
UNIVERSITY OF CALIFORNIA

Santa Barbara

SSUM: Signals and Systems Using MATLAB

An Effective Application for Teaching Media Signal Processing to

Artists and Engineers

A project submitted in partial satisfaction of the requirements for the degree

Master of Science in Graduate Media Arts & Technology

by

Bob L. Sturm

Committee in charge:

Professor Jerry Gibson, Chair

Professor Curtis Roads

Professor Stephen Pope

June 2004

The project of Bob L. Sturm is approved.

Dr. Curtis Roads

Dr. Stephen Pope

Dr. Jerry D. Gibson, Committee Chairperson

June 2004

iii

SSUM: Signals and Systems Using MATLAB: An Effective Application for

Teaching Media Signal Processing to Artists and Engineers

Copyright © 2004

by Bob L. Sturm

iv

Dedicated to Carla Marlene Townsend, soon to be Sturm!

v

CURRICULUM VITA OF BOB L. STURM
June 2004

Education Bachelor of Arts: Physics
1994 — 1998, University of Colorado, Boulder, CO

Master of Arts: Music, Science, and Technology
1998 — 1999, Stanford University, Stanford, CA

Master of Science: Multimedia Engineering (expected)
2002 — 2004, University of California, Santa Barbara, CA

Professional
Employment

Apr 2000 — Sept 2000: Sonification Research and Development
University of Limerick, Ireland
January 2001 — August 2002: Music Director/Band Conductor, Fern
Street Marching Band, San Diego
April 2001 — August 2002: Scientific Programmer/Analyst II, Scripps
Institution of Oceanography, La Jolla
January 2003 — June 2004: Teaching assistant, Department of Physics,
and Media Arts and Technology, University of California, Santa Barbara
June 2003 — June 2004: MATLAB programmer, Dr. Jerry Gibson,
Professor of Engineering, Media Arts and Technology, University of
California, Santa Barbara

Selected
Publications

"Pulse of an Ocean: Sonification of Ocean Buoy Spectral Data"

Submitted for publication in Leonardo Journal of Arts and Sciences.

"Spectral Characteristics of the Musical Iced Tea Can"

Proceedings of the International Computer Music
Conference, Miami, Florida. November 2004.

"Composing for an Ensemble of Atoms: The Metamorphosis of Scientific
Experiment into Music"

Organised Sound, Vol 6, No. 2, Fall 2001. Cambridge University
Press.

Awards Second Place, Sherill C. Corwin—Metropolitan Theatres Awards for
Excellence in Composition 2003-2004 for “Pacific Pulse”:

Recordings "Music from the Ocean" CD

Composerscientistrecordings, 2002.

"100:200111 torrey pines outer buoy" (track)

Lowercase 2.0 Compilation CD, 2002. Bremsstrahlung Recordings.

"50 Particles in a Three-Dimensional Harmonic Potential: An Experiment
in 5 Movements" (track)

Organised Sound CD, Vol 7, No. 1, Spring 2002. Cambridge
University Press.

vi

ABSTRACT

SSUM: Signals and Systems Using MATLAB: An Effective Application for

Teaching Media Signal Processing to Artists and Engineers

by

Bob L. Sturm

A problem exists in many media arts programs of how to effectively

teach students with little mathematical practice the principles of media signal

processing (MSP). For these students blackboard lectures and elementary

engineering textbooks lead to consternation and apathy; such a course can

become more of a struggling math class than anything else. This robs the

student of the unique opportunity to learn, explore and apply MSP, an

inherently multimedia field. To address this challenge, I have created a large

set of exploratory demonstrations and applications programmed in MATLAB

to teach principles and applications of MSP using multimedia. “Signals and

Systems Using MATLAB (SSUM),” can supplement any course concerned

with these topics. It provides an effective way to illustrate the essential

concepts. SSUM is presented here, and its use in a course designed to teach

MSP to media arts students is discussed. SSUM can be obtained for free

from http://www.mat.ucsb.edu/~b.sturm.

vii

List of Abbreviations

201A MAT course: media signal processing using MATLAB

CBE computer-based education

DSP digital signal processing

FIR finite impulse response

GUI graphical user interface

GUIDE graphical user interface development environment

IIR infinite impulse response

LPC linear predictive coding

MAD MATLAB Auditory Demonstrations

MAT Graduate Program in Media Arts and Technology

MSP media signal processing

SSUM Signals and Systems Using MATLAB

STFT short-time Fourier transform

UCSB University of California, Santa Barbara

viii

Table of Contents

1. Introduction ...1

2. Choice of MATLAB as the development software5

3. SSUM: Signals and Systems Using MATLAB.................................11

4. Developing SSUM...29

5. SSUM and Teaching Media Signal Processing...............................33

201A: Media Signal Processing with MATLAB35

Reactions ...37

Discussion..40

6. Conclusion ..43

7. Acknowledgments ...44

8. References..45

9. Appendix A: List of SSUM Applications...49

SSUM Main GUI...49

Additive Synthesis Forest ...50

Additive Synthesis Waveform Explorer.....................................51

Audio Aliasing Explorer ..52

Catastochastic Additive Synthesis Composition Machine53

Communication Models Explorer..54

Complex Number Explorer ...55

Concatenative Synthesis Explorer..56

Convolution Explorer ..57

Cross-Synthesis Explorer ...58

Finite Difference Equation Explorer ..59

FIR Filter Explorer ..60

Formant Explorer..61

Fourier Explorer..62

Fourier Series Explorer...63

ix

IIR Filter Explorer..64

Image Aliasing Explorer..65

Image Analysis/Resynthesis Explorer66

Image Filter Explorer ..67

Image Spectrum Explorer...68

LPC Explorer ..69

Modulation Explorer..70

Pole-Zero Explorer ...71

Pole-Zero Filter Explorer ..72

Sampling Explorer ..73

Signal Feature Explorer..74

Sinewave Speech Synthesis Explorer75

Sinusoidal Explorer...76

Sonogram Explorer...77

Sound Analysis/Resynthesis Explorer78

Spectrum Explorer..79

10. Appendix B: Assignments for 201A...80

Homework #1 ...80

Homework #2 ...81

Homework #3 ...83

Homework #4 ...85

Homework #5, Part I...86

Homework #5, Part II..87

Final Project Details..88

11. Appendix C: MS Presentation ...90

12. Appendix D: Publication of SSUM at ICMC2004.............................95

1

Introduction

There is no doubt that learning media signal processing (MSP) should

be a required portion of any media arts program; students should at least

understand the algorithms behind the software they use, the specifications of

their hardware, and be able to effectively communicate with engineers. To

begin to understand these things however, a student must possess an ability

and confidence in mathematics beyond what most media arts students have.

This creates the difficult problem of effectively teaching MSP to students who

do not satisfy prerequisites that even most freshmen engineering students do.

The question “what should be taught,” becomes “what can be taught?”

Further magnifying this problem is the inherent heterogeneity of media arts

students. The numerous backgrounds and abilities require numerous ways of

saying the same thing. Some students may be more comfortable with sound

than with images; some students may be adept at programming but not math.

Without employing mathematics more complex than algebra, a class of

MSP can become dull and pedantic. At a level just above comfort the

students can only be taught to add or multiply phasors, convolve two short

signals on paper, or derive the magnitude response of a linear constant-

coefficient feed-forward system. Without more complex math they can forget

about learning analysis and synthesis, non-linear systems, and signal

compression. But how beneficial is it to just teach a student in the media arts

these mechanical and undemonstrative skills? Is the student any closer in the

end to understanding the specifications of a microphone, or digital camera?

As expected, when teaching using the blackboard and assigning

written homework, most of the students develop frustration, apathy, and

quickly learn the minimum motions necessary to slide by. Instead of finding

creative applications for the concepts they are learning, students spend most

2

of their time working on elementary problems, such as adding phasors. By the

end a student may be able to do convolution on paper, but has little

knowledge of how it can, or even why it should, be applied.

There are three things working against a successful syllabus for

teaching MSP without advanced mathematics. First and foremost, to do

anything interesting requires mathematics. The course then becomes more

concerned with complex numbers and trigonometry than MSP. Second, the

pace of the course is compromised by the need to address the mathematics.

Even after ten weeks, the interesting topics can still be weeks away. Finally,

since MSP includes sound and image, the number of topics that can be

addressed greatly increases. Even though the theory behind filtering audio is

the same as filtering visuals, there is a huge leap to understand spatial

frequencies from the time domain. If among the pursuits of media arts

programs is the aim to imbue artists with practical digital media engineering

knowledge, then a more effective and ultimately useful presentation of MSP

needs to be employed.

There are several published texts that attempt to make concepts of

MSP accessible. Most of these texts approach the topics using examples of

sound, image and video ([1], [2], [3], [4], [5]). These texts however are either

still too advanced for someone with little math, or too general to be interesting

to the artist. DSP First: A Multimedia Approach [1] is perhaps the best text,

and attempts to make the material more accessible by including a CD-ROM

that has tutorials, movies, and MATLAB [6] demonstrations. The laboratories

and movies included on the CD-ROM are nice, but they are not of much

interest to artists; the five MATLAB demonstrations included are neither

interesting nor inspiring. Books like [4] and [5] are great for students

interested in sound, but for topics of images and video they have no content.

Research into other approaches of teaching MSP has revealed an active field

of technological pedagogy.

3

Clausen and Spanias describe the creation and use of an on-line

digital signal processing (DSP) laboratory programmed in Java [7]. This

application is used to present visualizations and interactive demonstrations to

university students. Radke and Kulkarni have designed a similar application

for their DSP lab, but programmed in MATLAB [8]. Rahkila and Karjalainen

describe the benefit of computer-based education (CBE) for teaching DSP by

virtue of it being multimedia [9]. Illustrating complex functions like filtering by

actually applying it to a sound and hearing its effects can create more

thorough comprehension and a longer-lasting impression than just deriving its

frequency response on the blackboard. Their application is programmed in

LiSP and served over a network to Macintosh computers [10]. In addition to

applications created for visualizing DSP concepts, courses have been

designed around exercises in programming.

The text DSP First [1] includes exercises to be done in MATLAB that

demonstrate key concepts. Joaquim et al. describe an engineering course

based on MATLAB to provide “a fast and natural way to DSP concepts and

practical applications;” almost immediately students can begin creating and

understanding DSP concepts and algorithms [11]. Many other engineering

DSP courses use programming exercises, and some even program DSP

hardware, but typically the prerequisites for these courses are too advanced

for students in media arts.

It is clear that since many students in media arts programs are unique

and individual—visual artists, sound composers and designers, and

multimedia engineers—what is required is “hand-crafted course-ware” [12]

that addresses the multimedia nature of MSP, and takes advantage of the

creative motivation inherent to these students. Artists are curious, and by

being enrolled in a media arts program, they should be interested in applying

technology toward creative ends.

4

To alleviate the difficulties of teaching MSP to students who do not

possess a penchant for mathematics beyond algebra, I have used MATLAB

to create a large collection of exploratory demonstrations and applications

designed to motivate and inspire students to learn and apply concepts of

MSP. Its main goal is to provide a set of effective and interesting programs

that can be used during lectures and on the student’s own time. These

include illustrations of basic principles, to full applications that create sounds

and images.

Exploratory demonstrations extend past traditional demonstrations.

They demonstrate numerous concepts while retaining flexibility, such as

allowing several parameters to be altered, and saving the output. The viewer

thus becomes active rather than passive in learning the concept. As long as

the user understands the parameters they are changing, the learning

experience can be very effective. Each program has a help page that directs

users.

Within this thesis I present this suite of applications and review its use

for a MSP class taught to graduate students in a media arts program. It is

hoped that by speaking to their interests and showing the artistic usefulness

of the concepts, the students will be more likely to accept the learning curve

and apply themselves.

5

Choice of MATLAB as the development software

There are several goals for the development of a suite of effective

exploratory demonstrations and applications illustrating MSP. First, the

concepts must be presented in a clear way with little interfering information.

For instance, when explaining Fourier series one doesn’t want to have to also

explain the effects of sampling and interpolation. Second the applications

should be direct, flexible, and fast. The application should be presented in a

unifying framework such as a graphical user interface (GUI), should allow

variables to be changed, and shouldn’t be slow to give results. Third, images

and audio must be used to demonstrate concepts. Multimedia in DSP

education has been shown to increase comprehension and interactivity [9].

Fourth, the demonstrations should leave plenty to explore; they should satisfy

a student’s curiosity in addition to a lecturer’s needs. Fifth, a student should

be able to look into the code to understand how it works, and perhaps borrow

from it. It is important to demystify the concepts and their implementation.

Sixth, the demonstrations should be multiplatform. And finally, the cost to

students to be able to run the applications on their own computer should be

minimal.

There are a several low-level programming languages that can be

used to demonstrate the application of DSP, such as C++, and Java. Clausen

and Spanias [7] have created the Java Digital Signal Processing Editor (J-

DSP) [13], which lets the users construct block diagrams of signal flow

(Figure 1). It is a virtual lab space where a student assembles different

applications using function blocks. Written in JAVA, J-DSP is multiplatform

and free to anyone, but the code is inaccessible. The great number of choices

and the patchwork environment is bewildering to someone who doesn’t first

6

understand the concepts. But once a student has a grasp on the

fundamentals of systems this package can become very beneficial.

Figure 1: Screenshot of the JAVA DSP Editor

Sound processing languages SuperCollider [14] or the graphical

programming applications pd [15], and Max/MSP [16], can also be used to

create interesting demonstrations—though only for sound. Though these

have excellent real-time capability, they have marginal abilities for visual data

display. Showing something as simple as sampling would be difficult.

SuperCollider and pd are free, but Max/MSP costs over $200 for students.

There are several high-level software packages that can be used to

teach signal processing, such as Simulink [17], Mathematica [18], Maple [19],

Octave [20], Labview [21], and MATLAB [6]. A good overview of these and

other packages in terms of engineering education can be found in [23].

Mathematica and Maple are expensive programs meant more for solving

7

symbolic math than creating applications. Though they have good

visualization abilities, they don’t easily handle external data like sound and

image.

Simulink, produced by the makers of MATLAB, is like J-DSP in that it is

a patchwork environment. Figure 2 shows an example Simulink application

that demonstrates audio reverberation using a delay line and feedback.

Currently the interface is clunky and its responsiveness is slow, but it does

show promise for visualizing systems.

Similar to Simulink, LabVIEW uses a graphical environment for

designing systems (Figure 3), but it is at the high-end of engineering software

with its data-acquisition capabilities and external instrument control. Being

such it is an extremely complex and expensive package.

Figure 2: A SIMULINK demonstration of reverberation

8

Figure 3: LabVIEW Screenshot (from http://www.signalogic.com)

Octave, a free open-source and multi-platform mathematics

programming environment, is also available. It is mostly compatible with

MATLAB, but a review of the currently implemented functions shows a great

lack of necessary signal processing and visualization routines. In addition

there is no easy way to create GUIs. These must be created using platform

dependent graphics libraries.

MATLAB provides an integrated development environment that is easy

to use and understand, and cheap for students.1 MATLAB is platform

independent, has superior graphics handling and visualization capabilities,

and has a great GUI development environment for wrapping applications. It

has an extensive library of routines, and “toolboxes” can be purchased to add

specialized functionality, such as advanced signal or image processing

1 At the time of this writing MATLAB 6.5 costs $99 for students.

9

routines.2 Applications written in MATLAB are open; any user can look at the

code. Furthermore countless institutions, both academic and corporate, as

well as many independent users worldwide,3 use MATLAB for algorithm

development, prototyping, complex modeling and problem solving. For these

reasons it is clear that MATLAB is the best choice for developing applications

that satisfy the seven criteria above.

Though there should be some familiarity with vectors and matrixes, the

MATLAB programming language is easy to learn and intuitive. It is an

interpreted language rather than a compiled one, unlike C++ and JAVA.

Commands can be typed in and feedback is given immediately. The

drawback to using MATLAB however is its lack of real-time functions, like

tracking a sound as it plays, or visualizing a spectrogram straight from the

sound input—as can be done by the software “Baudline” [24].

There are excellent examples of multimedia pedagogical applications

written using MATLAB. The “MATLAB Auditory Demonstrations” (MAD) is

perhaps the best and most relevant to signal processing. Created by Cooke

et al., MAD provides a large suite of interactive demonstrations for exploring

psychoacoustics and concepts of auditory perception [25, 26]. It was created

to provide a multi-modal interactive environment for teaching speech and

hearing. In the past this has usually been done using passive demonstrations

such as audio compact discs [27]. With MAD a teacher can quickly

demonstrate, for instance, the effect of interrupted speech, or window size on

frequency resolution (Figure 4).

2 At the time of this writing MATLAB toolboxes cost $30 each for students.
3 A large on-line MATLAB user group can be found at MATLAB Central:
http://www.mathworks.com/matlabcentral/

10

Figure 4: MAD program wavspect

Using MAD as a model, I developed “Signals and Systems Using

MATLAB” (SSUM) to aid in the teaching of MSP, specifically to media arts

students at the graduate Media Arts and Technology (MAT) program at the

University of California, Santa Barbara (UCSB).

11

SSUM: Signals and Systems Using MATLAB

SSUM is a suite of exploratory demonstrations and applications

programmed in MATLAB. These programs are designed specifically to entice

and inspire students who do not yet possess the mathematical knowledge

necessary for thorough research in MSP. To use SSUM MATLAB must be

installed as well as its signal processing toolbox. The cost of this software to

the student is a bit more than a good engineering text, but it is hoped that

after becoming acquainted with the power of MATLAB, the student will

continue to use it to work with data, develop algorithms, and apply it to their

creative work.4

SSUM demonstrates essential principles and concepts of MSP without

requiring rigorous mathematics; exploration and learning is done first using

software rather than paper. SSUM currently has 31 exploratory

demonstrations and applications illustrating concepts of waveforms,

modulation, sampling and interpolation, aliasing, the time and frequency

domains, finite difference equations, convolution, and filtering, pole-zero

diagrams, analysis and synthesis, and signal statistics. Many of these are

applied to sounds and images. There are also applications that demonstrate

interesting topics such as sound cross-synthesis, additive synthesis of

birdsong, and sine wave speech. SSUM is perfect for use in lectures, labs,

homework, and creative work. All the programs in SSUM are wrapped in

GUIs, so there is no need for typing commands at the prompt. Many of the

applications are integrated as well. For instance, if one is creating a waveform

in one application, it can be sent to another application for filtering, or to

another to see its frequency domain representation.

4 I have used MATLAB as computer music composition software for six years.

12

SSUM can be executed by typing ssum in the SSUM main directory

from the MATLAB command window. The main application window will

appear (Figure 5), from which you can run an application. Information on the

selected program is displayed in the box to the right. The “Help” menu item

will display a browser containing the main help page, which contains links to

help pages for all available programs. The “All,” “Sound,” and “Image” buttons

filter the list of relevant applications. An application can be executed by

selecting its name and clicking “Run.”

Figure 5: SSUM main application window

13

Figure 6: SSUM Sampling Explorer

A few exemplary applications from SSUM will now be presented.

These show the concepts behind the applications, such as use of sound,

visuals, and sharing of data between programs. A complete presentation of all

current programs is given in Appendix A: Current SSUM Applications.

Figure 6 shows Sampling Explorer, which demonstrates how

continuous signals can be digitized. The top plot represents the continuous

input signal and the position of the samples. The bottom plot shows the result

of interpolating the samples back to a continuous signal. With the sliders and

14

text boxes the user can change the input frequency, amplitude, phase, and

offset, as well as the sampling rate and number of bits used to represent the

signal. The input waveform can also be changed to sine, square, triangle,

sawtooth, and a random wave. The plots can be altered by changing the

number of periods to plot, turning on and off the grid, the lollipops marking the

samples, and the interpolation.

Using Sampling Explorer one can investigate the cause and effect of

aliasing, the effects of quantization, and how to turn digital signals into analog

using ideal lowpass filtering, or sinc interpolation. Another apparent effect is

the edge effects from the interpolation. The beginning and end of the

interpolated waveform doesn’t quite match the continuous signal. Thus in one

program there exist several demonstrations of concepts that range from

simple to complex!

Image Aliasing Explorer (Figure 7) allows experimentation with

sampling images. This demonstration gives quick visual feedback about the

relationship between pixels and spatial frequencies. The user first loads an

image from the “File” menu, which is then displayed on the right. The program

computes the two-dimensional Fourier transform and displays it in the main

GUI window. The user can change the appearance of the transform using the

two widgets directly below the plot. The appearance of the image can be

changed using the menu items at the bottom of the GUI.

Once an image is loaded it can be downsampled with or without using

an anti-aliasing filter. The downsample factor can be selected and applied in

the horizontal or vertical directions, or using square blocks. From the File

menu the image can be saved to an image file. From the “Send to…” menu

the altered image can be sent to other programs, like Image Filtering

Explorer, and Image Spectrum Explorer. The chosen program is started with

the image as its application data.

15

Figure 7: SSUM Image Aliasing Explorer

Figure 8: SSUM Waveform Generator

16

Figure 8 shows Waveform Explorer, an application demonstrating the

superposition of oscillators to create other waveforms. The user is able to

adjust frequency, amplitude, and phase for fifteen oscillators, as well as select

predefined waveforms like square or sawtooth. This way the student can

begin to understand superposition and Fourier series. There is also the

capability to hear the sound over speakers, and save it to a sound file. One

interesting phenomena is changing the waveform by randomizing the phase.

Even though the waveform looks completely different it sounds the same to

our ears. A user can send a waveform created within this program to other

programs, like Sonogram Explorer, Fourier Explorer, or Aliasing Explorer.

This integration of tools within SSUM is important for giving the student

flexible views of the same thing.

Fourier Explorer, shown in Figure 9, enables one to look at the Fourier

spectrum of a sound. After loading a soundfile, the user can drag a window

(vertical red bars) across the time-domain representation of a signal and

watch the spectrum change. Changing the size and shape of the analysis

window leads to different resolutions, demonstrating the time-frequency trade-

off, and the effects of different windows on the transform.

The MAD program “wavspect” (Figure 4) [25] was used as a starting

point to create this application, specifically its real-time updating of the

display. What would be nice is for the sound to play while the spectrum

changes, but there is currently no way in MATLAB of synchronizing the audio

playback with the display.

17

Figure 9: SSUM Fourier Explorer

Figure 10: SSUM Sonogram Explorer

18

A similar application is Sonogram Explorer (Figure 10), which presents

the user with the short-time Fourier transform (STFT) of sounds. As in many

SSUM programs, the display can be changed with log amplitude scaling and

color maps. The user can zoom in on parts of the sound, either in the STFT or

the time-domain waveform, and both plots will update to reflect the new

domain. Additionally the effects of window shapes and sizes on the STFT can

be seen. The analysis window can be altered by the options on the right. An

interesting use of this application is the “Explore Data” function. When clicked

the user can click in the STFT and obtain frequency, magnitude, and timing

data. Using this data a user can resynthesize a sound using additive

synthesis with envelopes.

Figure 11: SSUM Image Spectrum Explorer

19

Figure 12: SSUM FIR Filter Explorer

Image Spectrum Explorer (Figure 11) allows one to look at the spatial

frequencies in images. Once an image is loaded its two-dimensional Fourier

transform is displayed. On the image is a cross hair that can be moved

around the image. This shows the row and column of pixels used to calculate

horizontal and vertical spatial frequencies. As this sampling point is moved

the two spectra change, shown in the bottom of the left window. The row and

column pixel values can be plotted as well.

The sonogram is an intuitive way to show dynamic frequency content

of signals over time. Many of the applications in SSUM take advantage of

this. FIR Filter Explorer, shown in Figure 12, demonstrates the effects of

filtering on the frequency content of a signal using the sonogram. Four

different types of filters can be selected (lowpass, highpass, bandpass,

notch). For each filter, the order and cutoff frequencies can be specified. The

filter can be applied to a loaded sound and compared with the original.

Clicking “Plot” will plot the frequency and impulse response of the filter. From

20

the “Send Filter to…” menu, the filter design can be sent to other applications,

like Pole-Zero Explorer (Figure 13) or Pole-Zero Filter Explorer (Figure 14),

which will display the poles and zeros of the filter, and Convolution Explorer

(Figure 15), which will convolve different signals with the filter’s impulse

response. Similar to FIR Filter Explorer is IIR Filter Explorer.

Pole-Zero Explorer (Figure 13) allows the user to move poles and

zeros around on the z-plane, and watch the magnitude, phase, and impulse

response of the filter change. The “Load” menu item provides a set of filters

approximating formants of speech vowel sounds. This program was created

from the MAD program “polezero” [25]. Using the “Send to…” menu item the

designed filter can be sent to Pole-Zero Filter Explorer (Figure 14) and

applied to any sound. Within this application the poles and zeros can be

moved around as well. The impulse response of the filter can also be sent to

Convolution Explorer (Figure 15).

Figure 13: SSUM Pole-Zero Explorer

21

Figure 14: SSUM Pole-Zero Filter Explorer

Figure 15: SSUM Convolution Explorer

22

Convolution Explorer (Figure 15) animates the convolution operation.

Several signal shapes and lengths can be chosen to illustrate its various

effects. Cyclic and non-cyclic convolution is available as well. As seen in

Figure 15 a noisy signal is being convolved, step-by-step, with the impulse

response of a lowpass filter. The result, shown in the bottom plot is the

output.

Filtering images can be explored using Image Filter Explorer (Figure

16). Once an image is loaded, its two-dimensional Fourier transform is

displayed. Several filters are available including the moving average,

Gaussian, del Gaussian, and median filter. The spatial frequency response of

each filter can be plotted, except for the non-linear ones. The filters can be

applied to only the horizontal or vertical directions, or by blocks or kernels.

Noise can be added to any image and its effects on filtering seen. Students

find the median filter’s ability to remove speckle noise startling.

Figure 16: SSUM Image Filtering Explorer

23

Some applications in SSUM demonstrate curiosities of signal

processing. While these don’t directly demonstrate essential concepts of

MSP, they do provide illuminating insights of their own. Figure 17 shows

Cross-Synthesis Explorer. This application allows three different methods for

cross-synthesizing sounds: convolution of the two sounds,5 amplitude

modulation of one signal by the other, and linear predictive coding

(LPC)—using one sound as the model and the other as the source.

Once sounds are loaded, their time-domain waveforms and STFTs will

be displayed. One of the three cross-synthesis routines can be executed, and

when finished its waveform and STFT will be displayed. Students really enjoy

this demonstration and begin to realize what convolution does; suddenly the

mystery of digital reverberation disappears. They particularly enjoy hearing a

gong or crow speak.

Another interesting topic is sinewave speech [22]. Using linear

prediction a speech signal is reduced to a number of modulated oscillators

that, together, remain intelligible to a startling degree. Sinewave Speech

Explorer (Figure 18) demonstrates this curious phenomenon using four

oscillators to approximate a given signal. Any sound can be loaded, and any

combination of the four components can be heard. This demonstration was

appropriated from the MAD sinewave speech program “sws” [25].

5 The convolution routine uses multiplication in the frequency domain to decrease the latency.

24

Figure 17: SSUM Cross-Synthesis Explorer

Figure 18: SSUM Sinewave Speech Synthesis Explorer

25

Figure 19: SSUM Additive Synthesis Composition Machine

SSUM contains demonstrations of MATLAB programming for creating

sound, music, and image. A student can experiment with Catastochastic6

Additive Synthesis Composition Machine (Figure 19), to synthesize a

“composition” in three parts using various envelopes for amplitudes and

frequencies and several other parameters. Parameter ranges can be

specified for durations, amplitudes, frequencies, and amplitude and frequency

changes. Each section can be visualized and played, and can also be sent to

Sonogram Explorer (Figure 10) for further analysis.

Image Analysis/Resynthesis Explorer (Figure 20) allows one to change

the frequency and phase content of an image for reconstruction. Figure 20

shows an image that was reconstructed using the spectral magnitudes from a

different image. The phases of images can similarly be swapped. What is

demonstrated is that the phase information in an image is crucial for

maintaining edges, while magnitudes are necessary for maintaining the pixel

6 The word “catastochastic” is a mixture of catastrophic and stochastic.

26

brightness. Students enjoy using this application to create new images from

two. They begin to realize the advantages to working in both the spatial and

frequency domains.

A much more complex application is MATConcat [28], a concatenative

sound synthesis [29] application. This program (Figure 21) uses feature

vectors to synthesize a sound from pieces of other sounds using distance

metrics specified by the user. For instance, a voice recording can be

synthesized using a recording of a flute and specifying an acceptable range

for root-mean squared (RMS) or spectral centroid. Several additional options

lead to surprising results and numerous creative possibilities, as well as

unfortunate issues of copyright infringement.7

Figure 20: SSUM Image Analysis/Resynthesis Explorer

7 I have used this application in depth for composing several computer music pieces,
including “Dedication to George Crumb, American Composer,” and “Gates of Heaven and
Hell: Concatenative Variations of a Passage by Mahler.”

27

Figure 21: MATConcat: Concatenative Synthesis Explorer

These applications, while not clearly demonstrative of MSP concepts

like Sampling Explorer (Figure 6), or Convolution Explorer (Figure 15), are still

valuable parts of SSUM because they demonstrate interesting applications of

the concepts toward creative ends. For an artist such as a composer they

should provide inspiration and foster creative experimentation.

The applications presented so far give only an overview of what SSUM

has to offer. But they demonstrate several key aspects of SSUM: its ability to

work with sounds and images, to share data between applications, to give

quick feedback, and the ease of demonstrating many essential concepts of

MSP. These make SSUM an excellent pedagogical tool for lectures, labs, and

homework. But with all the options in a given application, where does the

student know where to begin? How can a student who doesn’t know MSP

understand what the sampling rate slider means?

28

Figure 22: An SSUM Application Help Page

Like in MAD, every program in SSUM has a help page that presents it,

gives directions for its use, and poses a few key questions and topics to

explore with the program. These help pages can be accessed either from the

main SSUM help page, or from the “Help” menu item in every program.

Figure 22 shows a help page that is loaded within the MATLAB environment.

29

Developing SSUM

As mentioned above, SSUM uses and extends the programming style

employed in the excellent “MATLAB Auditory Demonstrations” (MAD)

application [25, 26]. Several MAD programs served as starting points for

SSUM programs. Whereas MAD presents demonstrations of auditory

perception, SSUM presents demonstrations of all things MSP.

Like MAD, all of SSUM is open-source and freely modifiable. Each

application resides in its own directory under the main SSUM directory. The

code is very modularized in an attempt to work in an object-oriented way.

Functions that are shared among many applications, such as those

responsible for loading and saving audio and image data, are stored in the

“library” directory. This modularization has been crucial to the maintenance

and rapid development of SSUM.

All the GUI code is separated from the functional code of the

programs. This way modification can be made to the interface without having

to break functionality. When a new application is desired it is quite easy to

start from an existing one. Whereas before it would take a day to create a

new application, using the framework and functionality of an existing SSUM

application makes this task one of only hours.

All of the GUIs in SSUM are created using the MATLAB Graphical

User Interface Development Environment (GUIDE). The code that is

automatically generated is then minimally augmented with callbacks to a main

function file. This function file controls the flow of processes and data and

updates the data displayed in the GUI. Modifications of GUI elements by

other GUI elements (for instance a volume slider changing a volume text box,

or mutually exclusive radio buttons) are usually left in the GUI callback

function file.

30

In the case of FIR Filter Explorer (Figure 12) there are four files:

firexpo.fig, firexpo.m, firexpogui.m, firexpofn.m. The .fig file is the GUI layout

file used by GUIDE. The firexpo.m file contains all the callbacks to the GUI

elements. The file firexpogui.m is an exported version of the GUI, which

merges the design with the callbacks.8 Finally the firexpofn.m file contains the

functions called by the program.

Within the file firexpo.m are the callbacks for the GUI elements. Figure

23 shows four callbacks from this file. These callbacks are executed when the

corresponding GUI element is acted upon. The “play_Callback” is executed

when the play button is pressed; when the filter menu is changed, the

“filtermenu_Callback” is run. And when the “Apply” filter button is pressed, the

“doFilter_Callback” is executed. Two of these callbacks call the firexpofn.m

file with some action, such as ‘playsound,’ or ‘apply_filter.’ A portion of this file

is shown in Figure 24.

8 Exporting the GUI code makes the .fig file unnecessary for distribution. The exported code
is compatible with MATLAB versions before 6.1, whereas the .fig file is not.

% --- Executes on button press in play.
function play_Callback(hObject, eventdata, handles)
 firexpofn 'playsound';

% --- Executes on selection change in filtermenu.
function filtermenu_Callback(hObject, eventdata, handles)
 contents = get(hObject,'String');
 switch lower(contents{get(hObject,'Value')})
 case {'bandpass','notch'}
 set(handles.cut2,'Visible','on');
 otherwise
 set(handles.cut2,'Visible','off');
 end

% --- Executes on button press in doFilter.
function doFilter_Callback(hObject, eventdata, handles)
 firexpofn 'apply_filter';

Figure 23: A portion of GUI code from firexpo.m

31

function firexpofn(action,datastruct)
handles = get(SSUMfigure,'UserData');
switch action
 . . .
 case 'playsound'
 if isfield(handles,'audiodata')
 audiodata = handles.audiodata;
 button = handles.play;
 play_audiodata(audiodata, button);
 end
 . . .
 case 'apply_filter'
 if isfield(handles, 'audiodata')
 handles = apply_filter(handles);
 updatePlots;
 end
 . . .
end
set(f,'UserData',handles);

Figure 24: A portion of code from firexpofn.m

As can be seen the function file does most of the work behind the GUI.

When the play button is pressed, the “play_Callback” is executed, which then

calls the ‘playsound’ action in the function file. This function checks to see if

there is any audio data, and then passes the audio data to the

“play_audiodata” function, located in the SSUM function library. Similarly,

when the “Apply” filter button is pressed, the GUI calls “doFilter_Callback”

which then calls the ‘apply_filter’ action in the function file, which then calls a

filtering function and updates the plots in the GUI. These specialized functions

are located in the function file as other functions.9

Most of the callbacks call for some action in the corresponding function

file; but in Figure 23 we see the “filtermenu_Callback” just changes the state

of some elements in the GUI. In this case the code is located in firexpo.m

9 In MATLAB one can program any number of functions in a single file, like C++. There has to
be one main function though, which shares the same name as the file it is contained in.

32

rather than in the function file. All of the SSUM applications are programmed

using this technique.

The modularization of functions and separation of functional code from

GUI code makes the application much more accessible and modifiable.

Students who are interested in using a particular part of some application

don’t have to look through the esoteric code of the GUI to find it. The GUI

action can just be traced to the function file, and in there the code can be

grabbed.

33

 SSUM and Teaching Media Signal Processing

As stated in the introduction, three things work against a successful

syllabus for teaching MSP to media arts students. First, to explain or do

anything interesting requires more than a cursory look at the mathematics

involved. Second, the pace of the course could be hindered by the need to

address the mathematics. And third, the number of topics that can be

addressed increases when including discussions of sounds and images. By

focusing on using exploratory demonstrations and applications, and

programming rather than written homework, an effective syllabus for teaching

MSP to the media arts student can be designed.

SSUM is designed first for practical and effective demonstrations,

second to provide an interactive experience to enhance one’s comprehension

of MSP, and third to serve as a repository of algorithms and code. SSUM

nicely satisfies these three goals, and creates a fruitful multimedia experience

for teaching and learning MSP. All of the applications are quick to compute

and display results, so there is little worry for the learning process to spiral out

of control or come to a halt. In addition to its ability to teach MSP, SSUM also

teaches how to program MATLAB.

A syllabus that uses SSUM can quite naturally choose MATLAB as the

programming environment. Devens describes why and how Virginia

Polytechnic Institute & State University chose MATLAB as the required

software by the engineering and mathematics department [30]. Included in his

list are many of the reasons stated in my chapter on MATLAB as the

development software. In addition MATLAB can be easily integrated into

existing courses, and circumvents the need for students to learn other

software packages that can be replaced by it.

34

By using MATLAB as a tool for a course, one is able to introduce

applications first, and thus motivate the students to experiment and learn how

they work, as well as create applications of their own. [31] describes the use

of MATLAB to “help reconcile the declarative (what is) and imperative (how

to) points of view on signals and systems.” During thirteen labs students

explore sampling and filtering sounds and images, as well as modulation and

control systems. Other uses of MATLAB in DSP classes and laboratories are

described in [32, 33]. In addition, because of the relative ease of

programming in MATLAB as compared to C++ or JAVA, a student will have

more time to concentrate on algorithms rather than compiler errors.

SSUM then becomes a rich collection of routines that work with sound

and image; students can use the applications as models to guide their own

creative work. Students should be encouraged to discover how the

applications work, and are free to use the code for their own work, provided

they extend it in other directions. Having working examples at their disposal

demonstrates that interesting and complex applications are possible.

Dr. Gibson and I created and implemented a new syllabus using

MATLAB and SSUM for the MSP class offered in MAT at UCSB. As a core

course in the MAT graduate curriculum, Media Signal Processing Using

MATLAB (201A) introduces the concepts of MSP to students who are more

versed in art and music than mathematics. Its focus on teaching principles of

MSP using MATLAB provides an experimental playground in which students

learn by doing, and are motivated by their own artistic interests. It requires

however all enrolled students to purchase MATLAB, and to be comfortable

with at least trigonometry, complex numbers, and elementary series—which

the students learn through a course the quarter before 201A is offered.

201A is not intended to be a survey, but the students should finish with

at least an understanding of digital signals (e.g. samples), digital operations

(e.g. sampling), the frequency domain (e.g. spectra), conversion between

35

analogue and digital signals (e.g. interpolation), filtering (e.g. convolution),

and time-frequency analysis (e.g. Fourier transform) and synthesis (e.g.

LPC). With this knowledge in place the media arts student is more equipped

to attempt the complex technological issues of digital media, whether they are

composing or programming.

201A: Media Signal Processing with MATLAB

A new design for 201A was offered during spring quarter 2004. For two

days a week, two hours each day, lectures are presented in two parts. During

the first hour material is presented that is elucidated by SSUM. After a short

break the rest of the time is spent answering questions, reviewing

assignments, and demonstrating programming concepts in MATLAB. The

syllabus for the 201A is shown in Table 1.

Date
YYYYMMDD

Topics covered

Week 0

20040329 Overview of class, introduction to sampling

20040331
Analog to digital conversion, aliasing; Introduction to
MATLAB, SSUM

Week 1

20040405 Mathematical representations of signals, Fourier Series

20040407
Combinations of Sines; Introduction to Filtering; introduction
to building GUIs in MATLAB

Week 2

20040412
More filtering; introduction to analysis. MATLAB GUI
callbacks.

20040414 The Fourier Transform. More MATLAB GUI callbacks.

Week 3

20040419 Modulation and Spectra

20040421
"Mortuos Plango, Vivos Voco:" Spectral Morphing;
Sonification of Data

36

Date
YYYYMMDD

Topics covered

Week 4

20040426 Filtering, the impulse response, convolution

20040428 More convolution, filtering, z-plane

Week 5

20040503 Introduction to z-transforms, poles and zeros

20040505 FIR filters: deriving the impulse and frequency response

Week 6

20040510 IIR filters: z-transform, stability

20040512 More IIR filters

Week 7

20040517 FT, DFT, DTFT, STFT, and FFT; effects of windowing

20040519 Block Diagrams; Direct Form I, II

Week 8

20040524 Linearity, Time-Invariance, and LPC

20040526 Application of perception to signal processing

Week 9

20040531 Memorial Day: NO CLASS

20040602 Acoustics of the Musical Iced Tea Cans

Week 10

20040607 Class presentations

Table 1: Syllabus for 201A Media Signal Processing with MATLAB

201A is designed around MATLAB programming and SSUM. Lectures

are enhanced with demonstrations of concepts such as sampling and

aliasing. Students are required to work with SSUM, find creative applications

37

of the topics presented, and explore them using MATLAB. More emphasis is

placed on programming media processing algorithms using MATLAB, than on

solving for filter coefficients by hand. Therefore we are relying on the

illustrative power of SSUM and MATLAB to increase the potential for

comprehension and inspire the students to create their own applications using

SSUM as a model. The class has therefore been transformed from one

requiring only mathematical practice, to one requiring signal processing

programming in MATLAB. In this way the class provides a theoretical and

practical experience, rather than just a pedantic one.

There is no required textbook for this class, but MATLAB and the

signal processing toolbox is necessary to complete the homeworks and the

final project. The grading is broken down into the following parts: homeworks

40%, attendance 10%, and the final project 50%. The homework assignments

and requirements for the final project can be found in Appendix B:

Assignments for 201A. Though no text was required, several articles and

photocopies of texts were distributed during the quarter illustrating particular

aspects of MSP. These included sections from [1, 34, 35, 36, 37, 38]. Some

handouts were created as well to demonstrate certain mathematics, like

summing phasors in the complex domain.

Reactions

Response to SSUM was very positive. It was essential for quick

demonstrations of complex concepts like the frequency domain, Fourier

series, and filtering. Using SSUM provided a natural progression of topics. It

was quite easy to move between applications to show, for instance, the finite

difference equation, the poles and zeros, and the frequency and impulse

response of the system. Then the filter could be applied to numerous sounds

to hear its effects. By week three we were already presenting filtering and the

Fourier transform. By the end of week five, after a whirlwind tour through the

38

topics of MSP, it was time to return back to beginning and take a closer look

at the math.

It was difficult to get the students to use SSUM on their own time.

When it became required on homework, many people suddenly complained

that it wasn’t working—revealing that they hadn’t tried it on their computers.

The platform compatibility issues that arose were quickly addressed and

easily solved due to the modularity of the SSUM code.

Finding a balance between class topics and increasing the student’s

skill with MATLAB was tough. As the students didn’t have enough knowledge

to begin working intelligently with signals, for instance, some other topic

needed to be used as a conduit for learning MATLAB. The best topic was in

gradually learning how SSUM works, from making the GUIs to writing the

functions. As can be seen from the homework assigned (Appendix B:

Assignments for 201A), about 200 of the 500 points possible had something

to do with making interfaces. Many complained during the course that too

much time and importance was being spent on making GUIs.

As soon as the students had enough background in digital signals and

the MATLAB language, the homework focus shifted from making interfaces to

creating and working with signals. By the fourth homework they were given

the task of building their own complete application using frequency

modulation to synthesize musical instrument tones.

In response to several students asking for more “signal processing”

related work, a choice was given on the last homework: analyze and

resynthesize recorded birdsong, or investigate the properties of windowing on

two different signals. Even though the latter was touted as being the harder

one, most people chose it. What was expected was a more formal analysis of

windowing, complete with programming examples and diagrams. What was

received was confused work10 that used SSUM to find the answers, instead of

10 Some of the words used to describe the effects of the windows: “spikier,” and “pointier.”

39

programs to explore windowing. Because it wasn’t specified that the

assignment required advanced programming, students found it to be quite

easy using SSUM.

After the fifth homework it was apparent that, with only four weeks left

in the quarter, the students needed to spend most of their time on their

project. The requirements for the final project were discussed (Appendix B:

Assignments for 201A) in the third week of class, giving the students ample

time to think of and research project topics. At the end of the sixth week they

turned in proposals, which were then reviewed and returned to the students

for revision. Most of the projects were not practical, so we guided them to

more realistic goals and suggested places to begin.

Weekly contact with the students was maintained to ensure the

students were working on projects. Only a few students took advantage of

this and had excellent starts; but a few were left in the final weeks having to

start over because they didn’t heed our advice. In the end the projects came

together nicely, and most of them displayed a high level of sophistication. All

of them demonstrated hard work; and the students showed genuine interest

in the topics they chose.

The applications they wrote in MATLAB made good use of the

functionality and GUI programming taught in the homework. A few students

mentioned that had we not taught GUI programming, their applications would

have been less manageable. This demonstrates a good point: using a GUI

can relieve a considerable amount of overhead when working with many

variables. Loading an image, specifying a filter, and displaying a result are

much easier with a few mouse clicks, than editing scripts and functions.

Several students admitted the process was tough, but were pleased with and

proud of their results.

40

Discussion

When a student more versed in music, video, and art, is bombarded

with unintuitive complex mathematics and homework involving convolution by

hand for example, the results are alienation, discontent, and apathy toward

the material. This was discovered in the 201A class taught in 2003 by Dr.

Gibson and myself; even though most of the thirteen graduate students had

been through a previous course that refreshed their math skills, they had

difficulty relating to the material, and consequently didn’t see its use or value.

Instead of finding creative applications for the concepts they were attempting

to learn, the students spent most of their time working out problems on paper,

such as adding phasors, computing spectra, and performing convolutions.

Even though most students did well, the lectures, homework, midterm

and final, were not effective for exciting discussion and revealing the

importance of this subject to their field. Furthermore the need to address the

mathematics severely slowed class progress. The students also complained

about the required text [1] .11

When questioned a year later about the usefulness of 201A, most of

the students from the 2003 class responded that the class had been of no use

to them. Their retention of the information, such as what an IIR filter is, was

very low. Only the most technical students from that class responded

positively about it. Most of the criticism focused on the text and the lack of

examples and demonstrations. With SSUM the lack of demonstrations is well

taken care of.

The response to the material in the 2004 class has been a lot different.

Much more time was spent in class talking about applications, presenting

demonstrations, and working in MATLAB, than reviewing homework problem

sets, and preparing students for the midterm and final exams. Little attempt

11 I have yet to find an introductory signal processing text that is exciting and friendly to
artists.

41

was made to “dumb-down” the material; instead, advanced mathematics

(integral calculus) was used, but proofs and derivations were avoided. The

concepts were always elucidated with SSUM. The students were more

responsive to the material and asked more questions. There were several

moments when I saw “lights turn on,” particularly when we found the

expression for the discrete Fourier transform from a finite difference equation.

Suddenly the big black box called “fft” was a little less mysterious.

It might be stated that focusing on MATLAB in the new syllabus

replaces the difficulty of using mathematics with the difficulty of learning

programming. Thus the class will become more about programming MATLAB

than learning MSP. However, due to the multimedia nature of MSP, it makes

more sense to concentrate on learning the theory through building

applications than struggling with abstract mathematics.

Some students suggested that MATLAB should be learned on their

own time and that only the first homework should be devoted to learning

MATLAB techniques. Assuming that the students would do this would be a

big mistake. Since MATLAB is a required portion of the final project it is

absolutely necessary to create assignments that will force them to learn and

use MATLAB. The “MATLAB manual” (the electronic manual that comes with

a MATLAB installation) was constantly assigned as reading, but from their

questions it was apparent not many students complied.

More focus was placed on learning GUI programming in the beginning

of the course for four reasons. First the students needed to learn MATLAB by

doing something interesting. Second they needed to learn functional

programming, rather than just writing scripts. Third, in order to even

understand how SSUM works, and thus to pick out code that interests them,

they needed to become comfortable with the GUI structure in front of the

applications. Finally, their final project should either be a demonstration of a

42

concept (like SSUM), or an application. Knowing how to wrap your program in

a GUI makes it much easier and interesting to use.

It could be argued that the homework still didn’t have enough to do

with the class content. Even though students were required to work with

frequency modulation, it wasn’t specifically covered in class, and no one took

it further by, for example, looking at how the index of modulation affects the

frequency content. They could have easily looked at the sounds using

Sonogram Explorer, or Fourier Explorer.

As mentioned above, it was tough to get the students to use SSUM on

their own time. This lack of voluntary exploration is echoed in [40], originally

written in 1995 when the campus network system was a MS-DOS token ring,

and only 68% of the students knew about e-mail. Though the computer

resources are much more user-friendly now, students must still be

“academically compelled” to use the tools [40]. Though during 201A they may

have not used SSUM, it became essential for their final projects as at least a

collection of code from which they borrowed.

Catering to the creative motivations of the media arts student, and

using plenty of demonstrations, a class can approach the difficult concepts of

MSP with enthusiasm rather than dread. “If the teachers can create an

enduring fascination for the subject matter, the job's almost over: the more the

students love the subject, the less help they need in their studies” [39]. SSUM

was essential for providing a practical and entertaining experience. And if in

the end students still find nothing useful in MSP, at least they have gained

programming experience.

43

Conclusion

SSUM has been developed to satisfy the needs for illustrative and

inspiring demonstrations to make MSP a discipline approachable by students

who may never posses an ability in advanced mathematics. Using SSUM

students not only receive an interactive introduction to MSP, but also learn

how to program algorithms using MATLAB. SSUM and the syllabus presented

above provide highly effective methods for teaching MSP to any introductory

student in this equally creative and technical field. SSUM became absolutely

essential to the smooth and quick pace of our course on MSP. Without it the

class would have remained dull, pedantic, and lost in mathematics. The

applicability of SSUM to other media arts programs and even introductory

engineering courses is very clear.

One of the disadvantages of CBE discussed in [40] is the time spent

preparing the computer resources. One must weigh the benefit for the

students with the cost of preparing the materials. For SSUM this is not an

issue. It has taken a year to develop SSUM into its current state, but since it

was developed using modularity, its upkeep is minimal. MATLAB will remain

for a long time a leader of academic and institutional engineering software,

and so SSUM will continue to grow and be useful toward its intended goals.

SSUM will be maintained and extended as a project from MAT. It is

predicted that as more people use SSUM they will create other interesting

demonstrations. Incorporating these into SSUM will further enrich it as a

resource. SSUM can be downloaded for free from

http://www.mat.ucsb.edu/~b.sturm.

44

Acknowledgments

The MathWorks, Inc., the makers of MATLAB, has supported this

research by providing full multi-platform licenses to MATLAB. Thanks to Dr.

Gibson for allowing me to run free with the design and implementation of

SSUM. This research was supported with financial assistance from Dr.

Gibson and the graduate program in Media Arts & Technology, UCSB.

45

References

1. J. H. McClellan and R. Schafer and M. A. Yoder, DSP First: A

Multimedia Approach, Prentice Hall, New Jersey, 1998.

2. J. H. McClellan and R. Schafer and M. A. Yoder, Signal Processing First,

Prentice Hall, New Jersey, 2003.

3. K. Steiglitz, A DSP Primer: with Applications to Digital Audio and

Computer Music, Addison Wesley, Menlo Park, CA, 1996.

4. P. R. Cook, Real Sound Synthesis for Interactive Applications, A. K.

Peters, Massachusetts, 2002.

5. U. Zoelzer (Editor), DAFx: Digital Audio Effects, Wiley, New York, 2002.

6. MATLAB is created by The MathWorks, Inc. http://www.mathworks.com/

7. A. Clausen and A. Spanias, "An Internet-based Computer Laboratory for

DSP Courses", in Proceedings of Frontiers in Education, 1998. Available

at: http://fie.engrng.pitt.edu/fie98/

8. R. J. Radke and S. Kulkarni, "An Integrated Matlab Suite for Introductory

DSP Education," in Proceedings of the First Signal Processing

Education Workshop, 2000. Available at:

http://www.ee.princeton.edu/~rjradke/papers/radkedsp00.pdf

9. M. Rahkila and M. Karjalainen, "Considerations Of Computer Based

Education In Acoustics And Signal Processing," in Proceedings of

Frontiers in Education, 1998. Available at: http://fie.engrng.pitt.edu/fie98/

10. M. Rahkila, “A Computer Based Education System for Signal

Processing,” Helsinki Univeristy of Technology, Department of Electrical

Engineering, Master’s Thesis, 1996. Available at:

http://www.acoustics.hut.fi/~mara/cbe/mst/

46

11. M. B. Joaquim and J. C. Pereira and V. A. de Oliveira, "Course On DSP

Design Using MATLAB," in Proceedings of Frontiers in Education, 1998.

Available at: http://fie.engrng.pitt.edu/fie98/

12. A. C. Hague, Towards Deeper Learning with Hand-Crafted Courseware,

(PhD Thesis) University of York, Department of Computer Science, U.K.,

1997. Available at: http://citeseer.nj.nec.com/hague97towards.html

13. JAVA Digital Signal Processing Editor. Available at:

http://www.eas.asu.edu/~midle/jdsp/jdsp.html

14. J. McCartney, "SuperCollider: A new real-time sound synthesis

language," in Proceedings of the International Computer Music

Conference, 1996. Available at: http://www.audiosynth.com

15. M. Puckette, “Pure Data,” in Proceedings of the International Computer

Music Conference, 1996. Available at:

http://www.crca.ucsd.edu/~msp/Publications/icmc96.ps

16. Max/MSP is distributed by Cycling74: http://www.cycling74.com/

17. Simulink is created by The MathWorks, Inc. http://www.mathworks.com/

18. Mathematica is created by Wolfram Research, Inc.

http://www.wolfram.com/

19. Maple is created by Maplesoft. http://www.maplesoft.com/

20. Octave. Available at: http://www.octave.org

21. LabVIEW is created by National Instruments. http://www.ni.com/labview/

22. R. Remez, P. Rubin, D. Pisoni, and T. Carrell, “Speech perception

without traditional speech cues,” Science, Vol. 212, 947-950, 1981.

23. M. Nagrial, "Education and Training in Engineering Software and

Applications," in Proceedings of the International Conference on

Engineering Education, 2002. Available at:

http://citeseer.nj.nec.com/560624.html

24. Baudline is free software for Linux only, available at:

http://www.baudline.com

47

25. M. Cooke, H. Parker, G. J. Brown and S. N. Wrigley, "The interactive

auditory demonstrations project," Eurospeech Conference, 1999.

Available at: http://www.dcs.shef.ac.uk/~martin/MAD/docs/articles.htm

26. M. Cooke, et al., “MAD: MATLAB Auditory Demonstrations,” 1999.

Available at: http://www.dcs.shef.ac.uk/~martin/MAD/docs/mad.htm

27. A. S. Bregman and P. Ahad, “Demonstrations of auditory scene analysis:

the perceptual organization of sound,” CD, MIT Press, Cambridge,

Massachusetts, 1995.

28. B. L. Sturm, “MATConcat: An Application for Exploring Concatenative

Synthesis in MATLAB,” to be published in 2004 Proceedings of the

International Conference of Computer Music, Miama, FL, 2004.

29. A. Hunt and A. Black, “Unit selection in a concatenative speech

synthesis system using a large speech database,” ICASSP 1(1),

373–376, 1996.

30. P. E. Devens, "MATLAB & Freshman Engineering," in Proceedings of

the ASEE Annual Conference & Exposition, 1999. Available at:

http://www.succeed.ufl.edu/search/seepaper.asp?paperid=284

31. E. A. Lee, “Designing a Relevant Lab for Introductory Signals and

Systems", in Proceedings of the First Signal Processing Education

Workshop, 2000. Available at:

http://ptolemy.eecs.berkeley.edu/publications/papers/00/spe2/

32. D. E. Melton, C. J. Finelli and L. M. Rust, "A Digital Signal Processing

Laboratory with Style," in Proceedings of 29th ASEE/IEEE Frontiers in

Education Conference, 1999. Available at: http://fie.engrng.pitt.edu/fie99/

33. U. Rajashekar and A. C Bovik, "Interactive DSP Education Using

MATLAB Demos", in Proceedings of the First Signal Processing

Education Workshop, 2000. Available at:

http://www.ece.utexas.edu/~umesh/publications.htm

48

34. F. R. Moore, “An Introduction to the Mathematics of Digital Signal

Processing: Part I: Algebra, Trigonometry, and the most Beautiful

Formula in Mathematics,” Computer Music Journal, Vol. 2, No. 1, 1978.

35. F. R. Moore, “An Introduction to the Mathematics of Digital Signal

Processing: Part II: Sampling, Transforms, and Digital Filtering,”

Computer Music Journal, Vol. 2, No. 2, 1978.

36. J. Harvey, “Mortuos Plango, Vivos Voco: A Realization at IRCAM,”

Computer Music Journal, Vol. 5, No. 4, 1981.

37. F. J. Harris, “On the Use of Windows for Harmonic Analysis with the

Discrete Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1,

1978.

38. B. L. Sturm, “Surf Music: Sonification of Ocean Buoy Spectral Data,” in

Proceedings of the International Conference on Auditory Display, Kyoto,

Japan, 2002.

39. J. Koumi, “Designing for Learning---Effectiveness with Efficiency,” In

Effective Screenwriting for Educational Television, ed. R. Hoey, Kogan

Page Ltd, U.K., pp 230 – 239, 1994.

40. C. A. Cañizares and Z. T Faur, “Advantages and disadvantages of using

various computer tools in electrical engineering courses,” IEEE Trans.

On Education, vol. 40, No. 3, 1997, pp 166 – 171.

49

Appendix A: Current SSUM Applications

SSUM Main GUI

Highlight an application to learn what it does. Click “Run” to execute
the application. The “All”, “Sound”, and “Image” toggle buttons filter the
relevant applications. Selecting “Sound” will show all applications having to do
with sound.

50

Additive Synthesis Forest

This is a great demonstration of the power of additive synthesis to
create realistic bird song.

Simply select a bird and click “Play.” The random bird is a mixture of all
the bird calls with random parameters. The “Plot” button will show the
frequency and amplitude envelopes of the synthesis parameters.

The synthesis can be modified using the text boxes to the right. The
Time Stretch will increase the duration of the envelopes. “Rand Time,” “Rand
Amp,” and “Rand Freq,” will change times, amplitudes, and frequencies within
the envelopes.

From the menu
the synthesized bird
song can be sent to the
Sonogram Explorer or
Fourier Explorer. The
resulting signal can be
saved to a soundfile
from the File menu.

The original code
for these birds was in
Common Lisp Music,
(CLM), developed at the
Center for Computer
Research in Music and
Acoustics (CCRMA) at
Stanford University. I
translated this code
during summer 2003.

51

Additive Synthesis Waveform Explorer

This is a demonstration of adding sine waves to produce different
waveforms.

Begin by selecting a waveform from the menu. You can then adjust
any of the parameters to see its effect on the waveform. After selecting a
different fundamental (f0), select a waveform again to synthesize its shape.
The signal can be played using the “Play” button. In the phases box, the
“Randomize” button will randomize all 15 phases.

Using the menu above, the signal can be sent to the Fourier Explorer,
Sonogram Explorer, or the Aliasing Explorer. The signal can also be saved to
a sound file from the File menu.

52

Audio Aliasing Explorer

This application allows to user to simulate the effects of aliasing in
audio.

After loading a soundfile using the menu at the top, its time-domain
waveform will appear in the bottom plot. The two red bars on this plot denote
the window over which the Fourier transform is performed. The magnitudes of
the transform are displayed in the top plot. The red bars in the frequency plot
denote the Nyquist frequency. The vertical slider scales the range of the plot;
the horizontal slider scales the frequency domain plotted. By clicking and
holding on a red bar in the time-domain plot the window can be dragged over
the sound to show how the spectrum changes.

By choosing a downsample factor from the menu, the original signal is
decimated without filtering, and redisplayed. The signal is resampled to the
original sample rate, but the effective sampling rate is Fs/factor. An anti-
aliasing filter can be applied before decimation by clicking on “Use Anti-Alais
Filter.”

The menus on the lower right side of the figure can change the fast
Fourier transform window size and shape. The sound can be normalized and
played. The check boxes change how the transform is displayed. Using the
menu at the top, the loaded sound data can be sent to other applications, like
the Sonogram Explorer.

Some code to make this demonstration was taken from the MAD
program "wavspect."

53

Catastochastic Additive Synthesis Composition Machine

This application composes music using additive synthesis parameters
supplied by the user.

Begin by pressing “Compose” for any section. Default values are
loaded in the fields. For any section the number of notes can be modified.
The start time of each section can be changed. By clicking on the “Mix” box,
that section will be mixed into the final section. The “Percent Overlap” value
determines how many sounds are playing at once. The volume of any section
can be changed either using the text box or the vertical slider.

The additive synthesis parameters are the number of partials, the list of
partials in multiples of the fundamental and amplitude (for instance [1 1 2.1
0.5 3 0.2]). Ranges can be specified for the note durations, amplitudes,
frequencies, and frequency skews. Finally different envelopes can be chosen
for the amplitude and frequency of each note. Once entered, press
“Compose” to synthesize the section. Upon finishing a time domain plot will
be shown.

This program is not intended as a demonstration of anything in
particular. It is included as an example of something that can be done using
MATLAB and basic signal processing. The resulting signal can be saved to a
soundfile from the File menu.

54

Communication Models Explorer

This application demonstrates the propagation of error in different
models for communication systems.

Select a model and click “Draw.” An image will be created that shows
the propagation of error. A white pixel represents an error. When “Animate” is
selected, the drawing will be incremental. At the top of the image will be the
calculated entropy of the particular trial.

The “2-State” model is a basic Markov chain. The probability p
determines the likelihood of encountering an error; the probability q
determines the likelihood of returning from an error. The “Auto-Regression”
model is a Markov chain with memory. The number “a” is the percent of the
output fed back. The standard deviation “std” determines the noise in the
system. When “Scale” is selected the range of pixel values will be rescaled to
the maximum and minimum values in the image. The “User Specified” allows
different types of noise to be introduced, and the number of bits used for each
pixel.

The resulting image can be saved from the File menu.

55

Complex Number Explorer

This is a demonstration of complex numbers and vectors.

After starting the program you can either enter the x, y, r, or theta
values in the text boxes, or click and drag the point around the plot. From the
plot menu you can select which point to display, and which operation to
perform (addition, subtraction). The thick blue arrow represents the result of
the operation. The result is also shown in the text boxes under “Result.”

The points can be plotted in either rectangular or polar coordinates,
depending on the selected check box.

56

Concatenative Synthesis Explorer

This application demonstrates concatenative synthesis using signal
feature extraction.

MATConcat is a complex application that synthesizes a target sound
using samples from a dictionary of sounds. It does this using feature
extraction and matching criteria.

Begin by analyzing a target sound using the parameters set in the
“Analysis Parameters” box. Load or analyze a corpus sound. Specify
matching criteria from the “Synthesis Parameters” box. Click “Synthesize” to
begin the process. Once finished the resulting signal will be displayed in the
plot on the right, and the matching results will be displayed in the text box
below it.

The synthesis can be saved from the File menu.

57

Convolution Explorer

This is a demonstration of discrete convolution.

Begin by adjusting the widths of the pulses you wish to convolve. The
shape of the pulses can be changed using the shape menu. The convolution
can either be stepped through (in any direction), or played as an animation.
Once finished it can be stepped in reverse, or reset and played again.
Selecting the “Cyclic” box performs cyclic convolution.

By selecting the “Show Shape” box the stem plots will be replaced by
line plots. The grid box turns on and off the grids.

58

Cross-Synthesis Explorer

This application demonstrates the cross-synthesizing of sounds.

Begin by loading two signals using the “load” buttons. Once loaded the
signal’s sonogram and its time-domain waveform will be displayed. From the
“Cross Synthesis” menu select a method. The convolution method just
convolves the two signals. The amplitude envelope method applied the RMS
envelope of the second signal to the first. The linear predictive coding method
creates a model from the first signal, and uses the second signal as the
excitation for the model.

The sonogram displays can be changed using the choices at the
bottom of the figure. The vertical slider on the left scales the frequency
domain of the sonograms. The resulting signal can be saved to a soundfile
from the File menu.

59

Finite Difference Equation Explorer

This application allows the exploration of finite difference equations
and their frequency responses.

You can either type in the coefficients in the text boxes, or load a given
filter from the menu. The display can be altered using the checkboxes to the
right. The slider below the impulse response changes the time-domain
display.

You can send the filter to the Pole Zero Explore, the Pole Zero Filter
Explorer, or the Convolution Explorer.

60

FIR Filter Explorer

This application allows FIR filtering of sounds and displays spectral
information using a sonogram.

First load a soundfile from the menu. Once analyzed its sonogram will
appear. Change the colormap and dB scale to see different features.
Zooming in the waveform time-display will also zoom the sonogram. (If at any
time this does not work, click on the “zoom reset” button to restore this
functionality.) The "Interpolate" box will smooth the sonogram, but this will
take a long time to complete for large portions showing—so use wisely. The
play buttons will play only the waveform showing. The slider to the left of the
sonogram will scale the frequency axis.

Once a sound is loaded it can be filtered using the parameters
specified in the box on the right. You can apply and undo these changes.
Click on “plot” to see the frequency response and impulse response, of the
filter. Using the menu at the top, the filter can be sent to the Pole-Zero
Explorer or Pole-Zero Filter Explorer to show the positions of the filter’s poles
and zeros. The impulse response can be sent to the Convolution Explorer.
The resulting signal can be saved to a soundfile from the File menu.

61

Formant Explorer

This application displays the spectrum and formants of a sound over a
window. Also available for display are the autocorrelation, and cepstrum.

After loading a soundfile using the menu at the top, its time-domain
waveform will appear in the bottom plot. The two red bars denote the window
over which the Fourier transform is performed. The magnitudes of the
transform are displayed in the top plot, along with the formants derived from
an LPC analysis. The anti-formants can be displayed by clicking on the button
to the right of the plot. The vertical slider scales the range of the plot; the
horizontal slider scales the frequency domain plotted. By clicking and holding
on a red bar the window can be dragged over the sound to show how the
formants change.

The middle plot can display the autocorrelation of the windowed signal,
or the cepstrum. This can be selected from the pull-down menu.

The menus on the lower right side of the figure can change the fast
Fourier transform window size and shape. The sound can be normalized and
played. The check boxes change how the transform is displayed.

Using the menu at the top, the loaded sound data can be sent to other
applications, like the Sonogram Explorer, or Aliasing Explorer.

Some code to make this demonstration was taken from the MAD
program "wavspect" and “lpc.”

62

Fourier Explorer

This application displays spectral information using the Fourier
transform.

After loading a soundfile using the menu at the top, its time-domain
waveform will appear in the bottom plot. The two red bars denote the window
over which the Fourier transform is performed. The magnitudes of the
transform are displayed in the top plot. The vertical slider scales the range of
the plot; the horizontal slider scales the frequency domain plotted. By clicking
and holding on a red bar the window can be dragged over the sound to show
how the spectrum changes.

The menus on the lower right side of the figure can change the fast
Fourier transform window size and shape. The sound can be normalized and
played. The check boxes change how the transform is displayed.

Using the menu at the top, the loaded sound data can be sent to other
applications, like the Sonogram Explorer, or Aliasing Explorer.

Some code to make this demonstration was taken from the MAD
program "wavspect."

63

Fourier Series Explorer

This application demonstrates the Fourier series for a periodic step
function.

By adjusting the period “T” and step duration “tau,” the magnitude
Fourier series shown in the top plot changes. The phase spectrum is shown
to be linear. The amplitude and offset of the step function can also be
changed. The horizontal slider changes the frequency domain displayed; the
vertical slider changes the magnitude range.

The generated periodic step signal can be sent to the Fourier Explorer,
or the Sonogram Explorer from the menu.

64

IIR Filter Explorer

This application allows IIR filtering of sounds and displays spectral
information using a sonogram.

First load a soundfile from the menu. Once analyzed its sonogram will
appear. Change the colormap and dB scale to see different features.
Zooming in the waveform time-display will also zoom the sonogram. (If at any
time this does not work, click on the “zoom reset” button to restore this
functionality.) The "Interpolate" box will smooth the sonogram, but this will
take a long time to complete for large portions showing—so use wisely. The
play buttons will play only the waveform showing. The slider to the left of the
sonogram will scale the frequency axis.

Once a sound is loaded it can be filtered using the parameters
specified in the box on the right. You can apply and undo these changes.
Click on “plot” to see the frequency response and impulse response, of the
filter. Using the menu at the top, the filter can be sent to the Pole-Zero
Explorer or the Pole-Zero Filter Explorer to show the positions of the filter’s
poles and zeros. The impulse response can be sent to the Convolution
Explorer. The resulting signal can be saved to a soundfile from the File menu.

65

Image Aliasing Explorer

This application explores aliasing images.

Like the Aliasing Explorer for sound, this demonstration creates
aliasing in images. Start by loading an image. It will be displayed at the
correct screen resolution; its two-dimensional Fourier transform is displayed
in the GUI figure. The appearance of the transform can be changed using the
options underneath the plot. The appearance of the image can be changed
using the options at the bottom of the GUI.

By selecting a downsample factor, the image will be decimated in
either the horizontal or vertical directions, or using a kernel—depending on
which is checked. When “Keep Size” is checked the image will be upsampled
back to the original size. When the “Anti-Aliasing Filter” is checked, the image
will be lowpass filtered before decimation.

Using the menu, the image can be sent to the Image Spectrum
Explorer or the Image Filter Explorer. The resulting image can be saved to an
image file from the File menu.

66

Image Analysis/Resynthesis Explorer

This demonstration shows the spectral analysis of an image, and its
resynthesis from this data.

When an image is loaded, it is displayed, a two-dimensional Fourier
transform is performed, and the image is synthesized from the spectral data.
The original image is seen above in the top right corner; the synthesis is
shown below it. The frequency and phase information of the original is shown
in the center plots. The appearance of the images can be changed using the
option in the “Image” box in the GUI. The appearance of spectral plots can be
changed using the options in the Spectrum box of the GUI.

The options in the Reconstruction box affect how the image is
synthesized. The magnitudes used to perform the reconstruction can be set
to either the original values, random values, or values from the analysis of a
different image. The same is true for the phase information, except another
choice is to set the phases to zero.

The resulting image can be saved to an image file from the File menu.

67

Image Filter Explorer

This application explores filtering images. One can use several types
of filters to see their effects. One can also add noise to an image and see the
effectiveness of a filter for removing it.

Start by loading an image. It will be displayed at the correct screen
resolution; its two-dimensional Fourier transform is displayed in the GUI
figure. The appearance of the transform can be changed using the options
underneath the plot. The appearance of the images can be changed using the
options at the bottom of the GUI.

After loading an image it can be filtered. The filter type can be
selected, and its size can be set. Choose a direction for its application and
press “Apply” to apply the filter. The changes can be undone.

Two types of noise can be applied to the image to see their effects.
The incidence of the “Salt and Pepper” gives the percent chance of either
black or white pixels. The variance of the “Gaussian” noise gives the spread
of noise within a grey scale.

Using the menu, the image can be sent to the Image Spectrum
Explorer or the Image Aliasing Explorer. The resulting image can be saved to
an image file from the File menu.

68

Image Spectrum Explorer

The spectral information of an image, or its spatial frequencies, can be
explored in this application.

Start by loading an image. It will be displayed at the correct screen
resolution; its two-dimensional Fourier transform is displayed in the GUI
figure. The appearance of the transform can be changed using the options
underneath the plot. The appearance of the images can be changed using the
options at the bottom of the GUI.

In the figure containing the loaded image a circle and two lines
appears. The circle can be moved around the image. As this happens the two
plots in the main figure will correspond to the pixel values in the horizontal
and vertical directions. Either the spatial frequencies or the actual pixel values
can be displayed.

Using the menu, the image can be sent to the Image Aliasing Explorer
or the Image Filter Explorer.

69

LPC Explorer

This demonstration shows the process of linear predictive coding.

Begin by loading a sound. Its time-domain waveform is shown in the
top plot. Select the analysis parameters and click “Analyze.” Once finished
the residual signal will be shown in the middle plot. Now select the synthesis
parameters and click “Synthesize.” Once finished the synthesis will appear in
the bottom plot. Either sound can be played using the respective buttons.

The model filter can be excited using numerous signals including the
residual, white noise, impulses, or a sound file.

You can send either the original or the synthesized signal to the
Fourier Explorer or Sonogram Explorer. The result can be saved to a sound
file from the File menu.

70

Modulation Explorer

This application demonstrates the amplitude modulation of two signals.

Begin by loading or creating modulation and carrier signals. If you
select “Create,” a GUI will appear from which you can synthesize a signal with
frequency and amplitude envelopes. Once loaded the signal’s sonogram and
its time-domain waveform will be displayed.

From the modulation menu, the two signals are amplitude modulation
using either double side-band suppressed or transmitted carrier. The resulting
signal is analyzed and displayed in the plot on the right. The modulation
signal can be sent to the Fourier Explorer from the menu.

The sonogram displays can be changed using the choices at the
bottom of the figure. The vertical slider on the left scales the frequency
domain of the sonograms. The resulting signal can be saved to a soundfile
from the File menu.

71

Pole-Zero Explorer

This application allows interactive exploration of building filters using
poles and zeros.

Within this environment you can see how the positions of poles and
zeros affect the frequency and phase response of filters. You can start by
either clicking on “Add Pole” or “Add Zero,” or by loading a pre-designed filter
from the menu. The pre-designed filters include formant shapes. You can
click on any pole or zero and move it around the plot. The frequency
response and impulse response will change in real-time. The slider on the
bottom scales the plot duration of the impulse response.

To apply this filter to a sound you can send it to the Pole-Zero Filter
Explorer using the menu. You can send the impulse response to the
Convolution Explorer.

Some code to make this demonstration was taken from the MAD
program "polezero."

72

Pole-Zero Filter Explorer

This application allows interactive exploration of building filters using
poles and zeros and applying it to a sound.

Within this environment you can apply filters constructed of poles and
zeros to a sound. You can start by either clicking on “Add Pole” or “Add Zero,”
or by loading a pre-designed filter from the menu. The pre-designed filters
include formant shapes. You can click on any pole or zero and move it around
the plot. The frequency response will change in real-time.

When you load a soundfile from the menu it will be analyzed and its
sonogram will appear. Change the colormap and dB scale to see different
features. Zooming in the waveform time-display will also zoom the sonogram.
(If at any time this does not work, click on the “zoom reset” button to restore
this functionality.) The "Interpolate" box will smooth the sonogram, but this will
take a long time to complete for large portions showing—so use wisely. The
play buttons will play only the waveform showing. The slider to the left of the
sonogram will scale the frequency axis.

Once a sound is loaded it can be filtered. You can apply and undo
these changes. Using the menu at the top, the filter can be sent to the Pole-
Zero Explorer to show the phase response and impulse response. The
resulting signal can be saved to a soundfile from the File menu.

Some code to make this demonstration was taken from the MAD
program "polezero."

73

Sampling Explorer

This is a visual demonstration of sampling analog signals, including
time sampling, quantization, and interpolation of the samples.

The original analog signal is the blue line in the top plot. The stems, or
lollypops, denote the samples. The dark blue line in the bottom plot is the
interpolation of the samples back to a continuous signal. You can choose
different analog signals from the waveform menu at the bottom.

The frequency, amplitude, phase, and offset of the original signal can
be changed using the sliders and text boxes on the left. The sampling rate
and number of bits for each sample can be changed using the sliders and text
boxes on the right. The number of plotted periods can also be changed to
reduce the effect of edge effects.

Using the check boxes, the grids, samples, and sinc interpolation lines
can be disabled.

74

Signal Feature Explorer

This demonstration shows a statistical analysis of sounds.

Begin by loading a signal from the File menu. Once loaded the signal
will be analyzed. The sonogram of the signal is displayed at top, and its time-
domain waveform is at the bottom. The appearance of the sonogram can be
changed with the options on the right. The vertical scroll bar changes the
frequency limits of the sonogram.

The two plots below the sonogram can show two of seven things:
samples, number of zero crossings, RMS, spectral centroid, spectral roll-off,
harmonicity, and pitch. The resolution of the analysis is determined by the
FFT size option on the right.

75

Sinewave Speech Explorer

This is a demonstration of sine wave speech.

Begin by loading a sound, speech or not. An LPC analysis will be
performed and reduced to four sinusoids with dynamic frequencies and
amplitudes. The sonogram of the synthesis will be displayed, and its time-
domain waveform will be shown below. The appearance of the sonogram can
be changed using the options to the right. The sonogram of the original can
also be displayed.

The synthesis and original can be played using the respective buttons.
The four check boxes to the right of the sonogram enable the sine wave
components in the synthesis.

Some code to make this demonstration was taken from the MAD
program "sws." Code was also used from
http://www.ee.columbia.edu/~dpwe/resources/matlab/sws/.

76

Sinusoidal Explorer

This is a demonstration of sinusoids and their parameters: frequency,
phase, amplitude, and offset.

You can sum or multiply two sine waves to see the different effects.
The top plot displays the two sine waves. The “plot” check boxes enable or
disable their waveform display. The resulting signal is shown in the lower plot.
This can be sent to the Sonogram Explorer or the Fourier Explorer.

77

Sonogram Explorer

This application displays spectral information using a sonogram, or
Short-Time Fourier Transform (STFT).

First load a soundfile from the menu. Once analyzed its sonogram will
appear. Change the colormap and dB scale to see different features.
Zooming in the waveform time-display will also zoom the sonogram. (If at any
time this does not work, click on the “zoom reset” button to restore this
functionality.) The "Interpolate" box will smooth the sonogram, but this will
take a long time to complete for large portions showing—so use wisely. The
play buttons will play only the waveform showing. The slider to the left of the
sonogram will scale the frequency axis.

You can explore the effects of different window shapes and sizes on
the resolution of the sonogram. The “Explore Data” button allows one to travel
the partials in the sonogram to get detailed information about its frequency
and amplitude envelopes, and the time information. After clicking the button,
click on the sonogram several times. When finished hit “enter.” The
frequencies, amplitudes, and times at each click will be printed in the
MATLAB command window. These can be used with the additive synthesis
program to attempt to synthesize the sound. This works especially well with
birdsong (see Additive Synthesis Forest).

78

Sound Analysis/Resynthesis Explorer

This demonstration shows the spectral analysis of a sound, and its
resynthesis using this data.

Begin by loading a sound. Its time-domain waveform is shown in the
top plot. Select the analysis parameters and click “Analyze.” Now select the
synthesis parameters and click “Synthesize.” Once finished the synthesis will
appear in the bottom plot. Either sound can be played using the respective
buttons.

As in the Image Analysis/Resynthesis Explorer, the magnitudes and
phases of the analysis can be altered. The magnitudes can be set to the
original, randomized, or from the analysis of another sound file. The phases
can be set to the original, zeros, randomized, or from the analysis of another
sound.

You can send either the original or the synthesized signal to the
Fourier Explorer or Sonogram Explorer. The result can be saved to a sound
file from the File menu.

79

Spectrum Explorer

This application demonstrates the frequency domain interpretation of
pure signals.

You can sum or multiply two sine waves to see the different effects,
and the representation of them in the frequency domain. The top plot displays
the two sine waves. The “plot” check boxes enable or disable their waveform
display. The resulting signal is shown in the plot below this. The two plots
below these show the magnitude and phase spectrum of the resulting signal.
The resulting signal can be sent to the Sonogram Explorer or the Fourier
Explorer.

80

Appendix B: Assignments for 201A

Homework #1

1. Consider the complex number: z = x + j*y. This number can be
represented as the complex polar number: z = r*exp(j*theta). Using
MATLAB create a function named carpol.m that will take as
arguments x, y and return r, theta (in radians). Test it with the following
numbers:

a. z = 0.5 + j*0.5
b. z = 0.5 – j*sqrt(2)/2
c. z = -0.5 + j*0.33

2. Create another function named polcar.m that will convert polar to
Cartesian. It should take as arguments r, theta (in radians) and return
x, y. Test it with the following complex numbers:

a. z = 0.5*exp(-j*pi/2)
b. z = 1/2*exp(-j*3*pi/4)
c. z = sqrt(2)/2*exp(j*2*pi/3)

3. Plot these points on two graphs in the same figure using “subplot.” Use
the command “plot” for the first plot and the command “polar” for the
other plot. Use the marker ‘o’ for each point. If your functions are
working correctly the two graphs will be exactly the same, i.e. the
points will be in the same locations. (Make the limits of the Cartesian
graph centered on 0, and set the axis to be square, i.e. “axis square.”)
It should look like the following:

When completed and corrected e-mail the two functions, carpol.m and
polcar.m, and the m-file used to create the plots in part 3, to the T.A.
b.sturm@mat.ucsb.edu, by 2 p.m. on 20040407. Late homework will not be
considered.

81

Homework #2

Point Converter 1.0

1. (50 points) Make pointsgui.m fully functional by programming its
callbacks to do all of the following:

a. When the user enters a number in the X, Y, R, or T text boxes
and presses return, the point should plot on the graph to the
right, and the relevant conversion should happen and be
displayed in the appropriate boxes. For instance, if I type a "1"
in X and press return, an arrow should appear in the graph
pointing straight right, and the R text box should show "1" while
T shows “0”. T should be given in degrees. Use the MATLAB
functions pol2cart and cart2pol. To make the arrow use the
command compass.

b. When the user enters two values for either Cartesian or Polar
and presses the corresponding convert button, the point should
plot in the graph to the right and the conversion shown in the
corresponding text boxes. T should be given in degrees.

c. The "Choose Point" button, when pressed, should allow the
user to click on the graph to the right, draw an arrow from the
origin to the point, and show the coordinates in the both the
Cartesian and Polar text-boxes. (HINT: look at the function
ginput.)

d. When the "Polar Plot" button is pressed, the graph on the right
should become a polar plot. (Use the function compass or polar
to create this plot.) The text field of this button should change to
"X-Y Plot." When that is pressed, the graph on the right should

82

be changed to a rectangular plot, and the text field of the button
changed to "Polar Plot."

e. When the "Grid" checkbox is selected, the graph on the right
should contain a grid.

2. (25 points) Using the Sampling Explorer in SSUM answer the
following:

a. What frequency (Hz) sinewave is produced at the output when
sampling a 900 Hz sinewave at Fs = 1000 Hz? (Remember
frequency is the inverse of period.)

b. What frequency sinewave is produced at the output when
sampling a 700 Hz sinewave at Fs = 1000 Hz?

c. Derive a formula for the frequency of the output given the input
sinewave frequency f, and sampling rate Fs, where f > Fs/2.

d. Why is it dangerous to sample a signal at exactly twice its
highest frequency component?

e. Why it is better to have more bits per sample?
3. (25 points) Write a short synopsis of the algorithm for the Additive

Synthesis Forest. Start with birdsgui.m. How is the GUI created? Trace
what happens when the user selects "Robin" and presses play. (Note:
The function synth.m is located in the library directory of SSUM.)

When completed and corrected e-mail your file pointsgui.m, your answers to
part 2, and the discussion of the Additive Synthesis Forest, to the T.A.
b.sturm@mat.ucsb.edu, by 2 p.m. on 20040414. Late homework will not be
accepted.

83

Homework #3

1. (30 points) Reprogram pointsgui.m so that the GUI code is separate
from the functional code, pointsfn.m. The function pointsfn.m has
already been started and one example of it is shown. Use any SSUM
program as an example of how this is done.

2. (20 points) Add the following phasors using MATLAB, and plot two
periods of each waveform (x1, x2, x1+x2) on one plot. Use different
linestyles for the plot and use legend. Set the linewidth of the sum to 3
(Hint: h = plot(…); get(h)). Check your result using the SSUM
applications Complex Number Explorer, and Sine Explorer. Figure 1
shows how your plot should look.

a. x1 = 2 cos(2*pi*200*t – pi), x2 = cos(2*pi*200*t + 3pi/4)

3. (50 points) Add and multiply the following phasors using MATLAB and
plot each waveform (x1, x2, x1+x2; x1, x2, x1*x2) over the longest
period of the three. In same figure plot the spectrum of each real
waveform. Your plots should look like figures 2 and 3, but not exactly.
(Note: use stem, not fft for the frequency and phase plots.) Use SSUM
Sine Explorer to verify your results. LOADS of extra credits for those
who make a function to do this automatically for any two sinusoids
(HINT: use structures).

a. x1= cos(2*pi*500*t – pi/2), x2=1+0.5 cos(2*pi*100*t + pi/4)

84

Adding two phasors, one with an offset

Multiplying two phasors, one with an offset

When completed and corrected e-mail your files pointsgui.m, pointsfn.m, and
the scripts used to answer questions 2 and 3, to the T.A.
b.sturm@mat.ucsb.edu, by 2 p.m. on 20040421. Late homework will not be
accepted.

85

Homework #4

In this assignment you will create your own GUI using GUIDE that interfaces
the frequency modulation synthesizer. The FreqMod Player is included as an
example. Additional help can be found in the MATLAB manual.

Example interface; the blue rectangles trigger the sounds when clicked.

1. (100 points) Using GUIDE, create a GUI that interfaces the frequency
modulation synthesizer found in the SSUM library in the synth.m and
freqmod.m functions.

a. Make a menu to select an instrument to play: {bell, chime, wood
drum, marimba, or sheet metal}. Use the special values in the
provided fmplayfn.m for each instrument.

b. Make at least five buttons to serve as the “keyboard.” When you
press a button the selected instrument sound is synthesized and
played through the speakers. The pitch of the note should be
different for each button. Feel free to use any scale you want.
Extra credit if you make a menu to select particular scales.

c. Create a volume slider that scales the amplitude of the
synthesized sound.

d. Extra credit if you find and code other instruments, or include an
interface to modify frequency modulation parameters.

When completed and corrected e-mail all files necessary to run your GUI
(including the .fig file) to the T.A. b.sturm@mat.ucsb.edu, by 2 p.m. on
20040503. Late homework will not be accepted.

86

Homework #5, Part I

Choose either Part I or Part II (extra credit if you do both). In Part I you will
perform an analysis of bird song, synthesize the sound using additive
synthesis, and compare the spectra of the original with the synthesis.

Sonogram of Costa Rican bird Montezuma Oropendolas.

1. (50 points) From the birds.zip collection of bird song, you will
synthesize the bird of your choice.

a. Use the SSUM Sonogram Explorer to trace the spectral
components (i.e. use the “Explore” button).

b. Using the data you collected above, resynthesize the sound with
the additive synthesis code in SSUM. (Hint: look at the SSUM
Additive Synthesis Forest to see how to do this.)

c. Write this sound to a sound file.
2. (50 points) Compare the original sound to the synthesized sound.

a. Create a figure with two plots, one showing a sonogram of the
original sound, and the other showing a sonogram of the
synthesized version. Make sure the axis limits on the two plots
are the same. (Extra credit if you make a GUI to load two sound
files which will then display the sonogram automatically.)

b. Put play buttons next to each plot to play the corresponding
sound. You don’t need to use GUIDE to do this; see uicontrol.
(Hint: Look at the SSUM Catastochastic Additive Synthesis
code if you are unsure of how to do this.)

When completed and corrected e-mail all m-files necessary for parts 1 and 2
to the T.A. b.sturm@mat.ucsb.edu, by 2 p.m. on 20040517. Late homework
will not be accepted.

87

Homework #5, Part II

In this assignment you will look at how windowing affects the Fourier
transform of two signals.

1. Create a 0.5 second1000 Hz sinewave with a Fs of 11127 and save
this to a file.

2. For this sound and S5pcm.wav (in the SSUM data directory) do the
following:

a. (40 points) For a fixed window size of 512 samples, look at
the effects of the rectangular, Hann, and Hamming windows
on the Fourier transform. Discuss the differences between
each for each signal. (Take 512 samples of the speech file
starting at sample 6231.)

b. (40 points) Vary the window length for each window for each
sound and discuss the effects of the length of each window
on the Fourier transform.

c. (19 points) For each signal, which is the best window and
window length and why?

When completed and corrected e-mail answers to these questions and your
programs created to answer them to the T.A. b.sturm@mat.ucsb.edu, by 2
p.m. on 20040512. Late homework will not be accepted.

88

Final Project Details

The final project will consist of two parts: a program written using
MATLAB, and a paper discussing the program and the principles behind it.
Ideally the project should be something that is creative and interesting to you.
It must make use of media signal processing concepts, such as filtering and
spectral analysis. If your program is good, it will be integrated with SSUM.
The program should consist of more than 2000 lines of code and should be
presented within a GUI.

The paper accompanying your project should document the idea,
execution, and refinement of the program, and should address the principles
behind it. If your project consists of creating a multiband vocoder then the
paper should present that subject with several references. The paper should
be no less than 1000 words, and contain at least three references. The
projects will be presented in class during the final week (June 7, 9, 2004).

The “Catastochastic Additive Synthesis Machine” included in SSUM,
for instance, is a good example for a project. It involves extensive function
writing, GUI work, and creates interesting output; it also demonstrates an
understanding of windowing and combining signals. Furthermore it has use
outside of its demonstrative purpose—one can compose with it. You are
encouraged to pursue projects that are of interest to your artistic sensibilities,
but they must relate to the class.

Whether you are a visual or sound artist you will find MATLAB
presents a wealth of interesting possibilities. The great thing about it is its use
in prototyping algorithms and ideas. Because of this Sturm has used MATLAB
to compose music since 1998. Once interesting opportunities are discovered
the algorithms can be translated to faster languages like C++.

You are required to write a project proposal due May 5, 2004. The
proposal should address the following points:

1. Statement of purpose, problem; importance of topic
2. Work done by others on this topic
3. Your approach and how it may be unique
4. Your interest in the topic and its relevance to class

The proposal should be no more than 500 words, and must include at
least two references. After reviewing your proposal the professor will meet
with you to discuss it.

WARNING: There are many interesting projects that have been created in
MATLAB and are completely available on-line. If your program is found to be
similar to any of these you will lose 25% from your final grade.

89

Ideas for final projects

1. Algorithmic Composition
a. Cellular automata, genetic algorithms, neural networks, markov

chains, expert systems
2. Sound synthesis/modification techniques

a. Wavetable/wave-terrain/wave-shaping
b. Subtractive synthesis, Frequency/Phase modulation, Granular

synthesis
c. Physical modeling using digital waveguides
d. Speech synthesis/LPC
e. Spectral morphing, Phase Vocoder
f. Create a “Metasynth” for MATLAB

3. Spatialization
a. HRIRs and HRTFs, Ambisonics, Vector Based Amplitude

Panning
4. Acoustics

a. Modeling room acoustics, Reverberation
5. Sonification

a. Seismic, ocean, astronomical, stock market, fractals
6. Graphics manipulation

a. Warping techniques
7. Video analysis

a. Motion detection, Scene analysis/recognition
8. Content retrieval

a. timbre recognition, automatic classification, score following
b. Speech recognition, Face/object recognition
c. Optical Character recognition, Visual scene changes

9. Sound analysis
a. Phase Vocoder, Pitch detection
b. Foot-tappers, tempo/rhythm derivation;
c. Transient/onset detection, Classifying sounds/timbres
d. Speech Analysis

10. Sound Modeling
a. Spectral Modeling Synthesis, Phase Vocoder
b. Physical modeling using digital waveguides
c. Linear Prediction Coding
d. Neural Nets

11. Encryption
a. Hiding data/text within an image or sound

12. Signal compression
a. Sound: MPEG-2 layer 3, mu-law
b. Images: TIFF, GIF, JPEG
c. Movies: MPEG-2, AVI

90

Appendix C: MS Presentation

91

92

93

94

95

Appendix D: Publication of SSUM at ICMC2004

96

97

98

99

