DrawJong 2.0

Michael Hetrick

December 5, 2011

Abstract: DrawJong 2.0 is a program used to visualize and sonify
chaotic attractors. This paper aims to give the reader the history and
mathematics behind chaotic attractors before detailing the iterative

design process behind DrawJong.

Committee

Curtis Roads (chair)

Clarence Barlow

Marcos Novak

Matthew Wright

1 Introduction and Goals

DrawlJong 2.0 is a synthesizer and visualizer based on chaotic mathematics. It
was created to serve two distinct needs: the need for an intuitive, yet deep
chaotic oscillator, and the need for a real-time renderer of chaotic attractors
with an artistic focus..

Up until this point, every readily-available application that I could find ren-
dered chaotic attractors either as an offline process, or as a real-time process
with a more mathematical focus and fewer points per frame [T}, 2] [3]. When
I first started studying chaotic attractors, I found these applications to have
hardly any practical value. The reason that these equations hold so much in-
terest stems from the fact that they are highly sensitive to initial conditions.
When I changed these conditions on the programs that I could find, I wanted
immediate visual feedback that would show me exactly how much I had affected
the system.

These programs also tend to only show one chaotic attractor each. There
are a wide number of chaotic attractors (a few of which are detailed in the next
section), and all of them are distinct and special in their own ways. It seemed
rather odd to focus on only one at a time. With this in mind, I began developing
a real-time testbed for the exploration of these equations.

I also had the idea that I wanted to focus more on the artistic utility of these
attractors. Instead of implementing mathematical overlays (like the aforemen-
tioned Wolfram applets), I wanted to have a program that could render the
attractors, provide coloring and blending options, and export images while not
hiding the attractors under graphs and numbers.

From the very beginning of my time at MAT, T also had the primary goal
of developing an interesting and unique audio synthesizer. When I started re-
searching these chaotic equations in depth, I decided to plot their x- and y-
coordinates separately as 1D waveforms. These graphs displayed elements of
periodicity and contained sections that were similar to sine waves, sawtooth
waves, and other shapes commonly used in sound synthesis. With this realiza-
tion, I decided to combine my goals and attempt to create a synthesizer based
entirely on these equations (For a full explanation on how sound is created in

DrawlJong, please read section 5).

1.1 Aesthetic Goals

My love affair with chaotic attractors started four years ago, when one of my
high school friends sent me a Processing sketch of what he had been studying
in his math classes. That sketch was the De Jong attractor (detailed in section
2.2). T was immediately taken by many aspects of the images generated by this
program. It created figures that defied simple examination. I couldn’t decide
where my eyes should fall on these figures. They had what appeared to be some
sort of periodicity, yet any attempt to follow their movements only made them
seem more impressive. They certainly weren’t random. There seemed to be
something much more organic and inevitable about them.

AsTexplored these attractors more, I found interesting characteristics unique
to each attractor that I found to be visually appealing. The Clifford Attractor,
for instance, has states where it becomes very obvious that the equation in-
volves sine waves. You'll see very clear periodicity in some regions, while others
seem to follow their own logic. The Duffing Attractor, meanwhile, has a clear
symmetry that creates more primitive and rigid shapes. These characteristics
and elements of periodicity set the chaotic equations apart from pseudo-random
number generators and noise generators.

I was also very excited by the sonified outputs of these attractors. Their
chaotic forms (explained more in the next section) create waveforms that alter-
nate between moments of stability and moments that come close to noise. This
unpredictability warrants exploration wihtout the prerequisite of deep knowl-
edge. Many of the sounds that I have obtained by accident would be extremely

difficult to recreate through more conventional forms of synthesis.

2 Chaotic Attractors

At the heart of DrawJong are five chaotic attractors: De Jong, Clifford, Duffing,
Lorenz, and Rossler. The OS X version of DrawJong contains a sixth attractor.
Each of these chaotic attractors is a set of equations that exhibit unpredictable

behavior.

2.1 A Brief Introduction to Chaotic Attractors
2.1.1 Attractors

Chaotic attractors are a very specific subset of attractors. An attractor is, in its
simplest definition, a set towards which all points of a dynamic system move over
time. This attracting set can be any geometric form including, at its simplest,
a point. The shape of chaotic attractors is described in section 2.1.3.

For a visual example, consider the following pictures of the De Jong attractor:

Fig 2.1.1: (Left to Right) A De Jong Attractor’s first 100,000 Points; A De
Jong Attractor’s first 50,000 Points; A De Jong Attractor’s first 10,000 Points.

As you can see, the figure looks roughly the same with 10,000, 50,000, or
100,000 points. No matter how many points you add to the system, they will

all tend towards the same positions.

A simple attractor is a Fixed Point Attractor. A Fixed Point Attractor is a
dynamical system that will end up at a point described by f(x) = x (which is

the definition of a fixed point). For an example, consider the following equation:

Ty = co8(Tp_1)

In this equation, no matter what choice of real number is used for x;, the
resulting system will always head towards the point .739085133. This point is
a fixed point, as cos(.739085133) = .739085133.

Another type of simple attractor is a limit cycle. A limit cycle is simply a

periodic orbit (A pendulum is a perfect example of this).

2.1.2 Chaos

The particular attractors used by DrawJong are called “chaotic,” as their shapes
cannot be predicted until their points are actually calculated, and depend en-
tirely on initial conditions. For a better idea of this, consider a more predictable
equation like f(z) = a * sin(bx). If a is affected, the amplitude of the sine wave
increases, while b will affect frequency. However, no matter how much a and b
are changed, the end result will always be predictable.

Meanwhile consider the following three images of the De Jong attractor:

Fig 2.1.2.1: A De Jong Attractor with coefficients a = 1.549, b = 1.104, ¢ =
2.400, d = -2.100

Fig 2.1.2.2: A De Jong Attractor with coefficients a = 0.208, b = -3.447, ¢ =
-0.482, d = -3.218

Fig 2.1.2.3: A De Jong Attractor with coefficients ¢ = -3.438, b = 0.088, ¢ =
-0.482, d = -3.218

Each of these three images uses the same two equations, yet the changes to
their initial conditions cause wildly different figures to appear (If you notice,

only the first two coefficients change in the second and third image). It is

important to note that these images are static and deterministic. The same
initial conditions will always result in the same results, and these points do not
change with time. However, the fact that these results are deterministic does
not change that they can’t be predicted before being calculated. This is called
“deterministic chaos”.

Examples of real-life non-chaotic attractors include a mass spring, in which
all points on a spring are pulled to the mass at the end of it. Another example
is a metronome, which sticks to a rigid, repetitive limit cycle. In both of these
cases, the geometry of the attractor can be represented by a Euclidean shape
(The mass spring is a line, the metronome is an arc). The attractors rendered

by DrawJong are called “strange” attractors.

2.1.3 Strange Attractors and the Hausdorff Dimension

A strange attractor is defined as an attractor with a non-integer dimension.
In Euclidean geometry, every shape has an integer dimension (i.e. a line has
dimension 1, a square 2, a cube 3). This integer represents the number of
coordinates required to describe a point on this shape. This can be done, as
Euclidean shapes are all of finite length. Fractals, however, present an issue, as
they are of potentially infinite length. Because of this, they are measured by
a value known as the Hausdorff dimension [23]. This can be calculated by the

following equation:
N =P

Here, r is the number of times a figure is split in each spatial dimension, N
is the number of resulting pieces, and D is the Hausdorff Dimension. For the
easiest example, consider a square. If we split it in half in each spatial direction
(length and width), we would have four resulting figures. Here, r is 2, as we
halved the square in each direction, and N is 4, as we have four pieces. By
this, we can calculate that the Hausdorff dimension of the square is 2 (which,
as a two-dimensional object, makes perfect sense). All Euclidean figures have
Hausdorff dimensions that are integers. Fractals have real numbers. In essence,
the reason that these attractors are called “strange” attractors is because all
points are being attracted to a figure that is ultimately a fractal.

All of the attractors in DrawJong are examples of strange attractors, and

therefore have non-integer Hausdorff dimensions.

2.2 De Jong

The De Jong attractor is a two-dimensional attractor, first described by Peter

De Jong [15]. The attractor is described by the following equations:

Xy = sin(a * Yp—1) — cos(b* x,_1)

Yn = sin(c* tp_1) — cos(d * yp—1)

Fig. 2.2.2: A De Jong Attractor with coefficients a = 1.400, b = -2.300, ¢ =
2.400, d = -2.100

It is important to note that for this and for all other attractors used by

DrawJong, x¢g = yo = 20 = 0.

2.3 Clifford

The Clifford attractor is a two-dimensional attractor, first described by Clifford
Pickover (It is also sometimes called a “Pickover Attractor”) [I4]. The attractor

is described by the following equations:

Xy = sin(a * Yn—1) + ¢ * cos(a * x,_1)

Yn = sin(bx xp—1) + d* cos(b* yp—1)

Fig. 2.2.3: A Clifford Attractor with coefficients ¢ = 1.094, b = 1.689, ¢ =
2.266, d = -0.391

Dr. Pickover introduced this attractor in his book Chaos in Wonderland.

He presents it as a simplified way for understanding chaotic systems.

2.4 Duffing

The Duffing attractor is a two-dimensional attractor, based on equations first
described by Georg Duffing [7]. The attractor is described by the following

equations:

Tn = Yn—1

3
Yn = Tp—1 — Ty_1 — Q% Yp_1 + b* cos(c*n)

Fig. 2.2.4: A Duffing Attractor with coefficients a = .351, b = -1.037, ¢ =
0.788

The Duffing attractor is the only attractor in DrawJong that occasionally
renders coordinates that go towards infinity. Whenever the attractor provides

a number that is interpreted as infinity or NaN, the screen will go blank.

10

2.5 Lorenz

The Lorenz attractor is a three-dimensional attractor that was first described

by Edward Lorenz [I0]. The attractor is described by the following equations:

Ty =Tp_1+a*(b* (Yn—1 — Tpn-1))

Yn = Yn—1 + a* (xn—l * (C - Zn—l) - yn—l)

Zp = Zn—1+a* (Tn_1 *Yp—1 — d* 2p_1)

Fig. 2.2.5: A Lorenz Attractor with coefficients ¢ = 0.010, b = 10, ¢ = 28, d
= 2.667

The Lorenz attractor, unlike the other attractors in DrawJong, was modeled
after atmospheric phenomena. This attractor was later proven to show up in
nature [22]. The Lorenz’s shape stays relatively consistent, and is identified by

its two prominent manifolds, also known as “butterfly wings”.

11

2.6 Rossler

The Rossler attractor is a three-dimensional attractor that was first described

by Otto Rossler [I9]. The attractor is described by the following equations:

Tp = —Yn—1 — Zn—1

Yn = Tn—1+ A *Yp—1

Zn =b4 zp_1 % (Tp—1 —)

Fig. 2.2.6: A Rossler Attractor with coefficients a = 0.015, b = 0.200, ¢ =
0.200, d = 5.700

Like the Lorenz, the Rossler maintains a relatively distinct shape. However,
the Rossler attractor usually contains only one manifold. This manifold is known
as the “Mobius band”.

12

2.7 Pickover 3D

DrawJong OS X introduces a three-dimensional attractor that I'm calling Pick-
over 3D. This attractor is based off of a formula relatively hidden in an appendix
of Clifford Pickover’s Chaos in Wonderland. Its five coefficients make it the most
complex attractor currently in DrawJong. It is described by the following equa-

tions:

Ty = $in(aYn—1) — 2n—1 * cos(bx,_1)

Yn = Zn—1 * Sin(cxpn_1) — cos(dyn_1)

Zn = e* sin(Tp—_1)

Fig. 2.2.7: A Pickover 3D Attractor with coefficients a = 2.24, b = 0.43, ¢ =
-0.65, d = -2.10, e = 1.00

13

2.8 Henon Map

The Henon Map is a function that was briefly implemented in DrawJong. It

was first described by Michel Henon using the following equations [9]:

2
Ty =Yp—1+1—axx,_4

Yn = b* xy,_1

The Henon Map was removed for a number of reasons. Among them are
the fact that it did not provide interesting audio results. It also contained a
very limited range of parameters where any image would appear. The system
often provides coordinates that quickly head towards infinity (even more so than
the Duffing Attractor). When the system is relatively stable, the visual results

tended to all look very similar.

Fig. 2.2.8: A Henon Map with coefficients a = 1.4, b = 0.3

14

2.9 Prior Work

Chaotic equations are not unusual in music both acoustic and electronic. Many
researchers and composers have pursued methods of sonifying chaotic equations

or using them to create musical sequences. J.C. Sprott wrote the following:

Chaotic maps can also be used to produce a crude kind of computer
music. For a two-dimensional map, X might be used to control the
pitch and y the duration of each note. The result is a not-displeasing
though alien-sounding form of music that might appeal to those with

exotic musical tastes [20].

In this example, Sprott has used the two separate axes to create chaotic se-
quences for music. Researcher/artist Paul Bourke created a similar sonification
of the Duffing Oscillator, mapping x and y values to separate MIDI sequences
[5].

The electronic work of Tannis Xenakis, especially his GENDY instrument,
should certainly be considered as a reference point. GENDY is a software sys-
tem that use stochastic processes to generate unpredictable waveforms [IT].
However, it is important to note that GENDY is based on stochastic (i.e. non-
deterministic) processes, while DrawJong is built upon chaotic (deterministic)
processes.

Another example of a chaotic system being used to generate control signals
can be found in the work of Eduardo Reck Miranda, who used cellular automata
to control the parameters of a granular synthesizer [12]. Such techniques have
become increasingly popular. In 2005, Native Instruments included in the fifth
version of their flagship Reaktor environment a drum machine sequenced by
Conway’s Game of Life [I3].

Oscillators based on chaotic mathematics have been explored since the early
1990s [I7]. Researcher Mark Havryliv recently published a paper on a system
that he designed for improvising sounds with chaotic oscillators [8]. His method
requires audio input that is influenced by chaotic equations, instead of the equa-

tions themselves being the sole source of all audio.

15

3 User Interface

3.1 Main Screen

When a user opens DrawJong, they will see a chaotic attractor, two waveforms,
and six buttons: Coeffs, Visual, Synth, Screenshot, Help, and Credits. The
top waveform shows the x-coordinate values of the first 2,048 points of the
current attractor, while the bottom waveform shows the y-coordinate values.
The majority of the screen is dedicated to the attractor.

This menu design has been one of the only things to remain constant since
DrawlJong 1.0. It was designed to not interfere with the visual image, and to

teach the user the underlying complexity piece-by-piece.

10:41 PM

T e P TR

AN TRV S 7 T T T

Fig. 3.1.1: The main DrawJong iOS interface

3.2 Buttons and Menus

When a user touches any of the first three buttons, a pop-up menu appears.
The buttons and menus are laid out in the order that the user should use them
if they are new to chaotic attractors. The very first menu is “Coeffs,” which
contains the initial coefficients of the current attractor. These controls appear
first, as they have the most drastic effect. Changing these controls will affect
both visuals and sound. From this menu, a user can also change the position of

the attractor on the screen.

16

The next menu, “Visual,” contains color controls, alpha blending, and the
equation selector. Aside from the equation selector, these controls have less of
an impact than the controls on the Coefficients menu. The equation selector
really could have gone either here or under Coefficients, but I chose to place the
it on this menu as I felt that it shouldn’t be the very first thing a new user sees.

The final menu, “Sound,” holds controls for coarse and fine frequency, FM
mode, FM amount, gain, and wavetable sizes. I felt that this menu should go
last, as many people who use DrawJong will not be familiar with these terms.

There are three more buttons. “Screenshot” saves the current image (minus
the buttons) to the user’s photo album. “Help” brings up a comprehensive PDF
file that lays out the mathematics behind DrawJong, along with detailed help
for every control and how to set up OSC. Finally, “Credits” brings up a pop-up

menu with all relevant thank-yous.

3.3 Gesture Control

When DrawJong was presented in a public setting for the first time (at MAT’s
2011 End of Year Show), its greatest weakness became immediately apparent.
Whenever a new user was greeted with the interface, the first thing they did
was attempt to manipulate the figure by dragging their fingers across the screen.
The menu controls had been a holdover from the very first OS X prototype of
DrawJong, and the interface had never fully been updated to accommodate the
paradigm shift.

Version 1.2 was programmed and released shortly after this event. With this
release, DrawJong received full gestural control over many variables. One finger
drags will directly manipulate the first two coefficients of the current attractor,
while two finger drags will edit the last two coefficients. These drags are received
based on finger coordinates, where the top/left of the screen is the minimum
value, and the bottom/right of the screen is the maximum. This is instead of
working in an additive nature (i.e. dragging it a certain distance will add a
certain value).

This provides two distinct advantages: First, a user can find zones of interest,
and can remember regions where their favorite visual and sound combinations
occur. Second, it permits a level of discontinuity. Instead of legato morphing, a
user can completely change the sound just by sliding their finger to a new region.
Simply tapping once on a new region will not change the coefficients. This

was something that was tested, but was ultimately determined to be extremely

17

inconvenient, as errant finger taps occur frequently.

A user can also “pinch” the screen to zoom in and out of the attractor. This
is a very common gesture that occurs in many iOS apps. Finally, tapping will
randomize the color selections. A single-finger double-tap will randomize the
background color, while a two-finger double-tap will randomize the attractor

color.

18

4 Visuals

4.1 Rendering

DrawJong renders up to the first 100,000 points of an attractor per frame. The
user can turn down the number of points based on the speed of the device
currently running DrawJong.

Point mode is very straightforward. Each point of the attractor is repre-
sented by a pixel. To create more interesting images, alpha blending is turned
on by default. Alpha blending effectively decreases the brightness of each pixel,
but also makes them slightly transparent. This emphasizes denser areas of the
attractors, and gives the two-dimensional attractors the illusion of depth. The
intensity of the alpha blending can be adjusted or turned off entirely by the user.
The user also has control over the color of both the points and the background

(given as RGB values).

4.1.1 Line Mode

DrawJong contains an alternate “Line Mode” that connects points in sets of two
in their render order. This mode works for all attractors included in DrawJong,
and does not affect sound generation in any way. Like point mode, alpha blend-
ing can be enabled. Unlike point mode, there can only be up to 5,000 lines on

the screen per frame.

Fig. 4.1.1.1: A De Jong Attractor in Line Mode

19

Fig. 4.1.1.2: The same De Jong Attractor in Point Mode

4.1.2 Animated Mode

The “Animated Mode” came out of a programming mistake when creating the
first version of DrawJong. The results proved to be interesting, and were im-
plemented as a separate mode in the first official patch for DrawJong.

The “animated” equation for the De Jong attractor is as follows:

Ty = sin(a * yp) — cos(b* x,,)

Yn = sin(c* x,) — cos(d * y,,)
The “animated” equation for the Clifford attractor is as follows:

Ty = sin(a x yp) + ¢ x cos(a x)

Yn = sin(b* xp,) + d * cos(b * yy,)

As you can see, these equations are not reliant on previous values, but rather

current values. Because of this, the animated systems are quite unstable, often

20

exhibiting states of decay. With the right coefficients, however, they can be

used to attain images and sounds that change over a period of time.

Fig. 3.1.2.1: Two frames from a De Jong Attractor rendered in both Line

Mode and Animated Mode. These two frames show a rapid decay of the figure.

4.2 Saving Images

Since the very first iOS release, DrawJong has had the ability to save images

of the currently rendered attractor (minus the interface overlay). However,

21

the image-saving method used a built-in iOS method that saved the images as
compressed .jpg files. This created annoying artifacts on the saved images, and
it made the feature appear superfluous.

When i0S 5 came out, image-saving became even more broken. Images
saved on 108 5 using DrawJong 1.3 ended up with either an all-white or all-black
background. The color of the attractor was affected by the background color,
even if it didn’t show up (for example, a red attractor on a yellow background
was saved as a green attractor on a white background).

DrawJong 2.0 required a large rewrite of the image-saving code to accom-
modate the iOS 5 changes. In this version, it saves the background without any
alpha information to a temporary file. It then writes the attractor and wave-
form graphic information (with full alpha information) on top of this. After the

image is created, it forces a save as a .png file to prevent any artifacting.

22

5 Sound

5.1 Wavetable Synthesis

In DrawJong, all five attractors are sonified through wavetable synthesis [18].
To achieve this, there are two wavetables: one for the x-coordinates of every
point rendered in the current attractor, and another wavetable for all of the
y-coordinates.

Let’s look at the first two points of the De Jong attractor as an example:

.’E():O

Yo =0

x1 = sin(a x0) — cos(b*0) = sin(0) —cos(0) =0—-1=—1

y1 = sin(c*0) — cos(d *0) = sin(0) — cos(0) =0—1=—1

In this case, the values of the first two samples written to both wavetables
are 0, then -1. For the next point, the values of both coordinates will start to
differ greatly, based on the user’s selected coeflicients.

Because of the great variation of possible wavetables (i.e. some attractors
exhibit much greater change at quicker rates than others), the user has control
over the size of the current wavetable, which must be a power of two. Larger
wavetables, for instance, are very noisy on the De Jong and Clifford attractors.
On “slower” attractors like the Lorenz and Rossler, a large wavetable is almost

required, as variations between coordinates happen at a much different rate.

5.2 FM Synthesis

DrawJong also implements FM synthesis. This works in conjunction with the
wavetables. The user can select which wavetable is the carrier, which wavetable
is the modulator, and the FM intensity. At lower frequencies and with small
table sizes, this can be used as a primitive sequencer, as melodies and rhythms
will start to appear. At higher frequencies, many different tones and textures

can be achieved.

23

FM synthesis is achieved as follows: The amplitude of the modulator signal (-
1/+1) is multiplied by the FM intensity (0-1,000). The resulting amount is then
added to the carrier’s given frequency to calculate the carrier’s new frequency.

This process occurs for every sample calculated.

5.3 gamma

All sound synthesis is done through gammaﬂ a library written by Lance Putnam
at MAT [I6]. In this implementation, wavetable synthesis is achieved by using

the Sweep< > oscillator to scan the current wavetable.

LNote for programmers: gamma does not include a reference on how to compile it for
iOS. When gamma is compiled, it relies on other libraries being present, along with some
OS-specific files. To compile gamma for i0S, I removed FFT-related .cpp files (which require
the FFTW library), File.cpp and SoundFile.cpp (which rely on the presence of libsndfile),
Recorder.cpp and AudiolO.cpp (which rely on PortAudio), and Conversion.cpp and Print.cpp
(which I removed to conserve space). The main Objective C file that imports gamma must be
renamed to *.mm (where * is the file’s name). “.mm” signals to the compiler that an Objective
C file will reference a C++ file.

24

6 Programming Challenges

6.1 Constraining Values

One of the harder design decisions was adding constraints to the coefficient
values of each attractor. DrawJong wasn’t intended to be a completely scientific
tool, but I wanted to make sure that each attractor was fairly represented. In
the case of the Rossler and Lorenz attractors, the constraints were chosen to
maintain the classic figure of each attractor and avoid values that force the
attractor towards infinity. In the case of the Duffing attractor, a balance had
to be struck between visual variability and avoiding infinite values. The infinite
values still appear, but are infrequent compared to other sets of constraints.
The De Jong and Clifford values were chosen based on the diminishing re-
turns of larger and larger values. As you can see in the following images, in-
creasing coefficients past certain values will only create minor variations of an

attractor, instead of providing unpredictable and new images.

25

Fig.
Fig.
Fig.
Fig.

Fig.

6.1.1:

6.1.2:

6.1.3:

6.1.4:

6.1.5:

Coefficients
Coefficients
Coefficients
Coefficients

Coefficients

(Left to Right)

a =-0.918, b = -3.340,
a = 1.449, b = -3.340,
a = 2.695, b — -3.340,
a = 3.617, b = -3.340,

a = 4.215, b = -3.340,

26

¢ = 2.409, d = -0.020
¢ = 2.409, d = -0.020
¢ = 2.409, d = -0.020
¢ = 2.409, d = -0.020

¢ = 2.409, d = -0.020

6.2 The Scaling Algorithm

One of the greatest hurdles in bringing multiple attractors into DrawJong was
designing an efficient scaling algorithm for the wavetables. Scaling wavetables
for only the De Jong attractor was easy. As the De Jong equation’s coordinates
never exceed -2 or 2, all wavetable values were simply 1/2 of the coordinate
values..

However, consider the Clifford Attractor. Because the coefficients exist out-
side of the sine and cosine functions, the coordinates have the potential to be
as large as the largest ¢ or d coefficient. In the case of DrawJong restricting
the maximum/minimum values of these two coefficients, the Clifford Attrac-
tor’s bounds are at -6 and 6. The possibility exists just to take a sixth of every
wavetable value, but this creates difficulties when considering future expansion.
If the maximum/minimum restrictions were to change, the “magic number” for
scaling would need to change as well. This doesn’t even factor in the other three
attractors, which are much harder to predict.

With all of this in mind, the decision was made to quickly scan the wavetable
for its greatest value, and scale both the image and the waveform by one divided
by that value. To prevent any weird, sudden scaling issues, a large number based
on the current attractor is provided to this method (For example, in the case of
the Clifford Attractor, the number is given as one plus the maximum coefficient
restriction). If a value larger than this preset number is found, it becomes the
new preset number until a new attractor is loaded.

Now, this may seem to be mathematically unfaithful to the equations. In
terms of the overall usage experience, though, the scaling algorithm is barely
noticed. If the scaling preset is actually exceeded, previous settings may seem
“zoomed out,” but this can be fixed by zooming the OpenGL camera back in
on the attractor. No severe volume gain losses have been detected. If it seems
much less efficient than the previous method, in reality it isn’t, as the previous
method occurred at audio rate, while this method occurs at video rate (more
on this in the next section). Furthermore, the constant is only generated once
for the De Jong (2) and Clifford attractors.

Aside from this minor drawback, this scaling method creates the benefit
of maximum expandability for future DrawJong updates. DrawJong can, from
now on, receive more unbounded attractors or coefficient bounding changes, and

the scaling algorithm will not require another rewrite.

27

6.3 Audio Rate vs. Video Rate

DrawlJong contains two separate callback methods—one for audio, and one for
video. The audio callback implements Apple’s AudioUnit technology and runs
at the device’s sampling rate (44.1 kHz). The video callback runs on OpenGLES
and runs at however many frames the video card can render per second. This
is an important distinction, as the audio callback runs at a higher priority, and
never changes speed. Video slowdown does not greatly affect the user experience
in the way that an audio slowdown would.

The audio callback contains the fewest instructions possible. gamma’s Sweep< >
oscillator checks the current wavetables in memory and saves their values as
temporary variables. These variables are used for calculating any frequency
modulation that will occur (Calling upon the Sweep< > oscillator for this in-
formation would force it to jump to the next sample). After these calculations,
the current samples are sent to be played through the speaker.

The video callback contains almost every other important real-time update
in DrawJong. In this method, the attractor is calculated, checked for extreme
values (infinity, NaN, and numbers outside of the expected range of the attrac-
tor), and scaled. From this large array of calculations, two wavetable arrays are
created. During the video callback, the program also checks for OSC updates
and gesture inputs. These input changes are then used for the next rendered

frame.

6.4 Vertex Arrays

The very first iteration of DrawJong used an inefficient for-loop rendering method
known to OpenGL programmers as “Immediate Mode”. In this method, indi-
vidual instructions are sent one-by-one to the video card. In the case of an
attractor being displayed with 50,000 points, this would result in 50,000 sepa-
rate GL_POINTSs being sent to the video card for every single frame. In pursuit
of the goal of real-time attractors with many points, I required a new rendering
method.

At the suggestion of Angus Forbes, an upgraded Vertex Array-based method
was implemented. In this method, instead of sending thousands of individual
instructions to the video card, an array to be rendered is passed. Each point
that is being rendered is in the array as a set of two numbers: x-coordinate and

y-coordinate (and in the case of the 3D-attractors, a z-coordinate).

28

The benefits of this method are large. In the original DrawJong, approxi-
mately 25,000 points could be rendered before frames were skipped. With the
vertex arrays in place, about 100,000 points could be rendered smoothly. In ad-
dition to this, it saves many lines of code. DrawJong’s “Line Mode” renders the
attractors as more solid figures by connecting points in order. To achieve this
in the point-by-point rendering method, a separate for-loop had to be written
that connected points in order. With Vertex Arrays, OpenGLES only needs the
flag GL _LINES to achieve the exact same effect.

Because of this, many other rendering primitives were experimented with,
including triangles, circles, planes, and more. In the interest of aesthetics, only
Line Mode and Point Mode were kept. The other shapes ended up completely
obscuring the shape of the attractors, and more or less appeared as formless
blobs.

After Vertex Arrays were implemented for the attractor rendering, they
ended up in every aspect of visual rendering, including the on-screen wavetables

and the wavetable selection boxes.

6.5 Separating 2D and 3D Methods

DrawJong’s code underwent a complete rewrite and modularization during the
upgrade to 2.0. Before 2.0, DrawJong only supported the De Jong attractor.
As such, the methods for calculating the equation were built into the rendering
methods. There was a simple Boolean check to decide whether to use De Jong
or Clifford equations, but this Boolean did not have user access in DrawJong
1.0, as a proper scaling method for the Clifford Attractor had not been worked
out yet.

The De Jong and Clifford attractors were split into two new .c and .h files
each. It is important to state that these are not new C++ classes, but just
regular C files that contain different methods for each attractor.

After the original two attractors were successfully working within the new
structure, all Boolean checks were replaced with a switch, and the Henon Map
was added. As described in Section 2.6, this map was removed from DrawJong.
The Duffing Attractor then replaced it.

At this point, the Rossler and Lorenz equations were the two most famous
chaotic attractors not present in DrawJong. To finally accommodate them,
the main rendering method was split into three methods: a two-dimensional

renderer, a three dimension renderer, and one method with common instruc-

29

tions shared by both methods. At this point in time, adding new attractors
to DrawJong consists of creating a file with a method containing the attrac-
tor’s equations, and telling DrawJong whether to use the two-dimensional or

three-dimensional method.

6.6 C, C++, and Objective C

DrawJong was written using a blend of C, Objective C, and C++. All mem-
ory management, interface loading, and general iOS programming is done in
Objective C. The common attractor rendering methods are written in C, while
gamma and OSCPack are written in C++.

6.7 OSC Support

OSC was added in the third major patch to DrawJong, and it also represented
the single biggest roadblock in the development process. Liblo was initially
selected as DrawJong’s OSC library, as it is written in C, and can be added
to projects very easily. However, Liblo’s licensing scheme prevents commercial
works from using it unless access is provided to the .a files for end-user editing.
This creates a major conflict on iOS devices where users cannot edit internal
files, as there’s no user-accessible file system to begin with. To complicate
matters, many programmers have worked on Liblo, and every single programmer
has differing opinions on using Liblo on iOS devices, ranging from laissez-faire
to full-on hatred of Apple’s policies.

After a few days of waiting for solid permission on using Liblo, I made the
decision to switch to OSCPack, a C++ library by Ross Bencina.

The final DrawJong OSC implementation considers the many different mes-
sage standards sent from different pieces of software and hardware. A Lemur,
for instance, has a multislider object that sends to one address (i.e. /slider),
but appends the number of each slider onto the address, so the first slider sends
to /slider/1. Max/MSP, meanwhile, can send an entire list of variables to one
address. DrawJong is capable of receiving messages structured in both ways at
the same time. For instance, for the four coefficients, messages can be received
either in a list format at “/coefficients” or on an individual variable basis to */co-
efficients/1,” “/coefficients/2,” etc. (which are the standard address suffixes on a
Lemur). There is also the option to send on “/coefficients/a,” ¢/coefficients/b,”

etc.

30

6.8 OS X Port and Translab Installation

In November 2011, at the behest of Marcos Novak, I ported DrawJong to OS X
as a native Cocoa application. This was primarily done to turn DrawJong into
an installation inside the TransLab environment at MAT.

For the most part, the port was straightforward. OpenGLES needed to
be stripped out and replaced with OpenGL, and the AudioUnit portion of the
sound output methods was replaced by PortAudio.

The purpose of the installation in the Translab shifts DrawJong towards a
more tangible environment. In this environment, a user holds a sensor that
tracks seven quantities: x, y, and z positions along with a four-dimensional
quaternion. As the user walks through the room and manipulates the sensor,
he manipulates a chaotic attractor in space. Rotating the sensor rotates the
attractor, while walking through the room moves the attractor in space (For
example, if the user moves towards the right side of the screen, the attractor
moves in the same direction). Rotating the sensor also affects the coefficients of
the attractor, while position affects oscillator frequencies.

The OS X version also adds the Pickover 3D attractor, and the ability to
export 3D attractors as point cloud data. This data can then be used in other

3D modeling programs.

DrawJong OSX [sae
oot

iclents

2 [6a | 128 256 | 512 | 1028 | 208

1 [None! x> | x|

Fig. 6.8.1: The main DrawJong OS X interface

31

7 Release and Future

7.1 Release and Updates

DrawJong was released on the Apple App Store on May 13th, 2011. It proved
to be successful, and peaked at #23 in US iPad music sales. During this period,
popular electronic artist Richard Devine tweeted about the app and praised it
on an experimental synth forum, saying “I love the interface and the sounds are
wicked”. After a week of high sales, it settled into a period of consistent daily
sales of five to ten apps.

The first major update (1.1) was released two weeks later. This update
provided support for iPhone and iPod Touch, and also added a new rendering
mode that constantly animated points on screen. The second major update
(1.2) added gesture controls. With this, the user no longer had to bring up
a menu to change the coeflicients of the figure. The third major update (1.3)
added full OSC support.

On November 9th, 2011, DrawJong 2.0 was released. In this version, DrawJong
received four additional attractors (Clifford, Duffing, Lorenz, and Rossler). In

addition to this, many long-standing efficiency bugs were fixed.

7.2 Future Plans

DrawJong’s OS X version will ultimately be wrapped as both a VST [21] and an
Audio Unit []. After this, new attractors are being considered. Further down
the road, support for LFOs may be added, so that a user can create an evolving
sound without relying on Animation Mode or OSC. CoreMIDI support is also
being looked into. Some users have requested support for envelopes, but I feel
that this isn’t in line with the rest of DrawJong, which encourages constant
sound and manipulation.

A large visual update planned for later will contain support for pixel shaders.
These will add a lot of pleasant visual effects like multi-color attractors.

Outside of additions to DrawJong, I have been able to show that rendering
tens of thousands of chaotic points both visually and sonically is computationally
feasible. Knowing this, it seems like generating much smaller wavetables (32-
1,024 points) for oscillators would be a great way to expand other applications.
A more traditional synthesizer could use these chaotic wavetables for LFOs to
create varied modulations, or for audio-rate oscillators to create radical FM

tones.

32

8 Conclusions

In sum, I feel that DrawJong was a success. From an objective standpoint, it
meets my original goal of creating a real-time rendering environment of chaotic
oscillators. As an audio synthesizer, it meets my goals partway. On one hand,
it is capable of creating a wide variety of tones and timbres in a very intuitive
manner. On the other, it still lacks many common features like envelopes, LFOs,
and a keyboard. While these lacks were part of the design of the program, I know
that they can be implemented into a different program with a different focus
without compromising the unique sound capabilities. As stated in the previous
section, these wavetables could be put to powerful use in an instrument designed
for more straightforward Subtractive/FM synthesis.

With all of that being said, it is the only real-time renderer of these equa-
tions that is readily available for interested artists and researchers. It is an
efficient, well-designed program that can easily take on more equations in fu-
ture expansions. I've learned more about operating systems, interface designs,
and programming languages in the year spent writing this program than in my
previous twenty-plus years of using computers. In all, it has helped me to better
understand these equations that originally seemed so esoteric while expanding
my sample library in the process, and I am happy to see how many other users

feel the same.

9 Acknowledgments

First and foremost, I would like to thank my committee: Curtis Roads (Chair),
Clarence Barlow, Marcos Novak, and Matthew Wright. They helped me to
better articulate much of my research and greatly assisted me in writing this,
my first full-length research paper.

DrawJong was inspired by Paul Bourke’s comprehensive website [6], and the
writings of Clifford Pickover, which detail many varieties of chaotic attractors in
a simple-to-understand manner. Lance Putnam deserves credit for his powerful
audio library, gamma (not to mention his patience with putting up with my
questions). Many thanks to Ross Bencina, who not only created an excellent
library with OSCPack, but also released it entirely for free. I'd like to thank
the teachers who gave me the tools I needed to create DrawJong, including
Charlie Roberts, who taught me iOS programming, Angus Forbes, who taught
me OpenGL, and Matthew Wright and Ryan McGee, who taught me the dark

33

art of audio programming.

References

[1] Nodebox: Peter de Jong attractors.

[2] Open Processing: de Jong Attractor.
http://www.openprocessing.org/visuals/?visuallD=2097.

[3] Wolfram Demonstrations Project: Peter de Jong attractors.

http://demonstrations.wolfram.com/PeterDeJongAttractors/.
[4] Apple. The Audio Unit. http://developer.apple.com/library/mac/.
[5] Paul Bourke. Duffing attractor. http://paulbourke.net/fractals/duffing/.
[6] Paul Bourke. Homepage of Paul Bourke. http://paulbourke.net/fractals;/.

[7] Georg Duffing. Erzwungene schwingungen bei veranderlicher eigenfrequenz.
F. Vieweg u. Sohn, 1918.

[8] Mark Havryliv. Composing with chaotic oscillators. NIME, 2010.

[9] Michel Henon. A two-dimensional mapping with a strange attractor. Com-
munications in Mathematical Physics, 50:69-77, 1976.

[10] Edward Lorenz. Deterministic nonperiodic flow. Journal of the Atmo-
spheric Sciences, 20(2):130-141, March 1963.

[11] Sergio Luque. The Stochastic Synthesis of Iannis Xenakis. Leonardo Music
Journal, 19:77-84, 2009.

[12] Eduardo Reck Miranda. Granular synthesis of sounds by means of a cellular
automaton. Leonardo Music Journal, 28(4):297-300, 1995.

[13] Native Instruments. The Future of Sound: 15 Years of Native Instruments.
2011.

[14] Clifford Pickover. Chaos in Wonderland: Visual Adventures in a Fractal
World. St. Martin’s Press, 1994.

[15] Clifford Pickover. The Pattern Book: Fractals, Art, and Nature. World
Scientific Publishing Company, Hackensack, NJ, 1995.

34

[16]
[17]
[18]

[19]

[20]

[21]
[22]

[23]

Lance Putnam. gamma. http://mat.ucsb.edu/gamma/, 2011.
Curtis Roads. Personal communication.
Curtis Roads. The Computer Music Tutorial. MIT Press, 1996.

Otto Rossler. An equation for continuous chaos. Physics Letters A,
57(5):397-398, 1976.

J.C. Sprott. Automatic generation of strange attractors. Chaos and Frac-

tals: A Computer Graphical Journey, pages 53-60, 1998.
Steinberg. Our Technologies. http://www.steinberg.net/en/company /technologies.html.
Tan Stewart. The lorenz attractor exists. Nature, 2000.

Vanderbilt. Fractals and the Fractal Dimension.

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos /workshop /Fractals.html.

35

	Introduction and Goals
	Aesthetic Goals

	Chaotic Attractors
	A Brief Introduction to Chaotic Attractors
	Attractors
	Chaos
	Strange Attractors and the Hausdorff Dimension

	De Jong
	Clifford
	Duffing
	Lorenz
	Rossler
	Pickover 3D
	Henon Map
	Prior Work

	User Interface
	Main Screen
	Buttons and Menus
	Gesture Control

	Visuals
	Rendering
	Line Mode
	Animated Mode

	Saving Images

	Sound
	Wavetable Synthesis
	FM Synthesis
	gamma

	Programming Challenges
	Constraining Values
	The Scaling Algorithm
	Audio Rate vs. Video Rate
	Vertex Arrays
	Separating 2D and 3D Methods
	C, C++, and Objective C
	OSC Support
	OS X Port and Translab Installation

	Release and Future
	Release and Updates
	Future Plans

	Conclusions
	Acknowledgments

