UNIVERSITY OF CALIFORNIA

Santa Barbara

SSUM: Signals and Systems Using MATLAB

An Effective Application for Teaching Media Signal Processing to

Artists and Engineers

A project submitted in partial satisfaction of the requirements for the degree

Master of Science in Graduate Media Arts & Technology

by

Bob L. Sturm

Committee in charge:
Professor Jerry Gibson, Chair
Professor Curtis Roads

Professor Stephen Pope

June 2004

The project of Bob L. Sturm is approved.

Dr. Curtis Roads

Dr. Stephen Pope

Dr. Jerry D. Gibson, Committee Chairperson

June 2004

SSUM: Signals and Systems Using MATLAB: An Effective Application for

Teaching Media Signal Processing to Artists and Engineers

Copyright © 2004
by Bob L. Sturm

Dedicated to Carla Marlene Townsend, soon to be Sturm!

CURRICULUM VITA OF BOB L. STURM
June 2004

Education Bachelor of Arts: Physics
1994 — 1998, University of Colorado, Boulder, CO
Master of Arts: Music, Science, and Technology
1998 — 1999, Stanford University, Stanford, CA
Master of Science: Multimedia Engineering (expected)
2002 — 2004, University of California, Santa Barbara, CA

Professional Apr 2000 — Sept 2000: Sonification Research and Development

Employment University of Limerick, Ireland
January 2001 — August 2002: Music Director/Band Conductor, Fern
Street Marching Band, San Diego
April 2001 — August 2002: Scientific Programmer/Analyst Il, Scripps
Institution of Oceanography, La Jolla
January 2003 — June 2004: Teaching assistant, Department of Physics,
and Media Arts and Technology, University of California, Santa Barbara
June 2003 — June 2004: MATLAB programmer, Dr. Jerry Gibson,
Professor of Engineering, Media Arts and Technology, University of
California, Santa Barbara

Selected "Pulse of an Ocean: Sonification of Ocean Buoy Spectral Data"
Publications Submitted for publication in Leonardo Journal of Arts and Sciences.

"Spectral Characteristics of the Musical Iced Tea Can"

Proceedings of the International Computer Music
Conference, Miami, Florida. November 2004.

"Composing for an Ensemble of Atoms: The Metamorphosis of Scientific
Experiment into Music"

Organised Sound, Vol 6, No. 2, Fall 2001. Cambridge University
Press.

Awards Second Place, Sherill C. Corwin—Metropolitan Theatres Awards for
Excellence in Composition 2003-2004 for “Pacific Pulse”:
Recordings "Music from the Ocean" CD
Composerscientistrecordings, 2002.
"100:200111 torrey pines outer buoy" (track)
Lowercase 2.0 Compilation CD, 2002. Bremsstrahlung Recordings.

"50 Particles in a Three-Dimensional Harmonic Potential: An Experiment
in 5 Movements" (track)

Organised Sound CD, Vol 7, No. 1, Spring 2002. Cambridge
University Press.

ABSTRACT

SSUM: Signals and Systems Using MATLAB: An Effective Application for

Teaching Media Signal Processing to Artists and Engineers

by

Bob L. Sturm

A problem exists in many media arts programs of how to effectively
teach students with little mathematical practice the principles of media signal
processing (MSP). For these students blackboard lectures and elementary
engineering textbooks lead to consternation and apathy; such a course can
become more of a struggling math class than anything else. This robs the
student of the unique opportunity to learn, explore and apply MSP, an
inherently multimedia field. To address this challenge, | have created a large
set of exploratory demonstrations and applications programmed in MATLAB
to teach principles and applications of MSP using multimedia. “Signals and
Systems Using MATLAB (SSUM),” can supplement any course concerned
with these topics. It provides an effective way to illustrate the essential
concepts. SSUM is presented here, and its use in a course designed to teach
MSP to media arts students is discussed. SSUM can be obtained for free

from http://www.mat.ucsb.edu/~b.sturm.

Vi

List of Abbreviations

201A
CBE
DSP
FIR
GUI
GUIDE
IR
LPC
MAD
MAT
MSP
SSUM
STFT
UCSB

MAT course: media signal processing using MATLAB
computer-based education

digital signal processing

finite impulse response

graphical user interface

graphical user interface development environment
infinite impulse response

linear predictive coding

MATLAB Auditory Demonstrations

Graduate Program in Media Arts and Technology
media signal processing

Signals and Systems Using MATLAB

short-time Fourier transform

University of California, Santa Barbara

Vii

Table of Contents

o & 0N =

© © N o

INtrOAUCHION .. 1
Choice of MATLAB as the development software.............ccccccccooe.. 5
SSUM: Signals and Systems Using MATLABuuiiiiiiiiiiininnnes 11
Developing SSUM ... 29
SSUM and Teaching Media Signal Processing.............cccccuvuvueennes 33
201A: Media Signal Processing with MATLABcccooeeeeee. 35
ReaCHONS ... 37

DT ETod U 1] o o 1R 40
(7] o o3 U1 T o S 43
ACKNOWIEAgMENTS ... 44
ReferenCes..... ... e 45
Appendix A: List of SSUM Applications.........cccooeeveeiiiiiiiiiineieeeeeees 49
SSUM Main GUIcooiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 49
Additive Synthesis Forest..........coooooiiiiii 50
Additive Synthesis Waveform Explorer...........coooeeeiiiiiiiiieeen. 51
Audio Aliasing EXPIOrer ..o 52
Catastochastic Additive Synthesis Composition Machine 53
Communication Models Explorer...........ccoooooeeiiiiiiiiiiiieeeeeeeeees 54
Complex Number EXPIOrer ..., 55
Concatenative Synthesis Explorer.........cccccovviviiiiiiiiiiiiiiin. 56
Convolution EXPIOrero 57
Cross-Synthesis EXPIOrer ... 58
Finite Difference Equation Explorer...........cccoovviiiiiiiiiiiiiciennen. 59
FIR Filter EXPIOrer ... 60
Formant EXPIOrer.... ..o 61
Fourier EXPIOrer..... .o 62
Fourier Series EXPIOrer...... ..o 63

IR Filter EXPIOrer..... ... i 64

Image Aliasing EXpIOrer.............ueiiiiiiiiiiiiiiiie 65
Image Analysis/Resynthesis EXplorerccccccvviiiiiiiininnnnee 66
Image Filter EXPIOrer....... ... 67
Image Spectrum EXplorer.............iiiii i 68
[O o] o] =Y 69
Modulation EXPIOrer..........oooeiieeiiieee e 70
Pole-Zero EXPIOrer ... 71
Pole-Zero Filter EXplOrer ... 72
Sampling EXPIOrer ... 73
Signal Feature EXplorer...........oooiiiiiiiiiii 74
Sinewave Speech Synthesis Explorer...........cccciiiiiiiiiiiinnee, 75
Sinusoidal EXPIOrer...........eeiiiie e 76
Sonogram EXPIOrer..........ooovvvviiiiiiiiiiiiiiiiiieeee 77
Sound Analysis/Resynthesis Explorer..........ccccccovvvviiiiiiiinnnnnn. 78
Spectrum EXPIOrer...... ... 79
10. Appendix B: Assignments for 201A ... 80
HOMEWOIK #1 ..o 80
HOMEWOIK #2 ... 81
HOMEWOIK #3 ... 83
HOMEWOIK #4 ... 85
Homework #5, Part ... 86
Homework #5, Part ..o 87
Final Project Details...........coooeeiiiiiee 88
11. Appendix C: MS Presentation ..., 90
12. Appendix D: Publication of SSUM at ICMC2004.............ccceeeeeeee. 95

Introduction

There is no doubt that learning media signal processing (MSP) should
be a required portion of any media arts program; students should at least
understand the algorithms behind the software they use, the specifications of
their hardware, and be able to effectively communicate with engineers. To
begin to understand these things however, a student must possess an ability
and confidence in mathematics beyond what most media arts students have.
This creates the difficult problem of effectively teaching MSP to students who
do not satisfy prerequisites that even most freshmen engineering students do.
The question “what should be taught,” becomes “what can be taught?”
Further magnifying this problem is the inherent heterogeneity of media arts
students. The numerous backgrounds and abilities require numerous ways of
saying the same thing. Some students may be more comfortable with sound
than with images; some students may be adept at programming but not math.

Without employing mathematics more complex than algebra, a class of
MSP can become dull and pedantic. At a level just above comfort the
students can only be taught to add or multiply phasors, convolve two short
signals on paper, or derive the magnitude response of a linear constant-
coefficient feed-forward system. Without more complex math they can forget
about learning analysis and synthesis, non-linear systems, and signal
compression. But how beneficial is it to just teach a student in the media arts
these mechanical and undemonstrative skills? Is the student any closer in the
end to understanding the specifications of a microphone, or digital camera?

As expected, when teaching using the blackboard and assigning
written homework, most of the students develop frustration, apathy, and
quickly learn the minimum motions necessary to slide by. Instead of finding
creative applications for the concepts they are learning, students spend most

of their time working on elementary problems, such as adding phasors. By the
end a student may be able to do convolution on paper, but has little
knowledge of how it can, or even why it should, be applied.

There are three things working against a successful syllabus for
teaching MSP without advanced mathematics. First and foremost, to do
anything interesting requires mathematics. The course then becomes more
concerned with complex numbers and trigonometry than MSP. Second, the
pace of the course is compromised by the need to address the mathematics.
Even after ten weeks, the interesting topics can still be weeks away. Finally,
since MSP includes sound and image, the number of topics that can be
addressed greatly increases. Even though the theory behind filtering audio is
the same as filtering visuals, there is a huge leap to understand spatial
frequencies from the time domain. If among the pursuits of media arts
programs is the aim to imbue artists with practical digital media engineering
knowledge, then a more effective and ultimately useful presentation of MSP
needs to be employed.

There are several published texts that attempt to make concepts of
MSP accessible. Most of these texts approach the topics using examples of
sound, image and video ([1], [2], [3], [4], [5]). These texts however are either
still too advanced for someone with little math, or too general to be interesting
to the artist. DSP First: A Multimedia Approach [1] is perhaps the best text,
and attempts to make the material more accessible by including a CD-ROM
that has tutorials, movies, and MATLAB [6] demonstrations. The laboratories
and movies included on the CD-ROM are nice, but they are not of much
interest to artists; the five MATLAB demonstrations included are neither
interesting nor inspiring. Books like [4] and [5] are great for students
interested in sound, but for topics of images and video they have no content.
Research into other approaches of teaching MSP has revealed an active field

of technological pedagogy.

Clausen and Spanias describe the creation and use of an on-line
digital signal processing (DSP) laboratory programmed in Java [7]. This
application is used to present visualizations and interactive demonstrations to
university students. Radke and Kulkarni have designed a similar application
for their DSP lab, but programmed in MATLAB [8]. Rahkila and Karjalainen
describe the benefit of computer-based education (CBE) for teaching DSP by
virtue of it being multimedia [9]. lllustrating complex functions like filtering by
actually applying it to a sound and hearing its effects can create more
thorough comprehension and a longer-lasting impression than just deriving its
frequency response on the blackboard. Their application is programmed in
LiSP and served over a network to Macintosh computers [10]. In addition to
applications created for visualizing DSP concepts, courses have been
designed around exercises in programming.

The text DSP First [1] includes exercises to be done in MATLAB that
demonstrate key concepts. Joaquim et al. describe an engineering course
based on MATLAB to provide “a fast and natural way to DSP concepts and
practical applications;” almost immediately students can begin creating and
understanding DSP concepts and algorithms [11]. Many other engineering
DSP courses use programming exercises, and some even program DSP
hardware, but typically the prerequisites for these courses are too advanced
for students in media arts.

It is clear that since many students in media arts programs are unique
and individual—visual artists, sound composers and designers, and
multimedia engineers—what is required is “hand-crafted course-ware” [12]
that addresses the multimedia nature of MSP, and takes advantage of the
creative motivation inherent to these students. Artists are curious, and by
being enrolled in a media arts program, they should be interested in applying

technology toward creative ends.

To alleviate the difficulties of teaching MSP to students who do not
possess a penchant for mathematics beyond algebra, | have used MATLAB
to create a large collection of exploratory demonstrations and applications
designed to motivate and inspire students to learn and apply concepts of
MSP. Its main goal is to provide a set of effective and interesting programs
that can be used during lectures and on the student’s own time. These
include illustrations of basic principles, to full applications that create sounds
and images.

Exploratory demonstrations extend past traditional demonstrations.
They demonstrate numerous concepts while retaining flexibility, such as
allowing several parameters to be altered, and saving the output. The viewer
thus becomes active rather than passive in learning the concept. As long as
the user understands the parameters they are changing, the learning
experience can be very effective. Each program has a help page that directs
users.

Within this thesis | present this suite of applications and review its use
for a MSP class taught to graduate students in a media arts program. It is
hoped that by speaking to their interests and showing the artistic usefulness
of the concepts, the students will be more likely to accept the learning curve

and apply themselves.

Choice of MATLAB as the development software

There are several goals for the development of a suite of effective
exploratory demonstrations and applications illustrating MSP. First, the
concepts must be presented in a clear way with little interfering information.
For instance, when explaining Fourier series one doesn’t want to have to also
explain the effects of sampling and interpolation. Second the applications
should be direct, flexible, and fast. The application should be presented in a
unifying framework such as a graphical user interface (GUI), should allow
variables to be changed, and shouldn’t be slow to give results. Third, images
and audio must be used to demonstrate concepts. Multimedia in DSP
education has been shown to increase comprehension and interactivity [9].
Fourth, the demonstrations should leave plenty to explore; they should satisfy
a student’s curiosity in addition to a lecturer’s needs. Fifth, a student should
be able to look into the code to understand how it works, and perhaps borrow
from it. It is important to demystify the concepts and their implementation.
Sixth, the demonstrations should be multiplatform. And finally, the cost to
students to be able to run the applications on their own computer should be
minimal.

There are a several low-level programming languages that can be
used to demonstrate the application of DSP, such as C++, and Java. Clausen
and Spanias [7] have created the Java Digital Signal Processing Editor (J-
DSP) [13], which lets the users construct block diagrams of signal flow
(Figure 1). It is a virtual lab space where a student assembles different
applications using function blocks. Written in JAVA, J-DSP is multiplatform
and free to anyone, but the code is inaccessible. The great number of choices

and the patchwork environment is bewildering to someone who doesn't first

understand the concepts. But once a student has a grasp on the
fundamentals of systems this package can become very beneficial.

" @& Grab File Edit Capture Window Help ™} w1999 < 4) Tue 7:38PM
"o00 J-DSP Editor

EXISTING FUNCTIONS ([T e . PLANNED FUNCTIONS [ETTTTC I | DISCLAIMER
PZ Placement PZ-Plot FIR Design IIR Design Kaiser Design Parks-McClellan Freg. Sampling

ANIMATIONS

Conv.Demo
L]

-

¢
MIDI-AVI

000 Signal Generator Help
000 e T Signal Generator

Signal Generator Biock Name: Signal Generator

Name: [T Signal Preview: Input(s): None.

. Output(s): (1) Time Domain Signal.
Signal: Rectangular oz '

Gain: (10

Pulsewidth: [20

Periodic Period: [

Time shift: (g Samples

Close Update Help

Figure 1: Screenshot of the JAVA DSP Editor

Sound processing languages SuperCollider [14] or the graphical
programming applications pd [15], and Max/MSP [16], can also be used to
create interesting demonstrations—though only for sound. Though these
have excellent real-time capability, they have marginal abilities for visual data
display. Showing something as simple as sampling would be difficult.
SuperCollider and pd are free, but Max/MSP costs over $200 for students.

There are several high-level software packages that can be used to
teach signal processing, such as Simulink [17], Mathematica [18], Maple [19],
Octave [20], Labview [21], and MATLAB [6]. A good overview of these and
other packages in terms of engineering education can be found in [23].
Mathematica and Maple are expensive programs meant more for solving

6

symbolic math than creating applications. Though they have good
visualization abilities, they don’t easily handle external data like sound and
image.

Simulink, produced by the makers of MATLAB, is like J-DSP in that it is
a patchwork environment. Figure 2 shows an example Simulink application
that demonstrates audio reverberation using a delay line and feedback.
Currently the interface is clunky and its responsiveness is slow, but it does
show promise for visualizing systems.

Similar to Simulink, LabVIEW uses a graphical environment for
designing systems (Figure 3), but it is at the high-end of engineering software
with its data-acquisition capabilities and external instrument control. Being

such it is an extremely complex and expensive package.

% dspafxr

File Edit Miew Simulation Format Tools Help

Demonztration of
Audio Reverberation

Feedback Gain

w_afxr y_af=r

-1300
z

Signal Fram To Workspace

VWorkspace

Integer Delay Dielay Mix

Info

Audio playback in MATLAE:

i PCANindows
Original Enhanced Tlema

Signal Signal

Figure 2: A SIMULINK demonstration of reverberation

Sps

m;ﬁ‘éplApphcatiDn Fort =] [im ';;T]: -] Irit
Tiue -

@05_EO_ENT Aeer B

Cvizplay Emor bessagel
@05 EO_END D'SEngineDper
[5E ngine0pen|
@ @f I@ |Engine0 pen failed; emor code = |
Cpen {>
®05 E0 NOTVISIBLE @05_EO0_MOTYISIELE

% +4
1E+4
DE+0
AE+4
2B+

-3E+4

i] 50 100 150 200 250

350 400 450

500

2000000
10000.00 30000.00

0.00" ” 4000000

| 22050

Deszired Sampling
Frequency

0

Show Hardware List

HDld smp
Me Var
S e LS ERISEEE
mm@ﬂm A | Lenath 2 ¢ ||evtter| [Butfer| | Fie || Fi

||

Figure 3: LabVIEW Screenshot (from http://www.signalogic.com)

Octave, a free open-source and multi-platform mathematics
programming environment, is also available. It is mostly compatible with
MATLAB, but a review of the currently implemented functions shows a great
lack of necessary signal processing and visualization routines. In addition
there is no easy way to create GUIs. These must be created using platform
dependent graphics libraries.

MATLAB provides an integrated development environment that is easy
to use and understand, and cheap for students.” MATLAB is platform
independent, has superior graphics handling and visualization capabilities,
and has a great GUI development environment for wrapping applications. It
has an extensive library of routines, and “toolboxes” can be purchased to add

specialized functionality, such as advanced signal or image processing

! At the time of this writing MATLAB 6.5 costs $99 for students.

8

routines.? Applications written in MATLAB are open; any user can look at the
code. Furthermore countless institutions, both academic and corporate, as
well as many independent users worldwide,® use MATLAB for algorithm
development, prototyping, complex modeling and problem solving. For these
reasons it is clear that MATLAB is the best choice for developing applications
that satisfy the seven criteria above.

Though there should be some familiarity with vectors and matrixes, the
MATLAB programming language is easy to learn and intuitive. It is an
interpreted language rather than a compiled one, unlike C++ and JAVA.
Commands can be typed in and feedback is given immediately. The
drawback to using MATLAB however is its lack of real-time functions, like
tracking a sound as it plays, or visualizing a spectrogram straight from the
sound input—as can be done by the software “Baudline” [24].

There are excellent examples of multimedia pedagogical applications
written using MATLAB. The “MATLAB Auditory Demonstrations” (MAD) is
perhaps the best and most relevant to signal processing. Created by Cooke
et al., MAD provides a large suite of interactive demonstrations for exploring
psychoacoustics and concepts of auditory perception [25, 26]. It was created
to provide a multi-modal interactive environment for teaching speech and
hearing. In the past this has usually been done using passive demonstrations
such as audio compact discs [27]. With MAD a teacher can quickly
demonstrate, for instance, the effect of interrupted speech, or window size on

frequency resolution (Figure 4).

% At the time of this writing MATLAB toolboxes cost $30 each for students.
A large on-line MATLAB user group can be found at MATLAB Central:
http://www.mathworks.com/matlabcentral/

X| wavspect - 2zzla
signal Info - Quit MAD w21

| play on release z cur all link cursors |
1
U.S —
0
,5.5 L
=il
2000 4000 EDDD SDDD IDDUU WZDDD
L Hamming win? recalc |
B0 T T T
50
40
a0k
g 20|
o
3
2 10
g
£
= U
g
-10
20
30
-4n L ! I |
1000 2000 3000 4000

frequency (kHz)

Figure 4: MAD program wavspect

Using MAD as a model, | developed “Signals and Systems Using
MATLAB” (SSUM) to aid in the teaching of MSP, specifically to media arts
students at the graduate Media Arts and Technology (MAT) program at the
University of California, Santa Barbara (UCSB).

10

SSUM: Signals and Systems Using MATLAB

SSUM is a suite of exploratory demonstrations and applications
programmed in MATLAB. These programs are designed specifically to entice
and inspire students who do not yet possess the mathematical knowledge
necessary for thorough research in MSP. To use SSUM MATLAB must be
installed as well as its signal processing toolbox. The cost of this software to
the student is a bit more than a good engineering text, but it is hoped that
after becoming acquainted with the power of MATLAB, the student will
continue to use it to work with data, develop algorithms, and apply it to their
creative work.*

SSUM demonstrates essential principles and concepts of MSP without
requiring rigorous mathematics; exploration and learning is done first using
software rather than paper. SSUM currently has 31 exploratory
demonstrations and applications illustrating concepts of waveforms,
modulation, sampling and interpolation, aliasing, the time and frequency
domains, finite difference equations, convolution, and filtering, pole-zero
diagrams, analysis and synthesis, and signal statistics. Many of these are
applied to sounds and images. There are also applications that demonstrate
interesting topics such as sound cross-synthesis, additive synthesis of
birdsong, and sine wave speech. SSUM is perfect for use in lectures, labs,
homework, and creative work. All the programs in SSUM are wrapped in
GUIs, so there is no need for typing commands at the prompt. Many of the
applications are integrated as well. For instance, if one is creating a waveform
in one application, it can be sent to another application for filtering, or to

another to see its frequency domain representation.

4 have used MATLAB as computer music composition software for six years.

11

SSUM can be executed by typing ssum in the SSUM main directory
from the MATLAB command window. The main application window will
appear (Figure 5), from which you can run an application. Information on the
selected program is displayed in the box to the right. The “Help” menu item
will display a browser containing the main help page, which contains links to
help pages for all available programs. The “All,” “Sound,” and “Image” buttons
filter the list of relevant applications. An application can be executed by
selecting its name and clicking “Run.”

x| 55UM
Help

Signals and Systems Using MATLAB

[& | | Sound | | image |

A dio Aliazing Explorer
Make an audio signal alias

complespo

COMYEXPR0
frieqespo
featurexpo
firexpa
fourierespo
faeriesexpo
iiresgp0
imgaliasexpa
imganalsynth
imgfilterexpo

© 2003 University of California, Santa Barbara

Figure 5: SSUM main application window

12

Help

X sam

plexpo

i
0.004

|
0.006 0.008

|
0.0

Time (s}
Frequency (Hz) 100 Sampling Rate 71000
1< ol - = —
Amplitucle | 1 Murber of Bits I 16
Phase (deg) 'I] Feriods to plot I 2
i+ pr— - ¥ T
Offset | 00
et saae - ® Grid | W Samples | W Interpolation I

ampling Explorer
by Bok L. Sturm and Dr. Jerry Gibson

Figure 6: SSUM Sampling Explorer

Waveform Sine e I

A few exemplary applications from SSUM will now be presented.

These show the concepts behind the applications, such as use of sound,

visuals, and sharing of data between programs. A complete presentation of all

current programs is given in Appendix A: Current SSUM Applications.

Figure 6 shows Sampling Explorer, which demonstrates how

continuous signals can be digitized. The top plot represents the continuous

input signal and the position of the samples. The bottom plot shows the result

of interpolating the samples back to a continuous signal. With the sliders and

13

text boxes the user can change the input frequency, amplitude, phase, and
offset, as well as the sampling rate and number of bits used to represent the
signal. The input waveform can also be changed to sine, square, triangle,
sawtooth, and a random wave. The plots can be altered by changing the
number of periods to plot, turning on and off the grid, the lollipops marking the
samples, and the interpolation.

Using Sampling Explorer one can investigate the cause and effect of
aliasing, the effects of quantization, and how to turn digital signals into analog
using ideal lowpass filtering, or sinc interpolation. Another apparent effect is
the edge effects from the interpolation. The beginning and end of the
interpolated waveform doesn’t quite match the continuous signal. Thus in one
program there exist several demonstrations of concepts that range from
simple to complex!

Image Aliasing Explorer (Figure 7) allows experimentation with
sampling images. This demonstration gives quick visual feedback about the
relationship between pixels and spatial frequencies. The user first loads an
image from the “File” menu, which is then displayed on the right. The program
computes the two-dimensional Fourier transform and displays it in the main
GUI window. The user can change the appearance of the transform using the
two widgets directly below the plot. The appearance of the image can be
changed using the menu items at the bottom of the GUI.

Once an image is loaded it can be downsampled with or without using
an anti-aliasing filter. The downsample factor can be selected and applied in
the horizontal or vertical directions, or using square blocks. From the File
menu the image can be saved to an image file. From the “Send to...” menu
the altered image can be sent to other programs, like Image Filtering
Explorer, and Image Spectrum Explorer. The chosen program is started with

the image as its application data.

14

[X] imgaliasexpo

Figure 7: SSUM Image Aliasing Explorer

506 X wavexpo

|
I
Jo.os091

Figure 8: SSUM Waveform Generator

15

Figure 8 shows Waveform Explorer, an application demonstrating the
superposition of oscillators to create other waveforms. The user is able to
adjust frequency, amplitude, and phase for fifteen oscillators, as well as select
predefined waveforms like square or sawtooth. This way the student can
begin to understand superposition and Fourier series. There is also the
capability to hear the sound over speakers, and save it to a sound file. One
interesting phenomena is changing the waveform by randomizing the phase.
Even though the waveform looks completely different it sounds the same to
our ears. A user can send a waveform created within this program to other
programs, like Sonogram Explorer, Fourier Explorer, or Aliasing Explorer.
This integration of tools within SSUM is important for giving the student
flexible views of the same thing.

Fourier Explorer, shown in Figure 9, enables one to look at the Fourier
spectrum of a sound. After loading a soundfile, the user can drag a window
(vertical red bars) across the time-domain representation of a signal and
watch the spectrum change. Changing the size and shape of the analysis
window leads to different resolutions, demonstrating the time-frequency trade-
off, and the effects of different windows on the transform.

The MAD program “wavspect” (Figure 4) [25] was used as a starting
point to create this application, specifically its real-time updating of the
display. What would be nice is for the sound to play while the spectrum
changes, but there is currently no way in MATLAB of synchronizing the audio
playback with the display.

16

Figure 9: SSUM Fourier Explorer

‘©006 [X] /Users/bobsturm/gibson/SSUM.PC/data/sounds eidel.wav Duration: 7.2398 s Fs: 44100 Hz Channels: 2 Bits: 16

Figure 10: SSUM Sonogram Explorer

17

A similar application is Sonogram Explorer (Figure 10), which presents
the user with the short-time Fourier transform (STFT) of sounds. As in many
SSUM programs, the display can be changed with log amplitude scaling and
color maps. The user can zoom in on parts of the sound, either in the STFT or
the time-domain waveform, and both plots will update to reflect the new
domain. Additionally the effects of window shapes and sizes on the STFT can
be seen. The analysis window can be altered by the options on the right. An
interesting use of this application is the “Explore Data” function. When clicked
the user can click in the STFT and obtain frequency, magnitude, and timing
data. Using this data a user can resynthesize a sound using additive

synthesis with envelopes.

100

150

200

250

0 100 150 200 250
Colormap Hat =~ W Inverse

Hurizontal Spectrum
: : ! ! ! Vialues

i Inverse " sae | Image Spectrum Explorer

by Bob L. Stums and D Jeny Gibsor

Figure 11: SSUM Image Spectrum Explorer

18

X /Users/bobsturm/gibson/SSUM)/ data/sounds/S1pcm.wav Duration: 1.9594 s Fs: 11127 Hz Channels: 1 Bits: 8

File Send Filter to... Send Datato.. Help

5000 — - L] =, 5

4000

3000 - -

FreGuUency {Hz)
|/

= = = -30 FIR Filter Order
L — = = — |
0 —== —— —] 10 Mofch 500
=— = % ! == :
= Cutaff Frequencies (Hz)

! | ==

L} —
—

I ———— =

1000 I =

= ey
———— SEs===
T T T

=

1000

1500

Apply Unido Plot

Window

Calarmap

Jet =l Harn

FFT Size

=1 512

|

A Inverse = dE
< Interpolate

Filtered Qriginal
Flay Flay |

Mormalize

WABMING: This could take 2 while.

Zoom Feset |

FIR Filter Explorer

by Bob L. Sturm and Dr. Jerry Gibson

time {5}

Figure 12: SSUM FIR Filter Explorer

Image Spectrum Explorer (Figure 11) allows one to look at the spatial
frequencies in images. Once an image is loaded its two-dimensional Fourier
transform is displayed. On the image is a cross hair that can be moved
around the image. This shows the row and column of pixels used to calculate
horizontal and vertical spatial frequencies. As this sampling point is moved
the two spectra change, shown in the bottom of the left window. The row and
column pixel values can be plotted as well.

The sonogram is an intuitive way to show dynamic frequency content
of signals over time. Many of the applications in SSUM take advantage of
this. FIR Filter Explorer, shown in Figure 12, demonstrates the effects of
filtering on the frequency content of a signal using the sonogram. Four
different types of filters can be selected (lowpass, highpass, bandpass,
notch). For each filter, the order and cutoff frequencies can be specified. The
filter can be applied to a loaded sound and compared with the original.

Clicking “Plot” will plot the frequency and impulse response of the filter. From

19

the “Send Filter to...” menu, the filter design can be sent to other applications,
like Pole-Zero Explorer (Figure 13) or Pole-Zero Filter Explorer (Figure 14),
which will display the poles and zeros of the filter, and Convolution Explorer
(Figure 15), which will convolve different signals with the filter’s impulse
response. Similar to FIR Filter Explorer is IIR Filter Explorer.

Pole-Zero Explorer (Figure 13) allows the user to move poles and
zeros around on the z-plane, and watch the magnitude, phase, and impulse
response of the filter change. The “Load” menu item provides a set of filters
approximating formants of speech vowel sounds. This program was created
from the MAD program “polezero” [25]. Using the “Send to...” menu item the
designed filter can be sent to Pole-Zero Filter Explorer (Figure 14) and
applied to any sound. Within this application the poles and zeros can be
moved around as well. The impulse response of the filter can also be sent to
Convolution Explorer (Figure 15).

File Load Sendto Help ‘
Frequency Response

%;E . . /f/e/ﬂ. . .. E\B\\.\\\
: A D .) SR
I e TR DR
- \(W\F\ﬂﬂﬂﬁ LﬂﬂﬂﬂfVMWwW i\ LR a7
N P et F
L N L
(\ [\W\J\ nM f\r\M I\I\A -

\j\J\J\“{” TV

L i i i
005 01 0.15 uz uzs Da uas m uas 0s
Mormalized Freguency ()

Sy

Impulse Respon:
T T

- EE

sample by Bl L. Sturm and Dr. Jerry Gibson

e I

solt

Figure 13: SSUM Pole-Zero Explorer

20

N /Users/bobsturm/gibson/SSUM.PC/data/sounds/White_Noise.wav Duration: 1.2155 s Fs: 44100 Hz Channels: 1 Bits: 16
File Load Help

Aot Zero
dd Pole

\

attenuation 25
&

2 3 +
10 10 1
freguency (Hz)
Apply | Undo | M Logify |
Colormap Window FFT Size
Jet = Harn = 2048 = |

A lwverse | W dB
VWARNING: This could take = wihiie.

Fiteredt Originel
Play | Play | Zoom Feset |
06s PaleZero Filter Explorer
time {5 by Dr. Jerry Gibson and Bok L. Sturm

Figure 14: SSUM Pole-Zero Filter Explorer

X/ convexpo

Help

Convolution Explorer

Pulse 1
Shape

rancam = |
Width

I 100

Pulse 2
Shape

custan =i |
Width

I 101

<4 I Sth 3 I

Fiezet | Play |
W o Cylic |

Sample

Figure 15: SSUM Convolution Explorer

21

Convolution Explorer (Figure 15) animates the convolution operation.
Several signal shapes and lengths can be chosen to illustrate its various
effects. Cyclic and non-cyclic convolution is available as well. As seen in
Figure 15 a noisy signal is being convolved, step-by-step, with the impulse
response of a lowpass filter. The result, shown in the bottom plot is the
output.

Filtering images can be explored using Image Filter Explorer (Figure
16). Once an image is loaded, its two-dimensional Fourier transform is
displayed. Several filters are available including the moving average,
Gaussian, del Gaussian, and median filter. The spatial frequency response of
each filter can be plotted, except for the non-linear ones. The filters can be
applied to only the horizontal or vertical directions, or by blocks or kernels.
Noise can be added to any image and its effects on filtering seen. Students
find the median filter’s ability to remove speckle noise startling.

slals) \ imgfilterexpo O O O X Figure No. 2: /Users/bobsturm/gibson/SSUM/data/images/barbai |
- —a TR

Fille Sendto. Hslp ———y [T o

al Fourier Trans

SR

1

%
150
200+

260~ : Hy

300 -

350
400 -

a4

S

50 100 150 200 250 300 350 400 450 500

Calarmap Jet = o Ireverse

Apply Filter Add Moise

Type Size Type
P I | 5 Salt andl Pepper
Inciclence 0.1
Flot Hpply Fedo _Apply | Undo |
= Horizontal

Application s Mertical
4 Kernel

4 Inverse | W Seale | Zoom Reset | Image Filter Explorer

Figure 16: SSUM Image Filtering Explorer

22

Some applications in SSUM demonstrate curiosities of signal
processing. While these don’t directly demonstrate essential concepts of
MSP, they do provide illuminating insights of their own. Figure 17 shows
Cross-Synthesis Explorer. This application allows three different methods for
cross-synthesizing sounds: convolution of the two sounds,’ amplitude
modulation of one signal by the other, and linear predictive coding
(LPC)—using one sound as the model and the other as the source.

Once sounds are loaded, their time-domain waveforms and STFTs will
be displayed. One of the three cross-synthesis routines can be executed, and
when finished its waveform and STFT will be displayed. Students really enjoy
this demonstration and begin to realize what convolution does; suddenly the
mystery of digital reverberation disappears. They particularly enjoy hearing a
gong or crow speak.

Another interesting topic is sinewave speech [22]. Using linear
prediction a speech signal is reduced to a number of modulated oscillators
that, together, remain intelligible to a startling degree. Sinewave Speech
Explorer (Figure 18) demonstrates this curious phenomenon using four
oscillators to approximate a given signal. Any sound can be loaded, and any
combination of the four components can be heard. This demonstration was

appropriated from the MAD sinewave speech program “sws” [25].

® The convolution routine uses multiplication in the frequency domain to decrease the latency.

23

"m00 X| Cross Synthesis Explorer

Figure 17: SSUM Cross-Synthesis Explorer

[X| /Users/bobsturm/gibson/SSUM.PC/data/sounds/S1pcm.wav Duration: 1.9594 s Fs: 11127 Hz Channels: 1 Bits: 8

Figure 18: SSUM Sinewave Speech Synthesis Explorer

24

File Help
The Catastochastic Additive Synthesis Composition Machine

Suction | Start Time

|1 i} F (seconds)

FU WVaolume

X stocho

Suctign|l Start Time

Flay &1l Flot &

Section Il Start Time

|1 il F (seconcla)

FU Volume

A Mixg

|1 1] F (seconcia) ﬂl
FD Yalume

Inin max iW o

'nin max |1 o

rnin max II a

Inult amp

Inult amp

rnu\t amp

i s evonds)

o e (seconds

frin e (secands)

i s @1

i s -1

frin s 01

Inln max (Hz)

'nln max (Hz)

rmn max (He)

Inin max (Hz)
Flat

Freq Envelope Fat

Randomize | Distribution

in max (Hz)
2

Flat

Fat

Fandomize | Distribution

=l

rnin mas (Hz)

Flat

Flat

Fanviomize | Distributior |

Figure 19: SSUM Additive Synthesis Composition Machine

SSUM contains demonstrations of MATLAB programming for creating

sound, music, and image. A student can experiment with Catastochastic®

Additive Synthesis Composition Machine (Figure 19), to synthesize a
‘composition” in three parts using various envelopes for amplitudes and

frequencies and several other parameters. Parameter ranges can be

specified for durations, amplitudes, frequencies, and amplitude and frequency

changes. Each section can be visualized and played, and can also be sent to

Sonogram Explorer (Figure 10) for further analysis.
Image Analysis/Resynthesis Explorer (Figure 20) allows one to change

the frequency and phase content of an image for reconstruction. Figure 20

shows an image that was reconstructed using the spectral magnitudes from a

different image. The phases of images can similarly be swapped. What is

demonstrated is that the phase information in an image is crucial for

maintaining edges, while magnitudes are necessary for maintaining the pixel

® The word “catastochastic” is a mixture of catastrophic and stochastic.

25

brightness. Students enjoy using this application to create new images from

two. They begin to realize the advantages to working in both the spatial and

frequency domains.

A much more complex application is MATConcat [28], a concatenative

sound synthesis [29] application. This program (Figure 21) uses feature

vectors to synthesize a sound from pieces of other sounds using distance

metrics specified by the user. For instance, a voice recording can be

synthesized using a recording of a flute and specifying an acceptable range

for root-mean squared (RMS) or spectral centroid. Several additional options

lead to surprising results and numerous creative possibilities, as well as

unfortunate issues of copyright infringement.”

N Image Analysis /Resynthesis

File Help

Reconstruction

Image Spectrum
Magnituie
5 Co\ormap g
_ Oher
A nverse | Phage
s | G

Image Analysis/Resynthesis

oy Bioh L. Sturm and Dr. Jerry Gibson

|

mma
pzexpo
firexpo
pzfilterexpo
help i
clear
pzfilterexpo
help complex
pzfilterexpo
firexpo
pzfilterexpo
SWSEXpO
convexpo
®synthexpo
modexpo
xsynthexpo
modexpo
xsynthexpo
modexpo
stocho

imganalsynth

AJ FIGUTE NU. 3. {USETSfDODSTUTITI] GIOSOT] S3UM. FU] Udla /I dges | Camerarma
X/ Figure No. 1

Magnituce Spech

X| Figure No. 4

Fhase Spectrum

Figure 20: SSUM Image Analysis/Resynthesis Explorer

" | have used this application in depth for composing several computer music pieces,
including “Dedication to George Crumb, American Composer,” and “Gates of Heaven and
Hell: Concatenative Variations of a Passage by Mahler.”

26

File Options Help

X| videmcar

MATConcat

Concatenative Synthesis Explorer for MATLAB

Copyright 2004 Bok L. Sturm

Target Carpus
analysis: Eralysia: 1 T
Congregation way Monkey Corpus wa :
num_samples = 372308 num_samples = 19315182 s
durafion = 8.4 seconds cluraion = 435 0 seconds
num_channels = 2 num_channels = 1
F3= 44100 F3= 44100

window_shape = Harn
window _size = 512
window_skip = 256

erialysis Types
harmanicity piteh

Statistics:
Mean zero = 44.4721
Man rms = 0.0243
Man spec_centroid = 3124.8134
Man spec_rollof = 6053 6331
Mean harmonicity = Kall
Mean pitch = 2387 3463

1453 total data points

zero s spec_centroid spec_rolloff

window_shape = Hamming
window_size = 18354
window_skip = 1024

erialysis Types
zero 3 spec_centroid spec_rolloff
harmanicity piteh

Statistics:
Mean zero = 7961531
Man tms = 0.0377
Man spec_centroid = 2105 5662
Man spec_rolloff = 4061 3760
Mean harmonicity = Kahl
Mean pitch = Nahl

18851 total data points

sk
" i
Loadibralyze | _Flay Featres | Loadianalyze @ o3
Analysis Parameters Synthesis Parameters
+% Window Shape
Target
Zero Crossings | [O [Spectral Cen Harn =
Window Sz [512 o
rvs ZI| S 1024
Window Skip | 258 VDD G
Spectral Centroid | [10 window Skip | 512

Harr = Fieanalyze

Corpus
Window Size | 16384
indow Skip m
Han | Reanalyze

Spectral Roloff 21 [0 o e el
Harmonicity 4 [0 Windows [20 [200 Gt |
Ficn 4[[0 Make Mona 4|
Synthesize

1
time (33

18 2
Normalize

= 1/362 Number valid indicies. 459 --> 9 Index =
=2/362 Number valid indicies. 578 --> 4 Index =
=3/362 Number valid indicies. 517 --> 9 Index =
= 4362 Number valid indicies. 742 --> 2 Index =
=5/362 Number valid indicies. 424 --> 9 Index =
=B/362 Wumber walid indicies: 589 --> 1 Inclesc = 9082

= 71362 Number valid indicies: 406 --> 6 Index = 7075
=8/362 Number valid indicies: 542 --> 7 Incex = 7078
=A/362 Number walid incicies: 25 --> 1 Index = 3678

= 10/362 Mumber walid indicies: 39 --> 1 Inclex = 3681

= 11/362 Wumber valid indicies: & --> 0

= 12/362 Mumber walid indicies: 26 --> 0

=13/362 Mumber walid indicies: 2102 --> 21 Index = 6254
= 14/362 Mumber walid indicies: 2071 --» 20 Index = 6254

7075
7079
7081
8040
7075

= 15/362 Mumber walid indicies: 1760 --> 43 Index = 5664

Output — T3
=

Figure 21: MATConcat: Concatenative Synthesis Explorer

These applications, while not clearly demonstrative of MSP concepts

like Sampling Explorer (Figure 6), or Convolution Explorer (Figure 15), are still

valuable parts of SSUM because they demonstrate interesting applications of

the concepts toward creative ends. For an artist such as a composer they

should provide inspiration and foster creative experimentation.

The applications presented so far give only an overview of what SSUM

has to offer. But they demonstrate several key aspects of SSUM: its ability to

work with sounds and images, to share data between applications, to give

quick feedback, and the ease of demonstrating many essential concepts of

MSP. These make SSUM an excellent pedagogical tool for lectures, labs, and

homework. But with all the options in a given application, where does the

student know where to begin? How can a student who doesn’t know MSP

understand what the sampling rate slider means?

27

File Edit Miew Go Wweb Window Help

Help Mavigator Eﬂ

= él Find in page: Go ‘
Product filter: & Al) Selected Gelect |
I The Additive Synthesis Forest Vl Add to Fayorites |
Contents | Index I search Demas I Favorite

&

—[> Begin Here

} Release 13 Release Motes
]—@ Installarian

K¢ MATLAE

}@ MATLAER Report Generator
]—@ Communications Toolbox
]—@ Contral System Toolbox

& Curve Fisting Toolbox

]—@ Database Toolbox I d -
]—@ Filter Design Toolbox ntroduction

£~ Financial Toolbex This is a great demonstration of the power of additive synthesis to
H-¢3 Financial Derivatives Toolbox create very realistic bird calls.

E
E
E
E
E:
E
E
=
E
E
E
[]—@ Financial Time Series Toalbox The tool
E
E
E
E
E
E:
E
E
E:
E
E
E

| The Additive Synthesis
Forest

]—@ Fuzzy Logic Toclbax
H-¢% GARCH Toclbox .
]—@ Image Processing Toolbhox

File Edit wiew Insert Tools Window Help

]—@ Instrument Control Toolbox

]—@ Mapping Toclbox

]—@ Madel Predictive Control Toolbox
]—@ Mu-Analysis and Synthesis Toolbox
]—@ Meural Network Toclbax

]—@ Cptimization Toolbax

]—@ Fartial Differential Equation Toolbox
]—@ Robust Control Toalbox

}@ Signal Processing Toolbox

Figure 22: An SSUM Application Help Page

Like in MAD, every program in SSUM has a help page that presents it,
gives directions for its use, and poses a few key questions and topics to
explore with the program. These help pages can be accessed either from the
main SSUM help page, or from the “Help” menu item in every program.
Figure 22 shows a help page that is loaded within the MATLAB environment.

28

Developing SSUM

As mentioned above, SSUM uses and extends the programming style
employed in the excellent “MATLAB Auditory Demonstrations” (MAD)
application [25, 26]. Several MAD programs served as starting points for
SSUM programs. Whereas MAD presents demonstrations of auditory
perception, SSUM presents demonstrations of all things MSP.

Like MAD, all of SSUM is open-source and freely modifiable. Each
application resides in its own directory under the main SSUM directory. The
code is very modularized in an attempt to work in an object-oriented way.
Functions that are shared among many applications, such as those
responsible for loading and saving audio and image data, are stored in the
“library” directory. This modularization has been crucial to the maintenance
and rapid development of SSUM.

All the GUI code is separated from the functional code of the
programs. This way modification can be made to the interface without having
to break functionality. When a new application is desired it is quite easy to
start from an existing one. Whereas before it would take a day to create a
new application, using the framework and functionality of an existing SSUM
application makes this task one of only hours.

All of the GUIs in SSUM are created using the MATLAB Graphical
User Interface Development Environment (GUIDE). The code that is
automatically generated is then minimally augmented with callbacks to a main
function file. This function file controls the flow of processes and data and
updates the data displayed in the GUI. Modifications of GUI elements by
other GUI elements (for instance a volume slider changing a volume text box,
or mutually exclusive radio buttons) are usually left in the GUI callback

function file.

29

In the case of FIR Filter Explorer (Figure 12) there are four files:
firexpo.fig, firexpo.m, firexpogui.m, firexpofn.m. The .fig file is the GUI layout
file used by GUIDE. The firexpo.m file contains all the callbacks to the GUI
elements. The file firexpogui.m is an exported version of the GUI, which
merges the design with the callbacks.® Finally the firexpofn.m file contains the
functions called by the program.

Within the file firexpo.m are the callbacks for the GUI elements. Figure
23 shows four callbacks from this file. These callbacks are executed when the
corresponding GUI element is acted upon. The “play_Callback” is executed
when the play button is pressed; when the filter menu is changed, the
“filtermenu_Callback” is run. And when the “Apply” filter button is pressed, the
“‘doFilter_Callback” is executed. Two of these callbacks call the firexpofn.m
file with some action, such as ‘playsound,’ or ‘apply_filter.” A portion of this file
is shown in Figure 24.

o)

% —--- Executes on button press in play.
function play Callback (hObject, eventdata, handles)
firexpofn 'playsound';
% —--- Executes on selection change in filtermenu.
function filtermenu Callback (hObject, eventdata, handles)
contents = get (hObject, 'String');
switch lower (contents{get (hObject, 'Value') })
case {'bandpass', 'notch'}
set (handles.cut2, 'Visible', 'on');
otherwise
set (handles.cut2, 'Visible', 'off'");
end
% —--- Executes on button press in doFilter.
function doFilter Callback (hObject, eventdata, handles)
firexpofn 'apply filter';

Figure 23: A portion of GUI code from firexpo.m

8 Exporting the GUI code makes the .fig file unnecessary for distribution. The exported code
is compatible with MATLAB versions before 6.1, whereas the .fig file is not.

30

function firexpofn(action,datastruct)
handles = get (SSUMfigure, 'UserData');
switch action

case 'playsound'
if isfield (handles, 'audiodata')
audiodata = handles.audiodata;
button = handles.play;
play audiodata(audiodata, button);
end

case 'apply filter'

if isfield(handles, 'audiodata')
handles = apply filter (handles);
updatePlots;

end

end
set (f, 'UserData',handles);

Figure 24: A portion of code from firexpofn.m

As can be seen the function file does most of the work behind the GUI.
When the play button is pressed, the “play_Callback” is executed, which then
calls the ‘playsound’ action in the function file. This function checks to see if
there is any audio data, and then passes the audio data to the
“play_audiodata” function, located in the SSUM function library. Similarly,
when the “Apply” filter button is pressed, the GUI calls “doFilter_Callback”
which then calls the ‘apply_filter’ action in the function file, which then calls a
filtering function and updates the plots in the GUI. These specialized functions
are located in the function file as other functions.®

Most of the callbacks call for some action in the corresponding function
file; but in Figure 23 we see the “filtermenu_Callback” just changes the state

of some elements in the GUI. In this case the code is located in firexpo.m

° In MATLAB one can program any number of functions in a single file, like C++. There has to
be one main function though, which shares the same name as the file it is contained in.

31

rather than in the function file. All of the SSUM applications are programmed
using this technique.

The modularization of functions and separation of functional code from
GUI code makes the application much more accessible and modifiable.
Students who are interested in using a particular part of some application
don’t have to look through the esoteric code of the GUI to find it. The GUI
action can just be traced to the function file, and in there the code can be

grabbed.

32

SSUM and Teaching Media Signal Processing

As stated in the introduction, three things work against a successful
syllabus for teaching MSP to media arts students. First, to explain or do
anything interesting requires more than a cursory look at the mathematics
involved. Second, the pace of the course could be hindered by the need to
address the mathematics. And third, the number of topics that can be
addressed increases when including discussions of sounds and images. By
focusing on using exploratory demonstrations and applications, and
programming rather than written homework, an effective syllabus for teaching
MSP to the media arts student can be designed.

SSUM is designed first for practical and effective demonstrations,
second to provide an interactive experience to enhance one’s comprehension
of MSP, and third to serve as a repository of algorithms and code. SSUM
nicely satisfies these three goals, and creates a fruitful multimedia experience
for teaching and learning MSP. All of the applications are quick to compute
and display results, so there is little worry for the learning process to spiral out
of control or come to a halt. In addition to its ability to teach MSP, SSUM also
teaches how to program MATLAB.

A syllabus that uses SSUM can quite naturally choose MATLAB as the
programming environment. Devens describes why and how Virginia
Polytechnic Institute & State University chose MATLAB as the required
software by the engineering and mathematics department [30]. Included in his
list are many of the reasons stated in my chapter on MATLAB as the
development software. In addition MATLAB can be easily integrated into
existing courses, and circumvents the need for students to learn other

software packages that can be replaced by it.

33

By using MATLAB as a tool for a course, one is able to introduce
applications first, and thus motivate the students to experiment and learn how
they work, as well as create applications of their own. [31] describes the use
of MATLAB to “help reconcile the declarative (what is) and imperative (how
to) points of view on signals and systems.” During thirteen labs students
explore sampling and filtering sounds and images, as well as modulation and
control systems. Other uses of MATLAB in DSP classes and laboratories are
described in [32, 33]. In addition, because of the relative ease of
programming in MATLAB as compared to C++ or JAVA, a student will have
more time to concentrate on algorithms rather than compiler errors.

SSUM then becomes a rich collection of routines that work with sound
and image; students can use the applications as models to guide their own
creative work. Students should be encouraged to discover how the
applications work, and are free to use the code for their own work, provided
they extend it in other directions. Having working examples at their disposal
demonstrates that interesting and complex applications are possible.

Dr. Gibson and | created and implemented a new syllabus using
MATLAB and SSUM for the MSP class offered in MAT at UCSB. As a core
course in the MAT graduate curriculum, Media Signal Processing Using
MATLAB (201A) introduces the concepts of MSP to students who are more
versed in art and music than mathematics. Its focus on teaching principles of
MSP using MATLAB provides an experimental playground in which students
learn by doing, and are motivated by their own artistic interests. It requires
however all enrolled students to purchase MATLAB, and to be comfortable
with at least trigonometry, complex numbers, and elementary series—which
the students learn through a course the quarter before 201A is offered.

201A is not intended to be a survey, but the students should finish with
at least an understanding of digital signals (e.g. samples), digital operations
(e.g. sampling), the frequency domain (e.g. spectra), conversion between

34

analogue and digital signals (e.g. interpolation), filtering (e.g. convolution),
and time-frequency analysis (e.g. Fourier transform) and synthesis (e.g.
LPC). With this knowledge in place the media arts student is more equipped
to attempt the complex technological issues of digital media, whether they are

composing or programming.

201A: Media Signal Processing with MATLAB
A new design for 201A was offered during spring quarter 2004. For two

days a week, two hours each day, lectures are presented in two parts. During
the first hour material is presented that is elucidated by SSUM. After a short
break the rest of the time is spent answering questions, reviewing
assignments, and demonstrating programming concepts in MATLAB. The
syllabus for the 201A is shown in Table 1.

Date .

YYYYMMDD Topics covered

Week 0

20040329 | Overview of class, introduction to sampling
Analog to digital conversion, aliasing; Introduction to

20040331 MATLAB, SSUM

Week 1

20040405 | Mathematical representations of signals, Fourier Series
Combinations of Sines; Introduction to Filtering; introduction

20040407 | "y ilding GUISs in MATLAB

Week 2

20040412 More filtering; introduction to analysis. MATLAB GUI
callbacks.

20040414 | The Fourier Transform. More MATLAB GUI callbacks.

Week 3

20040419 | Modulation and Spectra

20040421 "Mo_rt_uos. Plango, Vivos Voco:" Spectral Morphing;
Sonification of Data

35

Date .
YYYYMMDD Topics covered
Week 4
20040426 | Filtering, the impulse response, convolution
20040428 | More convolution, filtering, z-plane
Week 5
20040503 | Introduction to z-transforms, poles and zeros
20040505 | FIR filters: deriving the impulse and frequency response
Week 6
20040510 | lIR filters: z-transform, stability
20040512 | More IIR filters
Week 7
20040517 | FT, DFT, DTFT, STFT, and FFT,; effects of windowing
20040519 | Block Diagrams; Direct Form I, Il
Week 8
20040524 | Linearity, Time-Invariance, and LPC
20040526 | Application of perception to signal processing
Week 9
20040531 | Memorial Day: NO CLASS
20040602 | Acoustics of the Musical Iced Tea Cans
Week 10
20040607 | Class presentations

Table 1: Syllabus for 201A Media Signal Processing with MATLAB

201A is designed around MATLAB programming and SSUM. Lectures
are enhanced with demonstrations of concepts such as sampling and
aliasing. Students are required to work with SSUM, find creative applications

36

of the topics presented, and explore them using MATLAB. More emphasis is
placed on programming media processing algorithms using MATLAB, than on
solving for filter coefficients by hand. Therefore we are relying on the
illustrative power of SSUM and MATLAB to increase the potential for
comprehension and inspire the students to create their own applications using
SSUM as a model. The class has therefore been transformed from one
requiring only mathematical practice, to one requiring signal processing
programming in MATLAB. In this way the class provides a theoretical and
practical experience, rather than just a pedantic one.

There is no required textbook for this class, but MATLAB and the
signal processing toolbox is necessary to complete the homeworks and the
final project. The grading is broken down into the following parts: homeworks
40%, attendance 10%, and the final project 50%. The homework assignments
and requirements for the final project can be found in Appendix B:
Assignments for 201A. Though no text was required, several articles and
photocopies of texts were distributed during the quarter illustrating particular
aspects of MSP. These included sections from [1, 34, 35, 36, 37, 38]. Some
handouts were created as well to demonstrate certain mathematics, like

summing phasors in the complex domain.

Reactions

Response to SSUM was very positive. It was essential for quick
demonstrations of complex concepts like the frequency domain, Fourier
series, and filtering. Using SSUM provided a natural progression of topics. It
was quite easy to move between applications to show, for instance, the finite
difference equation, the poles and zeros, and the frequency and impulse
response of the system. Then the filter could be applied to numerous sounds
to hear its effects. By week three we were already presenting filtering and the

Fourier transform. By the end of week five, after a whirlwind tour through the

37

topics of MSP, it was time to return back to beginning and take a closer look
at the math.

It was difficult to get the students to use SSUM on their own time.
When it became required on homework, many people suddenly complained
that it wasn’t working—revealing that they hadn’t tried it on their computers.
The platform compatibility issues that arose were quickly addressed and
easily solved due to the modularity of the SSUM code.

Finding a balance between class topics and increasing the student’s
skill with MATLAB was tough. As the students didn’t have enough knowledge
to begin working intelligently with signals, for instance, some other topic
needed to be used as a conduit for learning MATLAB. The best topic was in
gradually learning how SSUM works, from making the GUIs to writing the
functions. As can be seen from the homework assigned (Appendix B:
Assignments for 201A), about 200 of the 500 points possible had something
to do with making interfaces. Many complained during the course that too
much time and importance was being spent on making GUlIs.

As soon as the students had enough background in digital signals and
the MATLAB language, the homework focus shifted from making interfaces to
creating and working with signals. By the fourth homework they were given
the task of building their own complete application using frequency
modulation to synthesize musical instrument tones.

In response to several students asking for more “signal processing”
related work, a choice was given on the last homework: analyze and
resynthesize recorded birdsong, or investigate the properties of windowing on
two different signals. Even though the latter was touted as being the harder
one, most people chose it. What was expected was a more formal analysis of
windowing, complete with programming examples and diagrams. What was

received was confused work'® that used SSUM to find the answers, instead of

'% Some of the words used to describe the effects of the windows: “spikier,” and “pointier.”

38

programs to explore windowing. Because it wasn'’t specified that the
assignment required advanced programming, students found it to be quite
easy using SSUM.

After the fifth homework it was apparent that, with only four weeks left
in the quarter, the students needed to spend most of their time on their
project. The requirements for the final project were discussed (Appendix B:
Assignments for 201A) in the third week of class, giving the students ample
time to think of and research project topics. At the end of the sixth week they
turned in proposals, which were then reviewed and returned to the students
for revision. Most of the projects were not practical, so we guided them to
more realistic goals and suggested places to begin.

Weekly contact with the students was maintained to ensure the
students were working on projects. Only a few students took advantage of
this and had excellent starts; but a few were left in the final weeks having to
start over because they didn’t heed our advice. In the end the projects came
together nicely, and most of them displayed a high level of sophistication. All
of them demonstrated hard work; and the students showed genuine interest
in the topics they chose.

The applications they wrote in MATLAB made good use of the
functionality and GUI programming taught in the homework. A few students
mentioned that had we not taught GUI programming, their applications would
have been less manageable. This demonstrates a good point: using a GUI
can relieve a considerable amount of overhead when working with many
variables. Loading an image, specifying a filter, and displaying a result are
much easier with a few mouse clicks, than editing scripts and functions.
Several students admitted the process was tough, but were pleased with and
proud of their results.

39

Discussion

When a student more versed in music, video, and art, is bombarded
with unintuitive complex mathematics and homework involving convolution by
hand for example, the results are alienation, discontent, and apathy toward
the material. This was discovered in the 201A class taught in 2003 by Dr.
Gibson and myself; even though most of the thirteen graduate students had
been through a previous course that refreshed their math skills, they had
difficulty relating to the material, and consequently didn’t see its use or value.
Instead of finding creative applications for the concepts they were attempting
to learn, the students spent most of their time working out problems on paper,
such as adding phasors, computing spectra, and performing convolutions.

Even though most students did well, the lectures, homework, midterm
and final, were not effective for exciting discussion and revealing the
importance of this subject to their field. Furthermore the need to address the
mathematics severely slowed class progress. The students also complained
about the required text [1]."

When questioned a year later about the usefulness of 201A, most of
the students from the 2003 class responded that the class had been of no use
to them. Their retention of the information, such as what an IIR filter is, was
very low. Only the most technical students from that class responded
positively about it. Most of the criticism focused on the text and the lack of
examples and demonstrations. With SSUM the lack of demonstrations is well
taken care of.

The response to the material in the 2004 class has been a lot different.
Much more time was spent in class talking about applications, presenting
demonstrations, and working in MATLAB, than reviewing homework problem
sets, and preparing students for the midterm and final exams. Little attempt

"I have yet to find an introductory signal processing text that is exciting and friendly to
artists.

40

was made to “dumb-down” the material; instead, advanced mathematics
(integral calculus) was used, but proofs and derivations were avoided. The
concepts were always elucidated with SSUM. The students were more
responsive to the material and asked more questions. There were several
moments when | saw “lights turn on,” particularly when we found the
expression for the discrete Fourier transform from a finite difference equation.
Suddenly the big black box called “fft” was a little less mysterious.

It might be stated that focusing on MATLAB in the new syllabus
replaces the difficulty of using mathematics with the difficulty of learning
programming. Thus the class will become more about programming MATLAB
than learning MSP. However, due to the multimedia nature of MSP, it makes
more sense to concentrate on learning the theory through building
applications than struggling with abstract mathematics.

Some students suggested that MATLAB should be learned on their
own time and that only the first homework should be devoted to learning
MATLAB techniques. Assuming that the students would do this would be a
big mistake. Since MATLAB is a required portion of the final project it is
absolutely necessary to create assignments that will force them to learn and
use MATLAB. The “MATLAB manual” (the electronic manual that comes with
a MATLAB installation) was constantly assigned as reading, but from their
questions it was apparent not many students complied.

More focus was placed on learning GUI programming in the beginning
of the course for four reasons. First the students needed to learn MATLAB by
doing something interesting. Second they needed to learn functional
programming, rather than just writing scripts. Third, in order to even
understand how SSUM works, and thus to pick out code that interests them,
they needed to become comfortable with the GUI structure in front of the

applications. Finally, their final project should either be a demonstration of a

41

concept (like SSUM), or an application. Knowing how to wrap your program in
a GUI makes it much easier and interesting to use.

It could be argued that the homework still didn’t have enough to do
with the class content. Even though students were required to work with
frequency modulation, it wasn’t specifically covered in class, and no one took
it further by, for example, looking at how the index of modulation affects the
frequency content. They could have easily looked at the sounds using
Sonogram Explorer, or Fourier Explorer.

As mentioned above, it was tough to get the students to use SSUM on
their own time. This lack of voluntary exploration is echoed in [40], originally
written in 1995 when the campus network system was a MS-DOS token ring,
and only 68% of the students knew about e-mail. Though the computer
resources are much more user-friendly now, students must still be
“academically compelled” to use the tools [40]. Though during 201A they may
have not used SSUM, it became essential for their final projects as at least a
collection of code from which they borrowed.

Catering to the creative motivations of the media arts student, and
using plenty of demonstrations, a class can approach the difficult concepts of
MSP with enthusiasm rather than dread. “If the teachers can create an
enduring fascination for the subject matter, the job's almost over: the more the
students love the subject, the less help they need in their studies” [39]. SSUM
was essential for providing a practical and entertaining experience. And if in
the end students still find nothing useful in MSP, at least they have gained

programming experience.

42

Conclusion

SSUM has been developed to satisfy the needs for illustrative and
inspiring demonstrations to make MSP a discipline approachable by students
who may never posses an ability in advanced mathematics. Using SSUM
students not only receive an interactive introduction to MSP, but also learn
how to program algorithms using MATLAB. SSUM and the syllabus presented
above provide highly effective methods for teaching MSP to any introductory
student in this equally creative and technical field. SSUM became absolutely
essential to the smooth and quick pace of our course on MSP. Without it the
class would have remained dull, pedantic, and lost in mathematics. The
applicability of SSUM to other media arts programs and even introductory
engineering courses is very clear.

One of the disadvantages of CBE discussed in [40] is the time spent
preparing the computer resources. One must weigh the benefit for the
students with the cost of preparing the materials. For SSUM this is not an
issue. It has taken a year to develop SSUM into its current state, but since it
was developed using modularity, its upkeep is minimal. MATLAB will remain
for a long time a leader of academic and institutional engineering software,
and so SSUM will continue to grow and be useful toward its intended goals.

SSUM will be maintained and extended as a project from MAT. It is
predicted that as more people use SSUM they will create other interesting
demonstrations. Incorporating these into SSUM will further enrich it as a
resource. SSUM can be downloaded for free from

http://www.mat.ucsb.edu/~b.sturm.

43

Acknowledgments

The MathWorks, Inc., the makers of MATLAB, has supported this
research by providing full multi-platform licenses to MATLAB. Thanks to Dr.
Gibson for allowing me to run free with the design and implementation of
SSUM. This research was supported with financial assistance from Dr.
Gibson and the graduate program in Media Arts & Technology, UCSB.

44

References

1.

10.

J. H. McClellan and R. Schafer and M. A. Yoder, DSP First: A
Multimedia Approach, Prentice Hall, New Jersey, 1998.

J. H. McClellan and R. Schafer and M. A. Yoder, Signal Processing First,
Prentice Hall, New Jersey, 2003.

K. Steiglitz, A DSP Primer: with Applications to Digital Audio and
Computer Music, Addison Wesley, Menlo Park, CA, 1996.

P. R. Cook, Real Sound Synthesis for Interactive Applications, A. K.

Peters, Massachusetts, 2002.
U. Zoelzer (Editor), DAFx: Digital Audio Effects, Wiley, New York, 2002.
MATLAB is created by The MathWorks, Inc. http://www.mathworks.com/

A. Clausen and A. Spanias, "An Internet-based Computer Laboratory for

DSP Courses", in Proceedings of Frontiers in Education, 1998. Available
at: http://fie.engrng.pitt.edu/fie98/

R. J. Radke and S. Kulkarni, "An Integrated Matlab Suite for Introductory
DSP Education," in Proceedings of the First Signal Processing
Education Workshop, 2000. Available at:
http://www.ee.princeton.edu/~rjradke/papers/radkedsp00.pdf

M. Rahkila and M. Karjalainen, "Considerations Of Computer Based
Education In Acoustics And Signal Processing," in Proceedings of
Frontiers in Education, 1998. Available at: http://fie.engrng.pitt.edu/fie98/
M. Rahkila, “A Computer Based Education System for Signal
Processing,” Helsinki Univeristy of Technology, Department of Electrical
Engineering, Master’s Thesis, 1996. Available at:

http://www.acoustics.hut.fi/~mara/cbe/mst/

45

11.

12.

13.

14.

15.

16.
17.
18.

19.
20.
21.
22.

23.

24.

M. B. Joaquim and J. C. Pereira and V. A. de Oliveira, "Course On DSP
Design Using MATLAB," in Proceedings of Frontiers in Education, 1998.
Available at: http://fie.engrng.pitt.edu/fie98/

A. C. Hague, Towards Deeper Learning with Hand-Crafted Courseware,
(PhD Thesis) University of York, Department of Computer Science, U.K.,
1997. Available at: http://citeseer.nj.nec.com/hague97towards.html
JAVA Digital Signal Processing Editor. Available at:
http://www.eas.asu.edu/~midle/jdsp/jdsp.html

J. McCartney, "SuperCollider: A new real-time sound synthesis
language," in Proceedings of the International Computer Music
Conference, 1996. Available at: http://www.audiosynth.com

M. Puckette, “Pure Data,” in Proceedings of the International Computer
Music Conference, 1996. Available at:
http://www.crca.ucsd.edu/~msp/Publications/icmc96.ps

Max/MSP is distributed by Cycling74: http://www.cycling74.com/
Simulink is created by The MathWorks, Inc. http://www.mathworks.com/
Mathematica is created by Wolfram Research, Inc.
http://www.wolfram.com/

Maple is created by Maplesoft. http://www.maplesoft.com/

Octave. Available at: http://www.octave.org

LabVIEW is created by National Instruments. http://www.ni.com/labview/
R. Remez, P. Rubin, D. Pisoni, and T. Carrell, “Speech perception
without traditional speech cues,” Science, Vol. 212, 947-950, 1981.

M. Nagrial, "Education and Training in Engineering Software and
Applications," in Proceedings of the International Conference on
Engineering Education, 2002. Available at:
http://citeseer.nj.nec.com/560624.html

Baudline is free software for Linux only, available at:
http://www.baudline.com

46

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. Cooke, H. Parker, G. J. Brown and S. N. Wrigley, "The interactive
auditory demonstrations project," Eurospeech Conference, 1999.
Available at: http://www.dcs.shef.ac.uk/~martin/MAD/docs/articles.htm
M. Cooke, et al., “MAD: MATLAB Auditory Demonstrations,” 1999.
Available at: http://www.dcs.shef.ac.uk/~martin/MAD/docs/mad.htm

A. S. Bregman and P. Ahad, “Demonstrations of auditory scene analysis:
the perceptual organization of sound,” CD, MIT Press, Cambridge,
Massachusetts, 1995.

B. L. Sturm, “MATConcat: An Application for Exploring Concatenative
Synthesis in MATLAB,” to be published in 2004 Proceedings of the
International Conference of Computer Music, Miama, FL, 2004.

A. Hunt and A. Black, “Unit selection in a concatenative speech
synthesis system using a large speech database,” ICASSP 1(1),
373-376, 1996.

P. E. Devens, "MATLAB & Freshman Engineering," in Proceedings of
the ASEE Annual Conference & Exposition, 1999. Available at:
http://www.succeed.ufl.edu/search/seepaper.asp?paperid=284

E. A. Lee, “Designing a Relevant Lab for Introductory Signals and
Systems", in Proceedings of the First Signal Processing Education
Workshop, 2000. Available at:
http://ptolemy.eecs.berkeley.edu/publications/papers/00/spe2/

D. E. Melton, C. J. Finelli and L. M. Rust, "A Digital Signal Processing
Laboratory with Style," in Proceedings of 29th ASEE/IEEE Frontiers in
Education Conference, 1999. Available at: http://fie.engrng.pitt.edu/fie99/
U. Rajashekar and A. C Bovik, "Interactive DSP Education Using
MATLAB Demos", in Proceedings of the First Signal Processing
Education Workshop, 2000. Available at:

http://www.ece.utexas.edu/~umesh/publications.htm

47

34.

35.

36.

37.

38.

39.

40.

F. R. Moore, “An Introduction to the Mathematics of Digital Signal
Processing: Part I: Algebra, Trigonometry, and the most Beautiful
Formula in Mathematics,” Computer Music Journal, Vol. 2, No. 1, 1978.
F. R. Moore, “An Introduction to the Mathematics of Digital Signal
Processing: Part Il: Sampling, Transforms, and Digital Filtering,”
Computer Music Journal, Vol. 2, No. 2, 1978.

J. Harvey, “Mortuos Plango, Vivos Voco: A Realization at IRCAM,”
Computer Music Journal, Vol. 5, No. 4, 1981.

F. J. Harris, “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1,
1978.

B. L. Sturm, “Surf Music: Sonification of Ocean Buoy Spectral Data,” in
Proceedings of the International Conference on Auditory Display, Kyoto,
Japan, 2002.

J. Koumi, “Designing for Learning---Effectiveness with Efficiency,” In
Effective Screenwriting for Educational Television, ed. R. Hoey, Kogan
Page Ltd, U.K., pp 230 — 239, 1994.

C. A. Canizares and Z. T Faur, “Advantages and disadvantages of using

various computer tools in electrical engineering courses,” IEEE Trans.
On Education, vol. 40, No. 3, 1997, pp 166 — 171.

48

Appendix A: Current SSUM Applications

SSUM Main GUI

Highlight an application to learn what it does. Click “Run” to execute
the application. The “All”’, “Sound”, and “Image” toggle buttons filter the
relevant applications. Selecting “Sound” will show all applications having to do
with sound.

X/ 55UM
Help

Signals and Systems Using MATLAB

| & | | sound | | Irnagge |

A dio Aliasing Explarer
Make an audio signal alias

complexpo

CORYEXpo
Tdegexpo
featurexpo
firexpo —
fourierespo m
Tzeriesexpo -
iirexpo
imgaliazexpo
imganalsynth
imgfilterexpo

© 2003 University of California, Santa Barbara

49

Additive Synthesis Forest

This is a great demonstration of the power of additive synthesis to
create realistic bird song.

Simply select a bird and click “Play.” The random bird is a mixture of all
the bird calls with random parameters. The “Plot” button will show the
frequency and amplitude envelopes of the synthesis parameters.

The synthesis can be modified using the text boxes to the right. The
Time Stretch will increase the duration of the envelopes. “Rand Time,” “Rand
Amp,” and “Rand Freq,” will change times, amplitudes, and frequencies within
the envelopes. . _ 5

Fromthe menu Al birds

the synthesized bird Fle Sendto.. Help
song can be sent to the PR S

Additive S

Sonogram Explorer or
Fourier Explorer. The
resulting signal can be
saved to a soundfile
from the File menu.

The original code
for these birds was in
Common Lisp Music,
(CLM), developed at the
Center for Computer
Research in Music and
Acoustics (CCRMA) at
Stanford University. |
translated this code
during summer 2003.

[

Orchard_Oriale

bl Chipping_Sparrow
Sciszar_Tailed_Flycatcher
Elack_Throated_Gray _Warbler
Cassing_Kinghird
Elack_MNecked_Stilt
Chestrut_Sided_'Warkler

50

Additive Synthesis Waveform Explorer

This is a demonstration of adding sine waves to produce different
waveforms.

5886 X wavexpo

|

W

\

.
|

|

LIS LB L)

H[
0

|

S

I |] — | R
- o —
) ——— -
5 e —— | [T
iE e —— | T

| 11830 = — 0037

Begin by selecting a waveform from the menu. You can then adjust
any of the parameters to see its effect on the waveform. After selecting a
different fundamental (f0), select a waveform again to synthesize its shape.
The signal can be played using the “Play” button. In the phases box, the
“‘Randomize” button will randomize all 15 phases.

Using the menu above, the signal can be sent to the Fourier Explorer,
Sonogram Explorer, or the Aliasing Explorer. The signal can also be saved to
a sound file from the File menu.

51

Audio Aliasing Explorer

This application allows to user to simulate the effects of aliasing in
audio.

X| /Users/bobsturm/gibson/SSUM/data/sounds/10000.wav Duration: 0.8224 s Fs: 44100 Hz Channels: 1 Bits: 16
File Send fo Help

! — Hyquist Frequericy

Loy Magnitude (4B}

Aliasing Explorer
by Bob L. Sturm and Dr_ Jerry Gibson

After loading a soundfile using the menu at the top, its time-domain
waveform will appear in the bottom plot. The two red bars on this plot denote
the window over which the Fourier transform is performed. The magnitudes of
the transform are displayed in the top plot. The red bars in the frequency plot
denote the Nyquist frequency. The vertical slider scales the range of the plot;
the horizontal slider scales the frequency domain plotted. By clicking and
holding on a red bar in the time-domain plot the window can be dragged over
the sound to show how the spectrum changes.

By choosing a downsample factor from the menu, the original signal is
decimated without filtering, and redisplayed. The signal is resampled to the
original sample rate, but the effective sampling rate is Fs/factor. An anti-
aliasing filter can be applied before decimation by clicking on “Use Anti-Alais
Filter.”

The menus on the lower right side of the figure can change the fast
Fourier transform window size and shape. The sound can be normalized and
played. The check boxes change how the transform is displayed. Using the
menu at the top, the loaded sound data can be sent to other applications, like
the Sonogram Explorer.

Some code to make this demonstration was taken from the MAD
program "wavspect."

52

Catastochastic Additive Synthesis Composition Machine

This application composes music using additive synthesis parameters
supplied by the user.

X stocho

File Help

The Catastochastic Additive Synthesis Composition Machine

Section | Section Il Section Il

Start Time Start Time Start Time:
|1 i} F(secunds) |1 il F (seconcla) |1 1] F (seconcia)

FU WVaolume FU Volume FD Wolume

iW o 'nin max |1 o rnin max || A

Inult amp Inult amp rnu\t amp

i s evonds) o e (seconds frin e (secands)

i s @1 i s -1 frin s 01

Inln max (Hz) 'nln max (Hz) rmn max (He)

in max (Hz) in max (Hz) iin max (Hz)
o I I

Flat - Flat =

Fat - Flat -

Fanciomize | Distribution | Fancioize | Distribution | Fanviomize | Distributior |

Begin by pressing “Compose” for any section. Default values are
loaded in the fields. For any section the number of notes can be modified.
The start time of each section can be changed. By clicking on the “Mix” box,
that section will be mixed into the final section. The “Percent Overlap” value
determines how many sounds are playing at once. The volume of any section
can be changed either using the text box or the vertical slider.

The additive synthesis parameters are the number of partials, the list of
partials in multiples of the fundamental and amplitude (for instance [1 1 2.1
0.5 3 0.2]). Ranges can be specified for the note durations, amplitudes,
frequencies, and frequency skews. Finally different envelopes can be chosen
for the amplitude and frequency of each note. Once entered, press
“‘Compose” to synthesize the section. Upon finishing a time domain plot will
be shown.

This program is not intended as a demonstration of anything in
particular. It is included as an example of something that can be done using
MATLAB and basic signal processing. The resulting signal can be saved to a
soundfile from the File menu.

53

Communication Models Explorer

This application demonstrates the propagation of error in different
models for communication systems.

X modelexpo A E X! Figure No. 2
File Help Entropy = 6.7496
2-State Auto-Regression User-Specified
P [oE 2 [oes o
I e sl [gEs std g5
Gaugsian 4
F E A Seal
] Flo4 selke | bits [
) 4| W Geale
Size I?g_ 1 Animate AE s |

Model Explorer

by Bob L. Sturm and Dr. Jerry Gibson

htm mode lexpo, him

Select a model and click “Draw.” An image will be created that shows
the propagation of error. A white pixel represents an error. When “Animate” is
selected, the drawing will be incremental. At the top of the image will be the
calculated entropy of the particular trial.

The “2-State” model is a basic Markov chain. The probability p
determines the likelihood of encountering an error; the probability q
determines the likelihood of returning from an error. The “Auto-Regression”
model is a Markov chain with memory. The number “a” is the percent of the
output fed back. The standard deviation “std” determines the noise in the
system. When “Scale” is selected the range of pixel values will be rescaled to
the maximum and minimum values in the image. The “User Specified” allows
different types of noise to be introduced, and the number of bits used for each
pixel.

The resulting image can be saved from the File menu.

54

Complex Number Explorer

This is a demonstration of complex numbers and vectors.

"6 N complexpo

After starting the program you can either enter the x, y, r, or theta
values in the text boxes, or click and drag the point around the plot. From the
plot menu you can select which point to display, and which operation to
perform (addition, subtraction). The thick blue arrow represents the result of
the operation. The result is also shown in the text boxes under “Result.”

The points can be plotted in either rectangular or polar coordinates,
depending on the selected check box.

55

Concatenative Synthesis Explorer

This application demonstrates concatenative synthesis using signal

feature extraction.

X! videmcar
File Options Help

Concatenative Synthesis Explorer for MATLAB
Copytight 2004 Bab L. Sturm

MATGoncat
Target Carpus

[Bnalysis: lenalysis 1 T
Cangregation v Workey Carpus way :
num_samples = 372308 num_samples = 19315182 03|
durafion = 8.4 seconds duration = 438 0 seconds
num_channels = 2 num_channels = 1
F3=44100 F3=44100
windaw_shape = Harn window_shage = Hamming
windaw_size = 512 window_size = 16364
windaw_skip = 256 window_skip = 1024

brialysis Types brialysis Types

zera s spec_centroid spec_roloff | zero rms spec_centroid spec_rolloff

harmonicity pitch

Statisties:
Mean zero = 44 4721
Mean rms = 0.0243

Mea spec_rolloff = 6053 63

Mea harmonicity = Hall

Mean pitch = 2387.3463
1453 tatal data poi

Load/&nalyze | _Flay

WMean spec_centrai = 3124.913¢

harmonicity pitch
Statistics

Mean zero = 796.1531
Mean rme = 0.0377

Mean pitch = Nahl

its 18861 total data points

Features Load/&nalyze

WMean spec_centraid = 2105 5662
]l WMean spec_rollott = 4081 3760
Wean harmonicity = Nahl

Analysis Parameters

Synthesis Parameters

+2 Pracess Order Window Shaps
Zero Crossings 4| | 0 Epestral Centroid Hanh 1
window Size [512 o
L 1024
Window Skip | 258 WD B
E 1o Winclow Sk 512
o ot | P ||| SReStr Centroid 21 o

Target

4@ il cos x

f— Spectral Rollorr < st B J|
vinow size [16368 Harmonicity 4| [~ 0 Windows 20 [200 Get

Window Skip | 1024 Piter 41 [0 Make Mona 4 |

Hann i | Resnaljze Synthesize

= 14362 Murnber valic indicies: 459
= 20362 Murnber valic indicies: 575
= 3362 Murnber valid indlicies: 517 --»
= 4362 Mumber valid indicies. 742 -->
=5r362 Mumber valid indicies. 424 -->
= BI362 Mumber valid indicies; 589 -->
= 7362 Mumber valid indicies. 408 -->
= 8I362 Murnber valid indicies: 542 --> 7 Index =
= 9i362 Murnber valid indicies: 28 --> 1 Incex = 3679

= 100362 Mumber valicd indicies: 39 --> 1 Index = 3681

= 114362 Mumber valic indicies: 9 --> 0

=12/362 Mumber valid indicies. 26 --> 0

= 134362 Number valic indicies: 2102 --> 21 Index = 5254
= 14/362 Number valit indicies: 2071 --> 20 Inclex = 6254
= 15/362 Number valict indicies: 1760 --> 43 Index = 5564

18 2
Normalizs
Output |
|
A

MATConcat is a complex application that synthesizes a target sound

using samples from a dictionary of sounds. It does this using feature

extraction and matching criteria.

Begin by analyzing a target sound using the parameters set in the

“Analysis Parameters” box. Load or analyze a corpus sound. Specify

matching criteria from the “Synthesis Parameters” box. Click “Synthesize” to
begin the process. Once finished the resulting signal will be displayed in the
plot on the right, and the matching results will be displayed in the text box

below it.

The synthesis can be saved from the File menu.

56

Convolution Explorer

This is a demonstration of discrete convolution.

X convexpo

Help

Convolution Explorer
by Bok L. Sturm and Dr. Jerry Gibson

T e L e e FE TN IR T e [,) St

" icith

. A TN WU SN ST ESRN IV SRR EXENCR ST SR RTINS P S ST "R S T IR

o oB B e B OB B oE OH 8 5 Boam 4 Pulse 2
E|5_ (R | FIRESPN | | g Shape
DS square i |

s

| RN T T O T T P S R

<4 I Step 3 |

| Cyelic |

o1 2 3 4 5 6 F & 4 10 11 12 13 14 15 16 17 13 15 =20

Begin by adjusting the widths of the pulses you wish to convolve. The
shape of the pulses can be changed using the shape menu. The convolution
can either be stepped through (in any direction), or played as an animation.
Once finished it can be stepped in reverse, or reset and played again.
Selecting the “Cyclic” box performs cyclic convolution.

By selecting the “Show Shape” box the stem plots will be replaced by
line plots. The grid box turns on and off the grids.

57

Cross-Synthesis Explorer

This application demonstrates the cross-synthesizing of sounds.

X Cross Synthesis Explorer
File Cross Synthesis Help

Signal 1 Signal 2

Cross-Synthesis

12000
10000
E 8000
A
E soo0
E

4000

2000}

i i L i i i i i i
0z o4 0B 08 1 12 14 16 18
tirme ()
Load Fileniare: Load | [Fllename
1) UM.PCidta/sounds/Can U LM.PC
Play IrecCAR way Play

111wy
Duration: 2.01 78 seconds
F3:44100 Hz

F3:44100 He

Colormap Window FFT Size
Jet = | Hann = | 512 = |

Cross synthems Explnrer 1 rwerse | W gB I Interpalate |
by Bob L. Sturm and Dr. Jerry Gibson

Begin by loading two signals using the “load” buttons. Once loaded the
signal’s sonogram and its time-domain waveform will be displayed. From the
“Cross Synthesis” menu select a method. The convolution method just
convolves the two signals. The amplitude envelope method applied the RMS
envelope of the second signal to the first. The linear predictive coding method
creates a model from the first signal, and uses the second signal as the
excitation for the model.

The sonogram displays can be changed using the choices at the
bottom of the figure. The vertical slider on the left scales the frequency

domain of the sonograms. The resulting signal can be saved to a soundfile
from the File menu.

58

Finite Difference Equation Explorer

This application allows the exploration of finite difference equations
and their frequency responses.

N fdegexpo
File Load Sendio.. Help

Impulse Response
T T T T

0.2 &
!
i
i
015 ! b_n 0200 0.200 0.200 0.200 0.200
0.1 an i
] = 0.25M] + 0.24[-1] + 0.25[h-2] + 0.25[n-3] +
v 24
i N N N
0 e e e o b o oo o0 b oo oo bdbooe oo
0 5 10 15 20

Fieset
Sarngle

Freguency Response

Mormalized Attenuation

Phage {radians)
=)

-3k I i I

I I I i i i i
o 0.0s o1 015 02 025 03 035 o4 045 0s Finite Diﬁerence Equation Explorer
Mormalized Freguency (%)

You can either type in the coefficients in the text boxes, or load a given
filter from the menu. The display can be altered using the checkboxes to the
right. The slider below the impulse response changes the time-domain
display.

You can send the filter to the Pole Zero Explore, the Pole Zero Filter
Explorer, or the Convolution Explorer.

59

FIR Filter Explorer

This application allows FIR filtering of sounds and displays spectral
information using a sonogram.

X /Users/bobsturm/gibson/SSUM)/ data/sounds/S1pcm.wav Duration: 1.9594 s Fs: 11127 Hz Channels: 1 Bits: 8
File Send Filter to... Send Datato.. Help

5000 — - = L] = 5 - - 20

4000 = 0

FreGuUency {Hz)

FIR Filter Order

Match = 500

Cutoff Freguencies (Hz)

1000 1500
Apply Unido Plot

Calarmap ‘Window FFT Size

Jet = Harn =1 512 =

A Inverse = dE

time {5}

< Interpolate

WABMING: This could take 2 while.

Fitered Original

7 |

Flay | Zoom Feset |

Mormalize

FIR Filter Explorer

by Bob L. Sturm and Dr. Jerry Gibson

First load a soundfile from the menu. Once analyzed its sonogram will
appear. Change the colormap and dB scale to see different features.
Zooming in the waveform time-display will also zoom the sonogram. (If at any
time this does not work, click on the “zoom reset” button to restore this
functionality.) The "Interpolate" box will smooth the sonogram, but this will
take a long time to complete for large portions showing—so use wisely. The
play buttons will play only the waveform showing. The slider to the left of the

sonogram will scale the frequency axis.

Once a sound is loaded it can be filtered using the parameters
specified in the box on the right. You can apply and undo these changes.
Click on “plot” to see the frequency response and impulse response, of the
filter. Using the menu at the top, the filter can be sent to the Pole-Zero
Explorer or Pole-Zero Filter Explorer to show the positions of the filter’s poles
and zeros. The impulse response can be sent to the Convolution Explorer.
The resulting signal can be saved to a soundfile from the File menu.

60

Formant Explorer

This application displays the spectrum and formants of a sound over a
window. Also available for display are the autocorrelation, and cepstrum.

X

File Sendto.. Help

/Users

/bobsturm/gibson/SSUM/data/sounds/S1pcm.wav

Duration: 1.9594 s Fs: 11127 Hz Channels: 1 Bits: 8

&0
an

8 =

Log Magnitude (4B}
&

-100
0

s R

A T AR T T T e e e T AT U e e e e
V TV

T T R |

1
2000

5000

Formant

#utocorrelation 1

s | 4 Stem
i smooth | s Entire FFT
i oy

Flay

Mormalze
I FFT Size
R 512 =
Window

Hann =

Formant Explorer

After loading a soundfile using the menu at the top, its time-domain
waveform will appear in the bottom plot. The two red bars denote the window
over which the Fourier transform is performed. The magnitudes of the
transform are displayed in the top plot, along with the formants derived from
an LPC analysis. The anti-formants can be displayed by clicking on the button
to the right of the plot. The vertical slider scales the range of the plot; the
horizontal slider scales the frequency domain plotted. By clicking and holding
on a red bar the window can be dragged over the sound to show how the
formants change.

The middle plot can display the autocorrelation of the windowed signal,
or the cepstrum. This can be selected from the pull-down menu.

The menus on the lower right side of the figure can change the fast
Fourier transform window size and shape. The sound can be normalized and
played. The check boxes change how the transform is displayed.

Using the menu at the top, the loaded sound data can be sent to other
applications, like the Sonogram Explorer, or Aliasing Explorer.

Some code to make this demonstration was taken from the MAD
program "wavspect" and “Ipc.”

61

Fourier Explorer

This application displays spectral information using the Fourier
transform.

X/ /Users/bobsturm/gibson/S5UM/data/sounds/eidel.wav Duration: 7.2398 s Fs: 44100 Hz Channels: 2 Bits: 16
File Send to. Help

= de | 4 stem
A smaoth | i Entire FFT
)

Play

Mormalize

FFT Size

4096
Window

Hann =

Fourier Explorer
by Bob L. Sturm and Dr. Jerry Ghoson

After loading a soundfile using the menu at the top, its time-domain
waveform will appear in the bottom plot. The two red bars denote the window
over which the Fourier transform is performed. The magnitudes of the
transform are displayed in the top plot. The vertical slider scales the range of
the plot; the horizontal slider scales the frequency domain plotted. By clicking
and holding on a red bar the window can be dragged over the sound to show
how the spectrum changes.

The menus on the lower right side of the figure can change the fast
Fourier transform window size and shape. The sound can be normalized and
played. The check boxes change how the transform is displayed.

Using the menu at the top, the loaded sound data can be sent to other
applications, like the Sonogram Explorer, or Aliasing Explorer.

Some code to make this demonstration was taken from the MAD
program "wavspect."

62

Fourier Series Explorer

This application demonstrates the Fourier series for a periodic step
function.

File Sendto Help

I dB) Stem

S
T Er

tay | 01

Offset o

fime (5)
Fourier Series Explorer

By adjusting the period “T” and step duration “tau,” the magnitude
Fourier series shown in the top plot changes. The phase spectrum is shown
to be linear. The amplitude and offset of the step function can also be
changed. The horizontal slider changes the frequency domain displayed; the
vertical slider changes the magnitude range.

The generated periodic step signal can be sent to the Fourier Explorer,
or the Sonogram Explorer from the menu.

63

lIR Filter Explorer

This application allows IIR filtering of sounds and displays spectral
information using a sonogram.

X /Users/bobsturm/gibson/SSUM)/ data/sounds/S1pcm.wav Duration: 1.9594 s Fs: 11127 Hz Channels: 1 Bits: 8
File Send Filter to... Send Datato.. Help

IIR Filter Type Order

Bandpass Butterworth I 5

Cutoff Freguencies (Hz)

1000 2000

Peak-Peak Ripple (dB) Stop Attenuation (dB)

w
a
=]
S

FreGuUency {Hz)

Apply Unido Plot

Calarmap ‘Window FFT Size

Jet = Harn =1 512 =

A _Inverse | M dB
ARG Ths couid take 2 whie.

Filtered Qriginal
Flay | Flay | Zoom Feset |

Mormalize

IIR Filter Explorer

time {5}

First load a soundfile from the menu. Once analyzed its sonogram will
appear. Change the colormap and dB scale to see different features.
Zooming in the waveform time-display will also zoom the sonogram. (If at any
time this does not work, click on the “zoom reset” button to restore this
functionality.) The "Interpolate" box will smooth the sonogram, but this will
take a long time to complete for large portions showing—so use wisely. The
play buttons will play only the waveform showing. The slider to the left of the
sonogram will scale the frequency axis.

Once a sound is loaded it can be filtered using the parameters
specified in the box on the right. You can apply and undo these changes.
Click on “plot” to see the frequency response and impulse response, of the
filter. Using the menu at the top, the filter can be sent to the Pole-Zero
Explorer or the Pole-Zero Filter Explorer to show the positions of the filter’s
poles and zeros. The impulse response can be sent to the Convolution
Explorer. The resulting signal can be saved to a soundfile from the File menu.

64

Image Aliasing Explorer

This application explores aliasing images.

e Vel

X/ imgaliasexpo

0 O O X Figure No. 2: stersbebslurm;’g\bscnfSSUM.idatafi.mages;‘i:arbal

File Help By fmisnity)

Twao-Dimenesional Foutier Transform

400

450

soof i]
50 100 150 200 250 900 350 400 450 500

Colormap Jet i Inwerse

Downsample Factar
. Horizontal s/bobsturm/gibson/SSUM/aliasing/image/imgaliasexpogui.m at line 42
Application s Mertical pg of zera.
o s/bobsturm/gibson/35UM/aliasing/image/imgaliasexpofn.m (makeZDSpecPlot) at
> enel | o s/bobsturm/gibson/SSUM/aliasing/image/imgaliasexpofn.m at line 73
Image Aliasing Explorer s/bobsturm/gibson/SSUM/aliasing/image/imgaliasexpogui.m (downsample_Callba
A Iwerse | X gedle | zoom Feset | by Bok L. Sturm andl Dr. Jerry Gibson s /hobsturm/gibson/S5UM/aliasing/image/imgaliasexpogui.m (gui_mainfcn) at 1

Like the Aliasing Explorer for sound, this demonstration creates
aliasing in images. Start by loading an image. It will be displayed at the
correct screen resolution; its two-dimensional Fourier transform is displayed
in the GUI figure. The appearance of the transform can be changed using the
options underneath the plot. The appearance of the image can be changed
using the options at the bottom of the GUI.

By selecting a downsample factor, the image will be decimated in
either the horizontal or vertical directions, or using a kernel—depending on
which is checked. When “Keep Size” is checked the image will be upsampled
back to the original size. When the “Anti-Aliasing Filter” is checked, the image
will be lowpass filtered before decimation.

Using the menu, the image can be sent to the Image Spectrum
Explorer or the Image Filter Explorer. The resulting image can be saved to an
image file from the File menu.

65

Image Analysis/Resynthesis Explorer

This demonstration shows the spectral analysis of an image, and its
resynthesis from this data.

N Image Analysis/Resynthesis

File Help

Image
W Gcale
4 werse |

Spectrum
Cmnrmap Magnitude
_oher
Phase
T |

Reconstruction

X/ Figure No. 1

Image Analysis/Resynthesis

by Bob L. Sturm and Dr. Jerry Gibson

L 1
CTP] workspace [Curaneoi

Command History
pzexpo
firexpo
pzfilterexpo
help i
clear
pzfilterexpo
help complex
pzfilterexpo
firexpo
pzfilterexpo
SWSExpo
convexpo
xsynthexpo
modexpo
xsynthexpo
modexpo

xsynthexpo

modexpo
ocho
ganalsynth

When an image is loaded, it is displayed, a two-dimensional Fourier
transform is performed, and the image is synthesized from the spectral data.
The original image is seen above in the top right corner; the synthesis is
shown below it. The frequency and phase information of the original is shown
in the center plots. The appearance of the images can be changed using the
option in the “Image” box in the GUI. The appearance of spectral plots can be
changed using the options in the Spectrum box of the GUI.

The options in the Reconstruction box affect how the image is
synthesized. The magnitudes used to perform the reconstruction can be set
to either the original values, random values, or values from the analysis of a
different image. The same is true for the phase information, except another
choice is to set the phases to zero.

The resulting image can be saved to an image file from the File menu.

66

Image Filter Explorer

This application explores filtering images. One can use several types
of filters to see their effects. One can also add noise to an image and see the
effectiveness of a filter for removing it.

[@BE N imgfilterexpo i D O O [X] Figure No. 2 /Users /bobsturm/gibson/S5UM.PC/data/images/camerama

File Help E

Two-Dimenesional Fourier Transform !

100

150

200

2s0f

AR . |
50 0 150
Colormap et =3 e statement, ..., statement, CATCH, statement, ..., statement END
, only the statements between the TRY and CATCH are executed.
Apply Filter Add Noise if an error occurs while executing any of the statements, the
. captured into LASTERR and the statements between the CATCH
Type Size Type are executed. If an error occurs within the CATCH statements,
Median = lT Salt andl Pepper 1 h will stop unless caught by another TRY...CATCH block. The
ring produced by a failed TRY block can be obtained with
Incidence | 0.1
Plot | [eppy | Undo Apply Undo EVAL, EVALIN, CATCH, END.
. =~ Hotizontal Lmexpo
PR e Mertical umexpa
Kernel expo
Image Filter Explorer expo
A rverse | '&IMI by Bok L. Sturm and Dr. Jerry Gibson

Start by loading an image. It will be displayed at the correct screen
resolution; its two-dimensional Fourier transform is displayed in the GUI
figure. The appearance of the transform can be changed using the options
underneath the plot. The appearance of the images can be changed using the
options at the bottom of the GUI.

After loading an image it can be filtered. The filter type can be
selected, and its size can be set. Choose a direction for its application and
press “Apply” to apply the filter. The changes can be undone.

Two types of noise can be applied to the image to see their effects.
The incidence of the “Salt and Pepper” gives the percent chance of either
black or white pixels. The variance of the “Gaussian” noise gives the spread
of noise within a grey scale.

Using the menu, the image can be sent to the Image Spectrum
Explorer or the Image Aliasing Explorer. The resulting image can be saved to
an image file from the File menu.

67

Image Spectrum Explorer

The spectral information of an image, or its spatial frequencies, can be
explored in this application.

| =T

File:

S0

100

150

200

250

S0 100 150 200 250

Colortap Hot W inwerse

Hatizantal

Spectrum

Walues

i i L i L i
20 40 B0 a0 100 120
Vertical

o Inverss ® s | Image Spectrum Explorer

by Bob L Shum and Br. Jery Gibson

Start by loading an image. It will be displayed at the correct screen
resolution; its two-dimensional Fourier transform is displayed in the GUI
figure. The appearance of the transform can be changed using the options
underneath the plot. The appearance of the images can be changed using the
options at the bottom of the GUI.

In the figure containing the loaded image a circle and two lines
appears. The circle can be moved around the image. As this happens the two
plots in the main figure will correspond to the pixel values in the horizontal
and vertical directions. Either the spatial frequencies or the actual pixel values
can be displayed.

Using the menu, the image can be sent to the Image Aliasing Explorer
or the Image Filter Explorer.

68

LPC Explorer

This demonstration shows the process of linear predictive coding.

X| fUsers/bobsturm/gibson/55UM/data/sounds/S1pcm.wav Duration: 1.9594 s Fs: 11127 Hz Channels: 1 Bits: 8

File Original Synthesis Help

1

ns

0

Analysis
Window Size

— Al

Window Skip
512

Window Shape

Rectangle 1
Order 11

o8 1
tirme (5)

Analyze Play

Residual

Play

Hormalize |

Synthesis
Excitation

[oise =

Synthesize
Morrnalize

LPC Explorer

Begin by loading a sound. Its time-domain waveform is shown in the
top plot. Select the analysis parameters and click “Analyze.” Once finished
the residual signal will be shown in the middle plot. Now select the synthesis
parameters and click “Synthesize.” Once finished the synthesis will appear in
the bottom plot. Either sound can be played using the respective buttons.

The model filter can be excited using numerous signals including the

residual, white noise, impulses, or a sound file.

You can send either the original or the synthesized signal to the
Fourier Explorer or Sonogram Explorer. The result can be saved to a sound

file from the File menu.

69

Modulation Explorer
This application demonstrates the amplitude modulation of two signals.

| Modulation Explorer
File Modulation Sendto.. Help ‘

Carrier Signal Modulated Signal

Frecuency (Hz)

as 1 15 2 23 a5 1 15 2 25
time ¢3) time)
Flleriame: Flay Fllenarme: AN
D

DEBSC
uration: 2 5083 seconds Duration: 25034 seconds
F3:44100 Hz F3:44100 Hz

AM Offset 0

Colormap Window FFT Size
Jet =1 Hann = 512 =

Modulation Explorer B | Inverse | inferpolate | Zoom Resst |
fy Bob L. Sturm anel Or. Jerry Gibson

Begin by loading or creating modulation and carrier signals. If you
select “Create,” a GUI will appear from which you can synthesize a signal with
frequency and amplitude envelopes. Once loaded the signal’s sonogram and
its time-domain waveform will be displayed.

From the modulation menu, the two signals are amplitude modulation
using either double side-band suppressed or transmitted carrier. The resulting
signal is analyzed and displayed in the plot on the right. The modulation
signal can be sent to the Fourier Explorer from the menu.

The sonogram displays can be changed using the choices at the
bottom of the figure. The vertical slider on the left scales the frequency
domain of the sonograms. The resulting signal can be saved to a soundfile
from the File menu.

70

Pole-Zero Explorer

This application allows interactive exploration of building filters using

poles and zeros.

X pzexpo

File Load Sendto. Help

Frequency Response

\“’WJ\W it ﬂﬂﬂ”Wvaw
;\ JW\\ M\r\ L I\M\
R WVW\J ‘\J\J\’\J\J\'

a 0os a1 015 02 025 03 035 04 045 o0s
Mormalized Frecuency (&)

Impulse Response
T

150 |
; ; : i
L TR RN 4| R AN
|

5 i i
i
L

40 s0 B0 70 80 a0 100

Z-plane

PoleZero Explorer

by Bob L. Sturrn and Dr. Jerry Gibson

Within this environment you can see how the positions of poles and
zeros affect the frequency and phase response of filters. You can start by
either clicking on “Add Pole” or “Add Zero,” or by loading a pre-designed filter
from the menu. The pre-designed filters include formant shapes. You can
click on any pole or zero and move it around the plot. The frequency
response and impulse response will change in real-time. The slider on the

bottom scales the plot duration of the impulse response.

To apply this filter to a sound you can send it to the Pole-Zero Filter
Explorer using the menu. You can send the impulse response to the

Convolution Explorer.

Some code to make this demonstration was taken from the MAD

program "polezero."

71

Pole-Zero Filter Explorer

This application allows interactive exploration of building filters using
poles and zeros and applying it to a sound.

N\ /Users/bobsturm/gibson/SSUM.PC/data/sounds/White_Noise.wav Duration: 1.2155 s Fs: 44100 Hz Channels: 1 Bits: 16
File Load Help ‘

10 WD4
frecjuency {Hz)
Aoply | Undo | ™ Logir) |

Colormap Window FFT Size

et =0 | Hann = 2048 = |

W |nterpolate WARNING. This could Take 3 whik.

... florie o] L I R DU S L 4 B ol B riinal

Play Play. Zoom Feset

PoleZero Filter Explorer
time (3} by Dr. Jerty Gibson and Bob L. Sturm

|
045

Within this environment you can apply filters constructed of poles and
zeros to a sound. You can start by either clicking on “Add Pole” or “Add Zero,”
or by loading a pre-designed filter from the menu. The pre-designed filters
include formant shapes. You can click on any pole or zero and move it around
the plot. The frequency response will change in real-time.

When you load a soundfile from the menu it will be analyzed and its
sonogram will appear. Change the colormap and dB scale to see different
features. Zooming in the waveform time-display will also zoom the sonogram.
(If at any time this does not work, click on the “zoom reset” button to restore
this functionality.) The "Interpolate" box will smooth the sonogram, but this will
take a long time to complete for large portions showing—so use wisely. The
play buttons will play only the waveform showing. The slider to the left of the
sonogram will scale the frequency axis.

Once a sound is loaded it can be filtered. You can apply and undo
these changes. Using the menu at the top, the filter can be sent to the Pole-
Zero Explorer to show the phase response and impulse response. The
resulting signal can be saved to a soundfile from the File menu.

Some code to make this demonstration was taken from the MAD
program "polezero."

72

Sampling Explorer

This is a visual demonstration of sampling analog signals, including
time sampling, quantization, and interpolation of the samples.

N samplexpo

Help

o 0.002 0.004 0.006 0.008 oom oma 0014 0016 0018 o0z
Time (s)
Frequency {Hz) 100 Sampling Rate [~ 1000
i< prm—— s e = = 0
Amplituce | 1 Mumnber of Bits l 16
Phase (deg) m Periods to plot 2
f———— — P SR e
Offset | 0o
i W Grid | W Samples I W Interpolation |

Sampling Explorer Waveform TF
by Bob L. Sturm and Dr. Jerry Gibson

The original analog signal is the blue line in the top plot. The stems, or
lollypops, denote the samples. The dark blue line in the bottom plot is the
interpolation of the samples back to a continuous signal. You can choose
different analog signals from the waveform menu at the bottom.

The frequency, amplitude, phase, and offset of the original signal can
be changed using the sliders and text boxes on the left. The sampling rate
and number of bits for each sample can be changed using the sliders and text
boxes on the right. The number of plotted periods can also be changed to
reduce the effect of edge effects.

Using the check boxes, the grids, samples, and sinc interpolation lines
can be disabled.

73

Signal Feature Explorer

This demonstration shows a statistical analysis of sounds.

"8aOFE€ X| /Users/bobsturm/gibson/S5UM.PC/data/sounds/OldManPurple.wav Duration: 7.8005 s Fs: 44100 Hz Channels: 2 Bits: 16

File Sendto.. Help

[oo T E = 20 Feature Explorer
1
Sl | B i by Bob L. Sturm and Dr. Jerry Gikson
| L
8000 — i i
s iy -20
7000 £ o o
£ o000 ‘_‘.",.- ! i a0
| = Y Analysis Seftings
| & soo0f- Al @ Iy J¢}
e 4 % FFT Size
£ 4000 4
[b L SR T |
3000 |- P A &0
ST, Window
by
2000 | e | -100 = =
I artry
1000 - L
: -120
| 10000 Colormap
Jet =)
8000 Data View
4 lnverse L]
Spectral Centroid Ea]
T 4 Interpolats
- ———— Flay Zoom Reset
2000
Data View
Time Series
. -

38351 48742
Tirne {3

Begin by loading a signal from the File menu. Once loaded the signal
will be analyzed. The sonogram of the signal is displayed at top, and its time-
domain waveform is at the bottom. The appearance of the sonogram can be
changed with the options on the right. The vertical scroll bar changes the
frequency limits of the sonogram.

The two plots below the sonogram can show two of seven things:
samples, number of zero crossings, RMS, spectral centroid, spectral roll-off,
harmonicity, and pitch. The resolution of the analysis is determined by the
FFT size option on the right.

74

Sinewave Speech Explorer
This is a demonstration of sine wave speech.

"®0 06 X| /Users/bobsturm/gibson/SSUM.PC/data/sounds /Slpcm.wav Duration: 1.9594 s Fs: 11127 Hz Channels: 1 Bits: 8

File Sendto. Help

]

Frequency (Hz)

Calormap Window FFT Size

Jet i Hann | 512 -

A Iwerse | = g | Plot Sinewave Speech 1

4 Interpalate | WARNIMNG: This could take a while

Criginal Synithesized
Flay | Flay | Zoom Feset |

12 14 16 18 Sinewave Speech Explorer

1
tirne (3}

oy Bob L. Sturm and Dr. Jerry Gibson

Begin by loading a sound, speech or not. An LPC analysis will be
performed and reduced to four sinusoids with dynamic frequencies and
amplitudes. The sonogram of the synthesis will be displayed, and its time-
domain waveform will be shown below. The appearance of the sonogram can
be changed using the options to the right. The sonogram of the original can
also be displayed.

The synthesis and original can be played using the respective buttons.
The four check boxes to the right of the sonogram enable the sine wave
components in the synthesis.

Some code to make this demonstration was taken from the MAD
program "sws." Code was also used from
http://www.ee.columbia.edu/~dpwe/resources/matlab/sws/.

75

Sinusoidal Explorer

This is a demonstration of sinusoids and their parameters: frequency,
phase, amplitude, and offset.

X/ sinexpo
Gend to.. Help
15 T T T T T T T T I
i : ; : i : ; : — siheld
1 ; ; : i — — sine2 H
! : : 2 : : i —F
0 ; l'l
! ll:ﬂ !
: 5 Yy
B e B e e B oo e s et e e S A 4
15] I I I] I I I]
2 T T T T T T T T
;
R L L T st Sl 4
=
=
g
B o R e R e e s e R R R R e R
=] I I]] I I]]
] 0.005 0.1 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.os
Tirne (5
Frequency {Hz) W Piot 440 Frequency {Hz} W Fiot | 450
Amplitucke | 03 Amplitude 075
Phase (e [~ oa Fhase (deg) I 40
MG I o = Plot Duration 0.05
Sum | Py | ™ Grid | Sinewave Explorer

ke Bob L. Sturm and Dr. Jerry Giksan

You can sum or multiply two sine waves to see the different effects.
The top plot displays the two sine waves. The “plot” check boxes enable or
disable their waveform display. The resulting signal is shown in the lower plot.
This can be sent to the Sonogram Explorer or the Fourier Explorer.

76

Sonogram Explorer

This application displays spectral information using a sonogram, or
Short-Time Fourier Transform (STFT).

X! /Users/bobsturm/gibson/SSUM.PC/data/sounds/eidel.wav Duration: 7.2398 s Fs: 44100 Hz Channels: 2 Bits: 16
File Sendto.. Help

4
*x10

25

Frequency (Hz)

0 100 200 300 400 500

Colormap

05 : : —
Jet =
0 4 verse L)
- Interpolate WARNING: This could take a while.
05| : 4

Play. Explore Data.

0 1 2 e : 4 5 B 7 Sonogram Explorer
by Bob L. Sturm and Dr. Jerry Gibson

First load a soundfile from the menu. Once analyzed its sonogram will
appear. Change the colormap and dB scale to see different features.
Zooming in the waveform time-display will also zoom the sonogram. (If at any
time this does not work, click on the “zoom reset” button to restore this
functionality.) The "Interpolate" box will smooth the sonogram, but this will
take a long time to complete for large portions showing—so use wisely. The
play buttons will play only the waveform showing. The slider to the left of the
sonogram will scale the frequency axis.

You can explore the effects of different window shapes and sizes on
the resolution of the sonogram. The “Explore Data” button allows one to travel
the partials in the sonogram to get detailed information about its frequency
and amplitude envelopes, and the time information. After clicking the button,
click on the sonogram several times. When finished hit “enter.” The
frequencies, amplitudes, and times at each click will be printed in the
MATLAB command window. These can be used with the additive synthesis
program to attempt to synthesize the sound. This works especially well with
birdsong (see Additive Synthesis Forest).

77

Sound Analysis/Resynthesis Explorer

This demonstration shows the spectral analysis of a sound, and its
resynthesis using this data.

[—
X| /Users/bobsturm/gibson /SSUM.PC/data/sounds/egypt_44100.wav Duration: 10.6505 s Fs: 44100 Hz Channels: 1 Bits: 16

File Original Synthesis Help

Qriginal
1

Play

Analysis
Window Size

512 =

Window Shape

Hann =

Analyze I

Synthesis

Magnitude
Actuzl =
Phase
Other =
Synthesize |

; ‘ ‘ i i i i ‘ i i i PRy | _Nermalee |
o 1 o il 4 5 1 & B8 9 10 PO AEaE

time {5}

Sound Analysis/Synthesis
by EBob L. Sturm and Dr. Jerry Gibsor

Begin by loading a sound. Its time-domain waveform is shown in the
top plot. Select the analysis parameters and click “Analyze.” Now select the
synthesis parameters and click “Synthesize.” Once finished the synthesis will
appear in the bottom plot. Either sound can be played using the respective
buttons.

As in the Image Analysis/Resynthesis Explorer, the magnitudes and
phases of the analysis can be altered. The magnitudes can be set to the
original, randomized, or from the analysis of another sound file. The phases
can be set to the original, zeros, randomized, or from the analysis of another
sound.

You can send either the original or the synthesized signal to the
Fourier Explorer or Sonogram Explorer. The result can be saved to a sound
file from the File menu.

78

Spectrum Explorer

This application demonstrates the frequency domain interpretation of

pure signals.

Send to.. Help

X spectrumexpo

15 :

05k -

Armnplitucle

0.04

'I'|mPI TE

o1l 4
o0a - 4
£
2 n0s| i
g
= 004 4
ooz - 4
408 =))))))
| OO AU b SRR AU ST - SR -
= : : : : : :
£ 7 5 5 5 5 5
g O ® 5 5 5 5 . (L 5
& : : : : : :
10 | R YE R e TR RPN S
pnl__ i i i i i i
500 -400 -200 i 200 400 600
Frequency {Hz)
Frecuency (Hz) & Fiot_| I 50 Freguercy (Hz) Pt | 500
Amplitucle | 05 Amplitucle | s
Phase (dea) -180 Phaze (deg) [~
04
i I Flot Duration | 00793
Spectrum Explorer Produst i | Py | M Grid |

You can sum or multiply two sine waves to see the different effects,
and the representation of them in the frequency domain. The top plot displays
the two sine waves. The “plot” check boxes enable or disable their waveform
display. The resulting signal is shown in the plot below this. The two plots
below these show the magnitude and phase spectrum of the resulting signal.
The resulting signal can be sent to the Sonogram Explorer or the Fourier

Explorer.

79

Appendix B: Assignments for 201A

Homework #1

1.

Consider the complex number: z = x + j*y. This number can be
represented as the complex polar number: z = r*exp(j*theta). Using
MATLAB create a function named carpol.m that will take as
arguments x, y and return r, theta (in radians). Test it with the following
numbers:

a. z=05+j*0.5

b. z=0.5-j*sqrt(2)/2

c. z=-0.5+j%0.33

. Create another function named polcar.m that will convert polar to

Cartesian. It should take as arguments r, theta (in radians) and return
X, y. Test it with the following complex numbers:

a. z=0.5"exp(-j*pi/2)

b. z=1/2%exp(-j*3*pi/4)

C. z=sqrt(2)/2*exp(j*2*pi/3)
Plot these points on two graphs in the same figure using “subplot.” Use
the command “plot” for the first plot and the command “polar” for the
other plot. Use the marker ‘0’ for each point. If your functions are
working correctly the two graphs will be exactly the same, i.e. the
points will be in the same locations. (Make the limits of the Cartesian
graph centered on 0, and set the axis to be square, i.e. “axis square.”)
It should look like the following:

Falar Flot
Cartesian Plot a0

(1] SRR R Gieeeeeen

_05 P

When completed and corrected e-mail the two functions, carpol.m and
polcar.m, and the m-file used to create the plots in part 3, to the T.A.
b.sturm@mat.ucsb.edu, by 2 p.m. on 20040407. Late homework will not be
considered.

80

Homework #2

[- - : a
X| points

Point Converter 1.0

Thiz program converts and displays paoints 2
hetween Cartesian and Falar coordinate ! A : % ; 3
systems. Enter points and press convert; or R R EEEEE Peeeeeaeen -
click on the graph to choose a paoint. k :) :) ;

Cartesian 05_,, \ _

}{Fi Convert |:|_,\ , ,_
v |1— - B S s L e =
- A S S S

Polar

R |1 4142 Corrvert
: =2
: F5 {degrees)

Polar Flot | W Grid Choose point |

Point Converter 1.0

1. (50 points) Make pointsgui.m fully functional by programming its
callbacks to do all of the following:

a. When the user enters a number in the X, Y, R, or T text boxes
and presses return, the point should plot on the graph to the
right, and the relevant conversion should happen and be
displayed in the appropriate boxes. For instance, if | type a "1"
in X and press return, an arrow should appear in the graph
pointing straight right, and the R text box should show "1" while
T shows “0”. T should be given in degrees. Use the MATLAB
functions pol2cart and cart2pol. To make the arrow use the
command compass.

b. When the user enters two values for either Cartesian or Polar
and presses the corresponding convert button, the point should
plot in the graph to the right and the conversion shown in the
corresponding text boxes. T should be given in degrees.

c. The "Choose Point" button, when pressed, should allow the
user to click on the graph to the right, draw an arrow from the
origin to the point, and show the coordinates in the both the
Cartesian and Polar text-boxes. (HINT: look at the function
ginput.)

d. When the "Polar Plot" button is pressed, the graph on the right
should become a polar plot. (Use the function compass or polar
to create this plot.) The text field of this button should change to
"X-Y Plot." When that is pressed, the graph on the right should

81

e.

be changed to a rectangular plot, and the text field of the button
changed to "Polar Plot."

When the "Grid" checkbox is selected, the graph on the right
should contain a grid.

2. (25 points) Using the Sampling Explorer in SSUM answer the
following:

a.

b.

C.

d.

e.

What frequency (Hz) sinewave is produced at the output when
sampling a 900 Hz sinewave at Fs = 1000 Hz? (Remember
frequency is the inverse of period.)

What frequency sinewave is produced at the output when
sampling a 700 Hz sinewave at Fs = 1000 Hz?

Derive a formula for the frequency of the output given the input
sinewave frequency f, and sampling rate Fs, where f > Fs/2.
Why is it dangerous to sample a signal at exactly twice its
highest frequency component?

Why it is better to have more bits per sample?

3. (25 points) Write a short synopsis of the algorithm for the Additive
Synthesis Forest. Start with birdsgui.m. How is the GUI created? Trace
what happens when the user selects "Robin" and presses play. (Note:
The function synth.m is located in the library directory of SSUM.)

When completed and corrected e-mail your file pointsgui.m, your answers to
part 2, and the discussion of the Additive Synthesis Forest, to the T.A.
b.sturm@mat.ucsb.edu, by 2 p.m. on 20040414. Late homework will not be

accepted.

82

Homework #3

1.

2.

(30 points) Reprogram pointsgui.m so that the GUI code is separate
from the functional code, pointsfn.m. The function pointsfn.m has
already been started and one example of it is shown. Use any SSUM

program as an example of how this is done.
3O € X! Figure No. 1

Adding two phasors
3 T T T T T T
: : : : C[——w
: . — w2
: : : i | U
ab. IR v S TR TETTe T e N .
: N : N
: R : ")
: Y : : h
) T g A i e > _a\ i
B AN : SRR
- S B L E B |
=] S T : ! _:/r 5,
% oF------- ; S S \\ \f f Ill\ _
5 ;’ s \ N N \ \
I E) N ;’r b |
1_-.-.-I,V" M"T -
I |
i Y
I !
ol] _.«'j 2

3 ! ! 1 1 ! ! ! ! !
1] 0001 0002 0003 0004 0005 0005 0007 0008 0008 00
Time {53

(20 points) Add the following phasors using MATLAB, and plot two
periods of each waveform (x1, x2, x1+x2) on one plot. Use different
linestyles for the plot and use legend. Set the linewidth of the sum to 3
(Hint: h = plot(...); get(h)). Check your result using the SSUM
applications Complex Number Explorer, and Sine Explorer. Figure 1
shows how your plot should look.

a. x1 =2 cos(2*pi*200*t — pi), x2 = cos(2*pi*200*t + 3pi/4)

(50 points) Add and multiply the following phasors using MATLAB and
plot each waveform (x1, x2, x1+x2; x1, x2, x1*x2) over the longest
period of the three. In same figure plot the spectrum of each real
waveform. Your plots should look like figures 2 and 3, but not exactly.
(Note: use stem, not fft for the frequency and phase plots.) Use SSUM
Sine Explorer to verify your results. LOADS of extra credits for those
who make a function to do this automatically for any two sinusoids
(HINT: use structures).

a. x1=cos(2*pi*500*t — pi/2), x2=1+0.5 cos(2*pi*100*t + pi/4)

83

X/ Figure No. 1

Time Comain Frequency Darmain Fhase Dormain
=) TR SN R R (T SRS FORYS ORS S000 3
b : : : : : T
as : : : ol : : :

1 [l

o R : : : :
-1000-500 0 500 1000 -1000-500 0 500 1000

w1
=]

2

0
-1000-500 0 500 1000 -1000-500 0 500 1000

AV
b [ty Tl T

: g : : : : :
1] 0.0025 0.005 -1000-500 0 500 1000 -1000-500 0 500 1000
Tirne: {53 Frequency (Hzy Freguency (Hz)

H1+K2

Adding two phasors, one with an offset

X| Figure No. 2

Tirne Doarnain Freguency Domain Phase Dornain

pifsee
pii2 i

a5 i

: 0 T N =1 O

I AT AL :T : : : T: pl. :
: A -pi
; ol ; ; ; ; p

i} 0.0025 0005 -1200-600 O GO0 1200 -1200-600 0O 600 1200

Al
=3

pife
: Lo S| el
al--onn o5 i}
: s R - ST
Ao RO Do TT N S
; L L -pi

i} 0.0025 0005 -1200-600 O GO0 1200 -1200-600 0O 600 1200

#2

il
. PR
a5 ol
o -pif2

i) =

a 0.0025 0005 -1200-600 O 600 1200 -1200-600 0 &00 1200
Time {33 Frequency {Hz} Frequency {Hz})

R1¥H2

Multiplying two phasors, one with an offset

When completed and corrected e-mail your files pointsgui.m, pointsfn.m, and
the scripts used to answer questions 2 and 3, to the T.A.
b.sturm@mat.ucsb.edu, by 2 p.m. on 20040421. Late homework will not be
accepted.

84

Homework #4

In this assignment you will create your own GUI using GUIDE that interfaces
the frequency modulation synthesizer. The FregMod Player is included as an
example. Additional help can be found in the MATLAB manual.

X| FreqMod Player
File ‘

t

Bell

Chimne

FreqMod Player Er— {

Iarimka,

U OULUTIUTY
s >z Wioodd Drurm

fmplaygui = Sheet Metal

Example interface; the blue rectangles trigger the sounds when clicked.

1. (100 points) Using GUIDE, create a GUI that interfaces the frequency
modulation synthesizer found in the SSUM library in the synth.m and
fregmod.m functions.

a. Make a menu to select an instrument to play: {bell, chime, wood
drum, marimba, or sheet metal}. Use the special values in the
provided fmplayfn.m for each instrument.

b. Make at least five buttons to serve as the “keyboard.” When you
press a button the selected instrument sound is synthesized and
played through the speakers. The pitch of the note should be
different for each button. Feel free to use any scale you want.
Extra credit if you make a menu to select particular scales.

c. Create a volume slider that scales the amplitude of the
synthesized sound.

d. Extra credit if you find and code other instruments, or include an
interface to modify frequency modulation parameters.

When completed and corrected e-mail all files necessary to run your GUI

(including the .fig file) to the T.A. b.sturm@mat.ucsb.edu, by 2 p.m. on
20040503. Late homework will not be accepted.

85

Homework #5, Part |

Choose either Part | or Part Il (extra credit if you do both). In Part | you will
perform an analysis of bird song, synthesize the sound using additive
synthesis, and compare the spectra of the original with the synthesis.

£ B 3, . e s a0
10000 &=, St s s P §is o v 8 -
B it r . £4 3 3 20
g : 1 ’ . = £ e, A =
: - beg - = 10
-
i) :

8000
- B0OOO -

4000

2000

& -
-
» - . -

Sonogram of Costa Rican bird Montezuma Oropendolas.

-_

. (50 points) From the birds.zip collection of bird song, you will

synthesize the bird of your choice.

a. Use the SSUM Sonogram Explorer to trace the spectral
components (i.e. use the “Explore” button).

b. Using the data you collected above, resynthesize the sound with
the additive synthesis code in SSUM. (Hint: look at the SSUM
Additive Synthesis Forest to see how to do this.)

c. Write this sound to a sound file.

2. (50 points) Compare the original sound to the synthesized sound.

a. Create a figure with two plots, one showing a sonogram of the
original sound, and the other showing a sonogram of the
synthesized version. Make sure the axis limits on the two plots
are the same. (Extra credit if you make a GUI to load two sound
files which will then display the sonogram automatically.)

b. Put play buttons next to each plot to play the corresponding
sound. You don’t need to use GUIDE to do this; see uicontrol.
(Hint: Look at the SSUM Catastochastic Additive Synthesis
code if you are unsure of how to do this.)

When completed and corrected e-mail all m-files necessary for parts 1 and 2

to the T.A. b.sturm@mat.ucsb.edu, by 2 p.m. on 20040517. Late homework
will not be accepted.

86

Homework #5, Part Il

In this assignment you will look at how windowing affects the Fourier
transform of two signals.

1. Create a 0.5 second1000 Hz sinewave with a Fs of 11127 and save
this to a file.

2. For this sound and S5pcm.wav (in the SSUM data directory) do the
following:

a. (40 points) For a fixed window size of 512 samples, look at
the effects of the rectangular, Hann, and Hamming windows
on the Fourier transform. Discuss the differences between
each for each signal. (Take 512 samples of the speech file
starting at sample 6231.)

b. (40 points) Vary the window length for each window for each
sound and discuss the effects of the length of each window
on the Fourier transform.

c. (19 points) For each signal, which is the best window and
window length and why?

When completed and corrected e-mail answers to these questions and your

programs created to answer them to the T.A. b.sturm@mat.ucsb.edu, by 2
p.m. on 20040512. Late homework will not be accepted.

87

Final Project Details

The final project will consist of two parts: a program written using
MATLAB, and a paper discussing the program and the principles behind it.
Ideally the project should be something that is creative and interesting to you.
It must make use of media signal processing concepts, such as filtering and
spectral analysis. If your program is good, it will be integrated with SSUM.
The program should consist of more than 2000 lines of code and should be
presented within a GUI.

The paper accompanying your project should document the idea,
execution, and refinement of the program, and should address the principles
behind it. If your project consists of creating a multiband vocoder then the
paper should present that subject with several references. The paper should
be no less than 1000 words, and contain at least three references. The
projects will be presented in class during the final week (June 7, 9, 2004).

The “Catastochastic Additive Synthesis Machine” included in SSUM,
for instance, is a good example for a project. It involves extensive function
writing, GUI work, and creates interesting output; it also demonstrates an
understanding of windowing and combining signals. Furthermore it has use
outside of its demonstrative purpose—one can compose with it. You are
encouraged to pursue projects that are of interest to your artistic sensibilities,
but they must relate to the class.

Whether you are a visual or sound artist you will find MATLAB
presents a wealth of interesting possibilities. The great thing about it is its use
in prototyping algorithms and ideas. Because of this Sturm has used MATLAB
to compose music since 1998. Once interesting opportunities are discovered
the algorithms can be translated to faster languages like C++.

You are required to write a project proposal due May 5, 2004. The
proposal should address the following points:

1. Statement of purpose, problem; importance of topic

2. Work done by others on this topic

3. Your approach and how it may be unique

4. Your interest in the topic and its relevance to class

The proposal should be no more than 500 words, and must include at
least two references. After reviewing your proposal the professor will meet
with you to discuss it.

WARNING: There are many interesting projects that have been created in
MATLAB and are completely available on-line. If your program is found to be
similar to any of these you will lose 25% from your final grade.

88

Ideas for final projects

1. Algorithmic Composition
a. Cellular automata, genetic algorithms, neural networks, markov
chains, expert systems
2. Sound synthesis/modification techniques
a. Wavetable/wave-terrain/wave-shaping
b. Subtractive synthesis, Frequency/Phase modulation, Granular
synthesis
Physical modeling using digital waveguides
Speech synthesis/LPC
Spectral morphing, Phase Vocoder
Create a “Metasynth” for MATLAB
3. Spatialization
a. HRIRs and HRTFs, Ambisonics, Vector Based Amplitude
Panning
4. Acoustics
a. Modeling room acoustics, Reverberation
5. Sonification
a. Seismic, ocean, astronomical, stock market, fractals
6. Graphics manipulation
a. Warping techniques
7. Video analysis
a. Motion detection, Scene analysis/recognition
8. Content retrieval
a. timbre recognition, automatic classification, score following
b. Speech recognition, Face/object recognition
c. Optical Character recognition, Visual scene changes
9. Sound analysis
a. Phase Vocoder, Pitch detection
b. Foot-tappers, tempo/rhythm derivation;
c. Transient/onset detection, Classifying sounds/timbres
d. Speech Analysis
10.Sound Modeling
a. Spectral Modeling Synthesis, Phase Vocoder
b. Physical modeling using digital waveguides
c. Linear Prediction Coding
d. Neural Nets
11.Encryption
a. Hiding data/text within an image or sound
12. Signal compression
a. Sound: MPEG-2 layer 3, mu-law
b. Images: TIFF, GIF, JPEG
c. Movies: MPEG-2, AVI

=0 Qo0

89

Appendix C: MS Presentation

An Effectwe Application for. Teaching Media Sighal Processing

e ArSES Anel Srlitiears

Bob L. Sturm

Master of Science Presentation

Media Arts and Technology

University of California, Santa Barbara EQ : |]
b el ey

Problem

How to teach media signal processing to artists?

= Textbooks too advanced or uninteresting
- DSP First: A Multimedia Approach

A DSP Primer
= |ittle multimedia in traditional lectures

* Interesting work with minimum math
= Heterogeneous students

This is a problem more universal than at MAT

90

Lecture with demonstrations
Discuss real signals like sound and image

Inspire and motivate using examples from
art and music

Focus on programming algorithms rather
than math

Reader with DSP articles and notes of
interest to artists

Suite of over 25 exploratory applications
programmed in MATLAB % ssum

L
= = Signals and Systems Using MATLAB
*Multimedia

=Creative | T

=All wrapped in GUIs e -
=Perfect for lectures, et
student’s own time f;".:."";:: (e

© 2003 University of California, Santa Barbara

91

Cross-platform compatible
Ability to work with multimedia data

= Sound, image, video

Data display abilities, GUI environment
Programming is easy and quick
Extensive library of routines

Relatively inexpensive

= $130 for student version with Signal Processing
Toolbox

Wide user-base

______Teaching with, SSUM

HEN

MAT 201A: Media Signal Processing
= Core course required for graduate students
not specializing in multimedia engineering
= Teach basics of digital signals
digital-to-analog, analog-to-digital conversion

the frequency domain
digital filtering

* Pre-requisites
trigonometry, complex numbers, series
No integral calculus

92

____Design,for MAT 201A___

Focus on using MATLAB and SSUM to learn
media signal processing

= “Required text” is MATLAB with signal processing
toolbox

Lectures rich in demonstrations and applications

Require MATLAB programming homework
instead of mathematics

Final project
= MATLAB program (>2000 lines of code with GUI)
= Research paper (>1000 words, 3 references)

Use SSUM as a resource and model

Results

Lectures are well rounded with theory,
applications, and demonstrations

Response to SSUM has been excellent
* |ts illustrative power is great
= So far works well on all platforms

Complaints about homework
= Too focused on learning MATLAB rather than MSP

Initially students don't realize the incredible
amount of knowledge required to “do MSP”

Realistic expectations of project quality
Lack of prerequisites very apparent

93

Conclusions

SSUM is working exactly as expected

= Provides quick feedback of complex concepts
without making them too simple

Students should satisfy all prerequisites
= Less time spent on basics
= More complex projects

Conclusions

SSUM will be made free and publicly
available from MAT after the summer 2004

= Great for all media arts programs
= Introductory engineering classes
Continued maintenance of SSUM

= Integration of good student projects from
around the world

94

Appendix D: Publication of SSUM at ICMC2004

Signals and Systems Using MATLAB: An Effective Application for
Exploring and Teaching Media Signal Processing

Bob L. Swrm and Jerry Gibson
Graduate Program in Media Ans & Technology (MAT)
University of Califormia, Santa Barbara
{ bosturm, _gibmn} mwmat ucshaeda

Abstract

A preeidilene exisrs oy digitead media arts programs of fow
tee effectively reach stadenss winke linle marfematioal proc-
ree the principles of wredla signal processing (MSP). Diy
Tewtieres aord elemrennary enpineering rexbooks lead to ore-
levir, confiesion, and apatly; o course ean become more af
a struggling werh class than amything else. This robs the
stnedens of @ wnigire opporioy oo deaen, explore, and ap-
iy MEP—an iefeevently madiimedio feld. We Feve created
a darpe sedte of sgilorarory demonsiradions aed applicarions
pengrapmed i MATLAR to enntce and inspare stiidents whe
e reod yer posisess tee meaifremarical knowledge necessary for
thoresigh researcl in MIP, Our applicarion, “Signals and
Sparerms Dsing MATLAR (S5UMLT o Be weed o sopple-
mient ey conrse relared o tese opies. SEUM b precenred
here, and iy ese i@ cosirse designed to reach arisis MSP
15 discised. SSUM can be olvalned for free from hitps
Slwww.mat . ucsb.edus "B sturm.

1 Introduction

There is no doubt that leaming media signal processing
{MEP) should be a required portion of any media ans pro-
gram, students should an beast understand the algorithims be-
hind the software they wse, the specifications of their hard-
wane, and be able to communicate effectively with engineers.
To begin to understand these things however, a student mwst
possess an abilivy and confidence in mathematics beyond what
miost media ans stedents have. This crestes the difficult prob-
lemn aof oy 1o successfully teach MSF to students who do et
satisfy the prerequisites that even st freshimen engineering
students do. The question “what should be taught™ becomes
“whiat can be tanght™ Fusther magnifying this problem is the
heterogeneity inlberent o media ans programs. The nwmser-
odis backgrounds and abilities require numerous approaches.
Sorme students muay be more comfortable with images than

with sound; some students may be adept at progeamming but
not math.

There are several published texis that atempt o make
concepls of MSP accessible (MeClellan, Schafer, and Yo-
der 1998, 2003, Steiglie 1996; Cook 2002; Zilzer 2WH2).
These texts however are either still too advanced for sonse-
one with litke math or programming experience, oo specific
of oo general to be of nterest 1o a media ans student. DSP
Firsr: A Muhimeaia Approei (MeClellan, Schafer, and Yo-
der 1998} is perhaps the best text, and atempts to make the
material more accessible by including o CD-ROM that has
witorials, movies, and MATLAB" demonstrations. The labo-
ratories and movies incloded on the CD-ROM are great, bt
are not of much pedagopical use or interest o media ams sto-
dents; the fve MATLAB demonstrations included are teither
interesting nor inspiring. Texts by Cook {20020 and Zaélzer
{20020 are pood for students interested in sound. but for wop-
s of image and video they have no content. Research imo
other approaches of teaching MSP reveals an active field of
technological pedagogy.

Clausen and Spanias describe the creation and use of an
on-line digital signal processing (DSP) laboratory programmed
in Java {1998, The application is used to present visual-
izations and interactive demonstrations o students. Radke
and Kulkarni have designed @ similar application for their
DEF lab, but programsed in MATLAB (20000, Rahkila and
Karjalainen describe the benetit of computes-based education
(CRE} for teaching DSP by vieue of it being muoltimedia
(190E). THasteating complex functions like flering by ap-
plyving it to a sound and hearing its effects can enbance com-
prehension and leave a longer-lasting impression than just de-
riving its frequency response o paper.

Tor alleviate the difficulties of teaching MSF o media ans
students, we have used MATLAB o create a collection of
caplogatory demonstrations and applications designed w mo-
twate and inspire learning. By speaking to their anistic in-

"remed by The MathWerks, Inc.

Prvesdings of the 2004 Intermational Compater Miusic Conference, Miawn, Flovida, USA, Nov F-6, 2004

FCRC-]

95

terests and showing the creative usefulness of the concepts
the students are mwore likely to acoept the leaming curve and
apply themselves. Within this paper we present this suive of
applications and review ils use in aclass teaching MSP

L1 Why Use MATLARB?

There are several goals for the development of a suite of
effective demonsirations and applications for teaching MSP.
First, the concepts must be presented cleady with linle iner-
fering information. Second the applications should be direct,
Aexible, and fast. Third, both sound and image muest be used
1o demonsirate concepis. Fourth, the demonstrations should
leawe plenty to explore. Fifth, a student should be able 1o
loak intoe the code o wderstand how it works. Sixth, the
demonstrations sheuld be compatible with as many compuler
platforms possible. And finally, the cost o students w be able
o the applications on their own computer should be min-
imal.

There are a several low-level programming languages that
can be used to demonsirate the application of DSF, such as
C+, and Java. But these reguire a high proficiency in pro-
gramiming, not to mention the tangle of cross-platform ssues.
Sound processing languages SuperColliden{MoCanney 1996)
or the praphical programming applications Max/MSF or pd
(Puckette 1996), can also e used o create inerssting demon-
atrations, but only for sound. Theugh these have excellem
real-time capability, they have marginal abilities for visoal
data display.

There are several high-level software packages that can be
used to teach signal processing, such as Mathematica,” Oc-
tave,t and MATLAE. A good overview of these and other
packages i terms of engineering education can be found in
(Magrial 2002 Mathematica s meant mose for symbolic
mathematics than creating applications, and it cannot sasily
prodwce sownd. Octave, a free oper-source mathematics sofi-
ware application, i quite compatible with MATLAB code,
b it lacks much of the gich library of functions in MATLAB.
[addition there is oo casy way toeneate graphical user inter-
faces (GULs).

MATLAB provides a flexible integrated progranuming en-
vironment that is easy o use and understand, ond cheap for
students.” MATLAB is platform independent. has superior
craphics handling and visualization capabilities, and has a
great GUI development enviromment for wrapping applica-
tions. In addition it offers unparalleled functionality with
many different data formats. It has an extensive library of

I Diistribusted by CvelmgT4: http: Hfwww.oycling T4 . com
Created b Wolfram Reseimch [ms:.

*avallable s https / fuw, ootave . oeg

“Currenily, the student version of MATLAB casis 539 LS

rowtines, and “toolboxes” can be purchased o odd more spe-
clalized fumctionality, such as advanced signal and image pro-
cessing routines. Applications written in MATLAB are open;
any user can ook at the code. Fushemsore, countless in-
atibutions, both acadermic and corporate, as well as many in-
dependent users worldwide, use MATLAB for algorithm de-
velepment, quick protetyping, and comples problem selving.
A drawback to using MATLAB, however, is s lack of real-
timee functions, like tracking a sound as it plays, or visual-
izing o spectrogram straight from the sound input. Though
there should Be some familiarity with vectors amd matrices,
the MATLAB programming language is easy to keam and in-
tuitive. For these reasons it is clear that MATLAR is the bes
choice for developing applications that satisfy the several cri-
teria above.

There are excellent examples of multimedia pedagogical
applications wiitten using MATLAB. The “MATLAB Audi-
tory Demonstrations” (MADY s perhaps the best and mos

relevant to signal processing (Cooke, Parker, Brown, and 'Wrigley

1999) . MAD provides a large suite of interactive demonstea-
tions for exploring paychoacoustics (Cooke, Parker, Brown,
amd Wragley 1999b). Using MAD as a model, we developed
“Signals and Systems Using MATLAB” (85UM) to aid in
the teaching of MSP to media ans students an the Media Ans
amd Technology (MAT) graduate progran at the Universiny of
California, Santa Barbaga (UCSEB).

2 SSUM: Signals and Systems Using
MATLAB

SEUM ix @ suite of exploratory demonstrations and appli-
cations programnsed in MATLAB. To use S5UM, MATLAE
mast b installed,® as well as the signal processing toelkit.
S5UM demonstrates the essential principles and concepts of
MEP without requiring rizorous mathematics; exploration amd
leaming s done first using software, SS5UM cumently has
31 programs illustrating concepts of waveferms, modulation,
sampling and interpolation, aliasing, the feequency domain,
comvolution and Gltering, pole-zero diagrams, analysis and
synthesis, statistical signal features, and many others, Many
of these are applied to sownd and images.

There are also applications that demonstrate curious wp-
ics auch as sound cross-symthesis, additive synthesis of bird-
song, and sine wave speech synthesis. SSUM is perfect for
wse in lectures, labs, homework, and creative work. All SSUM
programs are wrapped in GULs, so there is no need for tvp-
ing commands at the prompt. Many of the applications are
integrated as well. For instance, if one is creating a wave-
Formm inan application, it can be sent o another application

“Prefesubly MATLAB version 6.3 or greater.

PMriceedings of e 2004 Intermatiena! Compater Music Corference, Miam, Flovida, USA, Nav -6, 2004

M4 2

96

Figure 1@ Sampling Exploser

for filtering, and to another (o e is frequency content,

Figure 1 shows Sampling Explorer, which demonstrazes
how continuous signals are digitized. Using Sampling Ex-
plover one can investigate the cawse and effect of aliasing, the
effects of guantization, and the process of making digital sig-
nals continwows using ideal lowpass filering.

Figure 2 Image Filter Explorer

Filtering images can be explored using Image Filier Ex-
plover {Figure 23, Onee an image has been loaded. its pao-
dimensional Fourier transform is displaved. Several Glters
are available including the moving average, Gaussian, and
median filter. The spatial frequency response of each filter

can be pletted., except for the non-linear filers. The flees
can be applied 1o only the horizontal or vertical directions,
o over square blocks, Modse can be added o an image and
its effects on filtering seen. Students fnd the ability of the
median filter to remove speckle noise stanling.

i, |
1 | Wil IJJI', L,
1r-?i'r"1“l.f]'t"!r-'li"h T r "'IHT'H""'I|I"I.IT1|"-'”'II-.M‘|

Figure 3 Fourier Spectium Explover

Fourier Specium Explorer, shown in Figure 3. enables
one o look @ the spectrm of a sound. As the user drags
a window across the time-domain representation of a shgnal,
the spectum changes. The window size and shape con be
changed. [t would be ddeal 1o have the window sweep as
the sound was played, but currently MATLAB cannot han-
dle such tasks. A similar application is Sonogram Explorer,
which presents the user with the short-time Fousier transform
{STFT) of & sound.

R -
2 AN | 4
il = Y \\ n‘

*oor—

Figure 4: Cross-Synthesis Explorer

Figure 4 shows Cross-Svathesis Explorer. This applica-
o allows theee different methods for cross-svathesizing soumis:
comvolution of the sownds, amplitude enveloping of one sig-
nal by the other, and linear prediction—using one sound as a
model and the other as a source. Swidents really enjoy this

PMriceedings of e 2004 Intermatiena! Compater Music Corference, Miam, Flovida, USA, Nav -6, 2004

MO0 3

97

demonstration and begin to realize what convolution does;
suddenly the mystery of digital reverberation disappears.

I addition to these applications, S5UM contains demon-
strations of MATLABR programming for making sound, mu-
sie. and mages. Using these applications as models. students
can casily and quickly construct theis own composition pro-
LFAIE.

3 Conclusion

SEUM has been integrated into a course teaching MEF 10
media ans students by the MAT graduate prograim. The syl-
labanz is net intended to be exhaustive, bt the students slould
finksh with at least an understanding of digital signals (e.g.
saimples, and sampling), the frequency domain {e.g. spectra),
comversion between analogue and digital svstems {e.g. inier-
polation), lering (FIR, [R. z-transform), and time-freguency
amalvais (eg. DFT, DTFT). Weekly assignments involve MAT-
LAB programming and vsing S5UM applications. For a final
project each student is reguired w write a short research paper
aind MATLABR prograin exploring an aspect of MSP.

It might b stated that by focusing on MATLABR inoa syl-
lgbus one is replacing the difficulty of leaming mathematics
with progranining. This the class will Become mone a class
of programiming MATLAB than leaming M5SP. However, due
1o the multimedia nature of MSP, it makes more sense to con-
coentrate on practicing building applications to leam the theory
rather than plugging away with abstract mathematics.

The use of 3500 in our classroom bas proved o be in-
dispensable for quickly and effectively illustrating concepts.
S5UM is designed fest for practical demonsteations, second
o provide an interactive experience to enhance comprelen-
sion of BSF, and thind 1o serve as a repository of algorithims
and code. BSUM nicely satisfies these three goals, amd cre-
ates a fruitful multimedia experience for teaching and leam-
ing MEP. All the applications are guick to compute and dis-
play resulis, so there i3 liole worery for the learning process
o come toa halt. As SSUM 15 veed more in the classmoom,
its collection of demonstrations and applications will grow by
incorporating good projects by students.

By catering to the creative motivations of the media ans
student, the difficult concepts of MSF can be approached with
ciithusizsm rather than deead. SSUM provides a practical ex-
penence with great examples. “If the teachers can create an
civduring fascination for the subject-marter, the job's alowoest
over: the mose the students love the subject. the less help
they seed in their stsdies” (Koumi 1994).

M el mvore information on SSUM can be fowsd in15urm
20048, 55UM can be downleaded for free from http: //
W . mak . uesh. ede S Tb.aturm

Al Acknowledgments

The MathWorks, Inc . the makers of MATLAB . has sup-
ported this rescarch by providing the suthorss with full poli-
platforim licenses to MATLAEB.

References

Clausen, A, and A, Spanias {1998). An internel-hased compater
Iahoratory For DSP courses. In Proc. of 2806 ASEEVEEE
Frontiers in Educaiion.

Cook, . B. (2021 Read Sourd Syerhesis for faeractive Appli
catisns. Massachusens: AL K. Peters,

Cooke, M., H. Parker, G. 1. Brown, and 5. N. Wrigley ¢ 19599u).
The imleractive auditory demonstratiors project. In Ew
mspeech Conferemee.

Cooke, M., . Purker, G.). Brown, and 5. N, Wrgky (1999h].
Mud: MATLAE auditory demonsirations, http ./ feww .
dos.shef.ac.uk/ martin/MAD/docs /mad.htm

Koumi, 1. (1994}, Designing for learming — effectiveness with ef
fickency. In . Hoey (Ed.), Effective Soreenwriring for Edu
cariomna Television, pp. 23230 UK .: Kogan Fage Lid.

MoCartney, I. (19%6). Supercollider: & mew real-time spand sy
thesis language. In Proc. of the fmd. Compivter Musie Confer
eTE.

MoClellan, J.H.. K. Schaler, and M. A Yoder (1998, DSP First:
A Muliimedio Appreach. New Jersey: Premtice Flall.

MeClellan, J. H., B. Schafer. and M. A. Yoder (2003). Sigral
Provessing Firsi. New Tersey: Prentice Hall.

Magrial, M. (2002}, Education and trzining in engineering sofl
weane 2l applications, In . Corference or Englaeering Ed
weationn.

Puckette, M. (1596). Pure data_ In Proc. of the for. Campter M
sic Conference.

Radke, B. 1. and 5. Kulkama (20, An mtegrated MATLAR
suile for mtroductory DSP educatson. In Proc. of the Firse
Signel Provesting Edwcation Worksiop.

Fauhkila, M. and M. Karjulainen {1998), Consideratzons of com
puter based education in acoustics and signal processing. In
Prov, of Z8th ASEETEEE Frontiers in Educaion,

Steiglite, K. (1996). A DSF Primer: with Applicatioes o Digiral
Audio ana Compier Mwsic., Menle Park: Addison Wesley.

Sturm, B. L (XM SSUM: Signa! and Svstes Uning MATLAS;
Creating an Effective Applicadion for Teaching Media Siprail
Provessing to Ainy and Evgineers. (M5, Project) Univer
sity of Califoania, Santa Burbara, Graduate Program in Media
Arts und Technolegy, USA.

Fikzer, U (Ed.) (2002). DAFx: Digirtal Awdio Efecis. New York:
Wilew.

Proveedings of the 20048 Tntermatione! Compater Music Conference. Miamn. Flovida, U5A, Nov [-6, 2004

[ChC0-4

98

4 Appendix

This ix a list of exploralory demonstrations and applicalions cur-
rently implemented in S5UM.

Additive Swnthesis Kird Song

Bind seng synthesized using additive symthesis.
Catastocasie Addinve Syaibesis Compasiion Moohiee
Bardom musi penerater with varizble pantials apd envelopes.
Compier Namber Explorer

Visualize complex numbers: addisubtract veclors.
Comcarermantive Svndesis Explorer

Jwnthesize sounds from other seands using Fealure extraction
umil matching criteria.

Comvadition Explerer

Visualize linear amd circular comvolution with different sig-
mals.

Cross-Synrkesiv Egrlerer

Cross-synthesize two sounds using comvolution, amplitde
erveloping, or LFC.

Finire Diffevence Eqwation Explover

Enter fimite difference equations and see their frequency and
imipulse response.

Fif Ffter Explorer

Create FIR Alters and apply to a sound.

Fornant Explarer

Drrap windiw acress sound and watch the spectmum and fer-
manls change; also displays asiocomelalion. cepsirum.
Foarier Explorer

Drrag window across sound and watch the spectrum change.
Forier Series Explorer

Inspect the Fourier series of a penodic slep function.

R Filter Explover

Create IIR Alters and apply to sound.

Trmaage Aliasing Explorer

Explore aliasing for images; use anti-aliasing Alter for down-
sampling.

Trarge Ararlvsis/Beconsiraction

Speciral analysis of mage and reconsinsciion. Abilily (o swap
magnitsdes and phases of other images.

Terge Filter Explarer

Apply different filters o imapes: see linear @ller frequency
TESPOnse.

Tesarge Sempling Expiorer

Sumple images al different reselutions.

Imarge Specirum Explorer

Explore the sputial Frequencies in images.

LPC Explarer

Explore linear predictien for sudio. Resynthesize with resid-
ual, noise. pulses, or another sound.

Muodel Explorer

See the effects of different modlels for simulating communi-
cutiom.

Moshilation Explover

Muodulate ome signal by anather umid see changes in spectrum
urel waveform.

Prle-dere Expiorer

Drag peles and zzros arcamsd o it circle 10 watch Frequency
umdl impalse response chunge.

Pele-Zere Filter Explarer

Create Alter using pole-zero plot and apply it (o sound.

Sarapding Egrlorer

Demonstrate sampling, quantization, and interpolation.

Srgned Fearre Explorer

Explore the statistics of a signal, such as BMS, spectral cen-
trowsd, and paich.

Sinewave Speech Syanhesiy Explorer

Use LPC to reduce seands 1o four sine wives,

Sirursoidal Eoprlover

Paramelers of sine waves; add and mubiEply two sine wives,
Sonagram Explarer

Explore the STFT of a signal: trace partials with mouse clicks.
Soranid Alfasing Explorer

Explore aliasing and folding for sound signals; use anti-aliasing
filter for downsampling.

Soqanid Analvsis'Tyerhesiy

Speciral analysis of soumd and resynthesis. Ability o swap
magniles and phases of pther spands.

Wirveform Explorer

Crenerute waveforms using 15 sinusosds,

Window Erplorer

Explore the Frequency and phase response of several analysis
windows,

Procesdings of the 20004 Intermationad Comparter Music Conference, Miami, Flovida, DA, Nov To6, 2004

[CMAC04-5

99

