionsand Correlations

for (int i = 0; 1 < teamCount; i++) {
String[] pieces = split(lines[i], TAB);
int index = teamIndex(pieces[0]);
int wins = parselnt(pieces[1]);
int losses = parselnt(pieces[2]);

value[index] = (float) wins / (float) (wins+losses);
title[index] = wins + "\u2013" + losses;

}

update();

}

float compare(int a, int b) {
// First compare based on the record of both teams.
float amt = super.compare(a, b);
// If the record is not identical, return the difference
if (amt !'= 0) return amt;

// If records are equal, use salary as tiebreaker.

// In this case, a and b are switched, because a higher
// salary is a liability, unlike the higher record.
return salaries.compare(a, b);

Moving to Multiple Days (Interact)

So far we’ve covered a lot of data parsing and some visual refinement. But we’ve
severely hampered our potential by sticking to a static image. That misses a key
aspect of our data because the baseball season changes from day to day as teams
improve, tank, and go on winning streaks. The code used to parse the information
for a particular day can easily be adapted to other days, as long as we have a means
for iterating through days of the season and knowing which days to use.

In this section, we’ll generalize our code so we can store and display data for a range
of dates. That requires extending:

* Storage (adding some arrays to store data from multiple dates)
* Status variables (adding various ways to represent dates)

* The display (adding a date selector)

Such changes are common whenever you extend your program. In later sections,
we’ll also animate the data.

Dates and time are trickier than you might think. An initial temptation is to simply
make an array of numbers for the days in each month. But what happens in a leap
year? Do you use a different version of your code? The solution is to represent dates
in unchanging units, such as seconds or milliseconds, and convert them to dates for
the purpose of display at the last moment.

Moving to Multiple Days (Interact) | 127

The Java API contains a Date object that can convert between a long value (which is a
type of int that can store much larger numbers) and a formatted date. A companion
class, SimpleDateFormat, can parse a date from a String object given a template, or
convert from a Date object to a date formatted using the same template.

The long value of a date is the number of milliseconds that elapsed since January 1,
1970 (known as the “Unix epoch” or “POSIX time”). Given a starting value, moving
to the next day is a matter of increasing the variable by the number of milliseconds in
a day. Doing this in a loop will generate all the days of an entire season.

The code that follows takes as input a date stamp for the first day of the season
(firstDateStamp) in the format YYYYMMDD, and the same for the final day of the sea-
son. Because no data is available past the current day, the maximum date for which
information can be downloaded is today. However, results for the current day will
always be incomplete, so it’s best to get results only up to the previous day. This
logic will be encapsulated in maxDateIndex:

String firstDateStamp = "20070401";
String lastDateStamp = "20070930";
String todayDateStamp;

static final long MILLIS PER DAY = 24 * 60 * 60 * 1000;

// The number of days in the entire season.

int dateCount;

// The current date being shown.

int datelIndex;

// Don't show the first 10 days; they're too erratic.

int minDateIndex = 10;

// The last day of the season, or yesterday, if the season is ongoing.
// This is the maximum date that can be viewed.

int maxDateIndex;

// This format makes "20070704" from the date July 4, 2007.
DateFormat stampFormat = new SimpleDateFormat("yyyyMMdd");

// This format makes "4 July 2007" from the same.

DateFormat prettyFormat = new SimpleDateFormat("d MMMM yyyy");

// All dates for the season formatted with stampFormat.
String[] dateStamp;
// A1l dates in the season formatted with prettyFormat.
String[] datePretty;

void setupDates() {
try {
Date firstDate = stampFormat.parse(firstDateStamp);
long firstDateMillis = firstDate.getTime();
Date lastDate = stampFormat.parse(lastDateStamp);
long lastDateMillis = lastDate.getTime();

128 | Chapter5: Connectionsand Correlations

// Calculate number of days by dividing the total milliseconds
// between the first and last dates by the number of milliseconds per day.
dateCount = (int)
((lastDateMillis - firstDateMillis) / MILLIS PER DAY) + 1;
maxDateIndex = dateCount;
dateStamp = new String[dateCount];
datePretty = new String[dateCount];

todayDateStamp = year() + nf(month(), 2) + nf(day(), 2);

// Another option method of doing the same thing using Java's APIs
//Date today = new Date();

//String todayDateStamp = stampFormat.format(today);

for (int i = 0; i < dateCount; i++) {
Date date = new Date(firstDateMillis + MILLIS_PER_DAY*i);
datePretty[i] = prettyFormat.format(date);
dateStamp[i] = stampFormat.format(date);
// If this value for 'date' is today, set the previous
// day as the maximum viewable date, because it means the season is
// still ongoing. The previous day is used because unless it is late
// in the evening, the updated numbers for the day will be unavailable
// or incomplete.
if (dateStamp[i].equals(todayDateStamp)) {

maxDateIndex = i-1;

}

} catch (ParseException e) {
die("Problem while setting up dates", e);
}
}

The primary result of this function is to set up minDateIndex and maxDateIndex, as

well as to calculate all dates in the entire season in two formats (the dateStamp and
datePretty arrays) so that they can be used elsewhere.

The previous code is designed to be more general than the previously mentioned
array that holds the number of days in each month. The original version of the
project used the simpler method, as hand-tweaking provided a quick fix (February
isn’t part of the baseball season, so leap year considerations can be ignored). But if
you were to adapt this project to another situation—such as the football season,
which runs from fall through winter (meaning that the months count up 10, 11, 12,
and then go to 1)—it’s more prudent here to show a generic alternative that can be
more easily adapted.

If you’re running this code online, the firstDateStamp and lastDateStamp could even
be pulled from an HTML parameter using the built-in param() method, which can
read HTML tags for such parameters. That way, different years could be shown
without needing to recompile the applet.

Moving to Multiple Days (Interact) | 129

Drawing the Dates

At the top of the screen, we’ll add a simple date selector. The selector will consist of
a series of vertical lines, with the current date shown as a longer line and the title of
the date (taken from datePretty) shown beneath it:

int dateSelectorX;
int dateSelectorY = 30;

// Draw a series of lines for selecting the date.
void drawDateSelector() {
dateSelectorX = (width - dateCount*2) / 2;

strokeWeight(1);
for (int i = 0; 1 < dateCount; i++) {
int x = dateSelectorX + i*2;

// If this is the currently selected date, draw it differently.
if (i == datelIndex) {

stroke(0);

line(x, 0, x, 13);

textAlign(CENTER, TOP);

text(datePretty[dateIndex], x, 15);

—

else {

// If this is a viewable date, make the line darker.

if ((i >= minDateIndex) &8 (i <= maxDateIndex)) {
stroke(128); // Viewable date

} else {

stroke(204); // Not a viewable date
}
line(x, 0, X, 7);

}
}
}
The dateSelectorY variable never changes, and it represents the bottom of the dis-
play of dates across the top of the screen. The dateSelectorX variable marks a hori-
zontal position within this display of dates, which allows the program to determine
the date itself. We’ll use both of these variables later to figure out where the user’s
mouse is among the dates.

Load Standings for the Entire Season

An update to the setupStandings() function downloads data for each day of the sea-
son (if it has not yet been downloaded) and uses a season array to store each day of
standings for the season thus far:

StandingsList[] season;

130 | Chapter5: Connectionsand Correlations

void setupStandings() {
season = new StandingsList[maxDateIndex + 1];
for (int i = minDateIndex; i <= maxDateIndex; i++) {
String[] lines = acquireStandings(dateStamp[i]);
season[i] = new StandingsList(lines);
}
}

Another version of the acquireStandings() method breaks up a date stamp into its
component parts so that it can be handled by the original acquireStandings method:

String[] acquireStandings(String stamp) {
int year = int(stamp.substring(o, 4));
int month = int(stamp.substring(4, 6));
int day = int(stamp.substring(6, 8));
return acquireStandings(year, month, day);

}

Switching Between Dates

With all the data in place, selecting dates is a matter of determining where the mouse
was clicked inside the date selector area. The mousePressed() and mouseDragged()
will be combined into a single handleMouse() method that calculates whether a new
date was chosen:

void setDate(int index) {
dateIndex = index;
standings = season[dateIndex];

}

void mousePressed() {
handleMouse();

}

void mouseDragged() {
handleMouse();

}

void handleMouse() {
if (mouseY < dateSelectorY) {
int date = (mouseX - dateSelectorX) / 2;
setDate(constrain(date, minDateIndex, maxDateIndex));
}
}

And just for kicks, let’s add a keyPressed() method so that we can use the arrow
keys to move back and forth in time:

void keyPressed() {
if (key == CODED) {
if (keyCode == LEFT) {
int newDate = max(dateIndex - 1, minDateIndex);
setDate(newDate);
} else if (keyCode == RIGHT) {

Moving to Multiple Days (Interact) | 131

int newDate = min(dateIndex + 1, maxDateIndex);
setDate(newDate);
}
}
}

Checking Our Progress

Because the printed page isn’t interactive, the only evidence of animation can be seen
in the date selector at the top of the screen in Figure 5-8.

G G e

Figure 5-8. Date selector bar that drives animation

As the user clicks and drags the mouse across the date selector, the display switches
rapidly between the standings for each day. It makes for an exciting reproduction of
the baseball teams’ fortunes, but the update is too jerky. As you might guess, we’ll
bring back our Integrator friend next to help smooth out things.

Smoothing Out the Interaction (Refine)

The Integrator class was introduced in Chapter 3 to replace abrupt distinctions in
time or color with gradients. In what is perhaps becoming a common refrain, we’ll
add it to our sketch to help us animate the transition between days. The class is
available from the book’s site:

http://benfry.com/writing/salaryper/Integrator.java

The only values that move are the 30 values for the standings, so we’ll add a
setupRanking() function to initialize them and set a default position. We add the call
to setupRanking() inside setup(), just after the other setupXxxxx() functions:

Integrator[] standingsPosition;

void setupRanking() {
standingsPosition = new Integrator[teamCount];
for (int i = 0; 1 < teamCodes.length; i++) {
standingsPosition[i] = new Integrator(i);
}
}

132 | Chapter5: Connectionsand Correlations

http://benfry.com/writing/salaryper/Integrator.java

Inside draw(), we’ll no longer use getRank() to determine the location for standingsY
as we did before:

float standingsY = standings.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;

Instead, the position of each standing will be based on the current position of each
Integrator, which glides gradually from the old to the new value:

float standingsY = standingsPosition[i].value * ROW_HEIGHT + HALF_ROW HEICHT;

At the beginning of draw(), it’s also necessary to update each standingsPosition. As
a twist, we’ll also keep track of whether any of the Integrators actually change by
checking the return value of their update() method (which returns true if the value
actually changed by some amount). If no changes occur, we’ll use noLoop() to shut
off the animation loop and save CPU cycles:

boolean updated = false;

for (int i = 0; i < teamCount; i++) {

if (standingsPosition[i].update()) {

updated = true;
}

}
if (lupdated) {
noLoop();

Of course, we eventually need to turn the animation back on, when the user selects a
new date. An updated setDate() method targets each of the new ranking values and
submits it to the gradual animation provided by Integrator, then starts up the ani-
mation loop by calling loop():

void setDate(int index) {

dateIndex = index;
standings = season[dateIndex];

for (int i = 0; i < teamCount; i++) {
standingsPosition[i].target(standings.getRank(i));
}

// Re-enable the animation loop.
Toop();
}
Also regarding animation, it’s important to set a frame rate at which to run the
sketch so that it behaves consistently on other machines. Adding frameRate(15) to
setup() ensures that transitions behave smoothly and the animation is consistent,
even on very fast computers.

Deployment Considerations (Acquire, Parse, Filter)

As discussed in Chapter 2, sketches that run online inside a web browser are not
allowed access to the user’s local filesystem for security reasons. That eliminates our
current scheme of downloading files for each day and using the File object to check
whether they’ve already been downloaded.

Deployment Considerations (Acquire, Parse, Filter) | 133

As it turns out, the current implementation is also quite inefficient: at the end of the
season, you’ll have hundreds of individual files on your disk for each day, each of
them occupying about 300 bytes.

So instead, we return back to the early preprocessing steps. The solution for both sit-
uations is to run the preprocessing steps from a CGI script. The script can download
the data once for each day and then join all of the statistics for the season up to a
particular day into a single file that can be downloaded by a web visitor. If the CGI
script runs from the same server as the sketch, the sketch will be able to connect to it
and download the data because connecting back to its parent server is considered
safe under Java’s security model.

A Perl version of the script, essentially an adaptation of the acquireStandings() and
parselinloss() methods, follows. Creating a version for PHP or other web frame-
works shouldn’t be too much of a stretch.

#!/usr/bin/perl -w
use Time::Local;

Send header to the web server to indicate we are awake,
and that plain text data will be returned.
print "Content-type: text/plain\n\n";

These values could be read from parameters to the CGI if so desired, i.e.,
http://benfry.com/salaryper/data.cgi?first=2007040181last=200709308min=10.
This would make the software more flexible to use it for multiple years.
$firstDateStamp = '20070401';

$lastDateStamp = '20070930';

$minDateIndex = 10;

$dataFolder = 'individual';
$comboFolder = 'combined’;
“mkdir -p $dataFolder’;
“mkdir -p $comboFolder”;

$firstDateStamp =~ /(\d\d\d\d)(\d\d)(\d\d)/;

$year = $1;
$month = $2 - 1; # Months are O0-indexed in Perl
$day = $3;

$firstDate = timelocal(o, 0, 0, $day, $month, $year);

$lastDateStamp =~ /(\d\d\d\d)(\d\d)(\d\d)/;

$year = $1;
$month = $2 - 1; # Months are O0-indexed in Perl
$day = $3;

$lastDate = timelocal(o, 0, 0, $day, $month, $year);
$SECONDS_PER DAY = 24 * 60 * 60;
Yesterday is the maximum possible date,

because the scores from today will not yet be updated.
$yesterdayDate = time - $SECONDS_PER DAY;

134 | Chapter5: Connectionsand Correlations

Don't bother grabbing data for the earlier part of the season
because it will not be used (and the program is not expecting it).
$date = $firstDate + $minDateIndex*$SECONDS PER DAY;

my @dateStamps = ();

If season is ongoing, read data only through yesterday.
$endDate = ($yesterdayDate < $lastDate) ? $yesterdayDate : $lastDate;
while ($date <= $endDate) {
($sec, $min, $hour, $mday, $mon, $year, $wday, $yday,$isdst) =
localtime($date);
$stamp = sprintf("%04d%02d%02d", $year + 1900, $mon+1, $mday);
push @dateStamps, $stamp;
#print "$date - " . localtime($date) . "\n";
$date += $SECONDS PER DAY;

}
$endDateStamp = $dateStamps[$ttdateStamps];

$combinedFile = "$comboFolder/$endDateStamp.tsv";
if (-f $combinedFile) {
Open the file and spew the contents back to the applet.
open(INPUT, $combinedFile) || die $!;
@contents = <INPUT>;
print @contents;
close(INPUT);

} else {
Download any days not yet downloaded.
foreach $stamp (@dateStamps) {
$filename = "$dataFolder/$stamp.tsv";
if (1(-f $filename)) {
downloadWinLoss($stamp);
}

}

Concatenate everything into a single file.
open(OUTPUT, ">$combinedFile") || die $!;
foreach $stamp (@dateStamps) {
open(INPUT, "$dataFolder/$stamp.tsv") || die $!;
@contents = <INPUT>;
print OUTPUT @contents;
close(INPUT);

Also write the contents of this file to the applet.
print @contents;

}
close(OUTPUT);

sub downloadWinLoss() {
my $stamp = shift;

Deployment Considerations (Acquire, Parse, Filter)

135

open(OUTPUT, ">$dataFolder/$stamp.tsv") || die $!;

$stamp =~ /(\d\d\d\d) (\d\d) (\d\d)/;
$day = sprintf("year %04d/month_%02d/day %02d/", $1, $2,

$base = 'http://mlb.mlb.com/components/game/" . $day;

parselinLoss($base . 'standings_rs_ale.js');
parseWinLoss($base . 'standings rs alw.js');
parselWinLoss($base . 'standings rs alc.js');

parseWinLoss($base . 'standings rs nle.js');
parselWinLoss($base . 'standings rs nlw.js');
parselinLoss($base . 'standings_rs nlc.js');

close(OUTPUT);

sub parseWinLoss() {
$url = shift;
Download the contents of the .js file using "curl".
@lines = “curl --silent $url”;

$teamCode = "',
$wins = 0;
$losses = 0;

foreach $line (@lines) {
if ($1line =~ /\s+([\w\d]+):\s'(.*)",?/) {

$attr = $1;

$value = $2;

if ($attr eq 'code') {
$teamCode = $value;

} elsif ($attr eq 'w') {
$wins = $value;

} elsif ($attr eq '1") {
$losses = $value;

}

} elsif ($line =~ /~}/) {
This is the end of a group, print the values
print OUTPUT "$teamCode\t$wins\t$losses\n";

}

The script can be seen in action at:
http://benfry.com/writing/salaryper/mlb.cgi
or downloaded directly from:

http://benfry.com/writing/salaryper/mlb.txt

136 | Chapter5: Connectionsand Correlations

http://benfry.com/writing/salaryper/mlb.cgi
http://benfry.com/writing/salaryper/mlb.txt

If data has not been downloaded for the current day, it downloads the new informa-
tion and then produces a file that concatenates all the days found so far. If that has
already occurred once, the file itself is simply echoed back to the web server.

Because our CGI solution moves all the preprocessing code out of the sketch, the
acquireStandings() and parseWinLoss() methods can be removed from the code,
simplifying things greatly. The new version of setupStandings() that reads the data
instead uses a URL to download the data and then creates a new StandingslList for
each set of 30 lines. The maxDateIndex is determined by the amount of data received
from the CGI script, and it’s important to keep the minDateIndex variable in your
code in sync with the minDateIndex value used in the CGI so that both pieces of soft-
ware expect the same day to be the first day of standings. The complete code follows:

import java.util.regex.*;

int teamCount = 30;
String[] teamNames;
String[] teamCodes;
HashMap teamIndices;

static final int ROW_HEIGHT = 23;
static final float HALF_ROW_HEIGHT = ROW_HEIGHT / 2.0f;

static final int SIDE PADDING = 30;
static final int TOP_PADDING = 40;

Salarylist salaries;
Standingslist standings;

StandingsList[] season;
Integrator[] standingsPosition;

PImage[] logos;
float logoWidth;
float logoHeight;

PFont font;

String firstDateStamp = "20070401";
String lastDateStamp = "20070930";
String todayDateStamp;

static final long MILLIS PER DAY = 24 * 60 * 60 * 1000;
// The number of days in the entire season.

int dateCount;
// The current date being shown.

Deployment Considerations (Acquire, Parse, Filter) | 137

int datelndex;

// Don't show the first 10 days; they're too erratic.

int minDateIndex = 10;

// The last day of the season, or yesterday, if the season is ongoing.
// This is the maximum date that can be viewed.

int maxDatelIndex;

// This format makes "20070704" from the date July 4, 2007.
DateFormat stampFormat = new SimpleDateFormat("yyyyMMdd");

// This format makes "4 July 2007" from the same.

DateFormat prettyFormat = new SimpleDateFormat("d MMMM yyyy");

// All dates for the season formatted with stampFormat.
String[] dateStamp;
// All dates in the season formatted with prettyFormat.
String[] datePretty;

void setupDates() {
try {
Date firstDate = stampFormat.parse(firstDateStamp);
long firstDateMillis = firstDate.getTime();
Date lastDate = stampFormat.parse(lastDateStamp);
long lastDateMillis = lastDate.getTime();

// Calculate number of days by dividing the total milliseconds
// between the first and last dates by the number of milliseconds per day.
dateCount = (int)
((lastDateMillis - firstDateMillis) / MILLIS PER _DAY) + 1;
maxDateIndex = dateCount;
dateStamp = new String[dateCount];
datePretty = new String[dateCount];

todayDateStamp = year() + nf(month(), 2) + nf(day(), 2);
// Another option to do this, but more code

//Date today = new Date();

//String todayDateStamp = stampFormat.format(today);

for (int i = 0; 1 < dateCount; i++) {
Date date = new Date(firstDateMillis + MILLIS PER DAY*i);
datePretty[i] = prettyFormat.format(date);
dateStamp[i] = stampFormat.format(date);
// If this value for 'date' is equal to today, then set the previous
// day as the maximum viewable date, because it means the season is
// still ongoing. The previous day is used because unless it is late
// in the evening, the updated numbers for the day will be unavailable
// or incomplete.
if (dateStamp[i].equals(todayDateStamp)) {
maxDateIndex = i-1;
}
}
} catch (ParseException e) {
die("Problem while setting up dates”, e);
}
}

138 | Chapter5: Connectionsand Correlations

public void setup() {
size(480, 750);

setupTeams();

setupDates();

setupSalaries();

// Load the standings after the salaries, because salary
// will be used as the tie-breaker when sorting.
setupStandings();

setupRanking();

setuplogos();

font = createFont("Georgia", 12);
textFont(font);

frameRate(15);
// Use today as the current day.
setDate(maxDateIndex);

void setupTeams() {
String[] lines = loadStrings("teams.tsv");

teamCount = lines.length;
teamCodes = new String[teamCount];
teamNames = new String[teamCount];
teamIndices = new HashMap();

for (int i = 0; i < teamCount; i++) {
String[] pieces = split(lines[i], TAB);
teamCodes[i] = pieces[0];
teamNames[i] = pieces[1];
teamIndices.put(teamCodes[i], new Integer(i));
}
}

int teamIndex(String teamCode) {
Integer index = (Integer) teamIndices.get(teamCode);
return index.intValue();

}

void setupSalaries() {
String[] lines = loadStrings("salaries.tsv");
salaries = new SalarylList(lines);

}

void setupStandings() {

Deployment Considerations (Acquire, Parse, Filter) | 139

String[] lines = loadStrings("http://benfry.com/writing/salaryper/mlb.cgi");

int dataCount = lines.length / teamCount;

int expectedCount = (maxDateIndex - minDateIndex) + 1;

if (dataCount < expectedCount) {
println("Found " + dataCount +

"but was expecting " + expectedCount +

maxDateIndex = minDateIndex + dataCount - 1;

}

season = new StandingsList[maxDateIndex + 1];

for (int i = 0; i < dataCount; i++) {
String[] portion = subset(lines, i*teamCount, teamCount);
season[i+minDateIndex] = new StandingsList(portion);

}

}

entries in the data file, " +
" entries.");

void setupRanking() {
standingsPosition = new Integrator[teamCount];
for (int i = 0; 1 < teamCodes.length; i++) {
standingsPosition[i] = new Integrator(i);
}
}

void setuplogos() {
logos = new PImage[teamCount];
for (int i = 0; i < teamCount; i++) {
logos[i] = loadImage("small/" + teamCodes[i] + ".gif");
}
logoWidth = logos[0].width / 2.0f;
logoHeight = logos[0].height / 2.0f;

public void draw() {
background(255);
smooth();

drawDateSelector();
translate(SIDE_PADDING, TOP_PADDING);

boolean updated = false;

for (int i = 0; i < teamCount; i++) {
if (standingsPosition[i].update()) {

updated = true;

}

}

if (lupdated) {
noLoop();

for (int i = 0; i < teamCount; i++) {

140 | Chapter5: Connectionsand Correlations

float standingsY = standingsPosition[i].value * ROW_HEIGHT + HALF_ROW_HEIGHT;

image(logos[i], 0, standingsY - logoHeight/2, logoWidth, logoHeight);

textAlign(LEFT, CENTER);
text(teamNames[i], 28, standingsY);

textAlign(RIGHT, CENTER);
£i11(128);
text(standings.getTitle(i), 150, standingsY);

float weight = map(salaries.getValue(i),
salaries.getMinValue(), salaries.getMaxValue(),
0.25f, 6);

strokeWeight (weight);

float salaryY = salaries.getRank(i)*ROW_HEIGHT + HALF_ROW_HEIGHT;
if (salaryY >= standingsY) {

stroke(33, 85, 156); // Blue for positive (or equal) difference.
} else {

stroke(206, 0, 82); // Red for wasting money.

}
line(160, standingsY, 325, salaryY);

fill(128);
textAlign(LEFT, CENTER);
text(salaries.getTitle(i), 335, salaryY);

int dateSelectorX;
int dateSelectorY = 30;

// Draw a series of lines for selecting the date.
void drawDateSelector() {
dateSelectorX = (width - dateCount*2) / 2;

strokeWeight(1);
for (int i = 0; i < dateCount; i++) {
int x = dateSelectorX + i*2;

// If this is the currently selected date, draw it differently.
if (i == dateIndex) {

stroke(0);

line(x, 0, x, 13);

textAlign(CENTER, TOP);

text(datePretty[dateIndex], x, 15);

} else {

Deployment Considerations (Acquire, Parse, Filter)

141

// If this is a viewable date, make the line darker.
if ((1 >= minDateIndex) 8& (i <= maxDateIndex)) {
stroke(128); // Viewable date

} else {
stroke(204); // Not a viewable date
}
line(x, 0, x, 7);
}
}
}

void setDate(int index) {
dateIndex = index;
standings = season[dateIndex];

for (int i = 0; i < teamCount; i++) {
standingsPosition[i].target(standings.getRank(i));
}

// Re-enable the animation loop.
Loop();

void mousePressed() {
handleMouse();
}

void mouseDragged() {
handleMouse();
}

void handleMouse() {
if (mouseY < dateSelectorY) {
int date = (mouseX - dateSelectorX) / 2;
setDate(constrain(date, minDateIndex, maxDateIndex));
}
}

void keyPressed() {
if (key == CODED) {
if (keyCode == LEFT) {
int newDate = max(dateIndex - 1, minDateIndex);
setDate(newDate);

} else if (keyCode == RICHT) {
int newDate = min(dateIndex + 1, maxDateIndex);
setDate(newDate);
}
}
}

142 | Chapter5: Connectionsand Correlations

class

Salarylist extends RankedList {

SalaryList(String[] lines) {
super(teamCount, false);

for (int i = 0; i < teamCount; i++) {

class

String pieces[] = split(lines[i], TAB);

// First column is the team's 2- or 3-digit team code.
int index = teamIndex(pieces[0]);

// Second column is the salary as a number.
value[index] = parseInt(pieces[1]);

// Make the title in the format $NN,NNN,NNN.
int salary = (int) value[index];
title[index] = "$" + nfc(salary);

StandingsList extends RankedList {

StandingsList(String[] lines) {
super(teamCount, false);

for (int i = 0; 1 < teamCount; i++) {

}

String[] pieces = split(lines[i], TAB);
int index = teamIndex(pieces[0]);

int wins = parseInt(pieces[1]);

int losses = parselnt(pieces[2]);

value[index] = (float) wins / (float) (wins+losses);
title[index] = wins + "\u2013" + losses;

update();

}

Deployment Considerations (Acquire, Parse, Filter)

143

float compare(int a, int b) {
// First compare based on the record of both teams.
float amt = super.compare(a, b);
// If the record is not identical, return the difference.
if (amt != 0) return amt;

// If records are equal, use salary as tiebreaker.

// In this case, a and b are switched, because a higher
// salary is a negative thing, unlike the values above.
return salaries.compare(a, b);

144 | Chapter5: Connectionsand Correlations

CHAPTER 6
Scatterplot Maps

In this chapter, we cover the seven steps as laid out in Chapter 1 and apply them to
the question, “How do zip codes relate to geography?” (The background for this
project was introduced in Chapter 1.)

Preprocessing

Data is always dirty, and once you’ve found your data set, you’ll need to clean it up.
As in the previous chapter, we’ll go through the steps of acquiring and parsing in
detail. None of this is rocket science, but again, it’s meant to familiarize you with the
various formats in which you’ll find data, and alert you to some of the common
issues you’ll encounter along the way. If you just want to start playing with locations
and maps, you can download the finished zips.tsv file from the book web site (http://
benfry.com/writing/zipdecode/zips.tsv) and jump ahead to the next section.

Data from the U.S. Census Bureau (Acquire)

The acronym ZIP stands for Zoning Improvement Plan, a 1963 initiative to simplify
the delivery of mail in the United States. Personal correspondence, once the majority
of all mail, was rapidly being overtaken by business mail, which by the 1960s
accounted for 80% of the post. Faced with an ever-increasing amount of mail to pro-
cess, the U.S. Postal Service initiated the zip system to specify more accurately the
geographic area of the mail’s destination. The U.S. Postal Service’s web site features
a lengthier history of the system at http://www.usps.com/history.

Versions of the zip code database are available from a variety of sources. The data is
public and therefore freely available on government web sites. Government sites
often contain a wealth of information for those willing to take the time to dig for it.
The terminology can sometimes be archaic and the documentation poor, so it often
takes a while to figure out exactly how things work. In the spirit of capitalism,
resellers have jumped in to provide you with “value added” versions of the data.

145

http://benfry.com/writing/zipdecode/zips.tsv)
http://benfry.com/writing/zipdecode/zips.tsv)
http://www.usps.com/history

Clearly, the term “value” varies widely—some companies are happy to charge your
credit card for the honor of their knowing the right search terms to use with Goo-
gle, or of having clicked through the census bureau web site for you. Others sub-
scribe to the official data from the U.S. Postal Service and curate a useful, working
copy of the data.

Free services have also emerged, such as http://geocoder.us (described online and in
O’Reilly’s Mapping Hacks by Schuyler Erle, Rich Gibson, and Jo Walsh), which
maintains a working data set as well as open source software that you can use to for-
mulate zip code and address information.

For our purposes, we’ll use a listing from the U.S. Census Bureau, found at http:/
www.census.gov/geo/www/tiger/zip1999.html. The data is outdated by a few years,
but it will be sufficient for our short-term purpose.

That page provides a link to a compressed archive (with the seemingly redundant
title zip1999.zip) that contains a DBF file with the data set and a Microsoft Word
document that describes each of the fields (columns) in the data set. (For informa-
tion about DBEF files, see Chapter 10.)

Both OpenOffice and Microsoft Excel can open a DBF file. OpenOffice might even
register the .dbf extension explicitly, but in Excel you’ll have to use the “All files”
option in the File - Open dialog box before the DBF file shows up.

The file contains approximately 42,000 lines, one for each zip code. The following is
a small sample:

ZIP_CODE LATITUDE LONGITUDE ZIP_CLASS PONAME STATE COUNTY
95466 +39.056598 -123.525375 PHILO 06 045
95468 +38.919145 -123.540572 POINT ARENA 06 045
95469 +39.360935 -123.106751 POTTER VALLEY 06 045
95470 +39.302446 -123.462532 REDWOOD VALLEY 06 045
95471 +38.523472 -122.982142 P RIO NIDO 06 097
95472 +38.407222 -122.869654 SEBASTOPOL 06 097
95473 +38.325851 -122.505846 P SEBASTOPOL 06 097
95476 +38.255943 -122.476819 SONOMA 06 097
95480 +38.676694 -123.372059 STEWARTS POINT 06 097
95481 +39.127247 -123.164533 P TALMAGE 06 045
95482 +39.403699 -123.321202 UKIAH 06 045
95485 +39.252489 -122.856430 UPPER LAKE 06 033
95486 +38.464487 -123.037996 P VILLA GRANDE 06 097
95487 +38.463088 -122.989975 P VINEBURG 06 097
95488 +39.660425 -123.786385 WESTPORT 06 045
95490 +39.525958 -123.365730 WILLITS 06 045
95492 +38.532827 -122.804100 WINDSOR 06 097
95493 +39.185033 -122.965163 WITTER SPRINGS 06 033
95494 +38.934552 -123.268378 YORKVILLE 06 045
95497 +38.717318 -123.463976 P THE SEA RANCH 06 097
95501 +40.646324 -124.025773 EUREKA 06 023

146 | Chapter6: Scatterplot Maps

http://geocoder.us
http://www.census.gov/geo/www/tiger/zip1999.html
http://www.census.gov/geo/www/tiger/zip1999.html

Dealing with the Zip Code Database File (Parse and Filter)

After opening the file with OpenOffice or Excel, save the file as tab-delimited (TSV)
or comma-separated (CSV) values for easier parsing. For our purposes, we’ll save it
as CSV (title it zipnov99.csv), resulting in a file whose first 10 lines look like:

"ZIP CODE,C,5","LATITUDE,C,11","LONGITUDE,C,11","ZIP
CLASS,C,1","PONAME,C, 28", "STATE,C, 2", "COUNTY, C, 3"

"00210"," +43.005895","-071.013202","U", "PORTSMOUTH","33","015"
"00211"," +43.005895","-071.013202", "U" "PORTSMOUTH", "33","015"
"00212"," +43.005895","-071.013202","U", "PORTSMOUTH", "33","015"
"00213"," +43.005895","-071.013202","U", "PORTSMOUTH","33","015"
"00214"," +43.005895","-071.013202","U", "PORTSMOUTH","33","015"
"00215"," +43.005895","-071.013202","U", "PORTSMOUTH", "33","015"
"00501"," +40.922326","-072.637078","U", "HOLTSVILLE","36","103"
"00544"," +40.922326","-072.637078","U", "HOLTSVILLE","36","103"

The data in its current format is not quite ready to go. It is almost always the case that
you’ll need to do additional work to clean the data before it is ready to be included
with an application. Often, you’ll run the acquire stage and the parse and filter stages
twice, as we do in this chapter. With our zip code data, one can observe that:

The useful columns for our purposes are ZIP_CODE, LATITUDE, LONGITUDE, PONAME,
and STATE. The ZIP_CLASS and COUNTY columns can be removed to save some disk
space (if we intend to run this locally) or download time (if we distribute this
application over the Web).

The STATE column is encoded as a FIPS (Federal Information Processing Stan-
dards) number, which we’ll want to convert to a two-digit state abbreviation.

Not all of the data rows are necessary for our example. For the time being, we’ll
cheat and use only the contiguous 48 states, omitting Alaska, Hawaii, and Amer-
ican territories.

While we’re at it, the city names are listed in ALL CAPS, which looks garish and
aggressive. It’s important to realize that this is a limitation of the particular data
set, not all data of this kind. If we were to get a better zip code list, the names
might not be capitalized. As such, it’s better to clean the data first, rather than
include a workaround for the problem in the final project. That is not to say that
we should be obsessed with generalization (see the discussion of “sketching” in
Chapter 2), but this is a case where the generalization doesn’t cost us anything in
terms of time or efficiency.

Excel and OpenOffice tend to introduce a lot of extra rubbish, such as unneces-
sary quotes, into TSV files. (To be fair, OpenOffice allows you to tweak these
parameters, though the nomenclature for the export interface can be confusing.)

Because latitude and longitude values reflect points on a globe, a projection will
be used to convert the coordinates to positions that more closely resemble how
the United States are typically portrayed (slightly curved at the top, rather than
following a latitude line straight across).

Preprocessing | 147

We'll need to know the range of latitudes and longitudes in order to plot them in
a proper range to the screen. For this, we’ll keep track of the minimum and max-
imum values after they’ve been projected.

Because downloading the zip codes from the network may take some time, the
file will also specify the number of total lines, so that we can calculate progress
during the download.

Each of these issues is easy to handle. We’ll simply write a short bit of code to turn our
data into a more usable and compact format. Addressing each issue is straightforward:

1. We’ll make a second version of the data file that leaves out the unnecessary col-
umns. By placing constants at the beginning of the code for each of the columns,
we’ll make the code easier to follow because arrayName[LONGITUDE] is more self-
explanatory than arrayName[2].

// Indices for each of the columns
int ZIP_CODE = 0;

int LATITUDE = 1;

int LONGITUDE = 2;

int ZIP_CLASS = 3;

int PONAME = 4;

int STATE_FIPS = 5;

int COUNTY = 6;

2. In the second file, the FIPS code will be replaced with a two-letter state
abbreviation. The codes can be found at the Federal Information Processing Stan-
dards site, specifically Publication 5-2: http://www.itl.nist.gov/fipspubs/fip5-2.htm.
A clean version of this data is available from the book web site at http://benfry.
com/writing/zipdecode/fips.tsv. For the curious, the clean version was created by
saving the HTML file, opening it with OpenOffice, copying the data from the
state tables, and pasting it into a blank spreadsheet file. The file was then saved
as TSV by selecting the “Text CSV (.csv)” option, and in the “Export of text
files” dialog box, setting the “Field delimiter” to “{Tab}” (which can be chosen
from the drop-down list) and the “Text delimiter” to nothing.

The following code loads the fips.tsv file and places it into a Hashtable so that we
can look up individual values. With this in place, fipsTable.get() will provide
the state abbreviation for any FIPS code value.
// Load the state FIPS codes into a table.
Hashtable fipsTable = new Hashtable();
String[] fipsLines = loadStrings("fips.tsv");
for (int i = 0; 1 < fipsLines.length; i++) {
// Split each line on the tab characters.
String[] pieces = split(fipsLines[i], TAB);
// The FIPS code is in column 1,
// and the state abbreviation in column 2
// (keep in mind that columns are numbered from zero).
fipsTable.put(pieces[1], pieces[2]);
}
148 | Chapter6: Scatterplot Maps

http://www.itl.nist.gov/fipspubs/fip5-2.htm
http://benfry.com/writing/zipdecode/fips.tsv
http://benfry.com/writing/zipdecode/fips.tsv

The clean version also omits the first 0 in each code to match the two-digit codes
used in the zipsnov99.csv file. If each FIPS code were converted to an integer,
this wouldn’t be necessary, but storing this field as integer data is not worth-
while. It is tedious to convert (and later restore) the integer values, and not really
necessary when String objects will work fine and save a few steps.

. Gleaning the contiguous 48 states from the full list is a straightforward task.
Other territories have been left out of fips.tsv, meaning that if no state abbrevia-
tion is found for a code, it can be skipped. Cutting out Alaska and Hawaii is also
a matter of skipping lines whose FIPS code maps to AK or HI. Inside the for()
loop, the code will look like this:

String stateAbbrev = (String) fipsTable.get(data[STATE_FIPS]);

// If the abbreviation was not found, skip this line,

// because that means it's an outlying territory.

if (stateAbbrev == null) continue;

// For now, skip Alaska and Hawaii.

if (stateAbbrev.equals("AK") || stateAbbrev.equals("HI")) continue;
. For the city names (the PONAME column), we can capitalize just the first letter of
each word, which isn’t perfect, but it’s better than shouting all the time. Further,
because the city and state abbreviation are always used together (e.g., “Sebasto-
pol, CA”), that information can go into a single column. That also gives us more
flexibility if we want to use a different data set, such as the postal codes for Ger-
many or Australia—which don’t specify locations the same way as the U.S. but
have similar numbering systems.

The following code is a general-purpose method that takes a String as input,
breaks it into individual characters, and then capitalizes the characters that fol-
low spaces (while making all other characters lowercase).

// Capitalize the first letter of each word in a string.
String fixCapitals(String title) {
char[] text = title.toCharArray();
// If set to true, the next letter will be capitalized.
boolean capitalizeNext = true;

for (int i = 0; 1 < text.length; i++) {
if (Character.isSpace(text[i])) {
capitalizeNext = true;
} else if (capitalizeNext) {
text[i] = Character.toUpperCase(text[i]);
capitalizeNext = false;

} else {
text[i] = Character.tolowerCase(text[i]);
}
}
return new String(text);

}

Preprocessing | 149

If you are dealing with an enormous amount of data and know for a fact that your
data is simply ASCII, other tricks can be used to capitalize more quickly than the
Character.toUpperCase() and Character.tolowerCase() functions (which take
into account Unicode capitalization).

5. Extraneous quotes and commas can be thrown out, converting the information
to a more minimal TSV file. More background regarding CSV and TSV files
(including an explanation for the quotes and commas) can be found in
Chapter 10. This conversion is handled with a scrubQuotes() function:

// Parse quotes from CSV data. Quotes around a column are common,
// and actual double quotes (") are specified by two double quotes ("").
void scrubQuotes(String[] array) {
for (int i = 0; i < array.length; i++) {
if (array[i].length() > 2) {
// Remove quotes at start and end, if present.
if (array[i].startsWith("\"") && array[i].endsWith("\"")) {
array[i] = array[i].substring(1, array[i].length() - 1);
}

// Make double quotes into single quotes.
array[i] = array[i].replaceAl1("\"\"", "\"");
}
}

6. The Albers Equal-Area Conic is a useful projection when dealing with the United
States. Several different map projections applied to the U.S. can be seen on the
U.S. Geological Survey’s web site at http://erg.usgs.gov/isb/pubs/booklets/
mapsofus/mapsofus.html. In our case, the specifics of the chosen projection can
be found on the helpful MathWorld web site run by Wolfram Research. The fol-
lowing code is an adaptation of the algorithm found at http://mathworld.
wolfram.com/AlbersEqual-AreaConicProjection.html:

// USGS uses standard parallels at 45.5°N and 29.5°N
// with a central meridian value of 96°W.

// Latitude value is phi, longitude is lambda.

float phio = 0;

float lambda0 = radians(-96);

float phil = radians(29.5f);

float phi2 = radians(45.5f);

float phi = radians(lat);
float lambda = radians(lon);

float n = 0.5f * (sin(phi1) + sin(phi2));
float theta = n * (lambda - lambdao);
float ¢ = sq(cos(phi1)) + 2*n*sin(phi1);
float rho = sqrt(c - 2*n*sin(phi)) / n;
float rhoo = sqrt(c - 2*n*sin(phio)) / n;

float x
float y

rho * sin(theta);
rho0 - rho*cos(theta);

150 | Chapteré6: Scatterplot Maps

http://erg.usgs.gov/isb/pubs/booklets/mapsofus/mapsofus.html
http://erg.usgs.gov/isb/pubs/booklets/mapsofus/mapsofus.html
http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html

7. As the preprocessor runs, we can keep a running account of the minimum and
maximum ranges for the coordinates in question. That is done by setting the
maximum arbitrarily small and the minimum arbitrarily high:

float minX = MAX FLOAT;
float maxX = MIN FLOAT;
float minY = MAX_FLOAT;
float maxY = MIN FLOAT;

and checking the values on each iteration through the loop:

if (x > maxX) maxX = x;
if (x < minX) minX = x;
if (y > maxy) maxy =y;
if (y < minY) minY = y;

The values will be written to the preprocessor output file so that the boundaries
of the shape are known before the file has finished loading in the interactive
applet. That allows us to show points as they load from the network, which also
serves as a indicator of the progress of the file download.

8. To keep track of the number of locations, the placeCount variable is incre-
mented as each new location is parsed.

Building the Preprocessor

Open Processing and start a new sketch. Add the fips.tsv file to your sketch by drag-
ging it into the editor window or selecting Sketch.

Pulling all these steps together, the preprocessor code appears as the following:

// Indices for each of the columns
int ZIP_CODE = 0;

int LATITUDE = 1;

int LONGITUDE = 2;

int ZIP_CLASS = 3;

int PONAME = 4;

int STATE_FIPS = 5;

int COUNTY = 6;

void setup() {

// Load the state FIPS codes into a table.

Hashtable fipsTable = new Hashtable();

String[] fipsLines = loadStrings("fips.tsv");

for (int i = 0; 1 < fipsLines.length; i++) {
// Split each line on the tab characters.
String[] pieces = split(fipsLines[i], TAB);
// The FIPS code is in column 1,
// and the state abbreviation in column 2
// (keep in mind that columns are numbered from zero).
fipsTable.put(pieces[1], pieces[2]);

}

String[] lines = loadStrings("zipnov99.csv");

Preprocessing | 151

// Set the minimum and maximum values arbitrarily large.
float minX = 1;
float maxX = -1;
float minY = 1;
float maxy = -1;

// Set up an array for the cleaned data.
String[] cleaned = new String[lines.length];
// Number of cleaned entries found

int placeCount = 0;

// Start at row 1, because the first row is the column titles.
for (int row = 1; row < lines.length; row++) {

// Split the row into pieces on each comma.

String[] data = split(lines[row], ',"');

scrubQuotes(data);

// Remove extra whitespace on either side of each column.

data = trim(data);

String stateAbbrev = (String) fipsTable.get(data[STATE_FIPS]);

// If the abbreviation was not found, skip this line,

// because that means it's an outlying territory.

if (stateAbbrev == null) continue;

// For now, also skip Alaska and Hawaii.

if (stateAbbrev.equals("AK") || stateAbbrev.equals("HI")) continue;

// Attempt to fix the capitalization of the city/town name.
String placeName = fixCapitals(data[PONAME]) + ", " + stateAbbrev;

float lat = float(data[LATITUDE]);
float lon = float(data[LONGITUDE]);

// Albers equal-area conic projection.

// USGS uses standard parallels at 45.5°N and 29.5°N
// with a central meridian value of 96°W.

// Latitude value is phi, longitude is lambda.

float phio =

float lambda0 = radians(-96);
float phil = radians(29.5f);
float phi2 = radians(45.5f);

float phi = radians(lat);
float lambda = radians(lon);

float n = 0.5f * (sin(phi1) + sin(phi2));

float theta = n * (lambda - lambda0); //radians(lon - lambdao);
float ¢ = sq(cos(phi1)) + 2*n*sin(phi1);

float rho = sqrt(c - 2*n*sin(phi)) / n;

float rhoo = sqrt(c - 2*n*sin(phio)) / n;

float x = rho * sin(theta);
float y = rho0 - rho*cos(theta);

152 | Chapter6: Scatterplot Maps

if (x > maxX) maxX = x;
if (x < minX) minX = x;
if (y > maxy) maxy = y;
if (y < minY) minY = y;

// Add a cleaned version of the line, separated by tabs, to the list.
cleaned[placeCount++] = data[ZIP_CODE] + "\t" +

X+ "\t"
y + "\t
placeName;

}

// Write to a file called "zips.tsv" in the sketch folder.
PrintWriter tsv = createWriter("zips.tsv");

// Use the first line to specify the number of data points in the file,
// along with the minimum and maximum latitude and longitude coordinates.
// Use a # to mark the line as different from the other data.
tsv.println("# " + placeCount +

"," + minX + + maxX +

+ minY + "," + maxY);

// Write each line of the cleaned data.

for (int i = 0; i < placeCount; i++) {
tsv.println(cleaned[i]);

}

// Flush and close the file buffer.
tsv.flush();
tsv.close();

// Finished; quit the program.
println("Finished.");
exit();

}

// Parse quotes from CSV or TSV data. Quotes around a column are common,
// and actual double quotes (") are specified by two double quotes ("").
void scrubQuotes(String[] array) {
for (int i = 0; i < array.length; i++) {
if (array[i].length() > 2) {
// Remove quotes at start and end, if present.
if (array[i].startsWith("\"") &3 array[i].endsWith("\"")) {
array[i] = array[i].substring(1, array[i].length() - 1);
}
}

// Make double quotes into single quotes.
array[i] = array[i].replaceAll("\"\"", "\"");
}
}

// Capitalize the first letter of each word in a string.
String fixCapitals(String title) {
char[] text = title.toCharArray();
// If set to true, the next letter will be capitalized.
boolean capitalizeNext = true;

Preprocessing

153

for (int i = 0; 1 < text.length; i++) {
if (Character.isSpace(text[i])) {
capitalizeNext = true;
} else if (capitalizeNext) {
text[i] = Character.toUpperCase(text[i]);
capitalizeNext = false;

} else {
text[i] = Character.tolowerCase(text[i]);
}
}
return new String(text);

}
The resulting file is much easier on the eyes and far simpler to parse in our next step:

41556,-0.3667764,0.35192886,0.4181981,0.87044954
00210 0.3135056 0.7633538 Portsmouth, NH

00211 0.3135056 0.7633538 Portsmouth, NH
00212 0.3135056 0.7633538 Portsmouth, NH
00213 0.3135056 0.7633538 Portsmouth, NH
00214 0.3135056 0.7633538 Portsmouth, NH
00215 0.3135056 0.7633538 Portsmouth, NH
00501 0.30247012 0.7226447 Holtsville, NY
00544 0.30247012 0.7226447 Holtsville, NY
01001 0.29536617 0.742954 Agawam, MA
01002 0.29843047 0.7478273 Amherst, MA
01003 0.29629046 0.74733305 Amherst, MA
01004 0.29775193 0.7479712 Amherst, MA
01005 0.302632 0.7482096 Barre, MA
01007 0.29958177 0.7465452 Belchertown, MA
01008 0.29309207 0.7430645 Blandford, MA
01009 0.30066824 0.74547637 Bondsville, MA
01010 0.302785 0.74424756 Brimfield, MA
01011 0.29267046 0.74506783 Chester, MA
01012 0.29383755 0.74713147 Chesterfield, MA
01013 0.29678938 0.74368894 Chicopee, MA
01014 0.29752877 0.7440418 Chicopee, MA
01020 0.29802647 0.74428964 Chicopee, MA

What about a binary data file or a database?

Of course, one could pack the data into a more sophisticated binary format so that it
would be an even smaller file. I'll leave that as an exercise for the reader. Unless the
need for space and speed is acute, I prefer to avoid dealing with binary formats. Deal-
ing with such data is tricky because you can’t just open a binary file in a text editor
to see what’s going on. A text file can be run compressed with GZIP and read as a
stream, and often is in the neigh