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ABSTRACT

Today’s large-scale scientific simulations generate massive data sets
that pose challenges both for data storage in HPC environments dur-
ing the simulation phase and the subsequent data analysis phase. A
promising approach for reducing the amount of data written out dur-
ing simulation run is in-situ compression. However, even the com-
pressed data sets are typically still too large for interactive visual
data exploration which calls for multi-resolution data layouts. The
recently proposed ISABELA method for lossy in-situ compression
was shown to outperform other compression methods for scientific
data sets. In this paper, we propose two main extensions to the IS-
ABELA method: (1) an interlaced data layout that supports decom-
pression of multi-resolution views of the data without overhead in
the compressed format; (2) a new temporal compression scheme for
improving the compression rate by exploiting temporal coherence
in the data set. The compressed multi-resolution data can easily be
transformed to the VTK AMR (adaptive multi-resolution) data for-
mat to support interactive exploration in ParaView and other visu-
alization tools based on VTK. During the simulation phase, there is
no significant increase of computational demands for the generation
of complete multi-resolution compressed data sets as compared to
flat ISABELA compression. During the analysis phase, due to the
AMR data layout, our method supports selective loading of regions
of interests as well as progressive loading of data sets, thus enabling
interactive visualizations of large-scale scientific simulations.

Keywords: in-situ compression, multi-resolution visualization,
high-performance computing, time-dependent scientific data

Index Terms: E.4 [Coding and Information Theory]: Data
compaction and compression; G.1.2 [Mathematics of Computing]:
Approximation—Spline and piecewise polynomial approximation

1 INTRODUCTION

Today’s HPC environments make use of massive parallelism in
order to maintain a steady increase in computing performance.
However, this increase in compute power is not matched by im-
provements in I/O capabilities and the handling of massive data
sets produced in HPC environments has become a major problem
both in the simulation phase and the subsequent analysis phase
(10710121 [1].

On the simulation side, data movement from main memory to
mass storage constitutes a bottleneck which forces scientists to sub-
sample their data or write out data infrequently, defeating the pur-
pose of high-resolution simulations. A promising solution are in-
situ approaches for compression, visualization, feature extraction
and data indexing [10][1] where data are processed while still re-
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Figure 1: Top: The full voxel grid is subdivided into compressed AMR
(adaptive multi-resolution) blocks. Bottom: By interlacing, each AMR
block is represented at multiple levels of resolution. E.g., for com-
pression block size 8% and three levels of resolution: (a) coarsest
resolution 83 voxels, (b) 16° voxels, (c) full resolution 32 voxels.

siding in main memory of the HPC hardware, thus bypassing stor-
age on slow media. In-situ visualization, e.g. explorable images
[11], can achieve a significant decrease in data size for interactive
visualization or previewing results. In contrast, in-situ compression
methods, e.g. [5] and [7], are able to reconstruct the original data
set, supporting not only visual but also non-visual data analysis in
a post-processing step. In-situ methods including in-situ compres-
sion are widely considered central for coping with the large data
challenges of future extreme-scale simulations [10][6][3][4].

For the post-processing phase, these developments suggest that
future visualization systems must be enabled to directly load data
from in-situ compressed formats. However, given the massive size
of today’s and future scientific data sets, even compressed versions
of the data sets are much too large for interactive visual data explo-
ration. This calls for extensions of in-situ compression algorithms
that directly support multi-resolution output.

In this paper we extend the ISABELA algorithm [7] for in-situ
compression of scientific data. We apply a data interlacing tech-
nique yielding low-resolution views from subsets of the voxels
of the original data (Figure 1) without introducing overhead into
the compressed format. Furthermore we propose a new tempo-
ral compression method to enhance the compression rate in high-
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resolution, time-dependent simulations. The intended benefits of
this work concern both simulation and visual analysis. On the sim-
ulation side, scientists may save disk space, increase the spatial or
temporal resolution of the simulation, or run longer simulations.
During analysis, the multi-resolution data representation allows for
the quick generation of coarse, but interactive visualizations of the
complete data set that can be progressively refined if desired.

This paper is structured as follows: In Section 2 we briefly de-
scribe the [ISABELA compression algorithm. Our first main contri-
bution, an interlacing scheme for in-situ generation of compressed
multi-resolution representations of scientific data sets based on IS-
ABELA is introduced in Section 3. In Section 4 we explain the pro-
gressive loading of data sets based on the multi-resolution layout.
As our second main contribution, we present a new approach for
temporal compression based on [SABELA in section 5. An experi-
mental evaluation of our approach is given in Section 6. We discuss
our approach in Section 7 before we finally conclude in Section 8.
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Figure 2: lllustration of ISABELA-like compression: (a) subdivision,
(b) linearization (c) sorting/B-spline fit, (d) error correction.

2 ISABELA COMPRESSION ALGORITHM

ISABELA (In-situ Sort-And-B-spline Error-bounded Lossy Abate-
ment) is a communication-free, block-based, lossy, in-situ compres-
sion algorithm for scientific data which negligibly effects the sim-
ulation run-time [7]. As argued in [7] lossless compression tech-
niques are generally not suitable for scientific data while other lossy
compression techniques, such as Wavelet compression, are signif-
icantly outperformed by ISABELA. In a typical configuration, IS-
ABELA can reduce data size up to ~ 20% while guaranteeing a
relative error of at most 1% [7].

The ISABELA algorithm is based on linearization of subvol-
umes, sorting sequences, B-spline regression and error correction as
depicted in Figure 2. Compressed blocks consist of a permutation
(sort-order), B-spline coefficients and quantized errors. The per-
mutation describes positions of data values in the original sequence
and therefore in the subvolume of the data set. The block-based
approach exploits the continuous nature of data from scientific sim-
ulations and groups together values with local coherence. Since
sorting establishes an optimal signal-to-noise ratio in a monotone
sequence [7], the B-spline fit only has a very low error w.r.t. the

block size N 512 1024 2048 4096

permutation 14.06% | 15.63% | 17.19% | 18.75%
B-spline co- 16 || 3.13% | 1.56% | 0.78% | 0.39%
efficients M 32 || 6.25% | 3.13% | 1.56% | 0.78%

Table 1: Distribution of memory inside ISABELA compression block
for double precision data as percentage of uncompressed data size
(memory requirements for error correction not shown).

original data. Instead of the original data, only the permutation, B-
spline coefficients and error correction bits are stored which yields
the excellent compression rates.

Table 1 shows the memory distribution (without error correc-
tion) inside an ISABELA compression block for different block
sizes N and number of B-spline coefficients M. Since permuta-
tion and B-spline coefficients are fixed size, the compression rate
(compressed /raw data size) of ISABELA cannot exceed a lower
bound which is given by cr(N,M) = ([Id(N)|N + 64M)/(64N),
where the permutation consists of [1d(N)|N and the B-spline co-
efficients of 64M bits. As Table 1 shows, fixed start-up costs for
storing the permutation and B-spline coefficients amount to about
17% in typical configurations. This bound can be overcome by tem-
poral compression schemes, where start-up costs may be reduced
or, as in the approach introduced in Section 5, fully dispensed with
non-reference time steps. However, even the compressed data sets
are typically still too large for interactive visual data exploration
which can be addressed with multi-resolution data layouts.

3 MULTI-RESOLUTION SUPPORT

In plain ISABELA, decompressing compression blocks one by one
yields the full resolution of the data set, which may not fit in main
memory and thus cannot be visualized in one pass. In order to
support the (de)compression at several levels of resolution, we de-
signed an interlaced data layout. The refinement of one level to
the next level of resolution (LOR) doubles the number of voxels in
all three dimensions and thus yields eight times more voxels. The
procedure is thus similar to spanning an octree with D levels.

In ISABELA, a compression block of N = n® voxels constitutes
the smallest loadable data unit. With D levels of resolution, our in-
terlacing scheme covers a grid of (n-2P -1 )3 voxels, called an AMR
(Adaptive Multi Resolution) block. E.g., in a typical configuration
n =8 and D = 3, each AMR block covers (8-27)% = 32% voxels
(cf. Figure 1). For in-situ compression, these 32° voxels are as-
sumed to reside in the same compute process which is a reasonable
assumption in our experience.

The interlacing scheme is designed such that the lowest reso-
lution of one AMR block has the same number of voxels as one
ISABELA compression block (and thus can be stored as exactly
one compression block). Following the selection scheme shown in
Figure 3 (a) all levels of resolution can be stored in distinct com-
pression blocks, so that voxels of one level can be (de)compressed
independently from voxels at other levels of resolution. In Figure
3, voxels of the same resolution are shown in the same gray value
with dark to light going from low to high resolution. Voxels belong-
ing to the same compression block are found by following several
Z-curves in parallel as shown in Figure 3 (»). Figure 3 (c) depicts
three compression blocks at different levels of resolution. In Fig-
ure 3 (d), voxels are reordered such that voxels of one compression
block are next to each other in order to be fed into the ISABELA
compression algorithm easily. The only overhead on top of plain in-
situ ISABELA compression is the division of the data set into AMR
blocks and the extraction of voxels into compression blocks accord-
ing to the levels of resolution. It is clearly visible that, following the
interlacing scheme, lower resolutions can be reconstructed by only
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Figure 3: Multiple levels of resolution extracted as subsets of voxels
of one AMR block in 2D. (a) Selection scheme, voxels of same color
correspond to same LOR, higher resolutions (lighter) contain lower
resolutions (darker). (b) Compression blocks are extracted by follow-
ing several Z-curves in parallel. (¢) Three compression blocks, each
at a different level of resolution. (d) Voxels are reordered to be fed
into ISABELA compression algorithm.

loading and decompressing a subset of all compression blocks.

4 REFINEMENT AND PROGRESSIVE LOADING

The compressed format shown in section 3 can directly be used to
generate lower resolutions of the data set during decompression by
loading required compression blocks and reordering voxels. In the
highest resolution one AMR block has (n-2P~1)3 voxels. Decreas-
ing the resolution halves the number of voxels in each dimension
but the grid occupies the same spatial region as shown in Figure 4

T
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Figure 4: Refining one AMR block with D=3 and n =2in 2D. (a) level
one, lowest resolution, 2 x 2 voxel, same size as one compression
block. (b) level two, 4 x 4 voxel, composed of level one and three
compression blocks. (c¢) level three, 8 x 8 voxel, composed of level
two and twelve compression blocks.

(b) (c)
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By storing the data according to our interlacing scheme, the data
can be loaded partially for visualization. This provides the user an
interactive tool for data exploration which can save time for e.g.
adjusting visualization parameters and setting viewpoints. Alterna-
tively data can be loaded depending on an error metric or progres-
sively until the full resolution is reached. Figures 5 and 6 show the
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Figure 5: Partially refining one AMR block with D =3 and n =8 at
level two in 2D. (a) one compression block (from level one) but no
further blocks from level two loaded, all voxels are duplicated from
level one. (b),(c)+(d) one, two, three compression blocks of level two
loaded respectively.
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Figure 6: Partially refined AMR block with D =3 and » = 8 at level
three in 2D. (a)-(c) 4 (i.e. all level 2, but no level 3 compression
blocks), 10, and all 16 compression blocks loaded.

views to the data for one level 2 and resp., level 3 AMR block being
refined partially.

Each LOR inside one AMR block is represented by one uniform
grid and so e.g. D = 3 levels of resolution in one AMR block cor-
respond to three uniform grids of size (n-2°)3, (n-21)3, (n-22)?
for level one to three respectively as already depicted in Figure 4
(a)-(c). In order to refine the AMR block partially, only a subset
of compression blocks of the next higher resolution are loaded. All
remaining voxels in the new LLOR are filled by duplicating the val-
ues of the parent voxel of the next lower resolution. This means
even if the AMR block only is partially refined and only a frac-
tion of the compressed data was used to generate it, all voxels are
filled with data values (although values are approximate). As com-
pression blocks comprise voxels of one LOR and due the interlac-
ing scheme based on Z-curves, decompression of one compression
block always results in voxels which are evenly distributed along
the AMR block (cf. Figure 3 (b)+(c)).

5 A NEwW METHOD FOR EXPLOITING TEMPORAL COHER-
ENCE

Compression in ISABELA has the lower bound on memory stated
in section 2 as storage requirements for the permutation and number

53



54

of B-spline coefficients induce start-up costs for the compression of
a data block that are independent from the data values being com-
pressed. To overcome this bound, in [7] temporal compression is
applied to benefit from the data’s continuous nature in the time di-
mension. Concretely, for each non-reference time step, the change
of positions of values inside the sorted sequence of a compression
block is encoded using differences w.r.t. the permutation of the last
reference time step. Due to the large degree of temporal coherence
in typical scientific data sets, differences are typical small. This
yields a lot of repetitive bit patterns which are amenable to z1ib
compression, improving the overall compression rate by ~ 2 —5%
[7].

Our approach to temporal coherence aims at totally getting rid
of the memory needed to store the permutation and B-spline in-
side compression blocks for non-reference time steps. In contrast
to difference encoding between permutations, our approach reuses
the same permutation and B-spline for several time steps. Only
the first time step of this sequence, the reference time step, con-
tains the permutation and the B-spline. Thus, the minimum bound
of the compression rate (without error correction) is lowered to
crr(N,M) = ct(N,M)/T where T is the length of the sequence
until the insertion of a new reference time step. E.g., for a block
size of 83 =512, 16 B-spline coefficients, and 7' = 3 the minimal
compression rate (for the unlikely case that no error correction is
necessary) decreases from 17.19% by 1/3 to 5.73% .

In a reference time step, the value sequence X of length N is
compressed using ISABELA as shown in Figure 2. This yields the
permutation Fy, the sorted sequence X and the B-spline Y; sampled
at N locations approximating the values in Xy. Moving on to the
next time steps, the permutation Py is reused to reorder the new
data values X; obtaining X;. For smooth data, the reordered data
values X; retain the approximate shape of the B-spline Y, although
the reordered sequences become increasingly noisy over time. For
data from high resolution simulations, the noise increases gradually
as shown in Figure 7.

(@) (b)

Figure 7: (a) in the reference time step, data values X, are sorted,
with their sort-order being represented by permutation Fy. (b),(c)+(d)
in the subsequent time steps, permutation P, is reused for reorder-
ing the new data values X; which gradually introduces noise in the
sequences.

Due to the increasing noise in the sort order, applying B-spline
regression in non-reference time steps would lead to inaccurate fits
of the data. Instead, we simply reuse the B-spline ¥ from the last
reference time step. In this way, no B-spline coefficients must be
stored for non-reference time steps. However, error correction can
be expected to require the more bits, the more noise is present in

the sequences.

For error correction in non-reference time steps, the noisy data
values are first snapped towards the B-spline ¥ by moving them
horizontally along the abscissa. Thus, the values get closer to the B-
spline Yy and the remaining error quantization can work efficiently.
The horizontal snapping is similar to the difference encoding be-
tween permutations. However, in our approach, the values are not
entirely sorted after they have been snapped to the B-spline. The
snapping process moves the values only as far as needed, until the
user-defined error bound is reached, which is illustrated in Figure
8.
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Figure 8: As first step of error correction, noisy data values are
snapped towards the B-spline Y, of the reference time step.

For purposes of the following explanation, without loss of gener-
ality, the reordered value sequence X; is assumed to only consist of
positive data values x. If the data value x = X;[j] is greater than the
corresponding value of the spline y = ¥y [/], the data value is moved
to the right, otherwise to the left. Concretely, if x > y, the snap-
ping procedure evaluates the spline with an increasing index offset
1,2,.... Snapping stops when y' = Yy[j + of fset] meets the user-
defined error bound or when y’ is the last spline value smaller than
x. Similarly, if x <y, the snapping procedure finds the spline index,
whose value y = Yy[j — of fset] is the first spline value that either
meets the error bound or is smaller than x. In some cases no spline
value y’ smaller than x exists. To handle this situation, the smallest
data value is stored inside the compression block and used as value
y' = Xin for error correction. The number of positions of fset the
value x is moved together with its sign is called A.

At the end of the snapping procedure there are snapping tuples
(x,A,,Y'), where ¥ < x, which are used to further correct the error
if necessary. The idea of the snapping mechanism is to minimize
the distance between the data value and the spline, thereby reducing
the amount of error correction bits necessary. However, in regions
where the B-spline has a very low gradient the snapping produces
very large steps and the snapping mechanism might not be benefi-
cial.

Therefore, the remaining error correction is tried without and
with snapping. Without snapping, quantization is accomplished
by k; = [(1 —y/x)/p) + 1/2] and the reconstruction by £; =
y-(1+k;-p) which follows from the definition of the relative
error |x —y|/|x| < p.! If |k| < |A| and re(x,%;) < p, snap-
ping is discarded, A is set to zero and the reconstructed value is
based on y. Otherwise, quantization is accomplished with snap-
ping by k» = [(1 —y/x)/p) + 1/2] and the reconstruction by
%2 =y2-(14+ky-p). The reconstructed value £, always meets the
maximum bound on the relative error, since y’ < x holds. At the

For other error definitions, e. g. absolute error, the quantization formu-
lae are easily adapted. In our implementation, we use a modified definition
of the relative error |x —y|/max(|x|,€) < p. The constant & restricts the
relative error from going towards infinity when x is close to zero.



end of the error correction step the correction tuple is either given
by (A=0,k;) or by (A # 0,k).

At the end of the procedure, correction tuples are compressed us-
ing z1iDb, as high-resolution simulations often exhibit high tempo-
ral coherence, yielding small numbers (A, k) with many repetitive
bit patterns. In case the size of the compressed correction tuples
exceeds the memory needed for a new permutation and B-spline
coefficients, the algorithm falls back to plain ISABELA, picking
the approach that yields better compression.

6 RESULTS

For evaluation of the AMR and temporal compression approaches,
we applied them to the forced isotropic turbulence data set from the
Johns Hopkins Turbulence Databases [8] and the turbulent com-
bustion simulation S3D Direct Numerical Solver data set [13]. As
the latter data set contains large border regions with zero-valued
cells for one of the attributes and time-dependent effects are less
pronounced during the initial time steps, we cropped the data set
to the interesting, non-trivially compressible center region and used
time steps from the second half of the simulation in our experi-
ments. Concretely, we cropped the combustion data set with scalar
attributes mix frac and vort to a 480 x 192 x 96 center region with
time steps 60 — 122 of the original data set. The isotropic data set
with vector velocity was cropped to a 64 x 64 x 64 center region,
using all 1024 time steps of the original data set.

Figure 9 provides a visual impression of low-resolution views
generated from compressed three-level AMR representations of the
data sets. From left to right, views generated from 1/64 (level
1), 1/8 (level 2), and the complete number (level 3} of voxels are
shown. We conclude that already low-resolution visualizations pro-
vide approximate views of the data sets that might be sufficient for
quick browsing during interactive analysis.

(@) (&) (€)

g

4

= h
- \ A
w 7

Figure 9: Decompressing data sets from different AMR levels: (a)
1/64, (b) 1/8 and (c) all voxels from original data set. Top row:
isotropic, velocity. Center row: combustion, mixfrac Bottom row:
combustion, vort.

The interlacing scheme for generation of AMR representations
samples voxels from high-resolution data sets evenly for coarse
levels of resolution. This, however, means that voxels used for
low-resolution views are more distant from each other and there-
fore enjoy less spatial coherence. Due to the reduced spatial coher-
ence between voxels in compression blocks, a negative impact on
compression rates can be expected. Figure 10 compares the com-
pression rates of data sets being compressed with only one level of
resolution (i.e. no AMR), two LOR, and three LOR. The Figure
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Figure 10: Costs of AMR in terms of compression rate. Compression
rate increases by 1-3% for three levels of resolution as compared to
data compression with only one level of resolution.

shows that compression rates increase moderately by 1-3% when a
three level AMR is used as compared to a flat data layout.

Figure 11 evaluates the performance of our temporal compres-
sion approach without simultaneous AMR generation. The algo-
rithm was run without and with fallback to plain [SABELA en-
abled, which allows the algorithm in non-reference time steps to
choose between error correction w.r.t. the last reference time step
and the generation of a new permutation and B-spline (see Sec-
tion 5). The data sets were compressed with different values of 7',
i.e. the insertion rate of reference time steps. Figure 11 (a) shows
the compression rate without fallback to plain ISABELA. It can be
seen that for all variables but vort the compression improves for
T =2...4. For larger T the gain in compression rate decays, since
the noise of reordered sequences gets too strong and the compres-
sion worsens. The variable vort doesn’t improve at all for p = 1%
and only improves slightly for 5%. Figure 11 (b) shows the com-
pression rate with fallback to plain ISABELA enabled. In compari-
son to the no-fallback case, the increase in the the compression rate
for larger values T is clearly reduced. Best compression results are
again obtained for smaller values of 7 (' =2 —4). For velocity and
mixfrac, improvements of the compression rate of ~ 2 —4% for
p =1% and ~ 5 — 6% for p = 5% can be observed. Compression
of the attribute vorr again benefits to a lesser extent from temporal
compression, which can be attributed to a strong fluctuation in data
values.

Figures 12 and 13 show the progress of the compression rate for
one compression block in a randomly chosen sequence of 10 time
steps for the isotropic and combustion data set respectively. Top and
bottom rows show the compression rate without and with AMR for
(a)p=1%and T =2and (b) p =5% and T = 3. It is clearly visible
that a new permutation and the B-spline are only stored in reference
time steps. Non-reference time steps usually contain snapping and
quantization information. Sometimes, e.g. visible in Figure 13 bot-
tom left, the amount of error correction bits in non-reference time
steps becomes too large, resulting in a fallback to plain ISABELA.

7 DiscussiON

Support for compression into an AMR data format allows for the
extraction of low resolution views and progressive loading of sci-
entific data sets. This facilitates interactive data exploration e.g.
when changing visualization parameters or viewpoints. Lower res-
olutions views to the data set are constructed by interlacing vox-
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Figure 11: Performance of temporal compression. Every T-th time
step (T =1...10) areference time step is inserted, 7 = 1 corresponds
to no temporal compression. Top: without fallback and Bottom: with
fallback to plain ISABELA.

els of the full resolution data set, similar to the Adam7 algorithm
used in progressive PNG. Compared to plain ISABELA, only min-
imal run-time overhead during compression is introduced. In order
to generate data at lower resolutions, only a fraction of the total
number of compression blocks have to be loaded, which decreases
bandwidth requirements during interactive exploration.

In order to exploit temporal coherence in time-dependent data
sets, we introduced a new scheme for temporal compression.
Whereas plain ISABELA stores sort-order information and B-
spline coefficients for each time step, our approach, instead, reuses
sort-orders and B-splines from previous reference compression
blocks. Although this introduces some noise in the sort orders at
non-reference time steps, the increased costs for error correction
are clearly outweighed by the costs saved for not storing a sort-
order and a B-spline at all for non-reference time steps. While the
difference encoding method for temporal compression from [7] ef-
fectively reconstructs the correct sort-order and B-spline at every
time step that may be very close approximations of the real data
values, our error correction scheme reduces the error only as much
as needed to guarantee the user-defined relative error. This too indi-
cates that our method requires less memory than difference encod-
ing for temporal compression.

While the interlacing scheme for construction of the AMR data
representation reduces the spatial coherence within the voxels of a
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Figure 12: AMR + temporal coherence with isotropic, velocity. Com-
pression rate for a sequence of time steps with (@) p = 1%, T =2
and (b) p =5%, T =3 and Top: without AMR and Bottom: with AMR
depth D =3.

Variable | AMR T=1 T=2|T=3|T=4
velocity no 209% | 17.1% | 17.0% | 17.4%
velocity yes 23.5% | 19.0% | 18.6% | 18.8%
mixfrac no 182% | 154% | 15.1% | 15.0%
mixfrac yes 19.0% | 17.3% | 17.5% | 17.8%

vort no 19.6% | 19.4% | 19.7% | 20.0%

vort yes 21.8% | 22.0% | 22.5% | 23.0%

Table 2: Compression rates for variables velocity, mixfrac and vort,
relative error p = 1%, showing impact of AMR (D = 3) and temporal
compression (T = 1: every time step is a reference time step, i.e. no
temporal compression, T = 2: every 2nd time step is a reference time
step, etc.).

compression block and thus has a negative effect on the compres-
sion rate, temporal coherence improves the compression rate. Table
2 compares the costs incurred by AMR and saved by temporal com-
pression. It shows (again), that AMR introduces a penalty 1 —3% in
compression rate, which can however be compensated through tem-
poral compression. We conclude that the introduction of an AMR
scheme has only minor negative effects on the compression rate
which are far outweighed by its positive effects on interactive data
exploration.

For sake of completeness, we further applied our compression
method to the complete, uncropped combustion data set (Table
3). As expected, due to the large border regions with zero-valued
mixfrac-attributes, the compression rate significantly improves for
that attribute to 11.6% without and 14.1% with AMR. For the vort
attribute, which has fluctuating values also in the border regions,
the compression rate is similar to the compression rate in the center
region.

Both introduced extensions to ISABELA, ie. the multi-
resolution support and the temporal compression scheme were de-
signed with the goal of keeping ISABELA’s in-situ compression
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Figure 13: AMR + temporal compression with combustion, mixfrac.
Compression rate for a sequence of time steps with (a) p = 1%, T =2
and (b) p =5%, T =3 and Top: without AMR and Botton: with AMR
depth D =3.

Variable | AMR || T=1 | T=2 | T=3 | T=4
mixfrac no 189% | 13.6% | 12.2% | 11.6%
mixfrac yes 21.4% | 16.0% | 14.6% | 14.1%
vort no 19.6% | 19.5% | 19.8% | 19.9%
vort yes 22.8% | 22.7% | 23.0% | 23.2%

Table 3: Compression rates for the complete combustion data set,
480 x 720 x 120 voxel, 122 time steps, with relative error bound p = 1%,
AMR depth D = 3, and every T-th time step as reference time step.

capabilities intact. Our AMR blocks have a typical size of 323 vox-
els, which can be expected to fit in the same compute process in
HPC environments. Similarly, our temporal compression method
requires only data from one reference time step in addition to the
current time step in main memory. Moreover, data from the refer-
ence time steps is limited to permutation and B-spline information,
which amount to ~ 17% of the full time step in typical configu-
rations. These properties ensure the locality of the compression
method.

As noted in [7], ISABELA introduces only a negligible overhead
on simulations in terms of runtime. Furthermore, as compression
blocks can be processed independently from each other, ISABELA
is highly amenable to parallelization both during compression and
decompression. In our own experiments, we measured the time
for loading (read + decompress) the compressed subset of isotropic
data set, consisting of 64> voxels and 1024 time steps. The dataset
was compressed with AMR depth D = 3 and temporal compression
setting 7' = 3, yielding a compressed data set of 1.42 GB. Experi-
ments were conducted on a standard desktop workstation?. Figure
14 shows the loading times for all 1024 time steps of the full reso-
lution data set where 1...6 threads were used. For example, with a

’Intel Core i7 980 @ 3.33 GHz CPU with six physical cores (twelve
virtual threads through Intel Hyper-Threading), SATA 1TB hard disk
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Figure 14: Total loading times for 1024 compressed time steps of
the 643 isotropic data set, for different numbers of threads used for
decompression.

serial implementation (1 thread), loading took 29.9 seconds, while
the use of 6 threads reduced the loading time to 5.4 seconds, i.e.
about 1/6. These results confirm the excellent scalability of IS-
ABELA decompression in the number of threads/compute cores.
Average loading times for a single time step are thus only ~ 5.3 ms
when six threads are used. Similarly, loading all time steps at the
lowest resolution, i.e. 1/64 of the data, takes about 85 ms with 6
threads.

Figure 15: Compressed AMR data set loaded into Paraview via a
custom reader: high resolution in front, mid resolution in center, low
resolution in back.

Finally, our multi-resolution compression is interoperable with
the Adaptive Multi Resolution (AMR) format of the ParaView/VTK
toolkit [14] which follows the AMR scheme described in [2]. The
VTK AMR format can be built up either in main memory during
decompression or by explicit file conversion. This enables data im-
port into ParaView (Figure 15) and other analysis tools that support
the AMR format of VTK. Figure 16 shows the isotropic data set at
different levels of resolution in the XSITE-CAVE, a 50 megapixel
Virtual Reality display. Fast loading times, as possible with IS-
ABELA compression, are particularly important in immersive en-
vironments. Future work will address issues of controlling AMR
resolution levels in immersive settings, both interactively and auto-
matically.
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Figure 16: The isotropic data set at different LOR in a CAVE. From left to right, the resolutions of the plane plot and iso-surface are increasing.

8 CONCLUSION

We extended the ISABELA method for in-situ compression of sci-
entific data sets with an interlacing data layout supporting direct
adaptive multi-resolution (AMR) output and with a new approach
for temporal compression. While the latter aims at enhancing the
compression rate during the simulation phase, the former aims to
support interactive data exploration during the analysis phase.

The AMR data output is based on subdividing the full data set
into AMR blocks, which can be (de)compressed independently at
multiple levels of resolution by following an interlacing scheme.
The interlacing approach also supports progressive loading as lower
resolution data are part of higher resolution representations. The
interlacing scheme is in principle independent of ISABELA and
can be applied to other in-situ compression algorithms, which is a
topic for future work.

The main idea behind our method for temporal compression is
to defer sorting and B-spline regression by only applying it every
T-th time step in order to save memory in non-reference time steps.
To handle the increasing noise in sort-orders for non-reference time
steps, a new error correction scheme was introduced.

Both ISABELA extensions, AMR and the temporal compression
scheme, support in-situ compression of scientific data in HPC envi-
ronments. The in-situ compressed multi-resolution data can be con-
verted straightforwardly into the Adaptive Multi Resolution (AMR)
format of the ParaView/VTK toolkit.
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