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ABSTRACT 

 

Vessel: A Platform for Computer Music Composition, 

Interleaving Sample-Accurate Synthesis and Control 

 

Graham David Wakefield 

 

The rich new terrains offered by computer music invite the exploration of new 

techniques to compose within them. The computational nature of the medium has 

suggested algorithmic approaches to composition in the form of generative musical 

structure at the note level and above, and audio signal processing at the level of 

individual samples. In the region between these levels, the domain of microsound, 

we may wish to investigate the musical potential of sonic particles that interrelate 

both signal processing and generative structure. In this thesis I present a software 

platform (‘Vessel’) for the exploration of such potential. In particular, a solution to 

the efficient scheduling of interleaved sound synthesis and algorithmic control with 

sample accuracy is expounded. The formal foundations, design and implementation 

are described, the project is contrasted with existing work, and avenues for musical 

application and future exploration are proposed. 
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1 Introduction 

 

The rich new terrains offered by computer music invite the exploration of new 

techniques to compose within them. The computational nature of the medium has 

suggested algorithmic approaches to composition in the form of generative musical 

structure at the note level and above, and audio signal processing at the level of 

individual samples. The region between these levels, the domain of microsound [43], 

holds special interest due to the potential of sonic events to finely interrelate both 

signal processing and generative structure. 

 This thesis defends the position that algorithmic exploration of microsound calls 

for the dynamic yet deterministic interleaving of both signal processing and 

structural control with up to sample accuracy. Satisfying this demand poses a 

challenge for both the (outside-time) representation and (in-time) rendering of 

computer music compositions. This thesis presents a software solution (‘Vessel’) to 

this challenge. For representation, it comprises an interpreted music programming 

language with extensions for event, control and synthesis articulation, while for 

rendering, it comprises a deterministic, dynamic, lazy scheduling algorithm for both 

concurrent control logic and signal processing graphs. 
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Chapter 2 comparatively places the work in relation to existing languages and 

frameworks.  Many key observations related to the thesis question, and the 

subsequent implementation, are drawn. 

Chapter 3 summarizes the requirements of the thesis project, and the 

implementation of the scheduler and language extensions are expounded in detail. 

The conceptual model can be summarized as follows: A composition represented as 

a script file may be evaluated in real-time into hierarchies of dynamically interleaved 

concurrent processes and relatively outside-time structures. The processes 

themselves are iteratively interpreted over discrete time, producing an in-time 

performance or form as digitally produced sound. 

Chapter 4 describes the Vessel language and applications in detail, including a 

number of example scripts for evaluating its ability to satisfy the requirements.  

Chapter 5 reviews the conclusions of the thesis and outlines directions for future 

work. 

 

1.1 Motivations & Significance 

“In the 1950s, certain composers began to turn their attention toward the 

composition of sound material itself. In effect, they extended what had always 

been true at the phrase level down to the sound object level.  Just as every phrase 

and macro form can be unique, each sound event can have an individual 

morphology.  This creates a greater degree of diversity – of heterogeneity in 
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sound material – without necessarily losing continuity to other objects… we can 

extend the concept of heterogeneity even further, down to the level of 

microsound, where each sound particle may be unique.  The microstructure of 

any sound can be decomposed and rearranged, turning it into a unique sound 

object.” [43]. 

 

Throughout millennia we have invented tools to overcome our physical and 

mental limitations, and the domain of music production is no exception. The digital 

computer in particular has redefined what a musical tool can be, offering 

computational potential with tremendous generality applicable to many different 

musical activities. Of special interest to the composer are the use of computational 

facilities for the synthesis of otherwise inaccessible sounds and the articulation of 

complex musical structures.  

The synthesis of music according to a set of rules is often referred to as 

algorithmic music, though strictly speaking the term generative music should be 

applied if the rules are expressed in a form that can be processed by the computer 

[42]. One might object that, at a certain level, all music produced by computers is 

algorithmic, since all computer activity is rule-based; to be useful, the distinction of 

algorithmic computer music indicates that the rules are stipulated and/or 

meaningfully applied by the composer, rather than the system architect.  

Algorithms and rules may be used to stipulate musical structure with different 

relationships to time. Synthesis and signal-processing algorithms may be specified 
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by the composer to generate sonic textures at the level of discrete samples or sample-

streams, while musical form and structure across larger temporal ranges may be 

derived according to mathematical functions, categorizations and relationships of set 

theories, operations of flavors of formal logic, procedural instructions, and so on. In 

addition, the composer may require algorithms to be dynamic over the duration of 

the composition, whether according to pre-set configurations, or by deriving them 

generatively at run-time.  

The primary motivation therefore for enabling fine algorithmic control of 

synthesis and musical structure is to augment the vocabulary and enrich the nuances 

of computer music composition.  Trevor Wishart for example highlights the need for 

“precise sound-compositional control of the multi-dimensional space” in order to 

achieve “a subtly articulated and possibly progressively time-varying ‘playing’ of 

the sound space.” [54]. Curtis Roads meanwhile emphasizes that the exploration of 

the microsonic time-scale presents exciting creative opportunities for the computer 

musician: “Microsonic particles remained invisible for centuries. Recent 

technological advances let us probe and explore the beauties of this formerly unseen 

world.  Microsonic techniques dissolve the rigid blocks of music architecture – the 

notes – into a more fluid and supple medium.” [43]. The fine interleaving of control 

and synthesis in musical expression is also a key component of the author’s own 

artistic endeavors [47].  

Today both signal processing [42] and algorithmic form [31] benefit from 

extensive research and musical use, however as we shall see in Chapter 2, many 
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contemporary tools for computer music composition limit the combined exploration 

of these techniques dynamically and at micro time-scales. This thesis describes the 

development of software tools to specifically support such compositional 

explorations. 

 

1.2 Some suggested Applications 

Some specific examples of potential avenues of musical exploration enabled by 

this thesis project are described below. It should be noted that any and all of these 

techniques can be combined with each other and with more established approaches 

computer music composition. Since what is possible at the micro-level may be 

extrapolated to larger time-scales, much of the potential can be extended to computer 

music composition in a more general sense. 

 

1.2.1 Granular synthesis 

There are many different forms of granular synthesis [43], however in general all 

use some combination of event scheduling for multiple voices, each of which has a 

small signal processing routine.  Geiger notes that granular synthesis “needs a high 

level of dynamic instantiation with a exact time granularity and speed,” which 

cannot be transparently supported by many computer music systems, thus “Most of 

the systems therefore integrate granular synthesis as a separate unit generator” [15]. 

The model described in this thesis overcomes these issues (as described in later 
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Chapters) and thus is not only capable of many known of granular synthesis both in 

terms of signal processing and event distribution, but is also ideal for the 

investigation of new granular approaches.  

 

1.2.2 Synthesis with timbral complexity 

Xenakis compared the stationary steady state of synthesized sounds to the tiny 

variations and fluctuations evident in acoustic sources, and called for “new theories 

of approach, using another functional basis and harmonic analysis on a higher level, 

e.g., stochastic processes, Markov chains, correlated or auto-correlated relations, or 

theses of pattern and form” [55]. Finely interleaving control logic and synthesis 

introduces scope for quite non-linear methods of micro-variation within sound 

timbre. Applied to FOF synthesis for example [42], one could embed the 

indeterminacies and fluctuating behavior of the vocal tract into the generative 

algorithm rather than applying it as a global control. 

 

1.2.3 Musical micro-agents  

Algorithmic composition based upon parallel procedural flow can support 

techniques based upon Finite State Automata (FSA) on a per-particle basis.  Such 

techniques might include Markov chains, formal grammars, L-systems, cellular 

automata, artificial life, flocking and any agent-based algorithmic models [31]. 
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Structured rather than stochastic determination of acoustic grain properties is an 

exciting field to explore within music composition. 

 

1.2.4 Atomic physical modeling 

Physical modeling is an established technique for sound synthesis [42] as well as 

high-level musical control [19]. The extension of physical modeling techniques to 

micro-sonic particle simulations could include interacting sonic atoms with inter-

particle and surface collisions, under the action attractive and/or repulsive fields. 

One can imagine a model of a corpuscular scattering of an impulse, as a granular 

approximation of reverberation for example. What differentiates such an approach 

principally from typical stochastic approaches to granular synthesis is the insertion 

of memory and pattern coherence.  

 

1.2.5 Strategy variation and top-down articulation 

Roads notes that signal processing suggests a parametrical model that need not 

be exclusively adhered to:  “Alternatively, the compositional strategy itself may be 

the subject of variations... Juxtaposition refreshes the brain, breaking the cycle of 

closed permutations and combinations.” [43]   

Besides enriching synthesis from the bottom-up, a high-level musical 

programming language can support top-down determination of musical structure. 

For these purposes, generic language features such as math and text processing can 
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be used to generate, model and evaluate semantic grammars, narrative system 

dynamics, and fuzzy and temporal logic. Temporal scripting is particularly well 

suited to responsive real-time systems and simulation systems (for further discussion 

see the Tempo language of Dami et al. [9].)  Goal-oriented coroutine programming 

could be used to dynamically evaluate pattern logics, constraint systems or 

elaboration graphs [29].   

 

1.3 Key concepts & terms 

Before proceeding, it is prudent to clarify some of the key concepts and terms 

used in this thesis. 

 

1.3.1 Formal representations of computer music composition 

Computer music composition encompasses humans interfacing with computers 

in order to write compositions in such a way that objective sonic output (in the form 

of digital samples) becomes possible. To stipulate musical structure, it must be 

represented in a form that can be expressively written and read by the human while 

also precisely parsed by the computer. It is a role of the software developer to 

provide a good bridge between human users and computer-parsable formal 

representations, and to maximize the capabilities of these formal representations by 

finding an appropriate substrate in which to work while minimizing the tradeoffs of 

expressive flexibility against efficiency. 
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Unfortunately, any definition of artistic ideas must necessarily be open-ended, 

and the domain of music composition is fraught with complexity and ambiguity [11]. 

In summary, a desired musical structure may be a tangled conceptual hierarchy that 

interleaves with variable dependencies. It may be described in sequential and parallel 

terms, include complex, dynamic, homogeneous or heterogeneous strata of 

containment, behavior and relationships. A good formal representation of computer 

music should support all of these possibilities. 

Varèse described music as ‘organized sounds’ [51]. The noun term ‘sounds’ 

suggests that music results in objective forms, whilst the past-tense term ‘organized’ 

indicates that music is the result of a process of organization. We can thus identify 

two extremes in the representation of musical output, the form of the musical output 

of a composition, and the process by which a composition is constructed.  Likewise, 

Roads here echoes observations by Xenakis: “Musicologists have long argued 

whether, for example, a fugue is a template (form) or a process of variation.  This 

debate echoes an ancient philosophical discourse pitting form against flux, dating 

back as far as the Greek philosopher Heraclitus. Ultimately, the dichotomy between 

form and process is an illusion, a failure of language to bind two aspects of the same 

concept into a unit… A form is constructed according to a set of relationships.  A set 

of relationships implies a process of evaluation that results in a form.” [43]. 

Similarly, we can identify the formal representations of compositions (the 

composition file, script, project files etc.), as well as the process by which the output 

is generated (the algorithms specified in the composition and the software substrate 
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in which it is rendered).  The author therefore suggests that a formalized model of 

musical process to be a suitable basic grounding for algorithmic computer music 

composition.  

 

1.3.2 Unit generators and block rate processing 

At the lowest level, computer music involves the procedural determination of a 

series of samples to be rendered as sound by a digital to audio converter.  Audio 

signal processing comprises mathematical functions used to synthesize output 

sample values in response to input samples or the passage of time. The unit generator 

model is archetypal: “One of the most significant developments in the design of 

digital sound synthesis languages was the concept of unit generators. Unit generators 

are signal processing modules … which can be interconnected to form synthesis 

instruments or patches that generate sound signals.” [42].  Unit generators 

encapsulate mathematical functions and context variables into processing nodes, 

which can be connected via arcs into directed graphs suitable for real-time signal 

processing (DSP graphs).  Unit generators offer flexibility due to their modularity: 

the same unit generator types can be reconfigured into different graph structures, 

resulting in wholly different sonic output. The flexibility and generality of the unit 

generator model is ideal for exploratory computer music composition. 
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1.3.3 Block rate and control rate 

Audio signal processing involves mathematical operations on large quantities of 

data, and is therefore expensive computationally.  A solution to improve efficiency, 

supported by most unit generator models, is to operate upon ‘blocks’ of audio data at 

a time. The loading of contextual data for a unit generator operation does not need to 

occur at each sample (improving cache performance), and operations upon chunks of 

data can make use of SIMD instructions in the CPU.  Block sizes are typically 

between 32 and 256 samples, corresponding to durations between 7.25 and 58 

milliseconds respectively. Control (rather than signal) parameters to unit generators 

are updated at this block rate to avoid disrupting the block-processing efficiency, and 

likewise structural changes to the synthesis graph must occur at the boundaries of the 

block, resulting in the notion of a ‘control rate’.   

However, in order to freely explore regions of the micro time-scale, control and 

graph changes may be required between these block boundaries, perhaps as finely 

delimited as a single sample. The block-rate quantized control also limits the 

capability to relate synthesis and control logic with temporal accuracy at the micro 

scale. It should be noted that control-rate has no musical significance, but is made 

apparent to the user in order to manage computational efficiency. 
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2 Related Work & Observations 

The contemporary computer music composer can choose from a plethora of 

software tools, however for the purposes of this thesis the author will consider four 

of the most prevalently used and relevant to the thesis question: the Max family 

(Max/MSP, PD, jMax), CSound, SuperCollider, and ChucK. The capabilities of each 

of these systems regarding the dynamic interleaving of both signal processing and 

structural control are evaluated, and in each case, observations applicable to the 

design and development of the Vessel system are made clear. 

 

2.1 Max 

For the purposes of this thesis, Max refers to Max/MSP [56], PD [38] and related 

software. Max is a popular choice for composing interactive digital media works 

because of the approachable graphical interface, extensive bindings to media 

processes and protocols, and the open-ended philosophy. The Max family 

implements a Data Flow Architecture [28] for both synthesis and message 

scheduling, defined in a visual a patching interface in which audio is processed in 

stream flow and other data types are processed in event flow.  

Puckette emphasizes that “Max is fundamentally a system for scheduling real-

time tasks and managing communication among them.” [39], and as such can be 

ideal for the complex interleaving of synthesis and control. In addition, the Max 
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interface may ease the learning curve required to use it and thus support exploratory 

composition, as McCartney notes: “Max … provides an interesting set of 

abstractions that enable many people to use it without realizing they are 

programming at all. “ [30].  

For synthesis, Max provides an extensive library of unit generator modules that 

can be patched together quite freely by the composer. Max uses a control-rate for 

efficiency, though the user has some control over its relationship to the message 

processing and priorities.  Subsections of signal graphs can operate with different 

control rates using the poly~ container, though the interface can be cumbersome. 

 

2.1.1 Graphical and textual representations for composition 

While a graphical patching interface may facilitate rapid sketching through an 

intuitive representation, it also carries some inherent limitations for algorithmic 

composition of microsound.  Since each processing unit must be visually 

represented, the process graph becomes somewhat static and struggles to represent 

large numbers of processors, especially with minor variations.  It is difficult to 

dynamically change the process graph during performance, particularly with 

accuracy regarding timing. Expressive data structures, variable scoping and in 

particular procedural control flow can be difficult to express visually. 

Many of these limitations do not apply to textual interfaces. For example, 

Puckette notes that procedural approaches to control are "better undertaken within 



 

 24 

the tasks than by building networks of existing tasks. This can be done by writing 

''externs'' in C, or by importing entire interpreters…” [39]. McCartney notes that 

Max’s visual representation “is also limited in its ability to treat its own objects as 

data, which makes for a static object structure.” [30]. 

A general comparison of the advantages and disadvantages of graphical and 

textual interfaces are presented in Table 1. 

 

Graphical user interface Textual language interface 

+ User-input may be constrained to 
logically valid operations 

- Steeper learning curve of syntax and 
vocabulary  

+ Easier to view and input quantitatively 
rich data such as control envelopes 

- Tiresome to specify by data-entry when 
precision is not required 

+ Common tasks can be immediately and 
intuitively represented 

- Simple tasks may require detailed code 

+ Interaction can be more rapid -  Interaction can be time-consuming, 
particularly if text must be compiled 

- Interfaces tend to be more specific + Interface is highly generic 

-  Complex data-structures, if made visible, 
can be visually overwhelming 

+ Compact description of complex data-
structures 

- Precise qualitative specification can be 
difficult at fine granularity 

+ High degree of precision & control 

- Visual representations usually demand 
rigid models 

+ Textual elements may more easily refer 
to or embed each other 

Table 1: Relative merits of graphical and textual representations of 

computer music. 
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2.2 CSound 

CSound is one of the better-known textual interfaces for computer music 

composition. CSound was originally written by Barry Vercoe at MIT in 1985, based 

upon earlier languages of the Music-N family, and continues to be developed today 

(advancing to version 5.0 in February of 2005). At its core, CSound is “designed 

around the notion that the composer creates a synthesis orchestra and a score that 

references the orchestra.”  [42]. The orchestra and score are specified textually using 

distinct syntaxes (Figure 1).   

 
<CsoundSynthesizer>; 
   
  <CsOptions> 
    csound -W -d -o tone.wav  
  </CsOptions> 
   
  <CsInstruments> 
    sr     = 44100           ; Sample rate. 
    kr     = 4410            ; Control signal rate. 
    ksmps  = 10              ; Samples pr. control signal. 
    nchnls = 1               ; Number of output channels. 
 
    instr 1  
    a1     oscil p4, p5, 1   ; Simple oscillator.  
           out a1            ; Output. 
    endin 
  </CsInstruments> 
 
  <CsScore> 
    f1 0 8192 10 1           ; Table containing a sine wave. 
    i1 0 1 20000 1000        ; Play one second of one kHz tone. 
    e 
  </CsScore> 
 
</CsoundSynthesizer> 

Figure 1: Basic Csound XML file with orchestra and score sections. 
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Csound files were originally processed in non real-time to render sonic output, in 

a “process referred to as ‘sound rendering’ as analogous to the process of ‘image 

rendering’ in the world of computer graphics.” [6]. Csound instruments are defined 

in the orchestra file as directed graphs of unit generator types (called ‘opcodes’ in 

CSound). Flexible sound routing can be achieved using control and audio busses via 

the Zak objects.  Control rate is evident in CSound through the a-rate and k-rate 

notations. 

 

2.2.1 Distinction of synthesis and temporal form 

Since 1990, Csound has provided real-time rendering [52], and today various 

implementations support interaction input such as graphical interfaces, VST controls, 

MIDI, OpenSoundControl etc.  Nevertheless, the set of instruments must be defined 

in advance of performance, thus any generative structures desired must be imposed 

externally according to this vocabulary. 

The strong separation of synthesis and temporal event definition imposes a strict 

limitation on the scope for algorithmic composition: new synthesis processes cannot 

be defined in response to temporal events, and new temporal events cannot occur in 

response to the synthesis output. “Csound is very powerful for certain tasks (sound 

synthesis) while not particularly suited to others (data management and 

manipulation, etc.).” [5]. 
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2.2.2 Declarative and procedural languages 

The Csound score and orchestra languages are essentially declarative series of 

statements, with almost no provision for procedural control (such as expressions and 

control flow). Roads identifies two key benefits of procedural representations of 

musical flow:  “First, the compositional logic is made explicit, creating a system 

with a degree of formal consistency. Second, rather than abdicating decision-making 

to the computer, composers can use procedures to extend control over many more 

processes than they could manage with manual techniques.” [42].  

The CSound orchestra language does support rudimentary procedural control 

flow using goto/label, Boolean conditions with if/goto, and temporal pseudo-

subroutines via reinit/rireturn/timout and ihold/turnoff, however the use of such 

features for algorithmic composition is not trivial. For example, Eugenio Giordani 

uses the timout function in order to generate individual grain events within a granular 

synthesis instrument definition, yet it is clear in the implementation that this was far 

from straightforward to achieve [5]. The Csound score language does not support 

any kind of programmatic control flow suitable for algorithmic composition1.  

In contrast to declarative languages, procedural languages “generate musical 

events by stipulated procedures or rules… Procedural composition languages go 

beyond the representation of traditional scores to support the unique possibilities of 

computer music. These languages let composers specify music algorithmically.” 

                                                

1 The carry and tempo stretching operators are for pre-processing only. 
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[42]. There are many features in procedural languages with potential applications to 

algorithmic music that are unavailable to declarative languages, as summarized in 

Table 2. Generic procedural programs can be written in C and executed using Cscore 

to create score files generatively.   

 

Procedural language feature Applications in algorithmic music 

 Flexible data-description  
(Variable data-types, homogeneous and 
heterogeneous containment, object 
hierarchies) 

 Musical signal representation, 
categorization and set theoretic 
operations, behavioral encapsulation 

 Mathematical functions & logical 
functions 

 Mathematically and logically specified 
rules 

 Procedural control flow   Branching, looping, parallelism and 
nesting of functional activity, compact 
representation through code re-use 

 Extensibility (static and dynamic 
binding) 

 Generically connect to other processes, 
e.g. scientific library routines or 
graphical rendering 

Table 2: Features of procedural languages with applications in algorithmic 

music.  

 

2.2.3 High-level interpreted languages 

Writing generative programs in C requires low-level programming skills not 

necessarily appropriate for the computer music composer. In contrast, high-level 

interpreted programming languages such as Lua, Python, Ruby and Scheme are 

increasingly popular due to more approachable syntaxes. In addition, interpreted 

music languages can be modified and executed immediately while the program is 
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running, without needing to go through a distracting compilation stage. The 

composer engaged in musical experimentation may appreciate a shorter 

programming-testing loop in a real-time system. Interpreted languages can also 

support advanced techniques such as run-time code generation, which may offer 

unique potential for algorithmic composition. 

Recently CSound has added bindings to Python, a high-level interpreted 

programming language. Scripts in Python can generate Csound orchestra/score files 

and instantiate Csound renderers to interpret them into sound, while utilizing the 

powerful data description, control flow and extension library capabilities that such 

high-level languages provide. There remains however a functional and temporal 

separation between the generation of orchestra/score and the rendering thereof. 

Conversely, Csound can interpret Python code embedded within an orchestra file, 

supporting more powerful generative synthesis techniques.  This Python interpreter 

can also be used in real-time rendering, however the Python opcodes are limited to 

control rate execution, and Python is not optimized for high-priority real-time 

execution. Though it is possible to have sample-accurate Python calls within the 

synthesis rendering by setting the control-rate equal to the sample-rate, the CPU cost 

is likely to be prohibitive for most real-time applications. 
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2.3 SuperCollider 

SuperCollider [30] is a high-level interpreted programming music language 

designed specifically for dynamic and generative structures and synthesis of 

computer music. It can be generally applied to many different approaches to 

composition and improvisation rather than any particular preconceived model.  It 

features an application-specific high-level programming language SCLang (drawing 

inspiration from C++ and Smalltalk) with extensive data-description and functional 

programming capabilities, and support functions for common musical needs.  

SuperCollider also features an extensive library of unit generators for signal 

processing. Sample-rate and control-rate distinctions are made explicit via the .ar 

and .kr notation.  A key distinction from CSound is that code can be evaluated in 

real-time as the program runs.  

SuperCollider is ideal for the exploration of algorithmic composition. Since 

version 3.0 (the currently available version), graphs of unit generators are defined 

textually and compiled at run-time into dynamic libraries (‘SynthDefs’) to be loaded 

as instruments (‘synths’) by the synthesis engine (‘SCServer’), all under control of 

the language. The language and synthesis engine run as different processes or 

applications that communicate using socket messaging. 
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2.3.1 Latency in the procedural control of synthesis 

The separation of language and synthesis into distinct processes in version 3.0 

introduces compilation and performance optimizations, but also implies limitations 

in the degree of temporal control: “Because instruments are compiled into code, it is 

not possible to generate patches programmatically at the time of the event as one 

could in SC2...  In SC2, an audio trigger could suspend the signal processing, run 

some composition code, and then resume signal processing. In SC Server, messaging 

between the engines causes a certain amount of latency.” [30].  While for most 

purposes this latency is not noticeable, in the micro time-domain it can be 

devastating. 

An additional consequence of the separation is that the expressive functional 

language of SCLang is not available within synthesis instrument definitions. 

SuperCollider 3.0 therefore represents a slight return to the CSound model of 

orchestra and score, in which however the score is procedural rather than declarative.   

 

2.3.2 Concurrency and musical flow 

One of the motivations behind the design of SuperCollider was the support for 

the representation of musical structure using high-level data descriptions of 

concurrent musical flow [30]. Compositions with sequential and parallel symmetries 

can be represented more succinctly and structurally in functional terms than as flat 
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lists of elements2. Herein lies a benefit: increasing apparent functional structure also 

increases expressive affordances for transformation, including algorithmic 

composition. Smoliar for example considers a procedural representation of musical 

flow as an interaction of multiple processes in order to develop a language 

(‘Euterpe’) for the algorithmic analysis of musical structure [48]. We might also 

observe that real performers do not react linearly to each elementary advancement of 

time but rather multi-task: they maintain meter, prepare for imminent gestures, scan 

ahead in the score, and so on.  

Software development encounters a similar problem: in the limit, computation 

according to the finite state machine model3 is in fact a singular procedural 

progression, but this is not a natural way to think about the design of interactive 

software. High level programming languages present interfaces with greater 

affordances by making use of apparently concurrent constructs such as subroutines, 

threads and coroutines. Many digital composition tools also embed parallel structure 

as multiple timelines (e.g. Adobe Flash). SCLang provides excellent support for 

concurrent processes and musical flow using for example the Routine and Task data 

types. 

 

                                                

2 Just as redundant information can be compacted by Huffman coding. 
3 For the purposes of this thesis, we disregard parallel CPU architectures; the 

justification will become clear later in the section describing the scheduling 
implementation and threading. 
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2.4 ChucK 

ChucK [53] represents one of the only contemporary options that avoids latency 

in the procedural control of synthesis.  ChucK is a concurrent, dynamic 

programming language designed for run-time programming in mind. It also provides 

a library of unit generators (largely based on the STK library) to be freely 

instantiated and connected into graphs within ChucK scripts.  The authors refer to 

ChucK as ‘strongly timed’, which can be defined as follows: 

- Supports sample accurate events,  

- Defines no-control-rate (or supports dynamically arbitrary control-rates), 

- Supports concurrent functional logic,  

- Control logic can be placed at any granularity relative to synthesis, 

- Supports run-time interaction and script execution. 

 

Like SuperCollider’s SCLang, the ChucK language was written especially for the 

ChucK software.  It is a high-level interpreted programming language, which is 

strongly typed.  It focuses on a ‘massively overloaded’ operator => which is used for 

variable assignment, unit generator patching and text stream processing for example. 

Also like SCLang, ChucK provides support for concurrency using the Shred data 

type, a kind of deterministic coroutine. Code in ChucK does not advance in a block 

of code unless the programmer explicitly advances it, by assigning durations to the 

now object. 
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2.4.1 Strongly-timed: avoiding block control-rates 

ChucK’s concurrent shreds and explicit control of timing within the same 

language as synthesis graph specification supports complete, sample-accurate control 

of synthesis structure. Being able to specify signal graphs dynamically in response to 

control events opens up the scope for algorithmic music composition in which 

control and synthesis evaluations are finely interleaved. Generative algorithms 

frequently involve some kind of input based upon feedback from previous output, 

thus for example a granular synthesis technique can be supported in which each 

grain’s properties is calculated upon the demise of the previous one, along with other 

properties of the local context. The requirements of this thesis clearly include the 

‘strongly timed’ classification. 

 

2.4.2 Application-specific or generic programming language? 

Procedural music languages may be written specifically for an application, or be 

domain-specific extensions of an existing general purpose programming languages. 

Amatriain notes that “Offering a completely new programming environment based 

on a new language is a titanic effort that needs of a very large development team. On 

the other hand, the language has to offer very unique and outstanding features in 

order to convince new users that the effort of learning it is worth the while.” [4]. 

McCartney, author of the SuperCollider language, also wonders whether an 

application-specific language is worthwhile: “Is a specialized computer music 
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language even necessary? In theory at least, I think not. The set of abstractions 

available in computer languages today are sufficient to build frameworks for 

conveniently expressing computer music.” [30].  

Making use of a powerful existing programming language benefits from the 

proficient work of many skilled software developers, and implies additional 

advantages as outlined in Table 3.   

 

Generic language feature Benefit 

 Existing facilities of data description, 
function and control flow 

 Formally verified in the computer 
community 

 Existing documentation, may also be 
familiar to some users 

 Easing learning curve 

 Existing development, debugging and 
profiling tools 

 Minimizing user error and improving 
user experience 

 Undergone extensive revision   Removal of developer bugs and 
increase of efficiency 

 Potentially numerous extension libraries  Many additional capabilities available 
for scope of exploration 

 Formal generality  Future scalability & portability  
Code written in the language can be re-
used in many applications. 

Table 3: Benefits of using an existing programming language.  

 

Given these advantages, why would a developer choose to write a new language?  

The tight efficiency, tiny time-scales and large data-processing demands of the 

computer music domain may often drive developers to create new languages for 

synthesis control.  McCartney for example bemoans the lack of garbage collection 
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appropriate for real-time and inflexibility of syntax of most generic programming 

languages as the main obstacles to use for computer music.   

An intermediate solution may to use a generic programming language that is 

designed for application extension, and which offers an open enough programming 

interface to be optimized to real-time demands. 
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3 Design & Implementation 

In this section I outline the design and implementation of Vessel: how the control 

language was chosen and extended, how dynamic synthesis was supported, how the 

sample-accurate interleaving of control and synthesis was achieved and how the 

constraints due to the substrate were minimized. Before proceeding, let us 

summarize the key observations made so far. 

 

3.1 Summary of requirements 

Software for computer music composition must formally represent musical 

structures in a form parsable by the computer, but also humanly readable.  For 

algorithmic composition, a process-based representation supporting generic logic 

and mathematical relationships is ideal. The software must also provide the means to 

evaluate such a description into active structural and synthesis processes to produce 

audio output in the form of digital samples, without compromising efficiency.  

Synthesis specification is generally well modeled using the unit generator model, 

and both serial and parallel musical flow can be well modeled using concurrent 

timeline constructs.  It is essential for the exploration of microsound to avoid block-

rate quantization of control and structural changes.  Nevertheless, efficiency is a key 

demand. 
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A graphical representation may be intuitive, but a textual representation is 

preferred for exploration of algorithmic composition due to generality, precision and 

scalability4. Synthesis and temporal structure should be combined in the same 

language, with no latency of interaction between them ('strongly timed').   Procedural 

languages are more suitable than declarative languages for algorithmic approaches, 

since they directly expose the algorithms to the user, and high-level interpreted 

languages offer specific benefits such as interactivity over compiled languages for 

real-time purposes. A generic language is more portable and better supported than an 

application-specific language. 

The implementation requirements for the software may now be summarized: 

 

• A domain-specific (computer music composition) extension of an 

interpreted procedural programming language supporting generic 

programming and concurrency, 

• Feature a vocabulary of unit generators that can be variously and 

dynamically connected into signal processing graphs, 

• Incorporate a real-time sample-accurate scheduler to simultaneously 

render dynamic unit generator graphs and concurrent process timelines, 

• Be efficient. 

                                                

4 The graphical paradigm does have advantages however, and thus this thesis 
project is also presented as a library extension (‘extern’) for Max/MSP, to be 
described in a later section. 
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Each of these requirements will be described in turn through the remainder of 

this section. 

 

3.2 Representation language 

The design model calls for a domain-specific extension of an existing high-level 

interpreted procedural language (supporting concurrent processing) for computer 

music composition.  Interpreted programming languages exhibit higher-level 

interfaces to programming more suited to quick prototyping and testing. However, 

real-time audio processing involves large quantities of numeric operations, and 

efficiency is the primary concern when choosing a programming language for audio 

synthesis. The compiled languages C and C++ are established as the standards in this 

field, due to their efficiency, flexibility and active support in the wider programming 

community. Interpreted languages can be embedded within compiled languages such 

as C and C++ such that CPU-intensive operations can take place outside of the 

interpreted context, thus the interpreted language penalty can be constrained to a 

minimum.  

 

3.2.1 Choice of language 

The interpreted languages considered for this project included Ruby, Python, 

Scheme, IO, JavaScript and Lua.  Though IO [12] had an appealing cleanliness to its 
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syntax, it was judged to be not yet mature enough for the project.  Likewise, 

JavaScript was soon dismissed due to excessive CPU and memory overhead [3]. 

Scheme is a dialect of LISP, which has long been a popular choice for 

algorithmic computer music languages [11]. However, many users suffer with the 

unusual syntax of LISP variants, which is often described as both cumbersome and 

error-prone. Scheme is however a very powerful language, with high-level 

functional programming and lexical scoping features. 

Ruby is an interpreted object-oriented language with a large and growing 

community, plenty of support and extension libraries, and has been particularly 

successful for web programming.  It is however regarded as difficult to embed. 

Python is a very popular interpreted language for application extension. It is 

object-oriented and incorporates features such as modules and exception handling.  

The syntax is clean, and Python benefits from an incredibly large selection of 

extension libraries, tools, supporting documentation and active community. 

Embedding Python is nontrivial however, and its support for concurrency is good but 

not excellent. 

Lua is an interpreted programming language specifically designed for application 

extension, featuring the high level functional and concurrent programming features 

of LISP/Scheme with a more familiar infix syntax along the lines of Python and 

Ruby [20].  Lua is perhaps best regarded for its small size and efficiency, and thus is 

most highly regarded in the game developer community [22].  A rough comparison 

of efficiency of these languages is given in Table 4, based upon benchmarks at [3]. 
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For the curious, these benchmarks show that Lua is around 10-30x slower than C, 

using around 2-3x more memory. 

 

Language CPU usage: Memory usage: 

JavaScript (SpiderMonkey) 5x 50x! 

Lua 1x 1x 

Python 5x 2-3x 

Ruby 10x 2-3x 

Scheme (MzScheme) 1.5x 4x 

Table 4: Rough CPU and memory usage comparisons of Lua, JavaScript, 

Python, Ruby and Scheme, with Lua as the reference. 

 

Ruby was discounted as being not sufficiently distinct to Python yet less 

efficient, while Scheme was discarded as offering similar benefits to Lua but with a 

less approachable syntax. The decision was close between Python and Lua; Python’s 

extensive libraries and community support (including use in CSound) were 

appealing, but the portability, ease of embedding, formal completeness, concurrency 

support and overall efficiency of Lua was deemed more valuable.  As Brandtsegg 

notes: “One could argue that Python is not the most CPU-effective language 

available, but it seems it's speed will be sufficient for compositional algorithmic 

control, as these processes do normally evolve at a relatively slow pace compared to 
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e.g. audio processing tasks. The exception being compositional algorithms that 

works directly on the audio signal.” [7] 

 

3.2.2 Lua 

Lua's authors describe Lua as an extension language [20] specifically designed to 

be embedded within host programs and extended by domain-specific APIs. 

McCartney also states that an abstractly extensible language allows the programmer 

to “focus only on the problem and less on satisfying the constraints and limitations 

of the language’s abstractions and the computer’s hardware.” [30] 

Lua meets the needs of an extension language by providing good data description 

facilities (associative tables), clear and simple syntax, and flexible semantics. Lua is 

a full-fledged programming language, supporting higher-level features found in 

languages such as Scheme such as first-class functions and coroutines. As in 

Scheme, a variable in Lua never contains a structured value, only a reference to one. 

Lua incorporates an incremental garbage collector suitable for real-time use. Lua is 

frequently used for game logic programming (e.g. World of Warcraft [44]) and 

application extension (e.g. Adobe Lightroom [20]). 

 

3.2.3 Concurrency 

The design model calls for the support of hierarchies of interacting serial and 

parallel timelines to deterministically represent an algorithmic musical process.   
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Lua provides excellent support for deterministic concurrency in the form of 

coroutines, or more fully, asymmetric collaborative multi-tasking [32]. Coroutines 

were originally introduced by Conway in the early 1960s, and described as 

subroutines that act as the master program [8].  A coroutine in Lua represents an 

independent thread of execution, a parallel virtual machine, for deterministic 

scheduling. It is constructed from a function defined in Lua code. A coroutine has its 

own stack, its own local variables (persistent between calls), and its own instruction 

pointer (it resumes from the same code point at which it last yielded); but shares 

non-local variables with other coroutines. Lua coroutines are first-class objects: 

variables can point to coroutines, and coroutines can be passed into and returned 

from functions. Lua coroutines are asymmetric, based on the primitives yield() and 

resume(), and since calls from Lua to Lua are ‘stackless’, the algorithm by which 

coroutines are resumed can be determined very flexibly (in fact, the ‘main process’ 

of the interpreter is itself a coroutine). Coroutines have helped Lua to gain popularity 

in the game development community. For a more detailed description of coroutines 

and their use in Lua, see [32].   

Each concurrent musical timeline in Vessel is represented as Lua coroutine along 

with metadata such as the sample-clock time it should next continue processing.  The 

body of a timeline-coroutine is a Lua function, and can include the full range of 

dynamic control structures that the Lua languages offers, along with a small number 

of additional functions to interact with the scheduler. In this model, a timeline may 

represent the entire composition, or a single grain, and each timeline responds 
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distinctly to the passage of time according to internal determinations. In functional 

programming parlance, coroutines are continuations: they are objects that model 

‘everything that remains to be done’ at certain points in the functional structure. 

Thus the evaluation of a composer’s script is implemented as a variation of the 

continuation-based enactment design pattern [27].  

The flexible nature of Lua coroutines and the transparent C API permits the 

developer to specify with great freedom the manner in which they are resumed, and 

this will be described in detail in the Scheduling section below. The manner in which 

the unit generator graphs are specified through Lua will also be described in a later 

section, however it roughly follows the game development paradigm, which calls for 

efficiency and flexibility: “many games are coded in (at least) two languages, one for 

scripting and the other for coding the engine” [22]. 

Finally, to summarize the representation model in the language extension: a 

computer music composition is evaluated in real-time into hierarchies of 

dynamically interleaved concurrent processes and relatively outside-time structures.  

The processes themselves are iteratively interpreted over discrete time, producing 

temporal form as digitally produced sound. The author does not suggest that all 

composition fit the representation model described above, or that the formalized 

models that the computer can provide are necessary for music.  However the model 

does provide a working hypothesis upon which to develop an implementation that 

may be evaluated in practice.  
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3.2.4 Existing Lua / Audio bindings 

A web search uncovers few Lua bindings of audio libraries, predominantly 

comprising simple sound-mixer additions to gaming software.  CSound 5.0 includes 

a Lua binding which is mostly limited to loading and rendering orchestra and score 

files and thus not of interest to this thesis.  

The closest relation found is the ALUA project, a part of Günter Geiger’s 

doctoral thesis [15]. The software was not available for testing, so the comparison 

here is purely theoretical.  A general observation however is that ALUA is “a 

research system only” and “although not my main focus, there is still a lot of work to 

be done until ALUA is a fully usable language for computer music” [15]. Geiger 

chose Lua for the flexible and expressive high-level syntax, and ALUA supports unit 

generator constructors and explicit control of scheduled time in a similar but reduced 

manner to Vessel.  It is not clear whether it supports concurrency. The ALUA 

language extensions are not as developed as Vessel; for example, operators are not 

overloaded for unit generators (Add(Sine(), Sine()) rather than Sine() + 

Sine()).  Overall, it appears that ALUA may no longer be a supported project. 

 

3.3 Software synthesis 

One can distinguish between software synthesis applications, such as the project 

outlined in this thesis, and software synthesis libraries.  Synthesis libraries provide 

DSP functions or unit generator modules written in an efficient programming 
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language, with application programming interfaces (APIs).  Libraries offer atomic 

access to elementary DSP functions and make minimal assumptions as to how they 

may be used.  The developer of a synthesis application can take advantage of many 

existing libraries for DSP to provide tested and recognized functionality.  

This section describes the various synthesis libraries considered and 

implemented in Vessel.  In accordance with the design requirements, any synthesis 

considered library for Vessel must meet the following requirements: 

 

- C/C++ API in order to provide bindings to Lua 

- Single-sample or variable block-size processing for microsound 

- Efficiency of performance and minimal opcode setup/removal cost 

- Minimal dependencies for portability 

- Open-source distribution for portability 

 

3.3.1 Synz 

Synz  [40] is a C++ library for common signal processing tasks, providing a set 

of efficient opcodes based on a set of low-level stateless operator functions and 

generic data structures. The evasion of preconceived use-cases allowed the author to 

very easily bind this library to Vessel. Synz neither assumes nor prevents block 

processing, it provides a low-level but consistent C++ API, and is distributed as open 

source. 
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3.3.2 STK 

STK [46] is suitable to be embedded within Vessel, since it provides a C++ API 

and supports single-sample opcode evaluation with a generic tick() method, and is 

distributed as public domain source code.  STK is familiar to many computer music 

researchers, and would be a valuable asset due to its particular support for physical 

modeling synthesis.  A binding of STK in Vessel is therefore planned as future work. 

 

3.3.3 CSL 

The CREATE Signal Library [37] is an object-oriented C++ library of synthesis 

unit generators. CSL is inherently block-processed and embeds the signal graph 

representation within unit generators themselves; for these reasons CSL could not be 

efficiently utilized within Vessel. 

 

3.3.4 CLAM 

CLAM [4] is a framework for building audio applications, both in C++ and 

through a graphical editor application (the CLAM Network Editor).  CLAM 

implements data-flow architecture for processing, distinguishing between 

synchronous data flow and asynchronous control flow.  In contrast to the Max 

family, it is the control flow that is constrained to numeric types, while data flow 
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may include signals, spectra, and complex data structures.  A CLAM network, 

expressed as an XML file, can be converted into a standalone application with a 

graphical interface designed using the QT GUI toolkit, and CLAM is distributed 

under an open source license. 

CLAM processing nodes can support dynamic block sizes (up to a maximum 

size) within the audio thread, through reconfiguration of processing nodes cannot 

occur in the audio thread. The architecture of unit generators and source code is very 

similar to the approach taken in the Vessel system, though it remains to be evaluated 

whether CLAM could be used within the Vessel system. 

 

3.3.5 SndObj 

SndObj (Sound Object Library [24]) is an open-source C++ generic audio 

processing library incorporating many opcodes and utilities.  SndObj can use 

different block sizes per opcode instance, however it remains to be evaluated 

whether these can be efficiently modified dynamically (using 

SndObj::SetVectorSize) in order to be incorporated within the Vessel 

scheduler5. 

 

                                                

5 The documentation at http://music.nuim.ie//musictec/SndObj/SndObj_Manual-
2.6.1.pdf suggests that this will not be the case. 
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3.3.6 Csound opcodes 

Csound has over 450 opcodes for audio signal processing, probably the most 

complete of any software.  Csound is distributed as open-source, and provides APIs 

in C and C++ in order to be embedded within other languages and applications. In 

fact, a binding of Csound for Lua already exists in the Csound distribution, however 

this binding is high level (supporting the loading and rendering of Csound files) 

rather than offering low-level access to the synthesis opcodes themselves.  

Examining the source code reveals that opcodes may involve strong dependencies on 

the CSound host, making it unlikely that they can be generally used within other 

scheduling environments. 

 

3.4 Scheduling 

 

“This moment which I live, this thought which crosses my mind, this 

movement which I accomplish, this time which I beat: before it and after it 

lies eternity; it’s a non-retrogradable rhythm.” Olivier Messiaen, in [45] 

 

 

The design model calls for a real-time sample-accurate scheduler to 

simultaneously render dynamic unit generator graphs and concurrent process 
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timelines, in order to finely interleave algorithmic musical structure and signal 

processing.  This section describes how this is achieved. 

 

3.4.1 Unit generator graph traversal 

Signal processing of unit generator directed graphs must be executed in 

deterministic orders such that a node’s inputs have been determined before the node 

can output.  A naïve tree-search algorithm may quite effectively achieve this. It can 

also be viewed as a formulation of the producer-consumer problem, and thus both 

push (leaf to root) and pull (root to leaf) models may be used for the traversal. Static 

scheduling pre-determines the graph before executing, while dynamic scheduling 

evaluates the graph at runtime. Dynamic scheduling can therefore handle changes to 

the DSP graph at run-time. 

Normally the unit generator graph is viewed as an indivisible process, such that 

each node processes equally sized tokens per iteration (typically matching the block-

rate). We have seen however that this model is insufficient when control or graph 

changes are required more finely than the block-rate.   

The Vessel scheduler algorithm attains state changes not quantized to the block 

rate by allowing arbitrary sub-divisions of the block duration. The cost incurred is 

that graph traversal is derived dynamically at each state change. Traversing only 

those portions of the graph hierarchy upon which the state change is 

deterministically dependent can minimize this cost (lazy dynamic scheduling). The 
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graph manager in Vessel traverses only the deterministic input6 dependencies of unit 

generators within the signal-processing graph, only up to the current state-change 

time-stamp, and thus implements just-in-time sample-accurate graph dynamics. 

Between state changes, the signal processing proceeds in sample blocks, taking 

advantage of block processing efficiency whenever possible. 

 

3.4.2 Threads considered harmful 

Vessel has the responsibility to maintain sufficient potential in the system for 

free action of arbitrary and independent state change of the synthesis graph during 

real-time performance. Synthesis processing and structural control are usually 

separated into distinct operating system threads for efficiency, however as noted by 

Dannenberg & Bencina [10]:  

“The simple timing approach, which is something like   

 A(); sleep(5); B(); sleep(3); C(); sleep(7); ...  

will accumulate error due to finite computation speed and system latencies.”  

 

                                                

6 Within a directed dynamic graph, it is not possible to schedule with sample 

accuracy for input nodes that are also downstream of the current processing context 

(i.e. cycles), but the latency will be automatically minimized to block-rate. 
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The standard solution to achieve scheduling determinism is to provide an event 

buffer with an acceptable latency and schedule accurately time-stamped events 

ahead within this buffer.  Effectively, the buffer conceals the indeterminacy (jitter) 

of synchronization between the system timer, the message thread and the audio 

thread sample clock.  Early implementations of Vessel took this approach. 

Unfortunately, this solution incurs indeterminacy if a scheduled event is micro-

temporally dependent on another event’s output. To achieve sample accuracy of state 

change in response to audio events, it became apparent the composition script must 

execute in the same system thread as the synthesis processing and manage event 

scheduling and execution directly with the audio sample clock.   

The cost of interpreted Lua code in the high-priority audio thread is minimized 

by maintaining the expensive signal processing and graph management/scheduling 

entirely within C++ code, only calling into Lua for the relatively cheap coroutine 

evaluations. Furthermore, expensive workarounds to threading indeterminism 

(locking, semaphores etc.) are entirely avoided within the Vessel interpreter [26]. 

The Vessel language can thus support thousands of concurrent coroutines with 

deterministic behavior and shared memory, rather than hundreds of concurrent 

threads with unpredictable behavior and buffered/locked memory7.  

 

                                                

7 On the other hand, pre-emptive concurrency can be achieved if desired (e.g. for 
file loading) using the Lanes extension described in section 4. 
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3.4.3 Scheduling dynamic graphs and coroutines 

The scheduler algorithm manages the proper execution of both the unit generator 

graph and the list of active coroutines.  The scheduler ‘wakes up’ each coroutine 

timeline when its sample-clock time is due, and the coroutine proceeds through its 

virtual machine instructions until it completes or it yields to reschedule itself at a 

future sample-clock time.  While it proceeds, the composition time is effectively 

frozen. If at any point during the coroutine’s execution, it triggers a state change in a 

unit generator or the signal processing graph, the affected portion of the signal 

processing graph will be traversed and processed up to the current composition 

timestamp.  Once all active timelines are complete for the current audio block, the 

synthesis graph is once more traversed from the root node, to calculate any 

remaining indeterminate samples.  Composition time can now advance to the end of 

the block. 

Since Lua includes dynamic and indeterminate control structures, the effective 

control rate can be arbitrarily specified or even indeterminately derived with sample 

accuracy as the performance proceeds.  

 

3.5 Efficiency 

Besides the optimizations made in the scheduling algorithm, the efficiency of the 

synthesis library functions and the performance of Lua, the principal issue for Vessel 

is memory management. The high priority real-time audio thread demands that 
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processes to occur in bounded time [10], but memory allocation cannot always 

satisfy this constraint. Dynamic graphs therefore require memory management 

techniques to achieve bounded time performance. 

Vessel implements up-front allocated free-list memory pools for the most 

dynamic elements: audio buffers, coroutines and unit generators.  Pre-allocated 

memory is recycled as the program executes, and pools grow if needed, utilizing a 

memory allocator optimized for real-time use [25]. The same real-time allocator 

easily replaced malloc and free for all Lua calls using the Lua API. The reader is 

referred to the Real Time Memory Management patterns in [10] for a fuller 

description of these techniques. 

Since version 5.1 the Lua language incorporates an incremental garbage 

collector. Lua 5.1 saw the introduction of an incremental collector adaptable for real-

time use (provided in response to requests from game developers), avoiding 

potentially long pauses during garbage collection [22]. 
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4 Description & Examples 

4.1 Single language, multiple applications 

The language extensions to Lua to support sample-accurate synthesis and control 

constitute a software library that can be embedded or dynamically loaded within 

other applications.  The three existing applications described in this section should 

be taken as indicative of its scalability.  Additional future targets could include audio 

plug-ins (VST, JACK, AU etc), cross-platform support for Windows and Linux, and 

embedded devices such as PDAs and gaming consoles. 

 

4.1.1 Vessel command line 

A command-line implementation of Vessel is available, which can be used for 

testing, or controlling from other applications (Figure 2).  Input arguments specify 

the main Lua script file to execute, an optional maximum duration, and an optional 

file in which to record audio output.  
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Figure 2: The Vessel command line tool in use. 

 

4.1.2 Vessel application 

Vessel exists as a standalone application (presented for OSX but scalable to other 

platforms) incorporating the Vessel language and synthesis scheduler along with an 

audio scope and status window, and a Lua code editor window (Figure 3). The code 

editor is based upon the Cocoa MDI (multiple document interface) development 

pattern, and features syntax highlighting for both Lua and Vessel reserved words.  

Run, Merge, and Stop buttons restart, mix and terminate Lua scripts respectively. 
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Figure 3: Screenshot of the Vessel standalone application on OSX. 

 

4.1.3 Vessel in Max/MSP (the lua~ external) 

Lua~ is an extension (external) for the Max/MSP environment containing the 

Vessel language and synthesis scheduler along with bindings for relevant Max/MSP 

components (Figure 4).  
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Figure 4: Screenshot of the lua~ object within a Max/MSP patch. 

 

A lua~ object in a Max patch can load and interpret Lua scripts and receive, 

transform and produce MSP signals and Max messages accordingly.  The In and 

Out busses represent the lua~ object inlets and outlets respectively. Messages set to 

the lua~ external are interpreted as function calls with arguments8, and the function 

outlet() is used to send Max messages out of the lua~ external. Lua~ provides 

the unified integration of text-based and graphical meta-mechanisms for audiovisual 

composition within a single application. 

 

                                                

8 E.g. the Max message “print hello 5” results in the Lua call 
print(“hello”, 5). 
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4.2 The language 

This section presents an overview of the language extensions to Lua that 

constitute Vessel. 

 

4.2.1 Scheduler functions 

 
 now() 

 

Returns the number of seconds since the containing coroutine was created.  With 

an optional argument (any), returns the root scheduler timestamp. 

 
 go([delay], func, [args…]) 

 

Adds a new coroutine to the scheduler queue, and returns the coroutine.  The 

coroutine will begin after delay seconds (or immediately if not specified), based 

upon the function func, which will be passed all values in args. 

 
wait([delay]) 

 

Pauses the containing coroutine for delay seconds. The wait() function in 

Vessel is deterministically sample-accurate; it effectively causes the currently 

executing coroutine to yield and reschedule itself, and permit the next scheduled 

coroutine or synthesis process to resume. 
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play(bus, dur, unit) 

 

Adds the unit generator unit as an input to bus, pauses the containing coroutine 

for dur seconds, then removes the unit generator from bus.  Equivalent to 

bus:add(unit); wait(dur); bus:remove(unit). 

 
abort([coro]) 

 

Aborts the coroutine coro immediately, removing it from the scheduler and 

freeing any memory resources unique to the coroutine (including other coroutines 

launched by coro and not referenced elsewhere).  Note: this may lead to ‘stuck notes’ 

if the coroutine had added unit generators to external busses.  An alternative strategy 

is being investigated to avoid this issue. 

 

4.2.2 Units 

Units are Lua objects that encapsulate C/C++ unit generator DSP code. Units 

flexibly handle constant numbers or other Units for most input parameters. Units 

may provide Lua methods to determine instantaneous state changes.  Units can 

expand to multi-channel upon demand, and individual channels can be indexed with 

the unit[n] notation, where n is an integer starting from 1.  Units can be 

composed into graphs via their inputs, by using Busses (see below), or by using math 

operators (+, -, *, /, %, ^).  
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Vessel currently incorporates a minimal set of Units for development purposes, 

outlined below.  This list will grow rapidly in the near future. 

 

Noise generators: Noise(), Pink() 

Oscillators:  Sine([freq]), Square([freq]),  

Tri([freq]), Saw([freq]),  

Imp([freq, harmonics, mode]),  

Dsf([freq, fratio, aratio, harmonics]) 

Generators:  Decay([t60]), 

   Curve([dur, curve, start, end]) 

Filters:   Smooth(input, [factor]),  

Biquad(input, [freq, resonance, mode]) 

Shapers:  Env(duration, input, [shape]) 

Spatializers:  Pan(input, [pan]),  

Reverb({parameters}) 

Math:   Round(input), Floor(input), Ceil(input),  

Abs(input), Min(input, operand), 

Max(input, operand), Mean(input, 

operand),  

Gt(input, operand), Lt(input, operand), 

Clip(input, a, b), ClipB(input, a, b), 

Wrap(input, a, b), Fold(input, a, b),  

+, -, *, /, %, ^ 

 

4.2.3 Busses  

Busses are a particular kind of Unit into which other Units can write.  Busses 

therefore allow arbitrary signal mixing, efficient effects chains, and graph cycles. 
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Busses add the bus:add(unit) and bus:remove(unit) methods to add 

or remove Unit writers from a Bus. 

Two special global Busses, named Out and In, represent the output and input 

channels of Vessel respectively.  The number of channels matches the number of 

channels of the sound card (standalone) or number of inlets/outlets (lua~). 

 

4.2.4 Distributed interaction (OSC, MIDI) 

Vessel supports MIDI and OSC for input and output.  Ports are created from 

constructors taking textual or numeric qualifiers (e.g. MidiIn(1) or 

OscOut(“localhost”, 7400)).  Messages are read using the :read() 

method, and sent using OscOut:send(…) or MidiOut:noteon(note, 

vel, chan), MidiOut:control(cc, val, chan) etc. 

 

4.2.5 Lua libraries 

The entire Lua core libraries are available for use in the script, including standard 

math and string functions.  Additional functions are defined by Vessel for common 

musical tasks, such as miditofreq().  Lua itself is an extensible language, and 

any libraries written for stock Lua can be dynamically imported and used within a 

Vessel Lua script, to provide scientific math functions, networking capabilities, etc.   
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4.2.6 Lanes 

The Lua Lanes project [22] is a special library incorporated into Vessel to enable 

the sharing of simple data types between Lua states in distinct operating threads, via 

named FIFO message queues. Lanes can also be utilized to create pre-emptive tasks 

in distinct system threads, which may be useful to compute expensive non-real-time 

operations. 

 

4.3 Examples 

In this section I present simple demonstrations of the capabilities of the presented 

software. 

 

4.3.1 Minimal example: note list player 

The following code fragment defines a coroutine process to progressively iterate 

a note list table and interpret its data as a sequence of notes to synthesize using a 

Sine oscillator: 

 
-- a simple sequence player: 
local player = function(notelist) 
 for i = 1, #notelist do 
  local event = notelist[i]  
  play(Out, event.dur, Sine(event.freq))  
 end 
end 
 
-- a minimal sequence: 
local triplet = { 
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 { freq = 440, dur = 0.5 },  
 { freq = 880, dur = 0.25 },  
 { freq = 660, dur = 0.25 } 
} 
 
-- play the sequence concurrently: 
go(player, triplet) 
 
 

This is minimally equivalent to the orchestra-score model of Csound et al., yet 

can be endlessly extended with functional and concurrent programming.  For 

example, the table of event parameter sets could just as easily contain functions or 

other coroutines in place of numbers.  A library of complex and generative pattern 

streams can be designed using tables, functions and coroutines, according to the 

composer or programmer’s discretion. 

 

4.3.2 Microsound Synthesis 

Curtis Roads describes a diverse catalogue of rich synthesis techniques 

dependent upon the micro time scale [43].  Vessel has been designed to support 

microsound synthesis in general terms, but for the purposes of this thesis we will 

consider trainlet synthesis as a specific indicative example: “A trainlet is an acoustic 

particle consisting of a brief train of impulses.  Like other particles, trainlets usually 

last between 1 to 100 ms.” [43] 
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Trainlet clouds incorporate at least three levels of hierarchy: the trainlet cloud, 

each stream of trainlets, and the impulses within each trainlet.  The following code 

sample demonstrates a basic specification of a trainlet cloud: 

 
-- trainlet cloud parameters: 
local duration = 40 -- seconds 
local density = 80 -- per second 
local durmin = 0.001 
local durmax = 0.1 
local freqmin = 220 
local freqmax = 880 
local maxharmonics = 40 
 
function trainlet(dur, freq, harmonics) 
 local ig = Imp(freq, harmonics) 
 play(Out, dur, Pan(ig * Decay(dur), math.random() - 0.5)) 
end 
 
function trainletcloud() 
 local t = now() 
 while now() < t + duration do  
  local dur = durmin + math.random() * (durmax - durmin) 
  local freq = freqmin + math.random() * (freqmax - freqmin) 
  local harmonics = math.random(maxharmonics)  
  go(trainlet, dur, freq, harmonics)  
  wait(math.random() * 2/density)   
 end 
end  
 
go(trainletcloud) 
 

4.3.3 Concurrent processes 

This simple example demonstrates the layering of concurrent processes. Note 

that both processes are instantiated from the same function template, but with 

distinct arguments: 
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-- simple percussive repeater as coroutine template: 
function pattern(stepdur, freq, p) 
 while true do 
    -- create a DSP graph: 
    local f = Sine(freq, 0) 
    local ugen = Pan(Sine(freq, 0) * Decay(0.2) * 0.5, p) 
   -- play for one step, then pause for one step: 
  play(Out, stepdur, ugen) 
  print(f:freq():current()) 
    wait(stepdur) 
 end 
end 
 
-- launch coroutine immediately, 
-- at 1/6s step size, 440Hz, pan right: 
go(pattern, 1/4, 440, 0.5) 
 
-- launch coroutine after 2 seconds, 
-- at 1/4s step size, 330Hz, pan left: 
go(2, pattern, 1/6, 330, -0.5) 
 

4.3.4 Sample-accurate dynamic graphs 

In Four Criteria of Electronic Music, Karlheinz Stockhausen described a 

technique to produce synthetic tones that demonstrated the continuum between pitch 

and rhythm (and by extension, timbre and polyrhythm). The following code example 

demonstrates that graph can be created and destroyed at any control rate, slowly 

moving from rhythm through to timbre.  The period between each new instantiation 

gradually reduces from one second to a single sample: 

 

local dur = 1 
 
local function player() 
 
 -- launch child activity to change tempo: 
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 local t = go(function() 
  while dur * samplerate > 1 do 
   dur = dur * 0.9 
   print("dur", dur * samplerate, "samples") 
   wait(0.1) 
  end 
 end) 
 
 -- loop until down to a single sample duration: 
 while dur * samplerate > 1 do  
  local s = Sine(55 * math.random(8)) 
  play(Out, dur, Env(dur, s)) 
 end 
end 
 
go(player) 

 

4.3.5 Generative signal graphs 

In the following code sample, a series of events are produced in which each has a 

signal graph that is determined randomly.  The node() function selects from the 

template table of functions to generate each part of the graph.  Note that the 

functions themselves recursively call node(), until the proper depth is reached. 

 

-- mixer with reverb 
local mix = Out:add(Bus()) 
local verb = Out:add(Reverb()) 
verb:add(mix * 0.1) 
 
-- a set of templates to generate ugen nodes 
local node -- forward declaration 
local templates = { 
 function(a) return Sine(node(a) * (2^math.random(10)),  
  math.random()) end, 
 function(a) return Tri(node(a) * (2^math.random(10)),  
  math.random()) end, 
 function(a) return Smooth(node(a), math.random(10)) end, 
 function(a) return Decay(math.random() * 4) end, 
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 function(a) return Env(math.random(), node(a),  
  math.random(7)) end, 
 function(a) return node(a) * node(a) end, 
 function(a) return Fold(node(a), node(a), node(a)) end, 
 function(a) return Mean(node(a), node(a)) end, 
 function(a) return Abs(node(a)) end, 
} 
 
-- recursive graph node generator: 
function node(depth) 
 if depth > 0 then 
  -- call a function from the template 
  local t = templates[math.random(#templates)] 
  return t(depth - 1) 
 else 
  -- just use a constant: 
  return math.random() 
 end 
end 
 
-- event generator: 
function note() 
 -- make a new duration 
 local d = 0.1 + math.random() * 3 
 -- generate a graph 
 local graph = node(3) 
 -- scale by an envelope 
 graph = graph * Smooth(Decay(d), 100) * (math.random() - 0.5) 
 -- DC block 
 graph = Biquad(graph, 1, 1, 1) 
 -- panning graph (pan at sample rate) 
 local panner = node(2) 
 -- clip to reasonable range 
 panner = Clip(panner, -0.5, 0.5) 
 -- schedule it! 
 play(mix, d, Pan(graph, panner)) 
end  
 
-- produce some graphs in sequence: 
while true do 
 local d = 0.1 + math.random()*0.1 
 go(note) 
 wait(d) 
end 
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5 Conclusion 

 

The aim to finely interleave signal generation, event handling and composition 

structure within a unified composition language has been achieved. Embedding 

functional logic on a per-event basis can support both sequenced and algorithmic 

composition in tangled hierarchies of parallel and serial time flows, and the 

composer’s script itself becmes the source of synthesis complexity.   

This section returns to some points that bear further elaboration, evaluates some 

of the limitations of Vessel, and highlights areas for future development. 

 

5.1 Extensible for musical structures 

Many computer music composition systems incorporate abstractions and 

behaviors appropriate for common musical structures.  This can be very helpful, 

however musical structures should not obstruct the free exploration of new ideas. 

Many higher-level problems of musical signal representation are therefore not 

directly addressed by Vessel.  In the design of Vessel the author strove to avoid 

limiting its use to certain ways of thinking about music, instead providing lower-

level general ‘meta-mechanisms’ (to follow the acknowledged philosophy of both 

Max [56] and Lua [21]) with which musical ideas can be constructed. The use of 

these mechanisms within real musical composition remains to be evaluated.  



 

 70 

By minimizing hard-coded distinctions and instead providing meta-mechanisms, 

Vessel grants the composer greater responsibility towards the creative output (for 

better or for worse). Truax states: “Ultimately, a computer music composition 

reflects the musical knowledge embodied in both the software system that produced 

it and the mind of the composer who guided its realization. The interaction between 

these two bodies of knowledge is the essence of the creative musical process” [50] 

An open-ended system may begin with little or no musical knowledge, however if 

this knowledge is provided by the composer, the system may provide tools with 

which to represent and then make use of this knowledge, and by consequence of 

organizing complexity, afford new points of view otherwise obscured.  

 

5.2 Avoiding an application-specific language 

The decision to make use of an existing language rather than write a new one not 

only simplified the implementation incredibly, but also suggests a wide scope for 

experimentation in the future. The value of using an embedded language for 

composition software is apparent in the many extensions to Csound derived from 

Python. 

I was fortunate to find a language as efficient, portable and well defined as Lua, 

particularly with respect to the ability to extend coroutines into a sample-accurate 

time domain.  Throughout its ten-year history, Lua has been designed to be a simple, 

portable, efficient extensible extension language.   
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Since, beyond minor syntactical differences, this is the principal contrast with the 

ChucK language, a slightly more detailed consideration is appropriate. Unlike 

Vessel, ChucK cannot benefit from existing code, documentation or extension 

libraries written for general programming languages. The following list gives an 

indication of some of the Lua extension libraries that could be used within Vessel: 

• Lbc, Numeric Lua (extended math)  

• LPeg, Lrexlib (textual pattern matching) 

• LuaExpat (XML) 

• Pluto, lper (persistence & serialization) 

• LuaCairo, LuaPDF (2-D graphics for printing) 

• LuaFileSystem, Lposix, LuaZip, lgzip (file access & compression) 

• LuaSocket, LuaCURL, CGILua (networking & web) 

• LuaSQL, luasqlite (databases) 

• Luaunit, Lunit (unit testing) 

• Lua-eSpeak (speech synthesis) 

• LuaJava, LuaObjCBridge (interfacing other languages & libraries) 

 

A particular concern of the author is future portability: compositions written in 

application-specific languages become unrealizable as soon as the application is no 

longer supported.  While applications such as Max and particularly CSound have 

enjoyed longevity, the history of computer music composition is littered with now 

defunct composition tools.  While it is true that established programming languages 
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may suffer the same fate, a formally defined generic programming language should 

be easier to ‘port’ into future representations than an application-specific language. 

 

5.3 Drawbacks 

Despite the optimizations made, there is clearly a cost incurred by using an 

interpreted language in audio thread.  It remains to be tested how detrimental this 

effect may become; however the author has been quite satisfied with performance so 

far.  

Although the abstraction level of the unit generator is at a level typical for 

computer composition environments, certain activities may require access to direct 

sample-producing functionality. The author is considering extending Vessel to 

include a secondary level offering direct function calls upon sample buffers 

accordingly. 

 

5.4 Vessel in use 

A component of the project was presented at the UCDarNet symposium in 

January 2007, and a paper describing the Max/MSP implementation (along with a 

workshop and performance) has been accepted for the Digital Arts Week conference 

at ETH Zurich for July 2007.  Another paper documenting the project has been 

accepted to the ICMC 2007, Copenhagen.  The software has been used already in a 
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composition by the author and Wesley Smith [47], performed a number of times in 

public. 

 

5.5 Future Work 

The software described in this thesis is planned for beta release in the summer of 

2007.  The author believes that the real test of a design concept is the 

implementation and evaluation in practice, and (beyond bugs!) no doubt many new 

ideas for extension will arise from such activity.  However, the author in this section 

will outline some of areas of development already identified. 

 

5.5.1 Extended set of unit generators 

The palette of unit generators is thus far minimal, but should indicate to the 

reader that the extension to a more complete is feasible.  Certain unit generators may 

call for a different approach to timing or signal representation however; a case in 

point would be FFT and IFFT processors.  The design of such an interface is planned 

as future work.  

 

5.5.2 Notifications & audio triggers 

A valuable addition to the scheduler/language would be a notification 

mechanism for the coroutine yield wait() call, as an optional alternative to 
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durations.  Resuming a coroutine yielded in this way might be triggered by message 

events (such as wait(midinote)), or more interestingly, events due by audio 

analysis.  For example, dynamic processing of Wavesets [54] might involve yielding 

a coroutine until a zero crossing occurs on a specified input.  It should be noted 

however that any situations involving cyclical dependencies must cause a certain 

buffer of latency in response. 

 

5.5.3 Runtime specification of unit generators 

Thus far, signal processing may be specified using unit-generator graphs for 

micro-temporal durations, however like many other environments, Vessel is limited 

to the vocabulary of unit generators provided, and unit generators themselves remain 

opaque for the sake of efficiency. The standard solution to this is to provide a 

software development kit (SDK), which developers may use to write new unit 

generators in C or C++. New unit generators must be built in C++ and compiled 

prior to use. At some level there will always be a trade-off between design time 

(coding, compiling, loading) and execution time (efficiency). 

A more novel approach may be supported by Faust [34], in which a high-level 

functional language is used to specify unit generator algorithms, which can in turn be 

automatically compiled into generated C/C++ code for many different composition 

environments.  The code generated by Faust may not be as efficient as hand-written 

code, but it a) allows users with no C/C++ experience to create unit generators, b) 
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creates representations of unit generators that are not specific to any environment, 

good for portability and longevity, and c) may benefit from a shorter 

implementation-test loop with runtime compiling & loading.   

A third option for Vessel is to provide utilities to write signal-processing code 

directly in Lua using basic primitives, and machine code compilation with the 

LuaJIT compiler [35].  This will probably be less efficient than Faust, but can 

provide an implementation-test loop so short that signal processing code itself could 

be the result of a generative algorithm at runtime! 

 

5.5.4 Graphics 

The integration of algorithmic audio and graphics has long been a goal of the 

author. Fortuitously, Wesley Smith, a fellow graduate student at MAT, had been 

simultaneously developing a 3D graphics toolkit based upon the Lua language and 

the OpenGL standard, named Abelian.  Vessel and Abelian will communicate and 

share data through serialized message buffers, and may share code.  In addition, user 

interface components can be created using the GLV OpenGL user interface library 

[33], developed by the authors and other researchers at MAT.  

The potential uses include graphical interfaces and visual instruments for real-

time performance and installation, visual music composition, audio-visual software 

art and scientific or pedagogical visualizations. Conjoining a 3D graphics and user-
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interface toolkit with audio synthesis for a generalized digital media composition 

environment is perhaps the most exciting future direction of research for this project.  
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