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Since 1971, marking my first departure from fourteen years of spontaneous composition, my work has been mainly algorithmic in nature. Some of it was 
generated by single algorithm sets developed for multiple use, the properties of the results deriving from the input. In other cases, the algorithms were 
used once only, with the dedicated purpose of generating a single work. The algorithms ranged from verbal instructions to complex computer programs. 

Of the eighty-odd pieces I have composed since 1971, about a quarter arose from three verbal scores, Textmusic (converting written text into notes), 
...until... (working systematically with interval ratios) and Relationships (working with levels of complexity of melody and rhythm in the context of 
harmony and meter). Another quarter or the pieces were generated by three individual computer programs - TXMS (Textmusic packaged into software), 
Autobusk (for the generation of MIDI pitch sequences from scales and meters as well as twelve real-time variable parameters such as tonal and metric 
field strength) and PAPAGEI (for the generation of MIDI events based on patchable live interaction with an improvising performer). Yet another quarter 
of my compositions since 1971 have resulted from dedicated sets of algorithms for one-time use. Further computer programs such as Synthrumentator 
and Spectasizer (for the conversion of speech sounds into instrumental scores) were used to generate parts of other compositions.  

In this paper I will refer to TXMS, Autobusk and Synthrumentator as well as to two compositions generated by dedicated software, ...or a cherish'd bard... 
(in which the algorithms generate all aspects of the piece from pitch and rhythm to the overall form) and Approximating Pi (in which algebraically defined 
algorithms generate the sound waves). 

Textmusic 

In 1970, the music I composed derived strongly from serial 

techniques of composers from Schoenberg to Stockhausen, 

dependent on music tradition and evolution. While doing 

so, I paused to consider whether it was possible to make 

music using concepts exclusively from everyday life. The 

result was Textmusic of April 1971, instructions for making 

a piano piece. Based on the orthography of a completely 

arbitrary text, I structured the linguistic concepts letters, 

syllables, words, phrases and sentences, the key-colors 

black/white/mixed as well as the physical traits loud/soft, 

short/long and (right pedal-) depressed/released: 

Take a text consisting of a number of words, phrases, or sentences. 
Prepare the keys of the piano in the following way: A key somewhere in 
the middle of the keyboard is marked with the first letter of the chosen 
text. The next keys of the same color, alternating to left and right (or vice 
versa) are treated with the succeeding letters in the text; if a certain letter 
occurs a second time, it should be dropped, and instead the next letter 
which has not yet occurred taken, until every letter of the text is 
represented on the keyboard. 

This procedure is then repeated with the keys of the other color, and then 
yet a third time, without taking the color of the keys into consideration. 

The text can now be ‘played’ according to the three key-color-systems - 
and one can  
1. play the letters singly, or together as syllables, words, phrases (in their 
order of appearance in the text) or even an entire sentence – in all cases, 
the sound should be repeated as often as the number of syllables it 
contains,  
2. change the position of the right pedal (between depressed and 
released), the loudness (between loud and soft), and the length of the 
sound (between short and long) at best only at change of syllable, and the 
key-color at best only at change of word. 

Figure 1 exemplifies of the application of these rules to the 

text Ping by Samuel Beckett, which begins with the words: 

“All known all white bare white body fixed one yard legs 

joined like sewn”. The 25 different letters of the text 

ALKNOWHITEBRDYFXGSJQUVCMP (the only letter missing 

is Z) are assigned in turn to an equal number of black 

(pentatonic), white (diatonic) and mixed-color keys 

(chromatic).  Figure 1 shows at top left and top right how 

these 25 letters are allocated chromatically, spanning 

exactly two octaves; the score’s opening notes up to 

“joined” are also shown. In diatonic allocation, the 25 

letters span 3½ octaves, in pentatonic allocation 5 octaves. 

 

Figure 1. How the 25 different letters of Beckett’s Ping are chromatically 
assigned to the keys of a piano according to the rules outlined in 
Textmusic. Also shown: the opening of Textmusic Version 6, based on the 
Beckett text. 

Soon after I drew up the rules of Textmusic, I realized that 

their algorithmic nature lent itself to incorporation into a 

computer program for the automatic generation of 



multiple versions of the piece, even following designs by 

persons other than myself. Indeed, of the 15 versions that 

were realized from 1971 to 1984, a computer program 

generated six, of which three were designed by others. 

The program in question, written in 1971-72 in Fortran, 

was named TXMS (from Textmusic), its input first entered 

into an accompanying form chart, shown in Figure 2. 

 

Figure 2. This chart shows fields for entering parameter values for 

computer-generating a version of Textmusic. The curves here are for 

Version 4, based on the text in the instructional verbal score itself. 

TXMS is a stochastic program, generating notes according 

to probability values, previously entered as transitions into 

the chart shown above (here for Textmusic Version 4), from 

where the salient values are read and typed as input. Take 

e.g. the uppermost field for the distribution of letters, 

syllables, words, phrases and sentences. At the left, 

signifying the start of the piece, the probability of single 

letters (level 1 or single notes) is 100%. One section later 

(
1
/20

th
 of the piece, numbered above the chart in fives), the 

probability of syllables (level 2), initially at 0%, begins to 

increase, that of letters to decrease, until at the end of 

section 4 they respectively stand at 70% to 30%. At this 

point, the probability of words (level 3) is instantaneously 

set at 30%, that of syllables at 40%, that of letters remains 

fixed at 30%, values which remain in force till the end of 

section 8, where the probability of words jumps to 100% 

and stays there till the end of section 10. All through the 

process, random numbers – based on the respective 

probability – determine whether a single letter is to be 

converted to a note, or letters as part of a syllable, word, 

phrase or sentence to a chord.  

The same system is used for the other parameters color, 

loudness, duration and pedal. For instance, at the start of 

the piece, the key-color is totally mixed (chromatic),  

a random half of the notes is loud and the other half soft,  

a random half of the notes is short and the other half long, 

and 70% of the events are played with the pedal depressed 

and 30% with it released. 

Further information required by the chart, not shown here, 

are the number of hands, the number of fingers in each 

hand(!), the span of each hand measured in white keys, as 

well as the expected duration of the short events and that 

of the long ones. 

There was a dearth of available notation programs in the 

early 1970s. I wrote my first one, ЖSC, with notes, replete 

with stems and beams, drawn on a plotter and directly 

readable by a performer, a bit later, from 1972-76 (the Ж is 

a wildcard for the letters K, L and M in the three main 

modules “Keyboard reader”, “Lister” and “Music writer”, 

and the SC stands for “score”). TXMS’s output was a kind of 

staff notation intended instead for regular line printers of 

the time, making it relatively easy to copy the music by 

hand from the output into a score. The characters used 

were [|] for (vertical) staff lines and beams, [0] for note-

heads, [-] for (horizontal) stems, [#] for sharps. By 

overprinting, I achieved results like those reconstructed 

and shown in Figure 3: an 8
th

-note D5-sharp followed by a 

16
th

-note D5-natural (every accidental applies to the note it 

precedes), as read from top to bottom in the treble clef. 

 Figure 3. A reconstructed example of the printed output of 

 TXMS with staff, note-heads, stems, beams and accidental. 



Autobusk 

Harmonicity 

In 1975, having left serialism far behind in my work,  

I became intrigued by the idea of regarding tonality and 

meter, eschewed by serialists, embraced by conservatives, 

as physical phenomena manifest as fields of variable 

strength: I worked towards music moving in a continuum 

ranging from atonal to tonal, from ametric to metric. To 

this end, in 1978 I found sufficiently satisfactory algebraic 

solutions, exemplified in the field of tonality by formulas 

for numerical indigestibility and intervallic harmonicity as 

shown in Figure 4 and as tables in Figure 5. 

 

Figure 4. Formulas for the Indigestibility of a natural number and the 

Harmonicity of an interval ratio. 

 

Figure 5. Tables for the Indigestibility of a natural number and the 

Harmonicity of an interval ratio. 

 

Based on an algebraic evaluation of a quality of natural 

numbers based on their size and divisibility, which I call 

indigestibility (whereby small primes and their products are 

more ‘digestible’ than products containing larger primes), 

the formula for the harmonicity of an interval ratio yields 

values such as +1.0 for the 1:2 octave,  +0.273 for the 2:3 

perfect 5
th

, -0.214 for the 3:4 perfect 4
th

 (the negative sign 

indicates a polarity to the upper note, here the root of the 

interval; a positive polarity signifies a lower-pitched root), 

and +0.119 for the major 3
rd

 4:5 etc., as seen in Figure 5. 

With these formulas it was found possible to rationalize 

scales known by interval size, e.g. the chromatic scale given 

as multiples of 100 cents was rationalized to the values  

1:1 15:16 8:9 5:6 4:5 45:32 2:3 5:8 3:5 5:9 8:15 1:2,  

a solution that has been known and accepted for centuries. 

Any pitch-set known in terms of cents can be similarly 

rationalized by the harmonicity algorithms described 

above. 

Moving on to meter, another set of formulas governs the 

metric properties of the music I set out to compose, shown 

in Figure 6. Terms I have introduced will next be explained  

(the most important of which are Stratification and Metric 

Indispensability), along with terms of general usage. 

 

Figure 6. Formulas for Metric Indispensability of pulses in Prime and in 

Multiplicative Meters. 



A meter is prime, i.e. containing a prime number of equal 

time-units (here called pulses) e.g. 2, 3, 5, 7, 11, etc., or 

multiplicative, i.e. containing as pulse quantity a product of 

primes, e.g. 4, 6, 8, 9, 10, etc. Additive meters (e.g. 3+3+2 

pulses = 8) are not covered here. Meters exhibit a certain 

stratification, e.g. that shown in Figure 7 at left. A meter of 

12 pulses, for instance, can be broken up in three ways, 

into 3 groups of 2 groups of 2, i.e. 3x2x2, or instead 2x3x2,  

or 2x2x3. This last stratification is seen in Figure 7: the first 

metric level contains one note or time-unit, the second 

level two units, the third 4 and the fourth 12. Time-units on 

the top two metric levels can be called beats, on lower 

levels, pulses, though the longer a prime meter, the less 

relevant the beat/pulse distinction – in this paper, ‘pulse’ is 

used for both.  Prime meters have one-level stratifications. 

 

Figure 7. Examples of Stratification and Rhythmic Dilution. 

That said, I now outline the method to evaluate the relative 

metric relevance of any pulse in a prime or multi-stratified 

meter, called its Metric Indispensability, calculable by the 

formulas in Figure 6 (not explained here). Point of 

departure is the Prime Indispensability for prime meters 

(e.g. 1-0 for a 2-pulse meter, 2-0-1 for a 3-pulse meter,  

4-0-3-1-2 for a 5-pulse meter etc., given by Ψ, upper-case 

psi, in Figure 6, top). Next in line is Multiplicative 

Indispensability  (see ψ, lower-case psi, in Figure 6, 

bottom), derived respectively from the indispensabilities of 

the component prime meters’ pulses. The higher the 

indispensability, the more relevant the pulse for 

maintaining the meter. 

A 6-pulse meter as 3x2 (e.g. 3/4) has the indispensabilities 

5-0-3-1-4-2, a 6-pulse meter as 2x3 (e.g. 6/8) 5-0-2-4-1-3. 

Figure 7 shows at right a system of rhythmic dilution for 

illustrating indispensability. Removing attacks in order of 

increasing indispensability starting with 0, one sees that 

the corresponding notated rhythms preserve the metric 

feel all the way through, in 3/4 as well as in 6/8.  

The Intervallic Harmonicity and Metric Indispensability 

formulas – along with several other relevant algorithms – 

were incorporated into the real-time program Autobusk, 

which I wrote in Pascal between 1986 and 2000 (from 1987 

on an Atari ST computer). Two important auxiliary modules 

are HRM (for Harmonic Rationalization Measures), for the 

compilation of scales – entered as cent values – into lists of 

scale-degree harmonicities, and IDP (for Indispensability 

Determination Program) for the compilation of meters – 

entered as stratification – into pulse indispensability lists.  

Autobusk is a stochastic program. It generates time-

concurrent streams of controlled random rhythmicized 

MIDI notes based on probabilities calculated from the 

Harmonicity and Indispensability formulas in the light of a 

fundamental consideration – at zero tonal field-strength 

(for atonal music), all pitches of the scale(s) being used are 

equally probable, a property shared by the twelve-tone 

technique; at zero metric field-strength (for ametric music), 

all pulses of the meter(s) being used are equally probable 

in whether they are attacked or not. But for a high field-

strength, the probability of pitches of higher tonic-related 

harmonicity and the probability of attack on pulses of 

higher indispensability are raised, those of pitches/pulses 

of lower harmonicity/indispensability are lowered. 

Collectively regarding pitches/pulses as elements, one can 

state that tonal/metric field strength is proportional to the 

gradient of a straight line marking element probability on 

the y-axis as against dimensionally contextual priority 

(harmonicity/indispensability) on the x-axis – see Figure 8. 

Changing the gradient results in a change in field-strength. 

In addition to the priority-probability gradient, a further 

mechanism was applied, inter-temporal coordination, 

locking the micro-temporal (pitch) to the macro-temporal 

(pulse): the tonality degree is thereby varied according to 

indispensability – strong pulses have (for non-zero-field-

strength) pitches more harmonic than those on weak 

pulses. This allows for Schenker’s structural and prolonging 

tones on strong and weak pulses, respectively. 



 

Figure 8. A straight line showing probability as a function of priority, the 

gradient as a function of field-strength. 

Autobusk receives as input a list of scales and meters (pre-

compiled by HRM and IDP, extensions .HRM and .IDP), and 

most likely a parameter score (extension .PRK) containing 

time-tagged values for 12 parameters, seen accordingly 

numbered in the screen shot in Figure 9: “metriclarity” and 

“harmoniclarity” mean the metric and tonal field-strength. 

If the event of the absence of a .PRK file, user-defined 

preset (or else default) parameter values are used. 

 

Figure 9. Screen-shot of Autobusk. 

Parameters can be changed in real-time by key-typing,  the 

mouse, a MIDI input device such as a keyboard and/or 

time-tagged instructions in a .PRK file. The output, usually 

MIDI notes, is sent to the MIDI port and/or to a file.  The 

program is freely downloadable at Mainz University 

<http://www.musikwissenschaft.uni-mainz.de/Autobusk/>, 

ready to be run on an Atari, should one have one, together 

with a pdf user manual. In order to run it in Windows, one 

needs an Atari emulator, as indicated by the site. For use 

on a Macintosh, an additional Windows emulator is 

necessary. 

Synthrumentator 

In 1981, while planning a new work for chamber ensemble, 

I had the idea of writing a spectral piece in which the 

overall sound of the ensemble would reflect the sounds of 

speech. For this I would convert a spectral analysis of 

spoken words into a playable score for nearly pure tones, 

e.g. string harmonics. Playing the score engenders the 

synthesis of harmonic spectra, for which the best phoneme 

types are vowels, approximants, laterals and nasals (thus 

excluding plosives, fricatives and trills).  

For the envisaged composition, I put together nine 

nonsensical but grammatically correct German sentences 

based on words consisting solely of these harmonically 

synthesizable phonemes - of the languages I was familiar 

with at that time, German seemed especially suitable due 

to its systematic phonetic spelling as an aid in looking for 

usable words. These sentences – the title of the piece, Im 

Januar am Nil, was taken from one of them – were Fourier-

analyzed and the results converted into something like a 

MIDI file (this work predated MIDI by three years): every 

set of six Fourier time-windows was merged into an chord 

consisting of overtones, each with its pertinent amplitude, 

as later with pitch and velocity in a MIDI file.  

The really significant follow-up to this procedure was the 

subsequent re-setting of all amplitudes to multiples of an 

arbitrary amplitude, termed the amplitude tolerance: any 

partial in one chord having the same altered amplitude as 

the identical partial in the following chord is sonically 

connected to that partial, i.e. it is not repeated but held. 

More on this procedure – termed calming – later. 

Figure 10 shows (above) the words in Armenien scored for 

bass clarinet playing the fundamental and for seven strings 

playing the partials and (below) a graphic representation of 

the same, which strongly resembles the sonagram of the 

spoken words. I called this technique Synthrumentation, 

from “synthesis by instrumentation”. From 1981 till the 

completion of the piece in 1982 and that of its final revised 

version in 1984, I wrote all the software, from the Fourier 

analysis to the generation of the score, a total of twenty 

programs in Fortran. The output was printed using my 

notation program ЖSC, mentioned above, on a 9-pin dot-

matrix printer. 

 



 

Figure 10. Synthrumentation of the words in Armenien in the chamber 

ensemble piece Im Januar am Nil: compact score (above) and graphic 

representation of the score (below). 

In the course of the years, I used synthrumentation for a 

number of pieces, prompting me to combine all modules 

into a single Linux GNU Pascal program for repeated use 

named Synthumentator. In principle, the procedure is the 

same: a Fourier analysis of a sound wave is converted to a 

MIDI file of chords comprising partials of the fundamental 

analysis frequency (my favorite: 49 Hz, almost exactly G2, 

and a whole-number subdivision of the sampling rate 

44,100 Hz). This conversion maps frequencies to MIDI 

notes, maps amplitudes to velocity.  

Finally the MIDI file is calmed. For instance, with a 

tolerance (now called velocity tolerance) of 4, all velocities 

are re-set to multiples of 4, i.e. 0, 4, 8, 12 etc. Notes now 

with velocity 0 are removed. If a particular note in any one 

chord, say G4, has the same adjusted velocity, say 64, as 

the G4 in the next chord, the note-off of the first chord and 

the note-on of the second are removed, lengthening the 

former. The higher the velocity tolerance, the smaller and 

sparser the resulting output file. A low velocity tolerance 

will result in a dense output file, perhaps obscuring the 

desired timbral link to the sound source. The main task in 

using this program is to find the optimal velocity tolerance. 

The program is being currently rewritten in C for Mac OS 

and Windows. 

...or a cherish'd bard... 

In 1998 I decided to write a solo piece for the pianist 

Deborah Richards in order to commemorate her 50
th

 

birthday. A common means of honoring a person in a music 

score is to take those letters of the person’s name which 

are available as note names (i.e. A-G in English, with the 

additional H and S in German) and to use these notes 

repeatedly. In fortunate cases like ABEGG and BACH, the 

complete names are available as notes. However, before 

discarding the idea of using Ms Richards’ name in this way, 

I noticed that in her first name, the letters DEB and AH 

were definitely usable as notes in German, and that the 

intervening letters OR denote a logical operation. Further, 

DEB belong to a whole-tone scale (B is German for B-flat) 

and AH (H is German for B-natural) belong to the other 

whole-tone scale. Finally I also noticed that the letters DEB 

and A are digits in the hexadecimal number system. 

I accordingly set up two pitch-chains in the two whole-tone 

scales, one chaining transpositions of DEB and the other 

transpositions of AH – see Figure 11 (top). In theory, each 

chain moves in pitch and time to and from ±infinity. Next I 

converted the hex numbers DEB and A to their binary 

equivalents 1101 1110 1011 and 1010. These became the 

repeatable rhythmic cycles in Figure 11 (center): 1 = attack, 

0 = silence – the H in AH, not a number, was added as a 

silence 0000. Combining the pitch chains and the rhythms, I 

obtained the rhythmicized pitch chains shown in Figure 11 

(bottom). 

 

Figure 11. Pitch chains, rhythmic cycles and both based on DEB and AH. 

After this I set up 120 DEB and, separately, 120 AH 

rhythmic chains successively and parallel to each other, 

such that all transections of D4 (Middle D) are time-

equidistant at intervals of four seconds, i.e. on the first 

beat of every bar from 1 to 120.  



Figure 12 shows an example of this procedure as applied to 

the infinite DEB chain. The x-axis marks the 120 bars of the 

piece, the y-axis a range of 40 octaves from 0.28 μHz to 

308 MHz (!). The middle horizontal line marks D4 at 293.67 

Hz. Instead of crossing this line every bar, as in the piece, 

this graph shows for reasons of space a crossing every 10 

bars. The basic DEB motif, both in pitch and rhythm, is 

displayed in a small box at upper left – the entire graph 

consists of chains of this motif, reduced to 50% in size. 

 

Figure 12. Parallel DEB chains crossing D4 downwards every ten bars (in 

the piece this happens every bar). 

To change this static scenario into a dynamic one, I then 

made the gradient of the chains successively increase with 

time, forming primordial DEB and AH scores.  

Next followed the containment of the piece within a 

triangular pitch filter, starting at the beginning (left) at a 

width of zero half-steps centered on D4, gradually 

expanding, the width at any bar in half-steps equalling the 

bar number, reaching a range of 10 octaves at bar 120 

(right). Obviously the range transcends that of the piano at 

around bar 88; the printed score nonetheless contains 

notes extending beyond. The result for the DEB score is 

displayed as a graph in Figure 13.  

 

Figure 13. The DEB score with increasing chain gradients and triangular 

pitch filter. 

The final step was a transition in time from the filtered DEB 

score to the filtered AH score by means of random 

selection – at the start of the piece, the choice of a note 

from the DEB score is 100% probable, that of a note from 

the AH score 0%. At the end, the probabilities are reversed, 

so that in the middle, at bar 60, both scores are subjected 

to a 50% probability each. Thus every note of the piece is 

taken either from the DEB score or from the AH score:  

DEB OR AH, moving from the former to the latter. As a 

consequence, the music of the opening bars is in the 

whole-tone scale containing DEB, that in bar 60 is highly 

chromatic with all twelve notes in every octave, and the 

final notes are in the other whole-tone scale containing AH. 

The whole composition was made by once-used software. 

Due to the rising gradients, the resulting durational values 

were of an irrational nature. I rationalized the score with 

my program Tupletizer, converting irrational time-values to 

notatable tuplets by rounding within flexible constraints 

and with controllable error. Figure 14 shows bars 92-94 as 

notated in Sibelius: the diamond-shaped and crossed note-

heads are an octave higher/lower than written, the former 

still within the piano range and the latter beyond. 

 

Figure 14. An excerpt from the Sibelius-printed score. 

The title “...or a cherish’d bard...” is an anagram of the 

name Deborah Richards. Here is the dedication: 

Full fifty years, the most whereof well spent / In service of the Muse, 
wherefore I pray / That Lady Fortune add three score and ten. / Yet I, a 
clown cerebral*, so some say, / Unfit in words, resort to music’s way / To 
help submit my prayer in this regard – / Meseems a minstrel, or a 
cherish’d bard / Would better wield in verse his worthy pen.  
 *an anagram of the name Clarence Barlow 



Approximating Pi 

In 2007 my attention was drawn by my colleague Curtis 

Roads to the series π = 4(1 – 
1
/3 + 

1
/5 – 

1
/7 + 

1
/9 ∙∙∙), 

something I had not thought about since my school days. 

Almost immediately, an electronic music installation began 

to shape in my mind, in which the amplitudes of ten 

partials of a complex tone would reflect the first ten digits 

of the progressive stages of  convergence – with each 

added component of the series – toward the final value. In 

May 2008, the installation, Approximating Pi, which I 

realized wholly in Linux GNU Pascal, was given its premiere. 

For each convergence, I decided on a time frame of 5040 

samples, i.e. 8¾ frames per second. All time frames contain 

a set of ten partials of an overtone series, multiples of the 

frequency 8¾ Hz, which automatically results from the 

width of the frame, 5040 samples. The reason for this 

number of samples is that is can be neatly divided into 2 to 

10 exactly equal segments, corresponding to the partials 

(half this value, 2520, which as least common multiple of 

the numbers 1-10 is amenable to the same, corresponds to 

17½ frames per second, too fast for my purposes).  

The partials are square waves of amplitude 2 raised to the 

power of the n
th

 digit in the decimal representation of the 

convergence. In the case 3.14159..., for instance, the 

amplitudes of the ten partials are 2
3
, 2

1
, 2

4
, 2

1
 ,2

5
, 2

9
 etc. 

The amplitudes are then rescaled by a multiplication by the 

arbitrary factor 
2π

/n, forming the envelope of a sawtooth 

spectrum, where 'n' is still the partial number.  

 

Figure 15. The digits of the first 1000 approximations of π, shown to the  

tenth digit, as amplitudes of a 10-partial spectrum. 

Figure 15 graphically displays 1000 convergences (x-axis) 

and the corresponding amplitudes of the ten digits (y-axis). 

See the prominent bulges caused by the digit 9 in 6
th

 place. 

Since successive convergences cause the digits to settle 

down from left to right to a value gradually approaching 

that of π,  one can expect the resultant timbre to move 

from initial turbulence to a final near-constancy, which it 

does. As an example, with four digits, the series goes from 

an initial 4.000 through 2.667, 3.467, 2.895, 3.340, 2.976 to 

3.284. At this 7
th

 convergence, the first digit stabilizes at 

the value 3. The second digit similarly stabilizes at the value 

1 at the 25
th

 convergence, the third digit at the value 4 at 

the 627
th

 (these three are visible in Figure 15), the fourth at 

the value 1 at the 2454
th

 convergence. With ten digits it 

would take 2,425,805,904 convergences before the final 

digit stabilizes and real constancy is attained. At a rate of 

8¾ convergences per second, this would take 8¾ years. 

There is no need for one to wait that long, however. The 

installation can be pitch-transposed and thus shortened by 

regular sample dropping; it can also be time-truncated. In a 

frequently presented version, eight sound channels contain 

transpositions from the original 8¾ Hz to values 9, 28, 50, 

72, 96, 123, 149 and 175 times higher (from channel two 

close to the arbitrary series 9π
(1+½+⅓+ ∙∙ +⅟χ)

, where χ is the 

channel number plus one). Versions of various durations – 

5, 8, 15 and 76 minutes – and audio configurations – 2, 5 

and 8 channels – have been realized. In the 8-minute 

version (more exactly 7’37
1
/7”), the duration was truncated 

to 36,000 convergences for the lowest transposition; the 

highest transposition reaches the 700,000
th

 convergence, 

at which point the first six digits are already stable. 

Conclusion 

Algorithms are a means to an end. Their elegance is no 

guarantee of musicality. In the case of the examples above, 

algorithms were shaped by an anticipated musical result, in 

the end often containing intriguing aspects, creating a new 

aesthetic. This after scrutiny was either welcomed... or 

rejected, leading to a revision of the algorithm. 
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