
“I do research on New Interfaces for Musical Expression, so I study audiovisual perception, action and
feedback in the context of interactive, musical systems. I work on large-scale interactive, distributed audiovisual
systems like the AlloSphere. Along the way, I explain things to myself, my colaborators and my students. Part
of that is making data graphics.” — Karl Yerkes, 2016-01-28

Here’s a summary of what I want to leave you with today…

1. Read Edward Tufte on Data Visualization.
2. To do good data visualization you have to establish a deep understanding of the data.
3. Start with data analysis: make 2d graphs of the data to learn the truth about it.
4. Write questions in English and then try to write the answer as a MySQL query. Repeat.
5. You can and should add tables to the SPLDB. Give your queries to George and Rodger, so they can make

new tables out of them.
6. Do frequency analysis (FFT) of checkouts as a time series.
7. Use x_splOrgWebScraping . It contains “external keys” (e.g. ISBN) that can be used to tie SPL data

to other datasets.
8. Avoid REGEX() at all cost! Use the keyword table instead. It’ll be 2 or 3 or orders of magnitude faster.

What I left out of this document…

In my talk I went over all the x_* tables in the spl3 database. A treatment of those tables is
available upon request.
In my talk I designed and executed several queries on the fly using JOIN . Only a couple of those are
found in this document. More are available upon request.

My aesthetic and conceptual framework for data visualization starts and ends with Edward Tufte. Read The
Visual Display of Quantitative Information by Edward Tufte for an introduction to the feild. Tufte introduces a
couple important ideas that I’ll quote here:

“Maximize the Data-ink ratio” (i.e., Show the data)

Data-ink ratio = data-ink / total ink used to print the graphic

Talk on the SPLDB

Edward Tufte

Data-ink

http://www.amazon.com/The-Visual-Display-Quantitative-Information/dp/0961392142

Data-ink ratio = proportion of the graphic’s ink devoted to the non-redundant display of data-information

Data-ink ratio = 1.0 - the proportion of a graphic that can be erased without loss of information

1. The representation of numbers, as physically measured on the surface of the graph itself, should be
directly proportional to the numerical quantities represented

2. Clear, detailed and thorough labeling should be used to defeat graphical distortion and ambiguity. Write
out explanations of the data on the graph itself. Label important events in the data.

3. Show data variation, not design variation.
4. In time-series displays of money, deflated and standardized units of monetary measurement are nearly

always better than nominal units.
5. The number of information carrying (variable) dimensions depicted should not exceed the number of

dimensions in the data. Graphics must not quote data out of context.

These ideas guide my thoughts on the matter: Design only in service to the data—Design should never take
center stage in Data Visualization.

The data that you use in your projects goes through many stages. In order to tell the truth with the data, you
must understand its provenance.

Humans interact with items from the library

The library makes a record in a database called a “Library Information System” (or LIS) each time a person
takes an item (check out). Each time a person returns and item, another separate record is made in the LIS.
(You will see many check in events map to the same check out event because the SLP LIS uses check in
events to represent library-internal processes like holds and transfers.)

The SPL LIS keeps track of the current state of the library (i.e. which items are present or absent and who has
them), but it is designed to forget (see privacy notice and confidentiality of borrower records) who and when
after some period.

SPL’s Library Information System

We do not have direct access to the SPL LIS. Each hour, a special computer at the SPL runs two SQL queries
to creates two XML files. These queries record data on all check out and in events that occured in the last hour.

These files are a “snapshot” of the current state of the SPL LIS for a given hour—In this way, we capture

Graphical Integrity

The Datapath: Provenance and Process

http://www.spl.org/privacy/the-seattle-public-library-website-privacy-notice
http://www.spl.org/about-the-library/library-use-policies/confidentiality-of-borrower-records

changes in the state of the SPL LIS. This XML is saved in a place only we have access to.

XML on SPL server

Hourly, we copy the XML to our server here at MAT.

XML on MAT server

The XML is about 200GB which is too much to handle. We have to translate the data into something smaller
and easier to work with. So, annually, we process the XML to build a MySQL database. We’re working on
rebuilding daily or hourly, but for now it’s annual.

MySQL database for MAT259

Building the MySQL SPL database was (and is) not trivial. A lot of work went into understanding the data and
design the structure of the database. Part of this process is database normalization.

MAT 259 students like you form questions about the data and write answers in the form of MySQL queries.
Then you execute the queries and use the result in your visualizations.

MAT259 visualization projects

There are several ways to classify MAT 259 visualizations. You can think 1d, 2d, and 3d or interactive versus
“artful”. The way I like to split them is internal versus external to the SPL itself. I tried to make all my
visualizations about the library itself—What are it’s internal processes? Where is the noise in the data?

itemNumber and bibNumber are auto-incrementing database keys in the SPL LIS. Whenever an item is
added to the library, the item is asigned a new itemNumber by adding 1 to the last, largest known
itemNumber (same with bibNumber for brand new titles). We can analyse these keys to get information

about that system. In particular, we can estimate the rate of acquisition of new materials by determining the
slope of the plot of check out time versus itemNumber (or bibNumber). We can estimate when big
events happened by investigating the gaps in the data on this plot.

Question: What proportion of items have never been checked out? (i.e., Which are the loneliest items?)

Because itemNumber is an auto-incrementing key at the SPL LIS, we only see certain keys (the ones that
get checked out) and not others (the ones that never get checked out) in our database. We can estimate the
percentage of “lonely” items like this:

itemNumber and bibNumber

https://en.wikipedia.org/wiki/Database_normalization
http://karlyerkes.com/mat259

select (1.0 - (select count(*) from itemType) / (select max(itemNumber) from itemType
)) * 100 as '% lonely'

About 28% of items are lonely—We haven’t seen them checked out in 10 years of data. But, there’s a problem
with our calculation. It assumes that itemNumber was never incremented by more than 1. Sometimes
database administrators increment by large numbers when databases are rebuilt or moved. A more in depth
analysis of itemNumber is required and that analysis is left as an exercise for the reader.

JOIN is a fundamental operation for SQL. It’s how you merge tables together. While there are many different
kinds of join, 99% of the time we mean INNER JOIN which merges tables together on a common column.
Here’s an example that joins two tables on the itemType column:

SELECT
 formatDetail,count(*) as itemCount
FROM
 itemType INNER JOIN itemTypeDecode
WHERE
 itemType.itemType = itemTypeDecode.itemType
GROUP BY
 formatDetail
ORDER BY
 itemCount DESC

The query above joins two tables: itemType and itemTypeDecode. INNER JOIN is so common that there is
a shorthand syntax for it. Instead of typing INNER JOIN , you can just use a , (comma). So, here’s the
same query:

SELECT
 formatDetail,count(*) as itemCount
FROM
 itemType,itemTypeDecode
WHERE
 itemType.itemType = itemTypeDecode.itemType
GROUP BY
 formatDetail
ORDER BY
 itemCount DESC

Here’s a more complicated and userful example of join:

Use JOIN

https://en.wikipedia.org/wiki/Join_%28SQL%29
http://www.sql-join.com/

SELECT
 formatDetail,
 SUM(CASE WHEN YEAR(checkOut) = 2006 THEN 1 ELSE 0 END) AS '2006',
 SUM(CASE WHEN YEAR(checkOut) = 2007 THEN 1 ELSE 0 END) AS '2007',
 SUM(CASE WHEN YEAR(checkOut) = 2008 THEN 1 ELSE 0 END) AS '2008',
 SUM(CASE WHEN YEAR(checkOut) = 2009 THEN 1 ELSE 0 END) AS '2009',
 SUM(CASE WHEN YEAR(checkOut) = 2010 THEN 1 ELSE 0 END) AS '2010',
 SUM(CASE WHEN YEAR(checkOut) = 2011 THEN 1 ELSE 0 END) AS '2011',
 SUM(CASE WHEN YEAR(checkOut) = 2012 THEN 1 ELSE 0 END) AS '2012',
 SUM(CASE WHEN YEAR(checkOut) = 2013 THEN 1 ELSE 0 END) AS '2013',
 SUM(CASE WHEN YEAR(checkOut) = 2014 THEN 1 ELSE 0 END) AS '2014',
 SUM(CASE WHEN YEAR(checkOut) = 2015 THEN 1 ELSE 0 END) AS '2015'
FROM
 itemType,itemTypeDecode,transactions
WHERE
 itemType.itemNumber = transactions.itemNumber
AND
 itemType.itemType = itemTypeDecode.itemType
GROUP BY
 formatDetail
ORDER BY
 SUM(CASE WHEN (YEAR(checkOut) >= 2006 OR YEAR(checkOut) <= 2015) THEN 1 ELSE
0 END) DESC

This query joins three tables (i.e., itemType, itemTypeDecode, and transactions) on two columns (i.e.,
itemNumber and itemType).

SELECT
 title
FROM
 title
WHERE
 title REGEXP 'bowie'

The query above uses REGEX to search through the title table. Using REGEX is slow. The query above
took about 2 seconds to complete (just to search titles, not subjects or call numbers). In most cases we can do
better. The keyword table contains all the words from the subject , title , and callNumber

tables so keyword lookups can be made extremely fast. Here’s a query that uses the keyword table to
search for titles that match ‘bowie’:

Don’t use REGEX —Use the keyword table instead

SELECT
 title
FROM
 keyword,title
WHERE
 keyword.bibNumber = title.bibNumber
AND
 keyword = 'bowie'

The query above completes in 18 milliseconds and does the equivalent of searching the subject ,
title , and callNumber tables for the string ‘bowie’. Note that using JOIN is required when you use

the keyword table.

Built into MySQL is a way of analysing MySQL queries. Put the keyword EXPLAIN before any valid query to
get an analysis of the query. With some reading and practice, you can tell whether a given query will take
forever or run quickly. Read MySQL EXPLAIN Explained and/or Explaination of EXPLAIN. There is also plain
old documentation.

Consider the EXPLAIN output for the two queries that we just looked at…

Analyse your queries with EXPLAIN

http://www.noelherrick.com/blog/mysql-explain-explained
http://www.slideshare.net/phpcodemonkey/mysql-explain-explained
http://dev.mysql.com/doc/refman/5.5/en/explain-output.html

EXPLAIN SELECT
 title
FROM
 title
WHERE
 title REGEXP 'bowie'

+----+-------------+-------+-------+---------------+-------+---------+------+--------
+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows
| Extra |
+----+-------------+-------+-------+---------------+-------+---------+------+--------
+--------------------------+
| 1 | SIMPLE | title | index | NULL | title | 768 | NULL | 880027
| Using where; Using index |
+----+-------------+-------+-------+---------------+-------+---------+------+--------
+--------------------------+

EXPLAIN SELECT
 title
FROM
 keyword,title
WHERE
 keyword.bibNumber = title.bibNumber
AND
 keyword = 'bowie'

+----+-------------+---------+------+-------------------------------------+----------
-+---------+-----------------------+------+-------------+
| id | select_type | table | type | possible_keys | key
 | key_len | ref | rows | Extra |
+----+-------------+---------+------+-------------------------------------+----------
-+---------+-----------------------+------+-------------+
| 1 | SIMPLE | keyword | ref | bibNumber_keyword,bibNumber,keyword | keyword
 | 767 | const | 32 | Using where |
| 1 | SIMPLE | title | ref | bibNumber_title,bibNumber | bibNumber
 | 4 | spl.keyword.bibNumber | 1 | Using where |
+----+-------------+---------+------+-------------------------------------+----------
-+---------+-----------------------+------+-------------+

One important value to look at is the rows column. The more rows that must be searched, the slower the
query will be.

I used Frequent Pattern Mining to look for interesting patterns within the SPL. This approach associates items
when they are checked out in the same minute and looks for recurring associations. This lead to the positive,
but mundane insight that items that are part of a set tend to be checked out together. So, all the Lemony
Snicket books get checked out together. If someone checks out a Star Wars DVD, it’s highly probable that
they’ll checkout IV, V, and VI together.

To maximize the value of the SPL project for students, creators, and the Seattle Public Library community, the
best platform for MAT 259 projects is the World Wide Web. Many projects use Processing which is a solid tool
but it’s www features are pathetic compared to newer, more www-savvy tools.

p5.js, d3.js, node.js, and NoSQL are the way forward. I envision a “stack” for MAT 259 built around these tools.

Frequency Pattern Mining

Looking forward…

http://charuaggarwal.net/freqbook.pdf
https://processing.org/
http://p5js.org/
http://d3js.org/
https://nodejs.org/en
https://www.npmjs.com/package/nosql

