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ABSTRACT 
      The mapping between performer input control and auditory output plays a fundamental 
role in the design of any musical instrument.  Studies have shown that the choice of mapping 
strategy has a qualitative and quantitative effect on a user's ability to explore sonic spaces and 
perform complex musical gestures.  This project aims to derive an individualized and intuitive 
mapping between input gestures and synthesis control parameters by capturing the user's input 
gestures as he/she pantomimes to synthesized audio.  This allows the user to define their gesture 
language as well as the sonic space they wish to explore.  The proposed mapping technique builds 
upon previous works that mapped input devices to gestures and psycho-acoustic information to 
synthesizer controls.  The software developed for this project facilitates this process by recording 
and pairing input gestures extracted from a Wacom Tablet to Spectral Model Synthesis (SMS) 
frames extracted from an audio file and analyzing those paired values to derive a mapping.  First, 
gestural-related features such as the current state of the Wacom Pen, derivatives of the pen's state 
and a wavelet transform of the pen's most recent states are extracted from the input gesture data.  
Second, a modified form of principal component analysis (PCA) is used to choose and emphasize 
combinations of features which display high variance, and hence high expressivity. Finally, either an 
artificial neural network (ANN) or a k nearest neighbors (KNN) algorithm is built to translate new 
combinations of gestures into SMS frames. Analysis of the proposed design shows that the act of 
pantomiming audio offers useful training data for slowly changing audio features, but produces 
prohibitively noisier data when quickly changing audio features are present within consecutive 
SMS frames.  A modified version of PCA is shown to outperform traditional PCA in this context by 
emphasizing features that show high expressive potential.  Comparatively, ANN offers a greater 
ability to explore new gesture and sonic space but fails to capture many nuances of the original 
sound due the averaging nature of ANN regression and noisiness of the training data.  KNN 
reproduces recognizable sounds from the original input audio but suffers from the inability to 
generalize beyond the original audio. 

INTRODUCTION 
 The advent of digital audio synthesis has opened many doors to and unleashed many 
constraints for the instrument designer and the musician.  Particularly, we have seen an expansion 
in both the variety of input devices and the number of parameters required to control synthesis 
engines.  Many instrument designs have attempted to map between input devices and synthesis 
engine parameters by exploiting expert knowledge of the mapping domain and/or lower 
dimensional metaphors to explore the high dimensional space often present in a synthesis engine.  
However, these designs fail to explicitly address the varied ways in which users express sonic 
gestures [7][8].  This work attempts to derive a more intuitive and individualized mapping between 
input device parameters and synthesis engine parameters by capturing a user’s interaction with a 
Wacom Tablet as he or she pantomimes to audio synthesized from a Spectral Model Synthesis (SMS) 
file.  A means to project tablet parameters into a gesture language is derived from the captured 
input parameters by treating high varying features extracted from the input device as carrying high 
expressive potential.  After the captured input device parameters are projected into the gesture 
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language space, a learning algorithm derives a translation between the gesture and individual SMS 
frames.  Once the gesture language has been defined and the translation of gestures to synthesis 
engine parameters determined, parameters from the input device are mapped to synthesis engine 
parameters in real time to provide intuitive and individualized control of a synthesis engine. 

 Previous attempts to create an intuitive mapping between an input device and a synthesis 
engine have explored a variety of strategies.  Some have exploited expert knowledge of the input 
device and synthesis engine to derive an explicit mapping between the two [15][27][32][35].  
Others express changes in a high-dimensional synthesis engine control space through lower 
dimensional metaphors [2][20].  Many turn to machine learning techniques to recognize gestures 
or map from low dimension device parameters to a high dimension synthesis engine parameters 
[2][6][17][19][33].  The work presented here differs from these previous works by recognizing that 
users intuitively control sound in varied manners.  Rather than defining an a priori gesture 
language, one is extracted as a user pantomimes to synthesized audio.  Then, after a mapping is 
learned between gestures and synthesis engine controls, the user is presented with an intuitive and 
individualized control of the synthesis engine. 

 This thesis is organized by first providing a brief history of mapping techniques and 
reviewing previous works that address the mapping of input device parameters to synthesis control 
parameters.  Second, design goals are specified in order to create an individualized and intuitive 
mapping between input device parameters and synthesis control parameters.  Third, a method to 
create a desired mapping as well as use it within a real-time synthesizer is defined.  Last, analysis of 
the proposed methodology presented and future work projected. 

A MAPPING HISTORY 
Instrument design methodology has undergone several major changes resulting from the 

freedom provided by electronic and digital synthesis.  Mapping performed in classic musical 
instruments required the designer to integrate interface, mapping and sound production into a 
single physical object.  The advent of electronic audio synthesis abstracted the interface from the 
sound producing mechanism affording the designer greater freedom.  Despite this, designers 
predominantly kept to the piano keyboard to promote a familiar interface for novel audio 
synthesizers.  Most recently, the rapid growth in digital control interfaces and synthesis engines has 
encouraged the study and experimentation of varying mapping techniques.  Here, a brief history of 
musical instrument control mapping is presented in order to provide a context for the proposed 
design. 

In order to understand the scope of the discussion at hand, it is important to assign some 
formal definitions to the word "mapping" as it is used throughout this text and many of the texts 
referenced.  We are primarily concerned with the act of interpreting real-time performance data 
from an input device and translating those interpretations into the control parameters of a 
synthesis engine as shown in Figure 1.  This act will be called "mapping" throughout this paper. 
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Figure 1 Modular Description of Instrument Using an Input Device, Mapping Algorithm and Synthesis Engine 

MAPPING IN TRADITIONAL INSTRUMENTS 
 Mapping executed in a traditional musical instrument generally combines the input device, 
control mapping and synthesis engine into a single physical object.  Their design requires a careful 
balance between the physical structure of the instrument, its sound producing mechanism, and 
control of the sound producing mechanism.  This limits the sonic space it can explore by placing 
definite boundaries originating from physical limitations.  The flute, for example, roughly divides 
the control domain into pitch, loudness, and timbre.  A mix of finger placement and airflow produce 
distinct pitches arranged along a chromatic scale.  Loudness, on the other hand, is continuously 
controlled by the strength of the performer's breath, allowing the loudness to swell and diminish 
smoothly.  Lastly, timbre is given only slight control by altering the embouchure.  If we consider a 
flute in the context of an input device, mapping, and synthesis engine, we find that they are all 
combined into a single object.  Hence, it is impossible to independently alter the input interface, 
mapping or synthesis engine.  There are, however, several exceptions to this rule.  The piano 
provides a good example of a classical instrument whose user interface has little to do with 
producing sound other than that it transfers energy from the musician’s fingers unto hammers 
which strike the strings.  The church organ expands even further in modularity by introducing a 
separate energy source to generate sound.   

MAPPING IN ELECTRONIC INSTRUMENTS 
 The design and machination of electronic musical instruments has rich history, albeit a 
short one compared to the development of many traditional musical instruments.  Reviewing their 
evolution helps us understand their effect on the current state of electronic instrument design. 

 Electronic instruments primarily began as additions and/or simulations of preexisting 
instruments.  The Electro-Mechanical Piano, built in 1867 Switzerland by Msr Hipps is one of the 
first electronic instruments built where the user interface is abstracted from the sound generating 
mechanism.  This and most of the first generation of electronic musical instruments prescribed to a 
keyboard interface which acted as a set of switches to a large circuit board.  The keyboard interface 
was easy to integrate into an electrical circuit, as it can act as a simple switch controlling the power 
delivered to a sub-circuit.  It also provided a familiar interface that could be played by anyone who 
had previously learned to play piano.  Several unique outliers amongst this first generation of 
electronic instruments are the Theremin and the Hellertion, both of which allowed for continuous 
amplitude and pitch control [3].  While the Theremin and the Hellertion both utilize unique 
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interfaces for their time, most all instruments of this time relied on a similar circuitry to provide a 
synthesis engine.  Each interface controlled either a bank of oscillators, or the pitch and volume of a 
single oscillator.   

 The proliferation of the semi-conductor in the 1970s spurred variations in both control 
interfaces and synthesis techniques.  Interfaces diverged into smaller and more portable devices, 
such as the compact PAiA OZ, while concurrently expanding into more elaborate and grandiose 
contraptions such as the Buchla Electric Music Box with its web of cables and patches.  Synthesis 
techniques also diversified and expanded by allowing multiple synthesis presets to be saved, 
additional controls to be employed and even computer screens to give textual control and feedback.   

 Following the introduction of the personal computer was a cavalcade of audio synthesis and 
compositional software.  Initially the software emerged in the form of scripting languages such as 
CSound and the Music-N series, which focused on orchestrating music rather than doing live 
compositions.  Later other products emerged such as ProTools and Audacity which allowed for 
editing, recording, and arranging of audio as one would at an audio mixing board.  As well, packages 
such as Cakewalk utilized MIDI synthesizers to create sounds from instruments connected to the 
computer.  This allowed researchers and musicians to experiment and prototype new techniques in 
audio synthesis and synthesis control.  In turn, this gave birth to strong foundation of audio 
synthesis research concerned with input devices, audio synthesis techniques, and the mapping 
between input device parameters to synthesis engine parameters. 

THE STUDY OF MAPPING 
 Mapping has evolved significantly since it first became an active study in electronic 
instrument design.  Research into our relationships with instruments and the implications mapping 
techniques have on that relationship have spurred various organizations and abstractions of the 
mapping process as well as many concrete examples of effective mapping techniques. 

IMPLICATIONS OF MAPPING 
Several works investigate the effect of mapping on real-time musical performance and how 

gestures relate to musical sounds.  They argue quantitatively or qualitatively the importance of 
proper mapping strategies, their relation to musical performance and their relation to human 
gesturing. 

 Hunt et al. argue that more complex mappings aid, rather than abate, the ability to perform 
a musical task [14].  They defended their conclusion by performing experiments where participants 
were asked to perform musical tasks.  They found that those with more complex control mappings 
outperformed their peers with simpler control mappings.  Pain reiterates this argument and also 
claims that the combination of input device and mapping must physically communicate the tasks 
they are performing if they are to be engaging during real-time performance [22].  Wessel rather 
focuses on the experience of the musician and the need for sensory-motor engagement in the 
musical experience [33].  Combined, these works claim the need to model complex mappings that 
express their intentions both to the musician and the audience through physical motions. 
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 In addition to the effects of mapping on musical performance, others have taken detailed 
looks into how humans express music gesturally and to which parts of music these gestures relate.  
Levitin et al. analyzed the expressive qualities of a musical tone, separating it into several stages so 
that different control techniques may be applied appropriately [18].  Rasamimanana et al. 
performed an in-depth view of bowing techniques and how they relate to the produced sound [23].  
Godoy et al. inspect the similarities and dissimilarities in which people pantomime audio when 
there is no instrument present [7] [8].  Their studies imply that the relation between gesture and 
sound is a complicated one which varies from sound to sound and person to person. 

ORGANIZING MAPPING PROCESS 
 Several authors formally set out to define frameworks for the creation and analysis of 
mapping strategies.  These range from introducing abstract spaces within the mapping algorithm, 
creating a framework to analyze an instrument’s qualities, and a refutation of the basic mapping 
problem formulation.  Hunt et al., in addition to arguing for complex mappings, define three spaces, 
the input device space, an abstract space, and a synthesis engine space.  By defining an abstract 
intermediary space, the input device and synthesis engine are allowed to vary independently as 
long as a mapping can be made to and from the center abstract space.  They argue that introducing 
an abstract layer allows for more complex mappings which in turn result in better performance 
[14].  Arfib et al. go one step further than the previous authors by describing four separate spaces 
that must be mapped [1].  Naturally, the first space is an input device parameter space.  It is 
followed by a gestural-perceptual space, then by a sonic-perceptual space, and finally a synthesis 
model space.  The authors argue that they have improved the previous design using only a single 
space by introducing more modularity to their design and defining what roles each space should 
play.  Rather than defining a design space Overholt specifically targets the analysis of digital 
instruments, providing a framework to analyze the mapping strategy [21].  Much of the previous 
three works is challenged by Van Nort.  He attempts to refute the framework of gesture to mapping 
to control as the a priori model for synthesis design.  As an example he suggests that for certain 
designs, it is more applicable to consider human notions of sonic gesture and the perception of 
human intentionality in sound.  This work dives much more deeply into human considerations and 
largely utilizes a phenomenological model of instrument design. 

EXPLICIT MAPPING 
 Explicit mapping requires the intervention of a designer to explicitly choose how to map 
each input device parameter to each synthesis engine controls.  Several authors have built 
prototypes and provided tools to facilitate this process.  Steiner provides users of the audio 
synthesis platform PD with a wide range of linear, non-linear, many-to-one and one-to-many 
mappings so that they may build their mappings from scratch [27].  Van Nort et al. use a Wacom 
Tablet to map to higher dimensional control structures by warping the control space as well as 
allowing parallel and meta control of the mapping layer [29].  Momeni et al. attempt to provide an 
intuitive mapping from a low dimensional controller to a high dimensional synthesis engine by 
using geometric models.  They explore the use of Gaussian kernels to aid users in understanding the 
interpolation of points in a high dimensional synthesis control space [20].   



   

GENERATIVE MAPPING 
Generative techniques have been applied to several different stages of the mapping process 

either as a means to intuitively navigate a high dimensional control space, translate input device 
parameters into control gestures, or to map between high level audio descriptors and synthesis 
engine controls.  Each uses some form of training data and machine learning algorithm to 
determine a mapping.  A large number of authors have presented works built upon machine 
learning algorithms.  They utilize them to perform a wide variety of functions from building 
controllers to extracting manifolds.  Notably, Modler uses artificial neural networks to translate 
data-glove controls to sound control gestures [19]. Wessel et al. train artificial neural networks and 
k nearest neighbors algorithms with high level sonic descriptors, such as loudness and pitch, to 
recreate additive synthesis controls for several wind instrument synthesizers and a voice 
synthesizer [31].  Wessel uses artificial neural networks again to derive a forward model of control 
mechanisms.  His design utilizes perceptual distance metrics to calculate errors between the 
desired output and the perceived output.  These errors update a neural network forward model and 
controller [33].  A more novel machine learning algorithm is utilized by Choi et. al. to create paths 
within high dimensional spaces.  They use a generative algorithm to create manifolds so that paths 
between two sets of high dimensional control data can be intuitively traveled and explored [2]. 

DESIGN GOALS 
Studies exploring the varying gestures used by individuals to express abstract sonic 

gestures upon a non-musical interface support the need for individualized and intuitive control of 
synthesis engines [7][8].  As well, the control of synthesis engines with high dimensional control 
spaces make it difficult to provide intuitive control using explicit mapping techniques.  In an 
attempt to solve this problem we aim to extract an intuitive and individualized mapping between a 
Wacom Tablet and SMS parameters by capturing and analyzing pantomimed controls to audio 
synthesized from a script of synthesis control parameters. 

DESIGN AND IMPLEMENTATION 
 The design and implementation of a synthesizer offering individualized and intuitive 
control between a Wacom Tablet and SMS synthesizer requires several discrete components.  These 
are presented here in a chronological manner reflecting the steps a user would take to use the 
proposed system and the order in which Wacom Tablet parameters are translated into SMS frames 
as shown in Figure 2.  First, we briefly introduce the Wacom Tablet, Spectral Model Synthesis, and 
the software developed to implement the proposed solution.  Second, we present a method for 
capturing and pairing Wacom Tablet parameters and SMS frames by allowing the user to 
pantomime to synthesized audio.  Third, we define a gesture language and a means to extract 
gestures from a series of Wacom Tablet parameters by assigning greater significance to features 
from the Wacom Tablet parameters that displayed high expressive potential.  Fourth, two methods 
are proposed, k nearest neighbors (KNN) and artificial neural networks (ANN), to learn a mapping 
between extracted gestures and SMS frames.  Finally, we present a completed instrument including 
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the aforementioned gesture extraction and gesture to SMS frame mapping algorithm, as well as a 
method for smoothing the information in consecutive SMS frames.   

 

Figure 2 Entire Process of Capturing Pantomimes and Building an Individualized Intuitive Map 

WACOM TABLET 
 The Wacom Tablet is a practical input device.  While obviously intended for drawing, it was 
chosen because it has proven itself an instrument capable of musical expression, yet not tied down 
to any particular synthesis engine or mapping [35].  Additionally, since it lacks a resemblance to 
any analog instruments, it implores varied modes of musical interaction from user to user.  Six 
parameters are captured from the Wacom Tablet, the pen’s X position, Y position, Z position, tip 
pressure, tilt in the X direction and tilt in the Y direction as shown in Figure 3. 
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Figure 3 Parameters Captured From the Wacom Tablet 

 

SPECTRAL MODEL SYNTHESIS 
 Spectral Model Synthesis (SMS) offers an equally flexible synthesis engine.  Its control 
parameters take the form of sinusoidal amplitudes, sinusoidal frequencies and noise coefficients 
[28].  At any moment in time, these parameters have minimal correlation to the perceived qualities 
of the sound they produce.  Rather, the gestalt of the synthesized audio emerges from the collective 
qualities in a series of control parameters presented to the synthesizer over time.  Each set of 
sinusoidal and noise coefficients is referred to as a SMS frame as shown in Figure 4.  SMS has an 
advantage over many other synthesis engines because it is companioned with an analysis engine 
that generates SMS parameters from audio wave files.  The SMS file resulting from the audio 
analysis can be used as a script of synthesis parameters.  Thus, a script of synthesis control 
parameters can be derived from any prerecorded sound.  Throughout this text the terms SMS file 
and SMS script will be used interchangeably to refer to the same collection of consecutive SMS 
frames generated from the SMS analysis engine. 
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Figure 4 Spectral Model Synthesis Frame 

 

SOFTWARE 
 The Intui-Synth software, shown in Figure 5, provides a simple environment where users 
can load SMS files, practice pantomiming to a synthesized SMS file and capture their pantomimed 
motion as the file is played back.  Additionally, it projects the instantaneous parameters of the 
Wacom Tablet onto a canvas so that users may receive visual feedback on the controls they input.  
The software also implements the algorithm described in the following sections of this paper and 
allows for playback of synthesized audio. 
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Figure 5 Intui-Synth Software 

PANTOMIME, CAPTURE AND PAIR 
 The later components of this mapping algorithm rely on accurate pairing of input device 
parameters and synthesis engine parameters to deduce an effective mapping between the two.  
Achieving this pairing is by no means a trivial task.  Inaccuracies in pairing primarily result from 
temporal inaccuracy and a user’s unfamiliarity with the synthesis script.  A stop-light starting 
signal, visual feedback of input device control parameters, and a means to preview the synthesized 
SMS frames abate these errors by preparing the user before their pantomime is captured.   

 Gathering pairs of input device parameters and synthesis engine parameters requires the 
user to have advanced knowledge of the sounds they will pantomime.  Therefore, the software 
allows the user to preview the audio derived from the SMS file and receive visual feedback on the 
input controls produced while they pantomime.  The visual feedback consists of a trail of slowly 
fading dots upon a white canvas on the computer screen.  These dots encapsulate all of the 
parameters captured from the Wacom Tablet.  The X and Y parameters correspond to the position 
of the dot, the pen-tip pressure and Z parameters are related through hue, and the X-tilt and Y-tilt 
parameters control the size of the dot as shown in Figure 6.  The most saturated dot represents the 
most recent set of parameters while dots created from past sets of parameters fade closer to white 
with the onset of each new set of parameters. 
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Figure 6 Visual Feedback of Pen Parameters 

 The first software prototype began capturing Wacom Tablet parameters and synthesizing 
the SMS file immediately after the user clicked the record button.  Initial tests of this method 
uncovered a need for a feedback method to prepare the user for the beginning of playback.  
Introducing a stop-light metaphor relieved this issue.  When the user clicks the record button a 
large circle displays on screen and changes from red, to yellow to green in one second intervals.  
After the green circle displays for one second, it disappears from the screen and audio playback 
begins. 

 Finally, to create a set of tablet parameters paired to SMS frames, sets of parameters from 
the tablet are captured and time-stamped as the user pantomimes to the synthesized audio.  The 
tablet parameters are then paired to the SMS frame by comparing the time stamp of the tablet 
parameters to the time within the script an SMS frame occurred.  Those with the least amount of 
time difference are matched together.  From here on, the act of pressing record and pantomiming 
once to a single SMS script will be described as a pantomime performance.  The collection of 
pantomiming performances done on a single SMS script will be referred to as a pantomime session. 

GESTURE LANGUAGE EXTRACTION AND TRANSFORMATION 
 Given the opportunity to pantomime to a script of SMS frames, each user will assuredly 
perform different gestures to the same synthesized audio.  Additionally, one would expect widely 
differing gestures for a single user pantomiming to different SMS scripts [7][8].  These gestures 
reflect the way in which a user would intuitively control the sound if they were producing it, rather 
than merely pantomiming to it.  In order to create individualized and intuitive control of SMS 
parameters, features likely to express musical control are extracted from the captured Wacom 
Tablet parameters.  We assume that features contain a high variance amongst the set of captured 
input device parameters encapsulate a high expressive potential.  To this end, we define our gesture 
language as several linear combinations of features with high expressive potential and derive the 
gesture language using Weighted Principal Component Analysis (WPCA).  Thus, transforming the 
features calculated from the Wacom Tablet into the gesture language emphasizes features with high 
expressive potential and deemphasizes those with lower expressive potential.  It also serves a 
second purpose of reducing the dimensionality of the information used by the learning algorithms 
present in later stages of this mapping algorithm. 

FEATURE EXTRACTION 
 Extracting features from the input device parameters extends the ability of our mapping 
algorithm to encapsulate and translate gestures.  Extracted features can perform non-linear 
calculations that reflect the way in which a performer may interact with their instrument.  The goal 
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is not to extract the exact features a performer would use to express a gesture, but rather to collect 
a set of features likely to contain high expressive potential.  Attempting to extract a concise, 
relevant, immediate and descriptive set of features, the extracted features include the current state, 
velocity (first derivative),  acceleration (the second derivative) and a brief history (wavelet 
coefficients) of the Wacom Tablet parameters.   

 For the sake of mathematical clarity, throughout this paper scalar values are denoted by a 
lower case italicized variable such as x.  A lower case bolded variable such as y refers to either a 
row or column vector and an uppercase bolded variable such as Z defines a matrix.  Subscripts 
generally describe the position of an element within a vector or matrix, though at times they may 
denote a modified version of a vector or matrix.  Arguments within square brackets, such as j in f[j], 
should be read as, “the element at position j in vector f.” 

 We define the parameters capture from the Wacom Tablet in the following manner, 

𝑥𝑥1(𝑛𝑛) = 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑛𝑛 𝑎𝑎𝑝𝑝 𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 𝑛𝑛, 
𝑥𝑥2(𝑛𝑛) = 𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑛𝑛 𝑎𝑎𝑝𝑝 𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 𝑛𝑛, 
𝑥𝑥3(𝑛𝑛) = 𝑧𝑧 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑛𝑛 𝑎𝑎𝑝𝑝 𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 𝑛𝑛, 
𝑥𝑥4(𝑛𝑛) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑝𝑝 𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 𝑛𝑛, 
𝑥𝑥5(𝑛𝑛) = 𝑥𝑥 𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑛𝑛 𝑎𝑎𝑝𝑝 𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 𝑛𝑛, 
𝑥𝑥6(𝑛𝑛) = 𝑦𝑦 𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑝𝑝𝑛𝑛 𝑎𝑎𝑝𝑝 𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 𝑛𝑛, 
𝑝𝑝(𝑛𝑛) =  𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 𝑜𝑜𝑝𝑝𝑝𝑝𝑠𝑠 𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑏𝑏 𝑝𝑝𝑜𝑜 𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦𝑏𝑏𝑎𝑎𝑝𝑝𝑝𝑝 𝑎𝑎𝑝𝑝 𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 𝑛𝑛. 

Here, n is used to denote the order in which Wacom Tablet parameters are captured.  Therefore, n = 
0 denotes the first set of parameters received, n = 1 the second set, n = 3 the third, and so on. 

 Before extracting features from the Wacom Tablet parameters, they are arranged in the 
column vector 

𝐱𝐱(n) =  [𝑥𝑥1(n),𝑥𝑥2(n), … 𝑥𝑥6(n)]′ . 

The first and second derivatives of each individual parameter are approximated by first- and 
second-order differences as follows 

𝑥𝑥𝑝𝑝′(n) = �
𝑥𝑥𝑝𝑝(n) −  𝑥𝑥𝑝𝑝(n − 1)

t(n) − t(n − 1) � 

𝑥𝑥𝑝𝑝′′ (n) = �
𝑥𝑥𝑝𝑝′(n) −  𝑥𝑥𝑝𝑝′(n − 1)

t(n) −  t(n − 1) � . 

To calculate the wavelet transform for each sample n and each Wacom Tablet parameter xi, the past 
N values of a particular parameter xi is place in a vector ai(n). 

𝐚𝐚i(n) = [𝑥𝑥𝑝𝑝(n), 𝑥𝑥𝑝𝑝(n − 1), … 𝑥𝑥𝑝𝑝(n − N + 1)]′ for N = 2j, j = [1,2,3 … ) 

Here, N is variable and chosen by the user, but must be a power of 2.  If N=0, then no wavelet 
transform is computed.  The output of the wavelet transform is captured in the row vector 
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𝐝𝐝i(n) = [𝑎𝑎𝑝𝑝1,𝑎𝑎𝑝𝑝2, …𝑎𝑎𝑝𝑝𝑁𝑁] for N = 2j, j = [1,2,3 … ), 

and calculated using the discrete wavelet transform 

𝐝𝐝i(n) = DWT{𝐚𝐚i(n)}. 

The intention of the wavelet transform is to capture characteristics of a parameter over time.  Once 
might assume that this could be achieved simply by ai(n) since both contain the same type of 
information.  Unfortunately, ai(n) conflicts with latter gesture language extraction stage.  As a 
feature, wavelet coefficients were chosen over a simple delay line because they offer a more sparse 
representation of the time dependent data.  As well, by transforming a delay line of a single 
parameter using the discrete wavelet transform, the information within the delay line is 
decorrelated from the current value of the parameter.  This decorrelation is important for the 
gesture language extraction which views highly correlated values as expressing the same gesture. 
While an in-depth discussion of the discrete wavelet transform is beyond the scope of this text, it 
should be noted that the Harr wavelet was used to perform the discrete wavelet transform. 

 The features for a single Wacom Tablet parameter are placed within the row vector 

𝐟𝐟i(n) = [𝑥𝑥𝑝𝑝(n), 𝑥𝑥𝑝𝑝′(n), 𝑥𝑥𝑝𝑝′′ (n),𝐝𝐝i(n)], 

and the features from all the Wacom Tablet parameters are collected into the feature column vector 

 𝐟𝐟(n) =  [𝐟𝐟1(n), 𝐟𝐟2(n), … 𝐟𝐟6(n)]′. (1) 
 

Supposing that M samples of the Wacom Tablet parameters were collected for a single pantomime 
performance, the entire feature matrix can be described as 

𝐅𝐅𝑝𝑝 = [𝐟𝐟(n), 𝐟𝐟(n − 1), … 𝐟𝐟(n − M + 1)]. 

Here, the subscript k describes the features collected for a particular pantomiming performance.  
That is, the user may choose to record several pantomiming performances using the same SMS 
script in order to provide additional data for the gesture language and gesture to SMS frame 
mapping stages of the algorithm.  Before deriving the gesture language, feature matrices from all 
pantomime performances within the pantomime session are collated end to end in the session 
feature matrix 

 𝚪𝚪 = [𝐅𝐅1,𝐅𝐅2, …𝐅𝐅L], (2) 
for L pantomime performances. 

GESTURE LANGUAGE 
 We aim to determine a gesture language that encapsulates the features that show high 
potential expressivity for a particular user, as well as a means to transform the features extracted 
from the Wacom Tablet into the gesture language in a real-time fashion.  We make the assumption 
that features that show high variance during the pantomiming session posses a high potential for 
expressivity.  This assumption is backed by previous work showing that users pantomiming to 
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music correlate energetic motion with musical control [8][33].  As well, we assume that features 
with a high correlation have similar gestural meaning.  Given these inferences and requirements, 
Principal Component Analysis (PCA) provides a means to determine a transformation to a gesture 
language of N continuous values where the first value contains the most expressivity, and the 
second value contains the second most expressivity, the third containing the third most 
expressivity and so on.    Additionally, we emphasize/deemphasize the values in the gesture 
language by weighting each of the N values by the respective variance associated with it.  We refer 
to the combination of PCA with the proposed weighting as Weighted Principal Component Analysis 
(WPCA). 

 As described in this paper, WPCA is primarily viewed as a means to extract a mapping to a 
gesture language from the session feature matrix.  It should be noted that PCA has a long history of 
use within the machine learning domain.  Many machine learning algorithms suffer from the curse 
of dimensionality [10].  If we imagine that a machine learning algorithm is searching an N 
dimensional space in order to learn generalizations from the given data, we can see that the volume 
it needs to search increases exponentially with each additional dimension.  PCA can be used as a 
dimensionality reduction technique, as it takes in a set of features of high dimension and projects 
them down to a lower dimension in a way that preserves the most energy of the original signal in a 
mean squared error sense.  Dimensionality reduction serves two significant purposes in our case.  
First, it reduces the volume of the search space a machine learning algorithm must look for a 
solution.  Second, it generally improves speed and memory performance in both the training and 
transduction stages of a learning algorithm.  

 While PCA is a well known and well studied method, it is presented it here to illuminate 
how it derives the transformation from a high dimensional space to a lower dimensional space, as 
well as the modifications made to traditional PCA methods to help it reflect the attributes desired in 
a gesture language transformation. 

 Using PCA we intend to derive a transformation from a feature vector to a gesture vector of 
the form 

𝐠𝐠(𝑛𝑛) = 𝐏𝐏𝐟𝐟(𝑛𝑛), 

𝐠𝐠(n) =  [𝑏𝑏1(n),𝑏𝑏2(n), … 𝑏𝑏𝑁𝑁(n)] 

Here, f(n) is the feature vector as defined in equation (1) of M dimensions, g(n) denotes our gesture 
vector of N dimensions, and P is a N by M matrix transforming f(n) into g(n) and encapsulates our 
gesture langauge.  To determine P we utilize the set of Wacom Tablet features held in session 
feature matrix Γ as described in equation (2), 

𝚪𝚪 =  [𝐲𝐲1,𝐲𝐲2, …𝐲𝐲K ], 

where K is the total number of feature vectors extracted during the pantomiming session.  First, a 
column vector containing the mean of each row in the session feature matrix is calculated by 
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𝐲𝐲� =
1
K
�𝐲𝐲i

K

i=1

 

The mean is extracted from each column in the session feature matrix, resulting in the centered 
session feature matrix 

𝚪𝚪c = 𝚪𝚪 − 𝐲𝐲� 

Using Singular Value Decomposition (SVD) we can decompose the matrix into 

 𝐔𝐔𝐔𝐔𝐕𝐕∗ = 𝚪𝚪c  (3) 
where 

𝐔𝐔 =  [𝒖𝒖1,𝒖𝒖2, …𝒖𝒖𝑀𝑀], 

𝒖𝒖𝑝𝑝 = [𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝2, … 𝑝𝑝𝑝𝑝𝑀𝑀 ]′, 

The columns of U represent orthogonal, unit length, principal components of the session feature 
matrix Γ and are ordered from most principal component to least principal component.  That is, if 
one projected Γ onto u1’ the most information would be preserved, u2’ the second most information, 
u3’ the third most information, and so on. 

 Generally PCA stops here and a transformation matrix is concocted out of the first N 
columns of U.  While this could provide a mapping between the feature vector f(n) and the gesture 
vector g(n) it would not describe the expressivity of the features other than to say the features 
projected onto P and encapsulated in g1(n) contain the most expressivity, g2(n) the next most, and 
so on.  Returning to equation (3), the output of SVD includes 

𝐔𝐔 = �
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑀𝑀

� 

where λi relates to the variance of the features projected onto ui.  Since we have defined features 
with a higher variance to contain a higher expressivity, we multiply the columns of U by their 
respective λi.  This effectively emphasizes the features containing high expressivity, and 
deemphasizes those containing low expressivity.  Finally, the transformation matrix takes the form 

𝐏𝐏 = [𝜆𝜆1𝒖𝒖1,𝜆𝜆2𝒖𝒖2, … 𝜆𝜆𝑁𝑁𝒖𝒖𝑁𝑁]𝑇𝑇  𝑜𝑜𝑝𝑝𝑝𝑝 𝑁𝑁 ≤ 𝑀𝑀, 

and is used to translate feature vectors into gesture vectors via 

 𝐠𝐠(𝑛𝑛) = 𝐏𝐏𝐟𝐟(𝑛𝑛). (4) 
 

We defined this modified version of PCA Weighted Principal Component Analysis (WPCA). 

MAPPING GESTURES TO SPECTRAL MODEL SYNTHESIS FRAMES 
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 The non-trivial relation between gesture vectors and SMS frames requires a flexible 
framework able to deduce a mapping between the two.  Previous works have used k nearest 
neighbors (KNN) and artificial neural networks (ANN) to derive a mapping between high level 
sonic descriptors, such as root frequency and loudness, and additive synthesis parameters [31].  
While gestures and high level sonic descriptors are not equivalent, the demonstrated ability of KNN 
and ANN to perform such complex mappings in real-time make them prime candidates for mapping 
gestures to SMS frames.  KNN was chosen because it can be built quickly in comparison to other 
machine learning techniques, make few assumptions about the underlying data and provides 
control over its variance and bias.  ANN was chosen for its ability to map complex relations, low 
computational complexity in the transduction stage and ability to generalize beyond the training 
data.  Additionally, KNN and ANN provide a useful contrast as they make significantly different 
assumptions about the mapping being learned.   

K NEAREST NEIGHBORS 
 K-Nearest Neighbors (KNN) techniques are an important cornerstone in machine learning 
as they rely on very few assumptions about the underlying data [10].  They work on the assumption 
that data can be arranged into a metric space, and that a new, unclassified piece of data can best be 
described by inspecting the K nearest classified data within a training set.  This property is 
extremely attractive in that it allows us to use our gesture vectors as direct predictors of the output 
SMS frame, ignoring the complex relationship between the gesture vector and the particular format 
of the SMS frame.  The relatively small amount of time it takes to build a KNN map from training 
allows for fast experimentation with varying feature extraction settings and pantomiming 
performances.  Also, in this implementation of KNN, the number of neighbors inspected, K, is easily 
varied.  Thus, the bias and variance of the KNN algorithm can be altered so that high variance/low 
bias and vice a versa situations can be inspected. 

 When mapping between gestures and SMS frames, the gesture vectors correspond to the 
locations of SMS frames within a Euclidean space.  Building the KNN algorithm requires placing the 
SMS frames within that Euclidean space based off of the gesture vectors paired to them.  When a 
new gesture vector is presented, KNN retrieves the K nearest SMS frames based upon a Euclidean 
distance metric between the presented gesture vector and the gesture vectors already present 
within the KNN space.  When K is greater than 1, the output SMS frame is derive from a weighted 
average of the K retrieved input frames.  For a further discussion of calculating the weighted 
average of several SMS frames, see the Appendix. 

ARTIFICIAL NEURAL NETWORKS 
 An Artificial Neural Network (ANN) is a machine learning model motivated by biological 
neural networks.  It consists of interconnected layers of artificial neurons.  It is utilized here 
because ANNs offer an encouraging mathematical model for inferring relationships between 
complex sets of data such as a gesture vector and a SMS frame.  While ANNs can spend a large 
amount of time in the learning phase, they are fairly quick and efficient to implement the 
transduction stage.  This bodes well for our audio application where the audio graph must be 
traversed in less than 10 milliseconds.  Depending upon the configuration of the ANN, they 
generally provide continuous transitions with continuous first derivatives.  This allows smooth 
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transitions from one SMS frame to another when the input gesture vector also contains smooth 
transitions.  This avoids unwanted abrupt transitions which would produce the false sense of an 
onset.  Unfortunately, ANN’s non-linearity results in an error surface with many local minima, 
making an optimum configuration difficult to converge upon. 

 A deep discussion of ANN is beyond the scope of this text, yet a brief introduction is 
presented here familiarize the reader with this model.  The main building block of an ANN is the 
neuron shown in Figure 7.  It consists of several inputs, weights for each of those inputs, a bias and 
a transfer function. 

 

Figure 7 A Single Neuron 

During the transduction stage, the inputs to the neuron (x1, x2, x3) are multiplied by their respective 
weights (w1, w2, w3).  Note, the number of inputs to a neuron need only be one or more, not 
necessarily three.  These values are summed, along with the neurons bias, and given to the transfer 
function.  A variety of transfer appropriate functions exist, yet the most widely used is the sigmoid 
function shown in Figure 8 

𝑜𝑜(𝑥𝑥) =  
1

1 +  𝑝𝑝−𝑥𝑥
 

 

Figure 8 The Sigmoid Function 

and the linear function 

𝑜𝑜(𝑥𝑥) =  𝑎𝑎𝑥𝑥 
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 The nature of the ANN arises out of the connection of several layers of neurons.  There are 
an infinite number of ways to arrange these neurons, but by far the most common formulation is of 
a three layer feed forward network displayed in Figure 9. 

 

Figure 9 Three Level Feed Forward Artificial Neural Network 

The number of input, hidden and output neurons may be altered based upon a user’s need.  To train 
an ANN, pairs of inputs and their desired outputs are presented to the ANN.  The predicted output 
and the desired output are compared, and the error between the two is propagated from the output 
neurons to the input neurons, updating the weights and biases of each neuron in the net.  This 
process is more commonly known as back-propagation.  Pairs of inputs and desired outputs are 
repeatedly used to update the ANN through back-propagation until it has satisfactorily converged 
to a useful collection of neuron weights and biases. 

 In this work, three feed forward ANNs attempt to map between gestures and the separate 
components of an SMS frame.  The first ANN maps between gestures and sinusoidal frequencies, the 
second between gestures and sinusoidal amplitudes, and the third between gestures and stochastic 
coefficients.  Three separate ANNs were used to help the ANN cope with the complex format of the 
SMS frame.  For instance, the sinusoidal frequencies contain an extremely sparse representation 
with few varying parameters and many zeros, while the noise coefficients are not sparse and 
contain many varying parameters.  If only one ANN were used, the ANN would be tasked with not 
only learning a mapping from a gesture vector to an SMS frame, but also the structure of the SMS 
frame.   

 The values of the individual components within the SMS frame are perceptually weighted 
before being presented to the output of the ANN in order to more closely approximate a linear scale 
of human sensitivity.  Each sinusoidal frequency is transformed 

𝑜𝑜𝑝𝑝 =  �log2 𝑜𝑜 , 20 ≥ 𝑜𝑜 ≤ 20000
4, 𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 

� 

where f denotes the frequency value within the SMS frame and fp is the value presented to the 
output of the ANN.  The sinusoidal amplitudes and stochastic coefficients weighted logarithmically 
by 
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𝑎𝑎𝑝𝑝 = �log10 𝑎𝑎 , 0.00001 ≥ 𝑎𝑎
−5, 𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 

� 

where a denotes either the sinusoidal amplitude or the stochastic coefficient within the SMS frame 
and ap is the value presented to the output of the ANN.  For both perceptual weightings, an 
equivalent inverse is used to interpret the output of the ANNs and convert them into SMS frames. 

 The ANNs are trained until a minimum mean squared error is achieved for a particular ANN, 
or the maximum number of training iterations has completed.  Both of these values can be 
controlled by the user. 

A COMPLETE INDIVIDUALIZED INTUITIVE MAPPING 
 Up to this point, the process of creating an intuitive, individualized mapping between the 
Wacom Tablet and Spectral Model Synthesis frames includes the following steps: 

1. Capture the Wacom Tablet parameters as the user pantomimes to a script of SMS frames. 
2. Derive a mapping to a gesture language by extracting possibly relevant features from the 

captured tablet parameters, performing Weighted Principal Component Analysis upon 
those features and creating a linear map from the features to gestures using the N most 
principal components weighted by the variance of the features along that component. 

3. Using pairs of input gestures and target SMS frames, train either an Artificial Neural 
Network or K Nearest Neighbor learning algorithm. 

The complete, real-time mapping between Wacom Tablet parameters to SMS frames emerges by 
logically arranging these components.  First, features from each new set of parameters from the 
Wacom Tablet are extracted just as described in the previous Feature Extraction section of this text.  
As each new set of features is calculated, they are projected into the gesture language using 
equation (4).  Then, either KNN or ANN translates the resulting gesture vector into an SMS frame.  

 Initial experiments with this design produced nearly adequate results.  For the most part, 
the mapping algorithm produced SMS frames with a satisfactory correlation to the input gestures, 
yet the coherence of the audio was negatively affected by spurious SMS frames creating unintended 
transients and onsets.  To combat this issue, an SMS frame smoothing stage receives frames from 
the output of the learning algorithm and precedes the synthesis engine.  In software, the update 
rate of the learning algorithm is tied to the refresh rate of the Wacom Tablet.  It determines a new 
SMS frame every 60th of a second.  Each of these new frames are combined with the current frame 
within the synthesis engine by taking a weighted average of the two (see Appendix) where the 
weights are based off of a smoothing factor.  The weighted average of these frames produces the 
new output SMS frame to be synthesized.  We denote the most recent SMS frame output from the 
learning algorithm as x(n), the previous SMS frame within the synthesis engine as y(n-1) and intend 
to compute the current state y(n) using a smoothing factor α. 

0 ≤ α ≤ 1 

𝐲𝐲(𝑛𝑛) = α𝐲𝐲(𝑛𝑛 − 1) + (1 − α)𝐱𝐱(𝑛𝑛) 
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Hence, when α equals zero, there is no smoothing, and when α equals one the SMS frame used by 
the synthesis engine does not change. 

RESULTS 
 Analysis of the proposed design lends itself much more to qualitative analysis rather than 
quantitative analysis because it seeks to derive an individualized mapping from pantomimes to 
synthesized audio.  The empirical equivalence between a pantomime and a sound is virtually 
impossible to extract due to the inherent subjectivity of both pantomimes and sound perception.  
Therefore, analysis is primarily focused upon the entirety of the design.  Spotlight is given to the 
performance of the design for varying types of source sounds, the performance of WPCA compared 
to traditional PCA, and a comparison between the KNN and ANN learning algorithms.   

 As a whole, the design succeeds in meeting the design goals presented earlier.  Still, 
exploring the algorithm under varying circumstances spreads light upon possible future work.  To 
this end, the algorithm is tested using a variety of SMS scripts to explore how it performs using SMS 
scripts derived from slowly changing sounds, fast percussive sounds and sounds with rapidly 
varying qualities such as a tremolo.  The effect of the weighted PCA compared to the traditional PCA 
is investigated to validate its use within the algorithm.  Additionally, a comparison between KNN 
and ANN illuminates the performance differences between the two. 

VARYING SONIC SOURCES 
 A mapping was derived using SMS scripts that originated from three separate sound 
sources.  The first script was derived from a recording of an opera singer singing four notes in 
succession.  The second script came from a recording of a growling dog.  The third script originated 
from simple kick, snare and high-hat drum loop.  Each script was pantomimed to four times and a 
mapping derived for each set of pantomime session.  The most convincing mapping came out of the 
pantomimes to the opera singer.  The mapping preserved the pitches and timbre of her voice when 
attempting to recreate the original sound.  The least convincing mapping originated from the drum 
loop.  The sounds reproduced only resembled the original sound in that a loud noise emitted from 
the speakers whenever the Wacom Tablet could sense the pen within its vicinity.  The mapping 
extracted from the dog growl pantomimes produced a mapping that allowed the user to recreate 
the timbre of a dog growl, but failed to recreate the nuanced trembling created in the dog’s throat. 

 These results bring two main points to the forefront.  First, the act of pantomiming provides 
grand gestures for control, but cannot capture fine control of quickly changing sonic features.  This 
is evident particularly in the dog growl example.  It is nearly impossible to recreate the exact 
undulations of the dog’s throat gurgling with the pen simply because the gurgles alter too quickly in 
time.  Second, the Wacom Tablet provides an interface much more suited for slower harmonic 
gestures rather than percussive gestures.  Every time the pen is lifted more than two inches above 
the tablet drawing surface, the tablet loses communication with the pen.  This makes it difficult to 
track the pen as if it was being used as a drum stick.  As well, the sampling rate of the Wacom Tablet 
(approximately 60 Hz) fails to capture the nuances of a pen striking its surface. 
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WPCA VS. TRADITIONAL PCA 
 A simple test was performed where the user pantomimed to a sinusoidal frequency slowly 
ascending and descending.  The pantomime was performed to specifically suggest that the position 
of the pen along the diagonal of the tablet surface should control the frequency of the sinusoid.  
Mappings were derived using both weighted PCA and traditional PCA methods in order assess their 
ability to emphasize the diagonal position of the pen tip as a control of frequency and deemphasize 
other gestures’ control of frequency.  Anecdotally, WPCA far outperformed traditional PCA.  While 
WPCA was robust to motions along the perpendicular diagonal and tilts in the pen, traditional PCA 
produced wild alterations in frequency as the pen was tilted in the x or y directions and as the 
pressure of the pen tip altered. 

KNN VS. ANN 
 KNN and ANN algorithms vary greatly in the manner they learn a mapping, the 
computational costs they impose and the assumptions they make about underlying models.  None-
the-less, focus is given here to their qualitative outputs rather than the manner in which they are 
implemented.  The resulting differences between KNN and ANN greatly reflect earlier results 
deduced in an experiment attempting to learn a mapping between high level sound descriptors and 
additive synthesis parameters [31].  KNN results in sounds much more closely resembling the 
original audio.  This is to be expected since KNN retains all the SMS frames used to build it.  While 
new SMS frames are extracted by a weighted average of K SMS frames, generally these neighboring 
frames are very similar to each other.  As a result the frames generated by KNN do not vary 
thematically from the original frames used to build the KNN.  ANN, on the other hand, produces SMS 
frames that can wildly fluctuation from the training SMS frames.  This has both the upside of 
allowing additional exploration of timbres and pitches, and downside of creating sounds the do not 
resemble the original sound.  Rather they resemble the underlying representation of an SMS frame 
where the collective emergence of a sonic gesture is replaced by a collection of varying sinusoids 
and noise envelopes.   

FUTURE WORK 
 The demonstrated ability to generate an individualized and intuitive mapping between 
pantomimes and sound encourages further research into this domain.  Several areas stand out. The 
use of different input devices may purport additional aspects of pantomimes and allow for a richer 
gesture language.  Extracting additional features from the input device could have similar effects 
upon the gesture language.  Lastly, mapping between gestures and high level sonic descriptors, 
rather than low level synthesis engine controls, may more accurately describe the sonic attributes 
that motivate the pantomimes resulting in a more accurate mapping. 

CONCLUSION 
 A method to extract an intuitive and individualized mapping for real-time synthesis 
between Wacom Tablet parameters and Spectral Model Synthesis frames has been described and 
implemented.  The method works by capturing tablet parameters as the user pantomimes to 
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synthesized Spectral Model Synthesis frames.  A gesture language is obtained from pairs of SMS 
frames and tablet parameters by first extracting features from the tablet parameters and then 
assigning a high expressive potential to those features displaying high variance.  Once the gesture 
language is calculated, an artificial neural network or a k nearest neighbor algorithm learns a map 
between gestures and Spectral Model Synthesis frames.  Analysis of the design shows that it works 
best for slowly varying harmonic sounds and worse for quick percussive sounds due to the inability 
of a pantomime to express quickly varying changes in the Spectral Model Synthesis frame, as well as 
the limited interface of the Wacom Tablet.  Weighted Principal Component Analysis was show to 
outperform traditional Principal Component Analysis by deemphasizing features that did not relate 
to any gestures.  Lastly, a comparison between k nearest neighbors and artificial neural networks 
concluded that k nearest neighbors offers sounds similar to the original sound used to create the 
Spectral Model Synthesis frames, while artificial neural networks create more varied frames that 
allow a larger exploration of sonic space but do not exhibit much resemblance to the original sound. 

APPENDIX 

LIST OF ACRONYMS USED 
ANN – Artificial Neural Networks 

KNN – K Nearest Neighbors 

PCA – Principal Component Analysis 

SMS – Spectral Model Synthesis 

SVD – Singular Value Decomposition 

WPCA – Weighted Principal Component Analysis 

WEIGHTED AVERAGE OF SMS FRAMES 
 The non-trivial structure of SMS frames presents a unique challenge when one attempts to 
derive a weighted sum of several SMS frames.  As well, we should attempt to combine SMS frames 
keeping in mind human’s approximately logarithmic perception of pitch and amplitude differences.  
 SMS frames contain a constant number of sinusoidal frequencies and amplitudes, but not all 
frequencies are used when synthesizing.  For instance, a frame may contain 50 sinusoidal tracks 
where the first 10 contain valid frequency values, and the remaining 40 equal zero.  If two SMS 
frames are averaged where one has 10 valid frequencies and the other has 12 we accommodate the 
varying number of valid frequencies by ignoring all frequency values equal to zero and their 
corresponding amplitudes.  Aided by the fact that all non-zero frequency values are placed in 
ascending order, we can be assured that general trends in frequency ascension are preserved.  A 
single sinusoidal trajectory can be described by  

𝑎𝑎𝑝𝑝sin(2 ∗ π ∗ 𝑜𝑜𝑝𝑝 𝑜𝑜𝑝𝑝⁄ ) 
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where ai is the amplitude of the sinusoidal track, fi its frequency and fs a constant sampling rate.  An 
SMS frame consists of two vectors  

𝐚𝐚j = [𝑎𝑎1,𝑎𝑎2, … 𝑎𝑎𝑁𝑁] 

𝐟𝐟j = [𝑜𝑜1,𝑜𝑜2, … 𝑜𝑜𝑁𝑁] 

where the subscript j denotes the SMS frame the vectors originate from and N is the number of 
sinusoidal tracks within the frame.  Given M SMS frames, with weights w1 to wm, we determine the 
weighted combination of their frequencies by 

fcount(𝑜𝑜) = �1, 𝑜𝑜 > 0
0, 𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝

� 

fweight(𝑜𝑜) = �log2 𝑜𝑜 , 𝑜𝑜 > 20
0, 𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝

� 

𝑧𝑧𝑝𝑝 =
∑ �𝑒𝑒𝑝𝑝 ∗ fweight�𝐟𝐟j[𝑝𝑝]��M

j=0

∑ �𝑒𝑒𝑝𝑝 ∗ fcount�𝐟𝐟j[𝑝𝑝]��M
j=0

 

𝐟𝐟o = [2𝑧𝑧1 , 2𝑧𝑧2 , … 2𝑧𝑧𝑁𝑁 ] 

and the amplitudes by 

aweight(𝑎𝑎) = �log10 𝑎𝑎 , 𝑎𝑎 > 0.00001
−5, 𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝

� 

𝑝𝑝𝑝𝑝 = ��𝑒𝑒𝑝𝑝 ∗ aweight�𝐚𝐚j[𝑝𝑝]��
M

j=0

 

𝐚𝐚o = [10𝑝𝑝1 , 10𝑝𝑝2 , … 10𝑝𝑝𝑁𝑁 ] 

where ao and fo are the frequencies and amplitudes of the output SMS frame.  Note that for the 
special case when fj[i] = 0 for all j, the output frequency fo[i] and amplitude ao[i] are set to zero.  As 
well, the weighted sum of stochastic coefficients is performed identically to the weighted sum of 
sinusoidal amplitudes. 
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