
Digiti Sonus: Advanced Interactive Fingerprint 
Sonification Using Visual Feature Analysis 

 
Yoon Chung Han 

Media Arts and Technology 
University of California 
Santa Barbara, USA 
yoon@mat.ucsb.edu 

 
Byeong-jun Han 

School of Electrical Engineering 
Korea University 

Seoul, Korea 
hbj1147@korea.ac.kr 

 
Matthew Wright 

Media Arts and Technology 
University of California 
Santa Barbara, USA 

matt@create.ucsb.edu 

 
ABSTRACT 
 This paper presents a framework that transforms fingerprint 
patterns into audio. We describe Digiti Sonus, an interactive 
installation performing fingerprint sonification and 
visualization, including novel techniques for representing user-
intended fingerprint expression as audio parameters. In order to 
enable personalized sonification and broaden timbre of sound, 
the installation employs sound synthesis based on various 
visual feature analyses such as minutiae extraction, area, angle, 
and push pressure of fingerprints. The sonification results are 
discussed and the diverse timbres of sound retrieved from 
different fingerprints are compared.  

Keywords 
Fingerprint, Fingerprint sonification, interactive sonification, 
sound synthesis, biometric data 

1. INTRODUCTION 
Fingerprints are one of the most unique biometric patterns on 
the human body. Due to the distinct patterns and various visual 
characteristics of the patterns, they have been useful for 
identification and security, typically based on extraction of 
visual features. We believe that sonification can serve as an 
effective technique for the representation of complex 
information, due to the auditory system’s ability to perceive 
stimuli at a wide spatial cover and its inclination to perceive 
spatial patterns in sonic input. In addition this work aims to 
provide a way for visually impaired people (as well as those 
with normal vision) to experience fingerprints, potentially even 
learning to recognize specific people’s fingerprints by sound.  
We believe this is the first published work on fingerprint 
sonification in either the scientific or artistic domain. Our initial 
development is therefore, artistic and experimental because it 
can closely bridge the relation between body, sound, visuals, 
and interactivity in novel ways. 

2. BACKGROUND 
We introduced Digiti Sonus at the 2012 ACM Multimedia 
conference [1], describing sonification based on visual feature 
extraction from a scanned fingerprint image. The fingerprint’s 
ridges and valleys are acquired using skeletonization to 
eliminate pressure-specific information. Skeletonization also 
normalizes the ridge and valley portions to acquire the ridge 
skeletons.  From this we extract the minutiae, which are the 
major features of a fingerprint, such as ridge endings or ridge 

bifurcations. Minutiae are scanned in one direction, the scanned 
fingerprint image is transformed into a magnitude spectrogram, 
and audio filters are applied to the spectrogram. In this step, 
audio filters can be anything such as traditional low-/high-
/band-pass filters or user-defined function. In order to specify 
the characteristics of audio filters, we transformed the 
properties of the detected minutiae into such as position, 
direction, and type. 
    Key insights over the past year have led to improvements in 
every aspect of the system. The most significant improvement 
is in the diversity of output sound. In previous research, the 
sound results had a limited range of timbre and frequency, thus 
users had difficulty understanding the uniqueness of each 
fingerprint. Furthermore, one-directional scanning was too 
limited and resulted in an overly uniform range of sounds due 
to using only a single animation direction. We decided to 
explore more dynamic ways of reading through fingerprint 
patterns. Experience installing this work in a gallery and 
receiving audience feedback led to change the installation setup 
as well. The previous prototype contained only one projector 
and the fingerprint scanner, however, due to the dynamic 3D 
visuals and audio in new version, we changed to three 
projectors to show three different perspectives of a fingerprint 
as well as adding an interactive touch screen alongside the 
fingerprint scanner. 
    Among these problems, we address the diversity of sound as 
the most important issue since audience should be clearly aware 
of distinction between different fingerprints. This paper focuses 
on enlarging the range of timbre in sound synthesis. Section 3 
describes related works, and Section 4 discusses conceptual 
approaches and visual feature extraction of fingerprints. In 
Section 5, the sonification and visualization of fingerprints are 
deeply described and the implementation of those approaches is 
the subject of Section 6. In next section, we evaluate the final 
results, and in the final section we state our conclusions and the 
future extension of Digiti Sonus. 

3. RELATED WORK 
Although we could not find any previous research on 
fingerprint sonification, there is a deep body of work on 
biometric fingerprint pattern recognition [2]. It is both an active 
academic research topic and also a practical problem with 
commercial/industrial applications and implementations. On 
the other hand, there are many examples of sonification of other 
body data or body patterns, which influenced our research. 
Worgan [3] sonified faces using multiple sound synthesis 
techniques such as additive, wave terrain, and frequency 
modulation to represent facial data, which is the visual focal 
point for human-to-human interaction. Although the mapping 
of each facial feature (eye, mouth, eye color, face color, etc.) in 
this research is novel, the mapping is not strongly effective to 
deliver the visual data. It is very hard to make conclusions 
about the effectiveness of any mapping without conducting 
extensive user studies. The mapping should describe not only 
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4.3 Visual Feature Extraction 
We extracted five distinct visual features that can be analyzed 
from single fingerprint such as the one shown in Figure 1. 

4.3.1 Position of Minutiae 
The minutiae, the ridge characteristics of fingerprints, can be 
extracted throughout the process of image skeletonization as 
described in [1] and shown in Figure 1. The two most 
prominent local ridge characteristics, called minutiae, are ridge 
ending and ridge bifurcation [7]. A ridge ending is defined as 
the point where a ridge ends abruptly. A ridge bifurcation is 
defined as the point where a ridge forks or diverges into branch 
ridges. A typical fingerprint contains about 40–100 minutiae. 
Usually, automatic fingerprint matching depends on the 
comparison of these minutiae and their relationships to make a 
personal identification [8]. 

Thus, the positions of minutiae are the key information to 
recognize the distinction of fingerprints, and widely used for 
identification. We therefore chose this unique characteristic to 
be the most significant factor for sonification. For the sake of 
simplicity, we ignore the type of each minutia. 

4.3.2 Area, Pixel Range, and Push Pressure of 
Fingerprint 
Figure 2 shows several results of placing fingers on the 
fingerprint sensor screen with varying position, orientation, and 
pressure. Some are larger and fill the screen fully, while others 
only cover a small portion of the screen. In addition, some 
depict bright images, whereas others show dark images. Figure 
3 shows two images from the same finger, but with the left one 
stronger and the right one larger. 
    Our analysis first selects only those pixels over a given 
brightness threshold; for example in Figure 4 the red dots 
indicate the selected (sufficiently bright) pixels.  The “position” 
of the fingerprint as a whole is the 2D centroid of the locations 
of the pixels over the threshold.  (In figures 3, 4, and 9 the 
center of the cross superimposed over each fingerprint 
represents the centroid.)  The “area” of the fingerprint is simply 
the number of pixels above the threshold. Finally, the push 
pressure is the mean brightness of the pixels over the threshold. 

4.3.3 Angle of Fingerprint 
Users can apply their fingers to the fingerprint sensor at any 
angle. Usually, users touch the sensor near 0° (perfectly vertical 
orientation), however users often slightly rotate the finger, 
generally depending on the particular finger (thumb, index, etc.) 
and hand (left versus right). Our analysis of fingerprint angle is 
based on PCA (Principal Component Analysis) [9]. Again, the 
input data are the x and y positions of the pixels above the 
brightness threshold. These data points are normalized by the 
mean of each dimension. Next, by computing eigenvalues and 
eigenvectors, the principal components are acquired. We regard 
the first eigenvector (principal component) as the direction of 
input fingerprint image.  Since principal components are always 
orthogonal and our data is two-dimensional, the second 
component gives no additional information. Figure 3, 4 and 9 
show the principal components of various fingerprints. Note 
that for a given physical angle of the user’s finger on the sensor, 
differences in push pressure, by determining which pixels are 
above the threshold, may also somewhat affect the detected 
angle. 

5. INTERACTIVE FINGERPRINT 
SONIFICATION AND VISUALIZATION 
In this section, we describe how we sonify and re-form the 2D 
fingerprint image into a 3D animated visualization based on the 

five distinct features described above. Also, we describe the 
mapping methods used to sonify the fingerprint dataset. 
    In addition to the obvious form of interaction of having 
participants scan their fingerprints, Digiti Sonus also uses the 
metaphor of expanding circular ripples like those that would 
arise from dropping a stone into a pond. Alongside the 
fingerprint scanner is a visually inviting touch screen 
(described in Section 6.1); user touches on the screen 
interactively generate an outward-expanding ripple in the 
fingerprint image, centered on the touch point. We support only 
one ripple at a time; if a user retouches the screen before the 
previous ripple finishes then the old ripple disappears and a 
new one starts expanding from the new touch position.  This 
ripple affects both the visualization (as shown in Figure 6) and 
the sonification (as described in Section 5.1.2). 

5.1 Musical Expressions in Digiti Sonus 
In early prototypes [1], we mapped the positions and number of 
minutiae into the frequency range of sound by regarding the 
whole fingerprint image as a magnitude spectrogram, with the x 
and y axes of the fingerprint image interpreted as frequency and 
time axes.  In practice, this tended to create a very limited range 
of output timbres even though the minutiae of all fingerprints 
are distinctive. In order to broaden the diversity of timbre, we 
employed FM synthesis, with the five distinct fingerprint 
features mapped synthesis control parameters.  

5.1.1 FM Synthesis 
FM (Frequency Modulation) synthesis, discovered by 
Chowning in 1973 [10], is a way to alter the timbre of a simple 
waveform by modulating its frequency with another waveform. 
In the basic FM technique, a modulator oscillator modulates the 
frequency of a carrier oscillator [11]. One of the most 
significant benefits of FM synthesis is that a small number of 
input parameters easily control a large range of output sounds. 
This was a main reason we adopted FM, along with simplicity 
of implementation. Our Max/MSP implementation has five 
input parameters: fundamental/carrier frequency, amplitude, 

 
Figure 5. Overall fingerprint sonification and visualization 
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7. EVALUATION AND RESULTS 
Based on visual feature extractions and sound synthesis, we 
experimented sonification of fingerprints with hundreds of 
saved fingerprints acquired from the previous exhibition. 
Among those fingerprints, we selected five distinct fingerprints, 
which show each unique characteristic of fingerprint visual 
features. Each fingerprint has different ranges and numbers of 
parameters, and we could examine the diversity of sound in 
each different fingerprint. The detailed parameter numbers and 
3D image results are shown at Figure 9, and it also shows the 
spectrograms of the sounds resulting from this same set of 
fingerprints. 
 For example, the first fingerprint resulted in the carrier 
frequency in low frequency range, with a harmonic set of 
partials because of 1.0 as the harmonicity ratio. Overall long 
amplitude decay made a metallic bell-like tone. The second one 
is similar to the first but with a higher frequency range. The 
third fingerprint resulted in the most surreal timbre with very 
low carrier frequency range and low amplitude. The fluctuating 
modulation index of this fingerprint resulted in vibrating sound. 
The fourth one was similar to the third one due to the angle of 
fingerprint, however the push pressure was too weak and 
overall amplitude was low. As a result of fifth one, a low 
modulation index, a short duration, and a characteristic 
envelope created spooky fluctuating sound. Hence the timbres 
of sound were all different with their own signatures, which 
accomplished our goal that allows users to experience distinct 
sonification of their fingerprints.  
 We had also an informal user study in Elings Hall, University 
of California, Santa Barbara. Digiti Sonus was installed for five 
hours in a hallway, and about twenty participants, who mostly 
have background in music, engineering, and art, experienced 
this installation and filled out a survey. Most participants 
answered that they could easily understand how their 
fingerprints were transformed into sound, and visuals helped to 
make a connection between sound and fingerprint as well. 
However, recognizing the comparison with other fingerprints 
by sound was not very easy. It was because participants mostly 
observed very few numbers of fingerprints, which was not 
enough to listen and compare dynamically different timbre of 
sound. Some participants who had distinctive fingerprints 
created surprising sound due to the unique values of fingerprint 
angle, brightness and number of minutiae. They were satisfied 
with the result and could observe the distinction with other 
common fingerprints sound. Some of the feedback included 
ideas of morphing animation when acquiring a new fingerprint, 
and adding text information on the screen about how minutiae 
are analyzed and how to make different sound with a 
fingerprint. 

8. CONCLUSION 
We have developed an interactive system generating distinct 
sounds for each different fingerprint using FM synthesis. It 
embodies fingerprint sonification and 3D visualization, 
including novel techniques for user-intended fingerprint 
expression to affect audio results. In order to enable 
personalized sonification and more diverse timbres, the 
installation employs sound synthesis based on visual feature 
analysis such as minutiae extraction, area, angle, and push 
pressure of fingerprints.  Sonifying different fingerprint images 
results in diverse timbres, such that users could easily hear 
differences among fingerprints. Digiti Sonus provides each 
participant with a distinct individual sound based on his or her 
personal body data, and users can “perform” the presentation of 

their fingerprints as well as control the way notes are triggered 
in order to make the output as diverse as possible. 
    As future work, Digiti Sonus should be developed to give 
more diverse sound results. Additional sound synthesis 
techniques, such as granular, wave terrain, or additive, could be 
applied to broaden the variety of sound. Dynamic filters such as 
low/high pass filters should be considered as well. Future 
versions should also map fingerprint centroid to the 
visualization and/or sonification. In terms of hardware setup, 
the ZFM-20 fingerprint sensor reads images in low resolution 
and the reading speed is not fast enough. A more advanced 
fingerprint sensor with higher resolution and speed should be 
researched. It will improve the quality of visuals and sound, 
and enhance users' experience in better quality. 
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