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of B-spline coefficients induce start-up costs for the compression of
a data block that are independent from the data values being com-
pressed. To overcome this bound, in [7] temporal compression is
applied to benefit from the data’s continuous nature in the time di-
mension. Concretely, for each non-reference time step, the change
of positions of values inside the sorted sequence of a compression
block is encoded using differences w.r.t. the permutation of the last
reference time step. Due to the large degree of temporal coherence
in typical scientific data sets, differences are typical small. This
yields a lot of repetitive bit patterns which are amenable to zlib
compression, improving the overall compression rate by ∼ 2−5%
[7].

Our approach to temporal coherence aims at totally getting rid
of the memory needed to store the permutation and B-spline in-
side compression blocks for non-reference time steps. In contrast
to difference encoding between permutations, our approach reuses
the same permutation and B-spline for several time steps. Only
the first time step of this sequence, the reference time step, con-
tains the permutation and the B-spline. Thus, the minimum bound
of the compression rate (without error correction) is lowered to
crT (N,M) = cr(N,M)/T where T is the length of the sequence
until the insertion of a new reference time step. E.g., for a block
size of 83 = 512, 16 B-spline coefficients, and T = 3 the minimal
compression rate (for the unlikely case that no error correction is
necessary) decreases from 17.19% by 1/3 to 5.73% .

In a reference time step, the value sequence X̄0 of length N is
compressed using ISABELA as shown in Figure 2. This yields the
permutation P0, the sorted sequence X0 and the B-spline Y0 sampled
at N locations approximating the values in X0. Moving on to the
next time steps, the permutation P0 is reused to reorder the new
data values X̄i obtaining Xi. For smooth data, the reordered data
values Xi retain the approximate shape of the B-spline Y0, although
the reordered sequences become increasingly noisy over time. For
data from high resolution simulations, the noise increases gradually
as shown in Figure 7.

(a) (b)

(c) (d)

Figure 7: (a) in the reference time step, data values X̄0 are sorted,
with their sort-order being represented by permutation P0. (b),(c)+(d)

in the subsequent time steps, permutation P0 is reused for reorder-
ing the new data values Xi which gradually introduces noise in the
sequences.

Due to the increasing noise in the sort order, applying B-spline
regression in non-reference time steps would lead to inaccurate fits
of the data. Instead, we simply reuse the B-spline Y0 from the last
reference time step. In this way, no B-spline coefficients must be
stored for non-reference time steps. However, error correction can
be expected to require the more bits, the more noise is present in

the sequences.
For error correction in non-reference time steps, the noisy data

values are first snapped towards the B-spline Y0 by moving them
horizontally along the abscissa. Thus, the values get closer to the B-
spline Y0 and the remaining error quantization can work efficiently.
The horizontal snapping is similar to the difference encoding be-
tween permutations. However, in our approach, the values are not
entirely sorted after they have been snapped to the B-spline. The
snapping process moves the values only as far as needed, until the
user-defined error bound is reached, which is illustrated in Figure
8.

B-spline
5% error border

Figure 8: As first step of error correction, noisy data values are
snapped towards the B-spline Y0 of the reference time step.

For purposes of the following explanation, without loss of gener-
ality, the reordered value sequence Xi is assumed to only consist of
positive data values x. If the data value x = Xi[ j] is greater than the
corresponding value of the spline y =Y0[ j], the data value is moved
to the right, otherwise to the left. Concretely, if x > y, the snap-
ping procedure evaluates the spline with an increasing index offset
1,2, . . .. Snapping stops when y′ = Y0[ j+ o f f set] meets the user-
defined error bound or when y′ is the last spline value smaller than
x. Similarly, if x < y, the snapping procedure finds the spline index,
whose value y′ = Y0[ j− o f f set] is the first spline value that either
meets the error bound or is smaller than x. In some cases no spline
value y′ smaller than x exists. To handle this situation, the smallest
data value is stored inside the compression block and used as value
y′ = xmin for error correction. The number of positions o f f set the
value x is moved together with its sign is called ∆.

At the end of the snapping procedure there are snapping tuples
(x,∆,y,y′), where y′ ≤ x, which are used to further correct the error
if necessary. The idea of the snapping mechanism is to minimize
the distance between the data value and the spline, thereby reducing
the amount of error correction bits necessary. However, in regions
where the B-spline has a very low gradient the snapping produces
very large steps and the snapping mechanism might not be benefi-
cial.

Therefore, the remaining error correction is tried without and
with snapping. Without snapping, quantization is accomplished
by k1 = ⌊(1 − y/x)/ρ) + 1/2⌋ and the reconstruction by x̂1 =
y · (1 + k1 · ρ) which follows from the definition of the relative

error |x − y|/|x| ≤ ρ .1 If |k1| ≤ |∆| and re(x, x̂1) ≤ ρ , snap-
ping is discarded, ∆ is set to zero and the reconstructed value is
based on y. Otherwise, quantization is accomplished with snap-
ping by k2 = ⌊(1 − y′/x)/ρ) + 1/2⌋ and the reconstruction by
x̂2 = y2 · (1+ k2 ·ρ). The reconstructed value x̂2 always meets the
maximum bound on the relative error, since y′ ≤ x holds. At the

1For other error definitions, e.g. absolute error, the quantization formu-

lae are easily adapted. In our implementation, we use a modified definition

of the relative error |x − y|/max(|x|, ε̂) ≤ ρ . The constant ε̂ restricts the

relative error from going towards infinity when x is close to zero.
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Figure 11: Performance of temporal compression. Every T -th time
step (T = 1 . . .10) a reference time step is inserted, T = 1 corresponds
to no temporal compression. Top: without fallback and Bottom: with
fallback to plain ISABELA.

els of the full resolution data set, similar to the Adam7 algorithm
used in progressive PNG. Compared to plain ISABELA, only min-
imal run-time overhead during compression is introduced. In order
to generate data at lower resolutions, only a fraction of the total
number of compression blocks have to be loaded, which decreases
bandwidth requirements during interactive exploration.

In order to exploit temporal coherence in time-dependent data
sets, we introduced a new scheme for temporal compression.
Whereas plain ISABELA stores sort-order information and B-
spline coefficients for each time step, our approach, instead, reuses
sort-orders and B-splines from previous reference compression
blocks. Although this introduces some noise in the sort orders at
non-reference time steps, the increased costs for error correction
are clearly outweighed by the costs saved for not storing a sort-
order and a B-spline at all for non-reference time steps. While the
difference encoding method for temporal compression from [7] ef-
fectively reconstructs the correct sort-order and B-spline at every
time step that may be very close approximations of the real data
values, our error correction scheme reduces the error only as much
as needed to guarantee the user-defined relative error. This too indi-
cates that our method requires less memory than difference encod-
ing for temporal compression.

While the interlacing scheme for construction of the AMR data
representation reduces the spatial coherence within the voxels of a

(a) (b)
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Figure 12: AMR + temporal coherence with isotropic, velocity. Com-
pression rate for a sequence of time steps with (a) ρ = 1%, T = 2

and (b) ρ = 5%, T = 3 and Top: without AMR and Bottom: with AMR
depth D = 3.

Variable AMR T = 1 T = 2 T = 3 T = 4

velocity no 20.9% 17.1% 17.0% 17.4%
velocity yes 23.5% 19.0% 18.6% 18.8%
mix f rac no 18.2% 15.4% 15.1% 15.0%
mix f rac yes 19.0% 17.3% 17.5% 17.8%

vort no 19.6% 19.4% 19.7% 20.0%
vort yes 21.8% 22.0% 22.5% 23.0%

Table 2: Compression rates for variables velocity, mix f rac and vort,
relative error ρ = 1%, showing impact of AMR (D = 3) and temporal
compression (T = 1: every time step is a reference time step, i.e. no
temporal compression, T = 2: every 2nd time step is a reference time
step, etc.).

compression block and thus has a negative effect on the compres-
sion rate, temporal coherence improves the compression rate. Table
2 compares the costs incurred by AMR and saved by temporal com-
pression. It shows (again), that AMR introduces a penalty 1−3% in
compression rate, which can however be compensated through tem-
poral compression. We conclude that the introduction of an AMR
scheme has only minor negative effects on the compression rate
which are far outweighed by its positive effects on interactive data
exploration.

For sake of completeness, we further applied our compression
method to the complete, uncropped combustion data set (Table
3). As expected, due to the large border regions with zero-valued
mix f rac-attributes, the compression rate significantly improves for
that attribute to 11.6% without and 14.1% with AMR. For the vort
attribute, which has fluctuating values also in the border regions,
the compression rate is similar to the compression rate in the center
region.

Both introduced extensions to ISABELA, i.e. the multi-
resolution support and the temporal compression scheme were de-
signed with the goal of keeping ISABELA’s in-situ compression
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Figure 13: AMR + temporal compression with combustion, mix f rac.
Compression rate for a sequence of time steps with (a) ρ = 1%, T = 2

and (b) ρ = 5%, T = 3 and Top: without AMR and Bottom: with AMR
depth D = 3.

Variable AMR T = 1 T = 2 T = 3 T = 4

mix f rac no 18.9% 13.6% 12.2% 11.6%
mix f rac yes 21.4% 16.0% 14.6% 14.1%

vort no 19.6% 19.5% 19.8% 19.9%
vort yes 22.8% 22.7% 23.0% 23.2%

Table 3: Compression rates for the complete combustion data set,
480×720×120 voxel, 122 time steps, with relative error bound ρ = 1%,
AMR depth D = 3, and every T -th time step as reference time step.

capabilities intact. Our AMR blocks have a typical size of 323 vox-
els, which can be expected to fit in the same compute process in
HPC environments. Similarly, our temporal compression method
requires only data from one reference time step in addition to the
current time step in main memory. Moreover, data from the refer-
ence time steps is limited to permutation and B-spline information,
which amount to ∼ 17% of the full time step in typical configu-
rations. These properties ensure the locality of the compression
method.

As noted in [7], ISABELA introduces only a negligible overhead
on simulations in terms of runtime. Furthermore, as compression
blocks can be processed independently from each other, ISABELA
is highly amenable to parallelization both during compression and
decompression. In our own experiments, we measured the time
for loading (read + decompress) the compressed subset of isotropic
data set, consisting of 643 voxels and 1024 time steps. The dataset
was compressed with AMR depth D = 3 and temporal compression
setting T = 3, yielding a compressed data set of 1.42 GB. Experi-
ments were conducted on a standard desktop workstation2. Figure
14 shows the loading times for all 1024 time steps of the full reso-
lution data set where 1 . . .6 threads were used. For example, with a

2Intel Core i7 980 @ 3.33 GHz CPU with six physical cores (twelve

virtual threads through Intel Hyper-Threading), SATA 1TB hard disk
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Figure 14: Total loading times for 1024 compressed time steps of
the 643 isotropic data set, for different numbers of threads used for
decompression.

serial implementation (1 thread), loading took 29.9 seconds, while
the use of 6 threads reduced the loading time to 5.4 seconds, i.e.
about 1/6. These results confirm the excellent scalability of IS-
ABELA decompression in the number of threads/compute cores.
Average loading times for a single time step are thus only ∼ 5.3 ms
when six threads are used. Similarly, loading all time steps at the
lowest resolution, i.e. 1/64 of the data, takes about 85 ms with 6
threads.

Figure 15: Compressed AMR data set loaded into Paraview via a
custom reader: high resolution in front, mid resolution in center, low
resolution in back.

Finally, our multi-resolution compression is interoperable with
the Adaptive Multi Resolution (AMR) format of the ParaView/VTK
toolkit [14] which follows the AMR scheme described in [2]. The
VTK AMR format can be built up either in main memory during
decompression or by explicit file conversion. This enables data im-
port into ParaView (Figure 15) and other analysis tools that support
the AMR format of VTK. Figure 16 shows the isotropic data set at
different levels of resolution in the XSITE-CAVE, a 50 megapixel
Virtual Reality display. Fast loading times, as possible with IS-
ABELA compression, are particularly important in immersive en-
vironments. Future work will address issues of controlling AMR
resolution levels in immersive settings, both interactively and auto-
matically.
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Figure 16: The isotropic data set at different LOR in a CAVE. From left to right, the resolutions of the plane plot and iso-surface are increasing.

8 CONCLUSION

We extended the ISABELA method for in-situ compression of sci-
entific data sets with an interlacing data layout supporting direct
adaptive multi-resolution (AMR) output and with a new approach
for temporal compression. While the latter aims at enhancing the
compression rate during the simulation phase, the former aims to
support interactive data exploration during the analysis phase.

The AMR data output is based on subdividing the full data set
into AMR blocks, which can be (de)compressed independently at
multiple levels of resolution by following an interlacing scheme.
The interlacing approach also supports progressive loading as lower
resolution data are part of higher resolution representations. The
interlacing scheme is in principle independent of ISABELA and
can be applied to other in-situ compression algorithms, which is a
topic for future work.

The main idea behind our method for temporal compression is
to defer sorting and B-spline regression by only applying it every
T -th time step in order to save memory in non-reference time steps.
To handle the increasing noise in sort-orders for non-reference time
steps, a new error correction scheme was introduced.

Both ISABELA extensions, AMR and the temporal compression
scheme, support in-situ compression of scientific data in HPC envi-
ronments. The in-situ compressed multi-resolution data can be con-
verted straightforwardly into the Adaptive Multi Resolution (AMR)
format of the ParaView/VTK toolkit.
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