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ABSTRACT

CHON: From physical simulation to musical gesture

by

Rodney DuPlessis

Physical metaphor provides a visceral and universal logical framework for 

composing musical gestures. Physical simulations can aid the composer to create 

musical gestures based in complex physical metaphors. CHON (Coupled Harmonic 

Oscillator Network) is a cross-platform application for simulating mass-spring 

networks and sonifying the motion of individual particles. CHON is an interactive 

instrument that can provide complex, yet tangible and physically based, control data 

for synthesis, sound processing, and musical score generation. This system builds on 

the idea of the traditional LFO by coupling the movement of multiple control signals 

using physical principles.
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Chapter 1

Introduction

1.1 Overview

Coupled Harmonic Oscillator Network (CHON) is a real-time, interactive application
for generating sonic gestures and textures using a simulation of a physical dynamical
system as a musical interface. The physical system is a network of particles connected by
a spring-like force. The user sets the system into motion by displacing a particle, which
causes a chain reaction governed by Newtonian mechanics. The user can intervene in the
evolving system, dragging and moving particles at will. The system generates complex
yet tangible control data that can be used to drive parameters for sound synthesis and
other purposes.

CHON is part of a larger interest of mine in using physical metaphor in music. I have
previously used intuitive and algorithmic methods to express physical metaphor in my
music. CHON represents a hybrid approach, allowing intuitive interaction with the
algorithmically generated simulation in real-time. The musical gestures that CHON can
create are chaotic, but they seem nonetheless intelligible because of their connection to
the physical world.

The coupled harmonic oscillator is a fundamental model in physics that has applications in
many areas of research. It is an extension of the simple harmonic oscillator, which can be
represented by a mass on a spring. The simple harmonic oscillator moves sinusoidally, but
when coupled via a spring-like force to another harmonic oscillator (or many), complex
superpositions of sinusoidal waves emerge. CHON goes further, allowing the masses in
the coupled harmonic oscillator network to move in 3 dimensions and to be arranged in a
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2-dimensional grid.

The application is written in C++ and uses the Allolib framework extensively. It is open
source1, under a GPLv3 license, and runs on Linux, MacOS, and Windows. It uses an
explicit numerical method to solve the discretized equations of motion of the particles.

The visual interface is a 3D rendering of the particle system. The user interacts directly
with the particles in the visual simulation using a computer mouse. A 2D graph can
also be displayed which visualizes the displacement of each particle along a given axis.
CHON has an internal synthesis engine that allows the user to sonify the movement of the
particles. The instrument also generates a stream of OSC data from each particle, making
it a versatile tool for generating up to 100 control signals that are linked by physical laws.

I have used CHON to generate sounds using the internal sound engine as well as using the
OSC data it broadcasts to control external synthesis and notation software. For example,
I used CHON to write a score for two pianists. The piece, Pandæmonium, was premiered
by HOCKET in August 2020.

I am still exploring the musical possibilities afforded by CHON, and the possibilities of
extending and improving CHON. I will discuss some of these future directions at the end
of this paper.

1.2 Related work

Physical modeling is a massive interdisciplinary field of research spanning industrial,
scientific, and artistic applications. In music, the vast majority of physical modeling
is used for re-synthesizing believable facsimiles of real instruments[1][2]. The same
technology that allows these recreations has also been applied to create fantastical virtual
instruments of unreal proportions or configurations[3][4]. The first example of physical
modeling synthesis of instruments was demonstrated in 1971 by Hiller and Ruiz[5]. Today,
physical modeling synthesis, driven by increasingly powerful computers, can achieve very
convincing results. On the other hand, physical modeling interfaces often suffer from
problems of control and complexity; the high number of parameters in a given simulation
may be overwhelming for performance purposes[6, p. 288][7].

There are many approaches to the design of systems for physical modeling synthesis
including modal synthesis, waveguide schemes, source-filter models, and mass-spring

1The source code can be accessed at https://github.com/rodneydup/CHON

2

https://github.com/rodneydup/CHON


methods[8]. CHON falls into the realm of mass-spring methods. Mass-spring methods
use Newtonian mechanics to simulate the dynamics of particles with mass and inertia
connected by spring-like forces[6, p. 271]. This is the type of simulation that drives
CHON.

The goal of most mass-spring applications is to simulate a physical body that can
be described as a network of coupled masses. This, like every physical model, is a
simplification of reality. Nevertheless, many types of physical bodies fit well into this
model. The mass-spring model does a good job at representing the way that waves
propagate through solid media such as strings and vibrating surfaces (like drums). The
mass-spring model suffers from scalability issues, however. The cost of computation
can increase quickly as more particles are used in a given simulation. Considering that
physical modeling synthesis often needs to run at audio rate (updating 44,100 times per
second) and that higher particle density generally results in a more realistic simulation,
this is a difficult problem.

The focus of most mass-spring simulations is on the object that the system simulates. In
other words, the aim is that the gestalt of the movements of the particles generates sound
that resembles the sound of the object being modeled. This is where CHON differs from
other mass-spring applications (and indeed the majority of physical modeling synthesis
projects in general). Rather than create a sound object from an amalgam of particle
interactions, CHON was designed with the goal of exploring interconnected particles as
sound objects unto themselves. I am also interested in larger-scale gestures, phrases, and
forms that can arise from the overlapping undulations of the coupled particles, but the
foundation of CHON remains the individual sound-particles themselves.

Claude Cadoz and others at ACROE (Association pour la Création et la Recherche sur les
Outils d’Expression) in Grenoble pioneered the use of the mass-spring model in physical
modeling synthesis and musical creation. They generalized mass-spring models into what
they call a mass-interaction scheme, where, in addition to more standard mass-spring
situations, particles may be lumped into strange configurations and the forces connecting
them may be non-linear[9]. ACROE’s CORDIS-ANIMA system was one of the first
digital synthesis applications for physical modeling, paving the way for future research.
CORDIS-ANIMA is a sophisticated and technical modular system for simulation and
sonification/visualization of mass-interaction models[9]. In CORDIS-ANIMA, the user
can specify many physical parameters of each particle, including how and which particles
are coupled to each other, their initial position and velocity, their mass, whether they
are fixed or can move. Once this is configured, the user and then set the simulation into
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motion and they can watch and hear the results.

After decades of development, CORDIS-ANIMA is a massive software and one can pay
to attend courses at ACROE to use and learn it. CHON is lean by comparison, but a
user can download it and set it into motion and sound in less than two minutes. With a
little more time, one can connect CHON to other audio software or hardware and begin
exploring its full potential. My focus with CHON is to make it approachable. Even as I
continue to add refinements and features, I will make sure the default use case of CHON
is intuitive and immediately expressive.

Beyond sound synthesis, some researchers have recognized the potential for physical
modeling in computer-assisted composition[10][11] [12]. Claude Cadoz wrote a piece called
pico..Tera using the CORDIS-ANIMA and GENESIS systems[11]. In documenting the
work, he spoke of the “instrument” and “instrumentalists” that were programmed in the
system. Essentially there are virtual actors that excite an instrument in the CORDIS-
ANIMA simulation. His description reveals an intricate sequence of events programmed
in the system like a Rube Goldberg machine made from thousands of particles and dozens
of larger-scale structures. Indeed, his stated purpose was to demonstrate the possibility of
enacting an entire piece of music in a physically modeled simulation without intervention
during the execution and without post-treatment.

Like Cadoz, I am interested in the possibilities of physical modeling beyond the synthesis of
individual sounds, extending physical model methods to computer-aided composition[13].
CHON can be set into motion to create an infinite cascade of sound events. Certain
configurations can produce quite complex results, but CHON surely can not hope to
approach the diversity of programmed situations that Cadoz achieved with CORDIS-
ANIMA in pico..Tera. CHON is a specialized case of highly interactive coupled mass
systems in string-like and surface-like arrangements. Unlike the scripted system that
defines pico..Tera, CHON is meant to be tampered with, interrupted, performed on,
broken, energized, and generally manipulated by the user. Thus CHON benefits from the
physical plausibility of connected sound events that Cadoz’ methods provide, while also
allowing for the rich and impulsive dimension of human intervention.

CHON is free, open-source, and easy to find and download on GitHub. This accessibility
is at the heart of all of my projects. Unfortunately, I could not find any way to hear
pico..Tera. Nor could I find any way to buy or download CORDIS-ANIMA. There
are some projects that implement aspects of CORDIS-ANIMA in other platforms and
programming languages. Mark Pearson’s Tao system[14] and Cyrille Henry’s PMPD pure
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data objects[15] are some early examples. Tao uses a scripting language as its interface
and is non-real-time. PMPD allows for some real-time control and being in the pure
data environment gives it significant flexibility. Mi-creative, an initiative founded by
Jérôme Villeneuve and James Leonard, has some nice open-source tools inspired CORDIS-
ANIMA[16]. These projects are flexible and powerful, but they all require a certain level
of programming expertise to use. By comparison, CHON is more approachable for the
non-specialist computer musician.
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Chapter 2

Physical metaphor in music

The primary goal of CHON is to generate musical gestures based on the dynamics of a
particular physical system – a coupled oscillator network. This is part of my broader
investigation into physical metaphors in music. In this section I will discuss why and how
I use physics to shape my music. I will then explain how this motivated the creation of
CHON.

I am interested in physics and physical metaphor in composition because it can provide a
visceral and universal logical framework for music. I will parse this statement in reverse
order starting with the idea of a logical framework.

2.1 Logical Framework

I use the term logical framework to describe a set of rules that more or less constrain the
possible states and transformations of a system. A logical framework is also a mental
anchor that allows one to make inferences and predictions about the behavior of the system.
The system in question is music and the logical framework constrains the structure and
progression of music. This is closely related to what Fred Lerdahl calls musical grammar
[17] and is comprised of a network of overlapping causal logic [18].

Composers apply logical frameworks to shape music at every level, to cull the infinite
possibilities of arranging sound in time. Listeners employ logical frameworks as they
discover and parse patterns and relations in music. The degree to which the frameworks
of both parties align can vary greatly. These frameworks can also be active or passive,
conscious or unconscious.
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A logical framework suggests a set of causes and effects, which create expectations. A
dominant chord in tonal music creates tension which seems to cause the release of tension
via a tonic chord just like knocking a ball off of a table causes it to fall. A build-up in
Electronic Dance Music seems to inevitably lead to a bass-drop the way over-inflating a
balloon causes it to pop. These causal networks are illusory, but nonetheless crucial to
musical reasoning. As Curtis Roads [19, p. 328] points out:

An impression of causality implies predictability. If listeners are not able to
correlate sonic events with any logic, the piece is an inscrutable cipher.

Music must rely on a logical framework to form a coherent narrative and carry meaning.
The “meaning” I am referring to here is not necessarily tied to programmatic or referential
elements. Narrative meaning can arise from the relationship between elements, regardless
of the identities of the elements themselves. Byron Almén [20, p. 13] suggests that the
abstract nature of musical narrative is one of its strengths (relative to literary or dramatic
narrative, for example), allowing it to express a narrative without being bound to specific
characters and settings.

A logical framework can emerge from preexisting stylistic conventions, extra-musical
referential inheritance, and algorithmic design, among other things. A framework is often
formed from a mixture of sources. This creates a tangled web of rules and relationships
that allows room for multiple potentialities as they come into conflict. Conflicting rules
create crisis, which opens up multiple possibilities for resolution. This in turn drives the
narrative forward. This is an important ingredient for creating a compelling narrative as
Almén [20, p. 52] notes:

The psychologically compelling nature of the narrative arises from this perspec-
tive of progressive temporality: one cannot know the outcome of a narrative
conflict in advance. There is always more than one possible resolution of a
crisis, and to reduce out this uncertainty is to remove the essence of narrative.

Some logical frameworks are hopelessly complex and esoteric, such that the listener will
almost certainly not be able to follow the logic of the piece’s structure. On the other
hand, a logical framework can be so simple that there is no uncertainty as to where the
piece will go next. Complete chaos and complete predictability will bore the listener. It
is up to the composer to craft a work that balances the two.

The composer’s logical framework can be influenced by overt compositional strategies as
well as more implicit biases. Some of these factors may be more or less unconscious, but
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the most effective composers are self-aware enough to balance them judiciously to shape
their music into a compelling narrative. It is not guaranteed that a listener will hear the
narrative or the structures that the composer intends. In fact, when one considers the
multitude of possible influences on a listener’s experience, from past experience to current
mood, it seems highly unlikely. I imagine the relationship of composer’s and listener’s
respective logical frameworks to be asymptotic: they can approach each other, but never
completely align. This disconnect between the composer’s intention and the listener’s
experience is part of the magic of music. Nevertheless, the power of shared experience
is strong, and composers can utilize that to present persuasive musical proposals to the
listener.

2.2 Universal

In some music, there is a logical framework which has been agreed upon (explicitly or
implicitly) by composers and listeners. This is a cultural logic, it is not universal or innate
to human experience. At one time, the cultural framework of tonal music provided a
rapport between Western composers and listeners, which in turn allowed composers to
play with expectations to convey musical narratives. Because it had been decided that
a dominant chord should resolve to the tonic, it meant something when the dominant
chord led to something else. It has been some time now since composers in the Western
tradition began to radically break from this cultural agreement and explore other logical
frameworks.

Musique concrète, initiated by Pierre Schaeffer in the late 1940s, was perhaps the furthest
removed from traditional Western Classical music. Whereas some new directions changed
the rules of dealing with musical material (melody, harmony, rhythm), musique concrète
expanded the very category of what could be considered musical material. Western
Classical music had no framework at all for dealing with recorded sounds such as paper
ripping or doors creaking. This medium provided a great deal of freedom for the composer
to explore the possibilities of sound organization. There were no rules of pitch or harmony,
no rhythmic pulse in most cases, no restriction on the palette of sounds available to the
composer.

This freedom came at a price: listeners and composers could no longer benefit from the
established context of tonal music. The challenge now for composers was to write music
that drew from other frameworks or that could establish its own context. In the case of
musique concrète, the very sounds used were often recognizable and so the context was
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provided by everyday soundscapes. Acousmatic music plays with that very recognizability
to create meaning. This is only one example. Hundreds of genres, styles, and practices
emerged in the 20th century, each with their own logic.

In my own early work, I found myself inventing a new logic for almost every piece. Some
were mathematical, others more vague. With these works, I needed to establish the
grammar of the piece within the piece itself, or else rely on extensive program notes to
explain the context of the piece (a sure way to alienate listeners). Establishing the logic
of a piece within itself typically involves a great deal of repetition and consistency. Like
Pavlov’s bell, if a sound is consistently followed by another sound, they will come to seem
related by some causal logic. This way, the process of the piece is made clear.

This approach of establishing new logic for each piece is way to bridge the gap between
composer intention and listener experience, but it’s an inefficient use of time and listeners
only have so much patience. I wanted to find a common ground, something universally
understood, to build the frameworks of my future pieces. I found this in physics and
physical metaphor. Each piece has its own idiosyncrasies and can add something unique
to this basis to build its logical framework, but physics provides the foundation.

Unlike cultural logical frameworks or invented systems, physical metaphor can be under-
stood by anyone because we are all physical beings. We all know intuitively that a ball
thrown into the air will fall back down, and that some objects can be moved if we push
on them. Our imagination allows us to make inferences based on this knowledge. If we
hear a loud crash outside, we understand that some massive objects probably collided.
We even do this unconsciously. If I hear a sound getting rapidly louder from behind me, I
will move out of the way reflexively because on some level I understand that something is
approaching at a high velocity and I can further infer that it will collide with me and
cause me harm if I do not move. This is not a cultural or idiosyncratic response. I suspect
every person in possession of their faculties would react the same way.

These are just two examples of how sound can trigger our knowledge of physical in-
teractions and even arouse images and narrative sequences in our imagination. Much
more complicated and interesting sonic interactions can be built-up from this basis, but
these basic examples illustrate not only the universality of physical logic, but also its
unconscious or semi-conscious nature.
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2.3 Visceral

All humans understand certain basic physical principles. Some of these physical principles
affect our behavior on a fundamental level. We learn about the physical principles of the
world as we grow up by observing and by doing. Research into mirror neurons has shown
that observation and performance may not be entirely distinct. If seeing or hearing some
kinds of events accesses deeper parts of our brains beyond our reasoning centers, then
that presents a fertile ground for musical communication.

Mirror neurons are neurons that fire similarly when one performs an action and when
observing that same action being performed [21]. It has been theorized that mirror
neurons play a part in empathy, learning new skills, and understanding others’ intentions
and actions. Much research has been done regarding mirror neurons in humans and
primates, mostly focused on visual stimuli [22]. However, it has also been shown that the
sound of some actions being performed can activate mirror neurons as well [23]. Recent
research has shown that mirror neurons also fire when listening to music, and that the
communication of emotion in music arises at least partially from empathically feeling the
motion of the music [24]. Music quite literally moves us.

Obviously, many kinds of music using varied logical frameworks can elicit this response.
Music has always had the ability to move us. But if we feel music with the same mirror
neurons that help us to understand the physical world, then it seems that music based on
physical metaphor could access this level of cognition more directly than others. Music
can take advantage of the fact that we all understand certain physical principles, and we
understand them viscerally.

Of course we do not all understand physics completely or physicists would not need
to attend university for years. Science communicators like to surprise audiences with
experiments that demonstrate lesser known or poorly understood physical laws. This limit
to our understanding provides a fertile ground for creating suspense, surprise, uncertainty,
and intrigue in using physical metaphor in music.

2.4 Physical Metaphor in Music

What do I mean by physical metaphor in music, exactly? Metaphorically speaking, one
can treat a sound as if it had physical properties such as mass, momentum, inertia,
internal energy, heat, entropy, gravity, and others. Physical metaphor involves shaping
the evolution of a sound, or a group of sounds, according to how real physical objects with
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these properties behave. For example, Newton’s first law of motion states that an object
at rest will remain at rest and an object in motion will remain in motion unless acted
upon by an external force. This is the law of inertia. If we follow this law with sounds,
then, for example, a sound at rest will remain at rest unless it is excited by some force,
which could be another sound entering the field and colliding with it. The momentum of a
sound and the metaphorical collision of sounds can take shape entirely in the imagination
of the composer, and this is a rich domain for creativity.

Edgard Varèse was one of the first composers to appreciate this potential well of musical
expression. He spoke of sound-masses, points of attraction and repulsion, and shifting
planes, employing physical language extensively to describe his vision of the future of
music [25]. Iannis Xenakis took up the mantle in the second half of the 20th century,
employing computers to help him realize physical metaphors based especially in statistical
mechanics [26]. Curtis Roads carried this approach into the 21st century, pioneering
granular synthesis as a means of composing with clouds of sound, which, in his own
compositions, evolve and interact in deeply physical ways [19].

So far my compositional approach to physical metaphor has been most fully realized in
De Rerum Natura, which I first completed in 2019 and revised in 2020.

The piece begins with a metallic sound crashing onto the soundfield, throwing up a flurry
of shrapnel that slowly settles onto a calm glassy surface. A new sound then swirls into
the scene and kicks up the dust again. Emerging from the debris, a fluttering sound
seems to strike a match that heats up another sound that builds up to an explosion. The
fallout of the explosion is swept away unexpectedly by another clattering sound which
sets up a domino effect leading to a door opening into a noisy soundscape. This is just
one interpretation, but it illustrates how every sound in the piece has the illusion of being
part of a physical chain of events.

In Coacervate (2020) for Violin and Electronics, different physical interactions are explored.
The piece takes place inside an imaginary test tube or beaker filled with various liquid
components. The sounds in this piece tend to float through the musical texture before
suddenly and sometimes violently coalescing into droplets. Other times the sound field
seems to get stirred up as a new component gets added into the mix. This all reflects the
chemical process which gave the piece it’s name.

While this kind of imagined field of interactions among sounds can be fruitful, and I will
continue to compose in this way, I also have a desire to express more complex physical
gestures in my music that require some computation. This is why I have created CHON.
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Chapter 3

Physics

CHON is built on the idea of generating musical material from a computer simulation of
a real physical system. The system in question is that of coupled harmonic oscillators.
A system of this kind is formed by connecting (coupling) two or more oscillating nodes
(harmonic oscillators) via a spring-like force such that they exert a force on one another.
The physics governing this system are that of classical mechanics. It can be completely
described by the simple laws of motion posited by Isaac Newton in 1687 [27], and by
Hooke’s Law [28].

I was inspired to create CHON when I saw two pendulums connected by springs oscillating
in such a way that the two pendulums appeared to be, in a sense, passing an oscillation
back and forth. see figure 3.1

Figure 3.1: Coupled Pendulum - the amplitude of one pendulum’s oscillation increases while
the other decreases. Then, the process reverses.

This was in fact a superposition of the two modes of oscillation of the system, but the
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appearance of an exchange of energy back and forth was what captivated me. I imagined
sounds forcing each other into activity and contrapuntal structures in which sounds,
instruments, and textures passed musical energy from one to another in a cascade of
antiphony. In order to experiment with this kind of musical structure, I began working
on CHON.

Before looking at coupled harmonic oscillator systems or networks, I will describe the
case of a simple harmonic oscillator. A simple harmonic oscillator can be most simply
represented by a mass or particle on a spring. There is a point of equilibrium for this mass
where it will remain unless it is perturbed. If the mass is moved away from equilibrium,
it will exert a force proportional to the displacement. If it is then released, it will move
back toward equilibrium, pass it, and continue to oscillate at a fixed sinusoidal frequency
(determined by the spring stiffness and the mass).

The behavior of springs (within elastic limits) is well described by Hooke’s Law. Hooke’s
law can be stated as: the restoring force of a spring is linearly proportional to to its
displacement. Mathematically:

F = −kx

Where k is a constant “stiffness” of the spring, and x is the displacement of the spring
away from equilibrium. If the spring is at equilibrium, then the spring will not move
unless acted upon by an external force. To stretch or compress the spring away from
equilibrium by x, one would need to exert a force equal to the product of k and x. The
restoring force at that point x will then be equal and opposite to this force. If the spring
is released, it will accelerate toward equilibrium. Furthermore, provided the spring is not
over-damped, the spring will be set into harmonic motion, meaning it’s displacement will
follow a sinusoidal curve. If the spring is not damped at all, this harmonic motion will
continue at the same amplitude indefinitely.

Newton’s laws of motion can also be useful in describing the simple harmonic oscillator,
and they come into play in the software implementation of CHON. These laws state:

1) A body’s velocity remains constant unless acted upon by an external force.
2) The force exerted on a body is the product of mass times acceleration.
3) A body will exert an equal and opposite force to any force exerted upon it.

These laws describe the vast majority of macroscopic objects that we are familiar with.
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Equilibrium
F = -kx

X

Figure 3.2: Simple Harmonic Oscillator - The restoring force is F = −kx. The motion is
sinusoidal.

Using these laws, one can predict and model many kinds of physical interactions between
objects.

The first law is sometimes referred to as the “law of inertia.” Aside from the way it is
stated above, another way of positing it is that an object at rest will stay at rest and
an object in motion will stay in motion. In a simple harmonic oscillator, the oscillating
particle will not move from equilibrium until it is displaced by an external force. Once it
is in motion, it will continue to be in motion unless a damping force is exerted on it.

The second law gives us the mathematical means to calculate important properties of an
object in motion. Stated mathematically, it is:

F = ma

This equation, when combined with Hooke’s law, can give us more information about
a harmonic oscillator, such as its acceleration (which is especially important in the
implementation of CHON). This can be shown by combining Hooke’s equation with
Newton’s:

F = ma = −kx

And re-arranging to find our desired property:

14



ma = −kx

a = −kx
m

The second law also allows us to model the mass-spring problem by incorporating a mass
term into the equation. We will continue to treat the mass of the spring itself as negligible.

The third law tells us that a body exerting a force on another body will experience a
force of equal magnitude and opposite direction. This gives us a shortcut to calculate the
forces of coupled harmonic oscillators in CHON, as I explain in chapter 4.

The frequency in Hz of the harmonic motion of a simple harmonic oscillator is determined
by the spring stiffness k and the mass of the object m. It is given by the formula:

f = 1
2π

√
k

m

So, the higher the spring tension, or the lower the mass, the faster the oscillation.
Conversely, lower spring tension or higher mass results in slower oscillations.

Up to this point, we have not accounted for damping forces that cause the energy of a
harmonic oscillator to dissipate over time. Damping forces come from several sources in
the real world including air resistance, friction, and gravity. We can approximate the
effects of these damping forces with a constant b. The damping effect is also a function of
the velocity of the object. This term can be introduced into our combined newton-hooke
equation above like so:

ma = −kx− bv

This new equation describes a damped harmonic oscillator. This can be thought of as a
simple harmonic oscillator that loses its energy over time. The oscillation of the particle
is now constrained by an envelope that decreases its amplitude over time.

If we add another particle to this system and affix both particles to a springs connected
to unmoving anchors, and also connect the particles to each other via a third spring, we
now have a basic coupled harmonic oscillator system. Now, each particle can experience
a force from the spring attached to the anchor as well as the spring attached to the other
particle. Each of these forces is a vector with a direction and magnitude. The addition of
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these vectors will give us the net force on the particle.

~Fnet = ~F1 + ~F2

Substituting for hooke’s law we get:

~Fnet = −kxanchor + kxparticle

Previously, the displacement from equilibrium x of the particle was determined relative to
a fixed anchor. Now, one of the anchors is in motion. With this, we now have to take into
account the displacement from equilibrium of both particles(x1 and x2), the difference of
which will determine our x.

xparticle = x2 − x1

And substituting into our previous equation:

~Fnet = −kxanchor + k(x2 − x1)

We can see that if the two particles move in sync with one another, there will be no force
exerted between them, as the difference between their displacements will come out to
zero.

Fnet = F1 + F2

k(x2 - x1) = F1

Equilibrium

x1 x2

Equilibrium

F2 = -kx2 

Figure 3.3: Coupled Harmonic Oscillator - The restoring force of each particle is a sum of two
forces ~F1 and ~F2.

With this simple two-particle system, there are now two frequencies of oscillation that can
occur. These are called the modes of the system. The first mode can be seen when the two
particles are in phase, or moving in the same direction at the same time. The second mode
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can be seen when the two particles are 180 degrees out of phase, moving in opposition to
one another. Of course many other patterns of motion can arise depending on the phase
relationship of the particles in oscillation, but all of these are really a superposition of
the two modes. It is in this state of superposition that we see the “exchange of energy”
characteristic of the coupled pendulum system that inspired CHON. The effect is more
pronounced if the outside springs are stiffer than the spring connecting the two particles.
The number of modes in the system is equal to the number of particles in the system.

Figure 3.4: Modes - Left: Mode 1, Right: Mode 2

As particles are added to this system, it approaches a physical simulation of a string.
This is the basis for the mass-spring method of string physical modeling (PM) synthesis.
CHON bears a superficial resemblance to mass-spring PM synthesis, but their goals differ.
PM synthesis utilizes the mass-spring method to simulate the displacement of a plucked
string in order to generate a realistic string sound. In PM synthesis, each individual mass
in the mass-spring system only matters inasmuch as it contributes to the overall string
simulation. CHON uses a mass-spring system to simulate coupled particles and generate
control data from each particle. The behavior of each individual particle is the central
focus in CHON.

Another difference from a string simulation is that the particles of CHON can move in
three dimensions. In a mass-spring string simulation, each mass moves only transversely
(perpendicular to the length of the string). In CHON, the user can select the degrees of
freedom. By default, the particles of CHON are constrained to move only longitudinally
(in the x-axis). But the user can choose to allow the particles to move in the y-axis and
z-axis as well, or in any combination of the three axes. The only change in the physics of
this situation is that we now have to calculate k(y2 − y1) and k(z2 − z1) as well in our
calculation of the net force on the particle.

In addition to laying out coupled harmonic oscillators in 1-dimension like a string, CHON
can arrange particles in a 2-dimensional grid. This produces more complicated modal

17



behavior and superpositions. As the number of particles increases in this grid, the
simulation begins to resemble a membrane like a drumhead. In this configuration, each
particle experiences forces from four neighboring particles.
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Chapter 4

Software implementation

CHON is coded completely in C++. Its foundation is built on the Allolib multimedia
library, developed by the Allosphere Research Group at UCSB and runs on Linux, MacOS,
and Windows. CHON can simulate the physics of networks of up to 100 coupled harmonic
oscillators moving in up to 3 dimensions. CHON can sonify the oscillator network with
its internal audio engine, but it is designed to be part of a modular workflow, providing
control data to external applications.

4.1 Libraries

Much of CHON’s low-level functionality is provided by the Allolib library[29], which in
turn is powered by various other C++ libraries. These libraries wrap many functions that
provide access to the system CHON is running on. These libraries are cross-platform,
which allows CHON to be built on Linux, MacOS, or Windows, without needing to
account for idiosyncrasies in those operating systems in the code of CHON itself.

Allolib is a C++ library developed by the Allosphere Research Group at UCSB. It
provides a framework for cross-platform development of interactive multimedia applications
and tools. The features of Allolib itself that CHON primarily makes use of is its
structure for initializing an application and running audio and video threads (allowing
for communication between threads), its management of parameters, and its convenient
wrapping of low-level functions and libraries.

The audio input and output streams are handled by the RtAudio library[30]. RtAudio
provides an API for cross-platform, real-time audio input and output. Window creation
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and graphics API are provided by OpenGL and GLFW[31]. Interaction with the physical
simulation (i.e. the ability to drag the particles on screen with the mouse) was provided
by Tim Woods’ “pickable” classes in Allolib. The GUI is provided by the ImGui (Dear
ImGui) library by Omar Cornut[32]. Some synthesis classes such as basic sine oscillator
and reverb were borrowed from the Gamma library.

4.2 Physics computation

The heart of CHON is a real-time and interactive simulation of a mass-spring system.
There are many solutions to the mass-spring system suitable for different purposes, but
for CHON to be both real-time and interactive, I needed to use a numerical method for
solving the differential equation of motion for each particle at each call of a synchronous
thread.

The physics simulation of CHON employs a forward Euler method. This method was
chosen for its simplicity and relatively low computational cost. The forward Euler method
solves numerical integration using an explicit method. This means that the state of the
system at every time step of the simulation is calculated from the state at the previous
time step. Essentially, the forward Euler method is an efficient and simple way to quantize
the physics involved in CHON so that it can be calculated at every step in the simulation.

The equation of motion for each particle is:

vnow =
vprev + ~Fnet

m
− bvprev

h

Where vnow is the velocity or amount to move the particle this frame, vprev is the velocity
of the particle in the previous frame, ~Fnet is the net force on the particle from neighboring
particles, m is the mass of the particle, b is the damping constant, and h is the frames
per second of the simulation.

The net force on a particle ~Fnet is calculated every frame based on the difference in
the displacement between the particle and each of its neighbors. This difference in
displacement is equivalent to the amount the spring is stretched or compressed relative to
its equilibrium state. The equation for ~Fnet on a particle looks like:

~Fnet[x] = k(x2 − x1)
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~Fnet[y] = k(y2 − y1)

~Fnet[z] = k(z2 − z1)

For efficiency, the opposite of this force is immediately added to the neighboring particle.
This effectively halves the number of times this ~Fnet value needs to be calculated because
each particle only needs to calculate the force from the next particle, not the previous
one.

I made a Particle class to keep track of parameters relating to each individual particle
such as 3D arrays for velocity, acceleration, equilibrium position, and current displacement
from equilibrium. When a particle is created, the equilibrium position is set according to
how many particles there are in the CHON system. All other physical parameters are
initialized to zero.

The physics simulation of CHON takes place in the visual thread. Since the visual thread
runs at 60 frames per second, this means that the step size of the simulation is 1/60th of
a second (16.7ms). Moving the simulation to a higher frequency thread, such as the audio
thread, would increase the accuracy of the simulation by reducing the step size, but the
computation cost would increase proportionally. This would limit the feasible complexity
of the CHON system so that only a few particles could be simulated consistently in
real-time. Conversely, increasing the step size would allow for greater complexity in the
CHON system (more particles), but reduce the simulation accuracy. It is absolutely
essential that CHON be real-time, so the balancing factors are the number of particles
CHON can handle vs. the accuracy of the simulation. The 16.7ms update rate of the
visual thread was deemed an appropriate compromise, allowing for smoothly simulating
up to 100 particles on my laptop.

The fact that the audio thread, which updates at a much higher rate, uses this data, caused
some audible quantization noise in early experiments. For this reason, I implemented a
basic smoothing class called SmoothValue, which acts like a low-pass filter. This allows
the audio thread to smoothly change the synthesis control data from the visual thread
between visual thread calls.

4.3 Sound engine

CHON’s internal sound engine serves to quickly and easily sonify the physical simulation.
Though more powerful and flexible sound design is possible by pairing CHON with an
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external audio application, the internal sound engine in CHON does create some fairly
compelling sonic results. There are two main paradigms under which the sound engine
operates: Continuous and Trigger.

The continuous paradigm is represented by the “additive synth” in the sound engine.
When the particle count is 1, this synth generates a sine tone at the user selected
fundamental frequency. The synth generates an additional sine tone at integer multiples
of that fundamental for each particle beyond 1, so each particle has a sine tone associated
with it. By default, this synth simply plays a harmonic spectrum. If the user couples
the FM or AM engine of the additive synth to one of the 3 axes (x, y, or z), then the
sound becomes more interesting. The AM coupling ties the amplitude of the sine tone of
each particle to the displacement of that particle (in whatever axis is chosen). The FM
coupling ties the width of the FM effect to the displacement of the particle.

Both of these couplings work the same in the way they couple to the particles movement.
Each particle’s displacement is stored as a public variable in the Particle class. This is
updated on each visual frame, and is read by the audio thread if the AM or FM coupling
is active. If the particle moves in an axis that is not coupled, it will not affect the sound.
For example, if AM is coupled to the y axis, but the particle is moving in the x axis, then
there will be no audible effect. On the other hand, if AM is coupled to the x axis, and the
particle moves in the x axis, then the amplitude will gradually increase and decrease with
the particle’s displacement. This is the reason for calling it the “continuous” paradigm.

Each particle has a sine wave for their own FM synthesis, the modulator wave. The value
of this wave is added to the particle’s main oscillator’s frequency (the carrier wave) at
every sample. The modulator wave’s frequency is equal to the particle’s carrier frequency
multiplied by a user-defined ratio. The amplitude of the modulator wave is determined
by a user-defined value, and is additionally modulated by the movement of the particle.
This way, the user controls the intensity of the effect of the particle’s movement on the
sound. If the user-defined FM width is set to zero, then the frequency of the particle will
rise and fall with the particle’s displacement, rather than at the FM frequency.

The AM synth is much simpler. The amplitude of the particle’s main oscillator is
multiplied by the displacement of the particle. If the particle is at rest, then the amplitude
is zero and there is no sound. When the particle is moved from equilibrium, the amplitude
increases. In this way, the activity of the synth is tied to the activity of the physical
simulation.

The trigger paradigm is represented by the bell synth. The bell synth is a sine tone tuned
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according to user-defined settings, with an amplitude envelope governed by a 1-second
ADSR. The ADSR envelope is triggered whenever the particle crosses its equilibrium
point in the selected axis. This allows cascading effects where each particle triggers its
bell sound and pushes the next particle to trigger its bell sound and so on.

4.4 OSC

OSC (Open Sound Control) can be used to send control data between audio applica-
tions[33]. In CHON, OSC allows for the displacement of each particle to be sent out to
control parameters on another audio application. In actuality, the data can be used for
any purpose.

The OSC output of CHON can be turned on or off by the user. OSC messages are
broadcast in the format:

/dispX/NUM x

Where NUM is the number of the particle and x is the displacement in the x axis. The
displacement in all 3 axes can be sent out simultaneously. For the displacement in the y
and z axes, the format is “/dispY/NUM y” and “/dispZ/NUM z”, respectively.

The address and port over which CHON broadcasts the OSC data can be changed by the
user at will. When these settings are changed, the OSC server is restarted.

Some examples of using CHON to control external audio applications are discussed in
Chapter 6.
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Chapter 5

Interface

CHON was designed to allow the user to interact with the particle system as directly
and intuitively as possible. The visual interface consists of the particle system itself, a
graph readout of all the particle displacements, and a GUI (Graphic User Interface) for
changing various parameters of the system. The auditory interface of CHON consists of
various optional synthesis algorithms. CHON accepts user input via mouse and keyboard.

5.1 Visual interface

Figure 5.1: The visual particle interface (bottom) and the displacement graph (above).

CHON’s visual interface is dominated by the particle simulation in the center of the
screen. It is roughly skeuomorphic — the kind of particle system it simulates is mimicked
in the visual representation on screen. The spheres on screen are analogous to the masses
in a mass-spring system, and if you displace the system, it behaves as you would expect a
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real mass-spring system to behave. However, it is an idealized simulation without gravity
and (optionally) without air resistance. The major difference between CHON and a real
mass-spring system is that the springs are not illustrated in CHON. This was a conscious
omission as it seemed that visual connections between the particles would clutter the
visual display and would provide no useful information to the user. The boundaries or
anchors at the edges of the system may be visualized or not at the user’s discretion. They
are represented by white, immobile particles. The particles where given different colors to
differentiate them and to allow them to be mapped to the 2D displacement graph.

The displacement graph is located above the particle simulation on the screen. In the
graph, there is a line for each particle that is mapped to the same color as the particle
it represents. The graph shows the displacement of each particle from its equilibrium
position in a particular axis. The user may choose which axis is graphed using the GUI
described below. Each line on the graph moves up or down when its corresponding particle
moves right or left (if x-axis is selected), up or down (if y-axis), or forward or back (if
z-axis). Time is represented on the graph horizontally as a continuously scrolling timeline
with the present values being added on the right, pushing older values to the left. The
graph serves as an additional readout for the user that allows them to understand the
dynamics of the system better. It also provides a way to visualize the displacement data
that can be broadcast over OSC.

The view of the particle system is set to a sensible default, directly facing the string of
particles so they are spread horizontally on the screen, with the y axis up and down
relative to the camera, and the z axis forward and back. The user can change the view
manually if desired using the arrow keys on their keyboard. This is necessary when the
user wants to move the particles in the z axis or when they simply wish to view the
system from another angle for example. The up arrow moves the camera up, the down
arrow moves the camera down, and the left and right arrows rotate the camera around
the particle system. The user can press the “v” key on their keyboard at any time to
reset the view.

When particles are added in the y-axis, CHON enters grid mode. In grid mode, the
camera defaults to a position and angle where the user can see the entire two-dimensional
grid of particles and manipulate them easily.
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Figure 5.2: Grid mode

5.2 GUI

The GUI of CHON presents further options to control the program. It is divided in to
four windows: Display, Physics, Synthesis, and OSC. The windows are arranged on the
left side of the screen, and each one can be collapsed or expanded using the triangle in
the top-left of the window. Pressing “g” on the keyboard shows/hides the GUI.

The GUI controls consist of sliders, checkboxes, number-boxes, and drop-down menus.
Sliders are operated by either left-clicking and dragging, or holding control and clicking
on the slider and typing the desired value. Checkboxes are boolean “on or off” boxes that
are toggled by left-clicking on them. Number-boxes can accept a typed number or they
can be incremented/decremented via the “+” and “-” buttons beside them. Drop-down
menus reveal their options when they are left-clicked, and a choice can then be selected
by left-clicking.

The Display window controls what is visible and some other aspects of visual display. The
user can show or hide the graph, particles, and boundary particles, using the checkboxes
in this window. The Graph Axis drop-down menu can be used to change which axis of
movement of the particles is mapped to the graph. The Spread slider allows the user
to separate the graph lines by spreading them out vertically. The Speed slider controls
how fast the graph moves. At the bottom of the Display window there is also a readout
showing the frame-rate of the program.
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Figure 5.3: The Display window (left)

The Physics window allows the user to alter the physical properties of CHON. The Particle
Count section controls how many particles are present in the system. There are two
number-boxes, controlling the number of particles in X (left-right) and Y (up-down)
directions of a 2D plane of particles, respectively. For example, if the the x number-box
is set to 5, and the y number-box is set to 4, then the particles will be arranged in a 5 by
4 grid. By default, Y is set to 1, and the system is in “1D” mode. If the user sets Y to a
value greater than 1, CHON automatically enters “2D” mode. CHON will re-enter 1D
mode if the user sets Y back to 1. The maximum number of total particles in the system
is limited to 100.

The X Springs section of the window provides control over spring stiffness in the X
direction. If Global is selected, the stiffness slider controls the stiffness of all springs
oriented in the X direction. If Global is unselected, then a number-box appears with
increment/decrement buttons. The number in the number-box indicates a particular
spring in the system, with “0” representing the spring between the left-most particle and
the left boundary, and 1 is the spring between that particle and it’s neighbor on the right,
and so on. Moving the Stiffness slider with Global unselected changes the stiffness of only
the selected spring.

If CHON is in 2D mode, then the Y Springs section appears, allowing similar control over
the springs in the Y direction. In the Y direction, springs are numbered from bottom to
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Figure 5.4: The Physics window

top. So, for example, if the stiffness of X Spring 0 and Y Spring 0 are increased to 50,
then the bottom row of springs and the left-most column of springs will have a stiffness
constant of 50.

The Mass slider controls the mass of all the particles. There is no way to change the
mass of individual particles because that would be redundant (raising spring stiffness is
equivalent to lowering mass). The Damping slider controls the global damping of the
system. A damping value of 0 will allow CHON to continue oscillating indefinitely. There
are three Degrees of Freedom checkboxes that allow the user to constrain the dimensions
that the particles may move in. The Pause button allows the user to freeze CHON in place.
When CHON is frozen, the positions and momenta of the particles are preserved, but
the positions may be altered by the user by clicking and dragging particles. Deselecting
Pause causes CHON to resume simulation.

The Synthesis window provides control over the internal sound engine of CHON. The
sound engine is described in Chapter 4. The Bell Synth, Additive Synth, and Reverb,
are hidden by default and can be turned on and off with their respective checkboxes.
By default, all of these checkboxes are unselected, and the synthesis controls are hidden.
Pressing the triangle on one of the headers will reveal the controls for the respective
section.
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Figure 5.5: The Synthesis window

The Bell Synth section contains the Bell Synth On checkbox, the **Axis* drop-down,
the Scale drop-down, as well as the Root and Volume sliders. Bell Synth On toggles the
bell synth on and off. The Axis drop-down menu controls whether the bell sound of each
particle is triggered when it crosses it’s x-axis, y-axis, or z-axis equilibrium point. The
Scale drop-down provides a few options for tuning the particles to scales. The Root slider
determines the frequency of the bell of the left-most particle (bottom-left if in 2D mode),
and the frequency of the bells of the rest of the particles are determined relative to this
root frequency according to the selected scale. The Volume slider determines the volume
of the bell synth.

The Additive Synth section contains the Additive Synth On checkbox, the Root and Volume
sliders, as well as the FM and AM subsections. The Additive Synth On checkbox toggles
the Additive synth on and off. The Root slider, like the one in the bell synth section,
determines the frequency of the sine oscillator of the left-most particle (bottom-left in 2D
mode). The Volume slider controls the volume of the additive synth. There is no scale
drop-down here like there is in the bell synth. The frequencies of the particles are tuned
to harmonic overtones of the root frequency. By default, the particle system has no effect
on the additive synth. The user must activate the FM and/or AM functionalities to tie
the additive synth to the state of the particle system.

The FM subsection contains an on/off checkbox, an Axis drop-down, and Frequency and
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Width sliders. Selecting the FM On checkbox allows the oscillators of the additive synth to
be frequency modulated by the displacement of particles. The Axis drop-down determines
which displacement axis is mapped to the FM synth. As described in Chapter 4, the
displacement of the particles controls the width of the modulating signal that is acting
on that particle’s carrier signal. The modulating signal’s frequency is determined by the
Frequency slider. The number in the frequency slider corresponds to a ratio relative to
the carrier signals. If the Frequency is set to 1, then the modulating signal is the same
frequency as the carrier signal. If it is 2, then the modulating frequency is double that of
the carrier frequency. A setting of zero on this slider is a special case in which the carrier
signal’s frequency is modulated exactly by the displacement of the particle. The Width
slider allows the user to amplify and attenuate the FM effect on the additive synth.

The AM subsection contains only an on/off checkbox and an Axis drop-down. If the AM
On checkbox is selected, then the amplitude of each oscillator of the additive synth is
modulated by the displacement in the Axis direction of its corresponding particle. With
AM turned on, the additive synth will make no sound when all particles are resting at
equilibrium.

The Reverb section allows the user to apply a global reverb to the sound engine. This
section contains an on/off checkbox and the Tail slider. If the Reverb On checkbox is
selected, then a reverb is applied to both the bell synth and the additive synth. The
length of the decay of this reverb can be increased and decreased via the Tail slider. The
user should be cautious. If the Tail slider is set to 1, it will produce an infinite reverb
that can become quite loud.

The OSC window provides control over the OSC broadcasting functionality of CHON. It
contains the OSC On checkbox, three checkboxes for controlling what data is broadcast, a
text box for inputting the IP address of the OSC broadcast, and a number box to change
the port to send the OSC data through. The OSC server is off by default and can be
turned on with the OSC On checkbox. With OSC turned on, it still will not broadcast
any data unless at least one of X disp, Y disp, or Z disp are selected. For example, if only
Y disp is selected, then only the displacement of the particles in the Y direction will be
broadcast, and if all three are selected, then the displacements in all three directions will
be broadcast. The user can change the IP address by typing in the text box and pressing
enter to confirm. The Port can be changed by typing in the Port number box and pressing
enter, or by incrementing/decrementing the value with the “+” and “-” buttons. The
OSC client will automatically reset when these values are updated.
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Figure 5.6: The OSC window

5.3 Interaction

The interface for CHON is centered around directly manipulating the particles with a
mouse. The user can left-click and hold on any particle and drag the particle from it’s
equilibrium position. The whole system will react in real time to this action, as other
particles that are coupled to the selected particle are pulled along as well. If the user
releases the mouse button, then the particles will be freed and set into oscillatory motion.
The user can click and hold on any particle while it is in motion to grab it. It is also
possible to drive the system manually by moving the mouse back and forth while holding
a particle.

This direct interaction with the particle system in CHON is vital to the mission of
CHON to allow the user to directly experiment and play with the mass-spring simulation.
Because of this design, the user can easily influence the system and get immediate feedback,
encouraging an iterative feedback loop conducive to creative exploration. The user can set
CHON into motion and it will produce a chain reaction on its own from there. However,
the user can also intervene to interrupt a moving particle, break symmetry, and cause
new ripples, waves, and explosions. CHON then provides visual and auditory feedback so
that the user can learn and understand the effects of their actions.

Aside from using the mouse to interact with the particle system and the GUI, there are
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also a limited number of keyboard shortcuts. The “p” key toggles the Pause checkbox
in the Physics window, allowing the user to pause and unpause the simulation without
accessing the GUI. The “g” key toggles the GUI’s visibility on and off. The “r” key adds
a random value to the velocity all of the particles.
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Chapter 6

Applications and Limitations

6.1 Applications

6.1.1 Continuous control data

CHON simulates the continuous movement of particles, so the most obvious mapping
of this system is to continuous control data. A continuous control signal is a constant
stream of values that are relatively fine-grained. This is the default situation in CHON.
The OSC data is sent out in a continuous stream at 60 frames per second, reporting the
displacements of each particle in the x, y, and z directions. The additive synthesis engine
in CHON also uses this data to modulate its FM and AM parameters.

When CHON is set to only have one particle, the movement of that particle is strictly
sinusoidal. In this configuration, the signal that CHON generates resembles a very
common control signal in electronic music: the LFO. An LFO (low frequency oscillator)
is a continuous signal that modulates a parameter of sound synthesis or sound processing.
LFOs come in various wave shapes, but the basic case is a sinusoidal LFO. Composers of
electronic music often have dozens of independent LFOs controlling various parameters
in their digital audio workstation. One way to think of CHON is to imagine a group of
LFOs that are not independent. Instead, they push and pull on one another, creating a
physical connection between modulating parameters.

Mapping the continuous displacement of particles in CHON presents many possibilities.
Some basic synthesis options are included in the internal audio engine of CHON, as
described in chapter 4. Pairing the OSC output of CHON with a digital audio workstation,
one could map the displacement of each particle to the panning or volume of various
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tracks. CHON could also control audio processing parameters on each track such as filter
frequency, reverb wet/dry signal, pitch shift, distortion/saturation level, and others.

CHON can also be treated as a module on a modular synthesis rack. A physical module
that translates OSC data into control voltage such as 2.4SINK by Instrument of Things, or
the WiFiMIDI from SDS Digital can enable CHON to gain control over an entire modular
synthesis patch. Of course a simpler, and much less expensive, version of this is to use
the software modular synthesis application VCVRack. One capable virtual module for
this purpose in VCVRack is TrowaSoft’s cvOSCcv. Using this module, and its extensions
the user can send dozens of control signals from CHON all over a virtual patch. The
possibilities are endless.

6.1.2 Trigger control data

In some cases, it does not make sense to use continuous control data. There are various
ways to take the continuous data from CHON and extract discrete trigger data. Unlike
continuous data, trigger control data only causes a change in the target parameter at a
moment in time, when a condition “triggers”. This is a boolean logic. The trigger signal
sends a constant value of 0 until the condition is met, at which time it sends a single 1,
which can trigger an event.

This is how the Bell synth in the internal synthesis engine of CHON works. When a
particle crosses its equilibrium point, it triggers the bell sound, which decays on its own
according to its ADSR envelope. Each particle has 3 equilibrium points, since it can move
in up to 3-dimensions. CHON can cause triggers when a particle crosses its x, y, and z
equilibrium points, respectively.

6.1.3 Generating musical scores

CHON can also be used to write instrumental music. In Summer of 2020, Hocket, an
LA-based piano duo, put out a call for very short compositions of 1 minute or less. I took
the opportunity to make a first attempt at composing a piece of music using CHON. The
result is the 45-second miniature piece called Pandæmonium.

I set up a 4-particle system in CHON and sent the OSC output to an algorithmic music
composition tool called SCAMP created by Marc Evanstein[34]. I configured SCAMP to
interpret the OSC data as the contour of a unique arpeggio for each hand. Each of the 4
particles dictated the movement of one hand of the performers, so that the movement of
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the performers hands to the right and left of the keyboard would reflect the movement
of the particles from right to left in CHON. The displacement data of each particle was
quantized to a different scale.

I decided that the entire piece would be one single gesture. I set CHON into motion and
configured the damping effect so that the particles would come to rest after about one
minute. The result is like a sonic explosion that gradually dissipates while each arpeggio
pushes and pulls on one another.

6.2 Limitations

CHON is designed to simulate many configurations of one particular kind of physical
system: a network of coupled harmonic oscillators. While this is a fundamental model in
theoretical physics, it is not well-suited to every application.

CHON is not meant to be a scheme for physical modeling synthesis, but rather a control
signal scheme for shaping musical parameters using physically plausible interactions.
Rather than an innovation in physical modeling synthesis, I consider CHON to be an
innovation on the traditional LFO (Low Frequency Oscillator) model. Nonetheless, CHON
does employ physical modeling for musical purposes, and so we can look to prior research
for evaluating these types of systems.

Castagné and Cadoz have conceptualized a convenient framework to evaluate Physical
Modeling schemes for musical applications[13]. Under this framework, CHON scores well
in criteria PM1 (efficiency – CHON is efficient enough to achieve its goal of real-time
interactive simulation of up to 100 particles), PM4 (extra-sonic applications – CHON
can provide control signals for any medium), PM5 (robustness of “plausibility” – a
complete novice can make plausible musical gestures with CHON), PM6 (modularity
– CHON is highly modular in its applications thanks to its OSC functionality), PM7
(intuitiveness of mental model – CHON’s behavior is predictable even to a non-physicist,
with room for surprise and discovery), PM8 (deepness of model – CHON simulates a
fundamental physical system), PM10 (user-friendly interface - CHON is highly accessible
to non-specialists).

PM2 (faithfulness of reproduced sound), PM3 (diversity of simulated instruments), and
PM9 (existence of generation algorithms) are mostly irrelevant to the goals of CHON.
However, the Euler Method, which is used in CHON to calculate the movement of
the particles, is known to have a margin of error proportional to the framerate of the
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Figure 6.1: Criteria for evaluating physical modeling schemes[13].

simulation. Therefore if PM2 is taken to mean more generally “how well does the scheme
fit to physical reality,” then the scheme that CHON employs is not the most precise when
compared to others.

CHON can simulate a complex system with many moving parts. The motion of an
individual particle in CHON may be difficult to predict, but it is not random. When set
in motion and left alone, CHON is deterministic (non-linearities can be introduced by
user-interaction). CHON is not suited for random signal generation or chance music. The
movement of a particle in CHON may appear complicated, but it also has an intuitive
tangibility thanks to its physical basis.

Some systems, such as the CORDIS-ANIMA software[9], go far beyond CHON in terms
of flexibility, allowing the user to construct systems of thousands of particles and define
parameters for each one. CHON is limited to 100 particles in a 1D or 2D configuration.
This limitation in physical configuration is a deliberate choice to make CHON easier to
use. I determined that 100 parameter control signals is sufficient for the vast majority of
use-cases.

The problem of parameter mapping is an important and sometimes difficult one in
algorithmic composition. CHON’s internal sound engine provides three examples of
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mapping its control signals to synthesis parameters. However, when broadcasting OSC
signals from CHON to an external application, two problems become apparent. The first
thing one will likely notice is the challenge of deciding to which parameter the control
signals should be attached. The possibilities are practically limitless and it may take some
serious experimentation and imagination to find the most compelling configurations. The
second challenge is that setting up a high number of OSC connections can become quite
tedious. This isn’t exactly a problem with CHON in and of itself; CHON automatically
sends out OSC data with the click of a button. Nonetheless, the daunting task of manually
configuring 50 or 100 parameters in your DAW to accept the OSC data from CHON may
present a barrier to some of the more elaborate setups.
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Chapter 7

Future directions

CHON presents new possibilities for musical expression, and I have only scratched the
surface. I would like to extend the software to make it easier to use and more accessible
so that other composers might make use of it. But I am still experimenting with the ways
CHON can already generate sonic gestures in its current form.

In Pandæmonium, I decided to align the notes to an eighth-note grid to make the music
more feasible to play by the two performers. I think this diminishes the physical metaphor
somewhat because it obscures the varying speed of the particles. However, removing
the strictly quantized grid in a future piece will require some other solution for keeping
performers in sync, such as a click-track. I also think it might be fruitful to explore
mapping other parameters of the particles to a score. For example, the velocity of each
particle averaged over a short time or the total potential energy of the system might be
used to create interesting musical gestures.

In addition to instrumental music, I plan to write an electronic piece using CHON. It
will likely use some synthesized sounds like those CHON can produce from its internal
sound engine, but I am also experimenting with having CHON manipulate sound clips.
CHON could trigger sounds and control playback rate, transposition, filtering, panning,
and other effects. While this composition will not present the problem of generating
a playable score for performers, grappling with the sheer amount of possibilities is an
obstacle in its own right.

I have also imagined musical works for live performer and CHON where the sound of the
performer drives CHON in sympathetic resonance. This could lead to many performance
network topologies such as a feedback loop where CHON generates control data which

38



generates sound that drives CHON, or a duet where two performers drive CHON with
the sound they generate. This will require further development and UI decisions to make
sure it is simple and reliable to use.

CHON has been under continual development for more than a year and will likely continue
to grow and improve. I plan to add several features in the near future. I want to add a
preset function that allows the configuration of CHON to be saved and recalled at a later
time. I also want to add more physical parameters to the OSC stream. As stated before,
this could include velocity, potential energy, collisions, and other physical attributes of
the particles. Other aspects of CHON will continue to be developed and refined to make
CHON more user-friendly and flexible.

Another area that CHON could be extended is in the way the user can interact with it.
The gestural basis of CHON’s philosophy suggests that it would be well-suited to gestural
control. CHON could benefit from gestural interfaces like the LeapMotion[35] or a simple
webcam paired with a gesture recognition software such as Wekinator[36]. Admittedly,
a mouse is not the most intuitive controller for CHON, but it is the most ubiquitous.
Therefore, I chose to focus on mouse control for the first version of CHON, leaving the
option open for other control methods in the future.

Finally, one of my active areas of research is to extend the classical mechanics already
represented in my music into the realm of quantum mechanics. While classical mechanics
fulfills the role of a universally intrinsic logic for my music to follow, quantum mechanics
is far less intuitive to most people. However, my goal in using quantum mechanics in
music not to rely on an established intuitive logic for my music. Rather, I aim to render
intangible quantum interactions more tangible through sonification. Whereas through
classical mechanics I aim to make my music tangible, I hope to make quantum mechanics
tangible through my music. Thus, I plan to extend CHON or a version of CHON to
represent “quantum harmonic oscillators”. This will add a probabilistic element to the
particles and their interactions.

In developing CHON and experimenting with it, I have already begun to realize my vision
of energetic sonic objects pushing and pulling on one another, but I have only begun to
explore the musical possibilities that CHON affords. The physics of coupled harmonic
oscillators seems to have a wealth of potential in creating physically coupled sound events
and transformations. I will continue to explore this new musical territory and to develop
CHON, and I hope that making CHON open source and freely available will encourage
others to do the same.
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Appendix A: Timeline

What follows is a timeline of the most significant milestones I achieved while pursuing my
Masters of Science in Media arts and Technology.

Fall 2017

• Took first course in MAT (240C – Karl Yerkes)
• Appointed CREATE Technical Coordinator

Winter 2018

• Finished PISCES (Pisces Interactive Spectral Compression Engine & Synthesizer)
as final project for 240B. This was my first software implementation of what I would
come to call “spectral dilation” effects. (https://github.com/rodneydup/Pisces)

• Premiered Quinto Suono - a string quartet composed using an algorithm I created
to generate difference tones.
(http://rodneyduplessis.com/musicPages/quinto%20suono.html)

Spring 2018

• Premiered Disconnect - a piece for saxophone and live electronics (performed by
Henrique Portovedo)(http://rodneyduplessis.com/musicPages/Disconnect.html)

Summer 2018

• Presented BachFlip at ICMC - BachFlip is my first piece composed using spectral
dilation and I used PISCES to realize it.

• Directed the UCSB Summer Music Festival, invited MAT students to present
installations.

• Premiered Sisyphe Heureux - a percussion quartet composed by algo-
rithm to create waves of sonic intensity, a conceptual precursor to CHON
(http://rodneyduplessis.com/musicPages/Sisyphe%20Heureux.html)
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Fall 2018

• Appointed Teaching Assistant in MUS 109 (Instructor of record: Curtis Roads)
• Created Monopus soft musical interface with Aaron Anderson as final project for

MAT 594 (instructor: Yon Visell)
(https://nextcloud.carterduplessis.ca/index.php/s/FxEqMfJffy3nSp7)

• Presented guest lecture in ART 22 at UCSB: Coding as compositional process

Winter 2019

• Premiered Mysterium Cosmographicum for Oscilloscope and Stereo Playback -
realized during the Vector Hack workshop led by MAT guest lecturer Derek Holzer
(http://rodneyduplessis.com/videos/Mysterium%20Cosmographicum.webm)

Spring 2019

• Created the first version of pulsar~ - An implementation of Pulsar Synthesis[37] in
Pure Data (https://github.com/rodneydup/pd-pulsar)

• Created xieve - An implementation of Xenakis’ sieve technique[26] in Pure Data
(https://github.com/rodneydup/xieve)

• Won 1st prize Corwin Award (Percussion category) for Sisyphe Heureux
• Won 2nd prize Corwin Award (Electroacoustic category) for Glossopoeia
• Laptop duo performance at MAT End of Year Show with Aaron Anderson
• Presented Mysterium Cosmographicum at MAT End of Year Show
• Network music performance with Ken Fields and others at Sound + Science Sym-

posium

Summer 2019

• Attended field recording masterclass at the Bogong Center for Sound Culture in
Alpine National Park, Australia.

• Attended live electronics masterclass at the Chigiana Academy in Siena, Italy.
• Attended Summer Academy at Musiques & Recherches in Brussels, Belgium.
• Co-directed UCSB Summer Music Festival, invited MAT students to present instal-

lations.

Fall 2019

• Appointed Teaching Assistant in MUS 109 (Instructor of record: Curtis Roads)
• Network music performance with Sudo Ensemble at NowNet Arts Conference 2019
• Premiered De Rerum Natura - An acousmatic piece composed using physical
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metaphorical intuitive techniques described in this text.
(http://rodneyduplessis.com/musicPages/De%20Rerum%20Natura.html)

• Created a beta version of CHON (https://github.com/rodneydup/CHON)

Winter 2020

• Created HeatWaves data visualization for the Allosphere with Kramer Elwell and
Raphael Radna. Not presented in the Allosphere due to the COVID-19 shutdowns.
(https://nextcloud.carterduplessis.ca/index.php/s/TGHPDmfctf2i66T)

• Led workshop at Womxn/Hacks 2.0 Conference at UCSB: Intro to computer music
programming in Pure Data

• Co-Led (with Dr. Elizabeth Hambleton) workshop at Alliance of Women in Media
Arts & Sciences at UCSB: Intro to computer music programming in Pure Data

Spring 2020

• Finalist in ASCAP/SEAMUS Award for De Rerum Natura (under the name “Di-
mensionless”)

• Presented De Rerum Natura (under the name “Dimensionless”) at the SEAMUS
2020 National Conference

• Awarded Graduate Division Dissertation Fellowship for Fall 2020

Summer 2020

• Created Alloscope - A software made in allolib for visualizing stereo sound as an
oscilloscope in x-y configuration (https://github.com/rodneydup/Alloscope)

• Network music performance with Sudo Ensemble at Earth Day Art Model conference
(online)

• Left CREATE Technical Coordinator position
• Premiered Pandæmonium for piano four hands - the first piece composed using

CHON (http://rodneyduplessis.com/musicPages/Pandaemonium.html)

Fall 2020

• Awarded MAT Merit Supplemental Support Research Stipend for academic excel-
lence and service to the program.

• Completed and released EmissionControl2 with Curtis Roads and Jack Kilgore
(https://github.com/EmissionControl2/EmissionControl2)

• Presented guest lecture at Composition Forum UCSB: Controlling EmissionControl2
• Installed Oscilla, an interactive audiovisual installation, at The Museum of Sensory

and Movement Experiences with Xindi Kang
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(http://rodneyduplessis.com/musicPages/Coacervate.html)
• Began working on PRISM (ongoing) a suite of VST plugins for spectral manipulation

of sound including spectral dilation.
• Premiered Coacervate for violin and electronics - composed using physical metaphor-

ical intuitive techniques and spectral dilation using PRISM
(http://rodneyduplessis.com/musicPages/Coacervate.html)

• Honorable mention in Destellos International Electroacoustic Competition for De
Rerum Natura

• Finalist in SIMEC Electroacoustic Music Competition for De Rerum Natura
• Finalist in Musica Nova International Electroacoustic Music Competition for De

Rerum Natura

Winter 2021

• Won 1st prize Corwin Award (Solo/Chamber category) for Coacervate
• Presented guest lecture at Composition LAB (Estonian Academy of Music and

Theatre): CHON: from physics to musical gesture
• Presented guest lecture in the Sonic Art class at Colby College: Algorithmic

Composition

Spring 2021

• Appointed Teaching Associate for MUS 8/88 (as instructor of record)
• Presented Coacervate at SEAMUS 2021 National Conference
• Completed CHON version 1.0
• Completed Masters of Science Degree in Media Arts & Technology
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