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ABSTRACT 

This research is an initial effort in showing how a multimodal 
approach can improve systems for gaining insight into a 
musician’s practice and technique. Embedding a variety of 
sensors inside musical instruments and synchronously recording 
the sensors’ data along with audio, we gather a database of 
gestural information from multiple performers, then use 
machine-learning techniques to recognize which musician is 
performing. Our multimodal approach (using both audio and 
sensor data) yields promising performer classification results, 
which we see as a first step in a larger effort to gain insight into 
musicians’ practice and technique.  

Keywords: Performer Recognition, Multimodal, HCI, Machine 
Learning, Hyperinstrument, eSitar 

1. INTRODUCTION 
We imagine a new multimodal language between musician and 
machine in which the computer receives multiple channels of 
information from the performer and interprets these data to 
derive information allowing for more effective communication 
back to the musician. It is important for the computer first to 
understand who is the performer, in order to tailor a specific 
and meaningful interaction. Moreover, we suggest that our 
musician recognition framework establishes a foundational 
multimodal language that can be the basis for future novel 
interactive and educational experiences between musicians and 
computers. 

Two main approaches to performer recognition currently 
exist. The first uses audio-based techniques to identify 
characteristics from a recording [6-11, 13]. Stamatatos and 
Widmer explored this approach to quantify aspects of multiple 
players’ performance “styles” and classify/identify performers 
using stylistic subtleties [8]. Their use of simple audio-based 
classifiers to distinguish among a small set of highly trained and 
stylistically polished players inspired our approach for data 
capturing. 

The second approach is multimodal, combining audio with 
data from sensors capturing aspects of a performer’s physical 
motion.  Past research on other tasks in the field of Music 
Information Retrieval produced larger success rates through the 
use of multimodal instruments as compared to traditional audio-
only approaches [2,3], while still maintaining transparency 
between user and instrument. An abundance of musical 
information resides not only in the sound produced, but also 
within the performer’s physical interaction with the instrument, 
and we show that this physical information is beneficial to the 
difficult task of player identification.  

To test our multimodal approach, we used a modified 
North Indian sitar [1] and performed player recognition over a 
group of 5 beginner, intermediate, and expert sitar players. The 

sitar is an extraordinarily difficult instrument to master, and 
requires very specific and demanding techniques for both the 
musician’s left and right playing hands. Additionally, the 
instrument’s character is rich an expressivity and allows each 
musician to develop an individual “style” of playing, adding 
individualized variability to the sitarist’s technique. This makes 
the sitar a great candidate for empirical study of a particular 
player’s technique, because the musical literature and tradition 
ask for specific physical actions to be performed by the 
musician, while the musician develops individual characteristics 
of his/her own. 

The remainder of this paper is organized as follows. The 
Data Collection section describes our unique multimodal toolset 
of sensor-modified instruments and software that quantifies the 
physical input of performers.  The Data Sets section describes 
the different musical material gathered for our various 
performer recognition experiments. System Design and 
Implementation describes the various features extracted from 
our data sets, and Results discusses the findings derived from 
the experiments. 

2. DATA COLLECTION 

 
Figure 1 - Overview of the multimodal  

performer recognition system 

This section discusses the various tools used for our 
experimentation. This toolset includes a custom built 
hyperinstrument [5], as well as a custom built software solution 
for capturing synchronous audio and sensor data. Figure 1 
shows a general overview of our data capturing system. User(s) 
play a modified instrument (in our experiments, a sitar) and a 
computer captures the audio output and sensor data. The 
computer then extracts features from the performance and uses 
the features to perform player classification/recognition as 
discussed below. Lastly, the identification results are 
communicated back to the player. 

2.1 ESitar 
The ESitar is a multimodal hyperinstrument which has been 
transparently retrofitted with a unique sensor system [1]. 
Because the ESitar is a traditional sitar modified with sensors, it 
can be played and practiced as a regular sitar with very minimal 
adjustments. Not only does this make the transition between 
sitar and ESitar seamless for practiced players, but it also allows 
any sitar player (even beginners) to easily engage with the 



system, without having to become comfortable with an 
additional interface or instrument. For these experiments we use 
a force-sensing resistor (FSR) to capture the right hand 
(plucking) technique and a fret resistor network to identify the 
left hand (fretting) technique, as described in [1]. 

2.2 Super Recorder 
Super Recorder is a software suite created to synchronously 
capture audio and sensor data from the ESitar. Super recorder 
has been designed as an additive framework, which easily 
allows for the integration of new sensor systems on both the 
ESitar and other hyperinstruments. The GUI for Super Recorder 
was programmed in the Processing programming environment, 
and communicates with the programming environment ChucK 
[12], via OSC [15]. The GUI provides an easy interface for 
setting up controlled experiments and visual feedback for all of 
the incoming data. 

The current implementation of Super Recorder 
simultaneously collects an audio recording of the performance 
and data from the thumb FSR, the fret-sensing resistor network, 
and a three-axis accelerometer on the headstock of the ESitar, 
as well as from another three-way accelerometer placed on the 
performer’s body to extract additional gestural information 
from the physical performance. The experiments described in 
this paper make use of only the audio recordings, thumb, and 
fret sensors, but we believe the accelerometer data will be 
useful in future research.  

Data from all sensors are sampled at 100 Hz and stored as 
uncompressed wav files at a 44100 Hz sampling rate.1 A 
metronome is also built into Super Recorder, allowing for more 
highly controlled and synchronous experiment set up. 

3. Data Sets 
We used the system described above to record three sitar 
performance data sets, ranging along a continuum from strictly 
codified material to improvisation.  In each case we recorded 
audio, thumb, and fret sensor data from five musicians. 

3.1 Data Set 1 – “Exercises” (Practice 
Routine) 
Our first data set was designed to record a player’s individual 
performance characteristics during disciplined practice 
exercises. We chose two central exercises from the vast 
literature of classical North Indian practice methods [4]: Bol 
patterns and Alankars. Bol patterns are specific patterns of da 
(up stroke), ra (down stroke), and diri (up stroke and then down 
stroke in rapid succession), which are explicitly used in sitar 
practice plucking training, as well as in performance.2 Alankars 
refer to scalar patterns that can be modally transposed; they 
form the basis of many musical ornaments and are also often 
used for melodic development and fretting practice. We used 
the Bol patterns and Alankar exercises shown in Table 1, played 
in the Indian Rag Yaman3 at 220 beats per minute. Each of these 
15 exercises was repeated as necessary to achieve a duration of 
60 seconds. 

                                                                 
1 Upsampling is with a simple step function: each sensor sample 

repeats 441 times in the output wav file. 
2 In general da represents the dominant stroke, which for sitar is 
upwards but for other instruments such as sarode is downwards. 
3 Rag Yaman uses the Lydian scale, i.e., major with a sharpened 
fourth scale degree. 

 
Table 1 - Bol Pattern and Alankar Exercises (Data Set 1) 

3.2 Data Set 2 – “Yaman Gat” (Composition) 
A gat is a fixed instrumental composition that provides the 
main theme(s) of a performance. Data set 2 contains ten 60-
second recordings of each performer (50 total) repeating a 
particular gat in rag Yaman [4] eight times at 132 bpm. 

3.3 Data Set 3 – “Improv” 
Data Set 3 consists of sensor data and recordings collected from 
five players each performing ten different 60-second long free 
improvisations. This data set is completely unconstrained in 
terms of performers’ technique; it was designed to support 
experiments to determine whether player performance data is 
context/piece specific, or truly a technique-based identifier.  

4. System Design and Implementation 
We extracted features from the audio recordings, thumb, and 
fret sensors using Matlab, and then stored them in a feature 
matrix suitable for classification using the Weka Data Mining 
toolset. 

 
Figure 2 – Overview of Data Capturing and Feature 

Extraction Suite 

4.1 Feature Extraction 
Each sensor outputs continuous information and the recorded 
audio is also continuous, making the total amount of data a 
linear function of duration.  For classification purposes, 
regardless of machine learning technique, we need a set of 
features, each of which collapses the recorded time-series data 
into fixed number of scalar quantities. We examined several 



features from both the audio and sensor data; Figure 2 shows 
the ones that yielded the best results).  

4.1.1 Thumb Pressure Features 
The arithmetic mean is a simple method of extracting a single 
characteristic average of the thumb pressure sensor data for 
each recording. Our player-pool included players from various 
skill-levels; we hypothesized that more highly trained sitarists 
might maintain a more consistent range of thumb pressure for 
the duration of a performance as compared to beginner players. 
To examine this hypothesis, variance was used. Spectral 
centroid was used to examine high-frequency transients 
produced while plucking, effectively relating to the amount of 
change (from subtle to jerky) in each player’s plucking 
technique. 

4.1.2 Fret Features 
Fret Mean, Variance, RMS, and Spectral Centroid were also 
extracted from the fret sensor network. We were interested in 
determining if data from fretting tendencies and abilities could 
be effective player identifiers. For example, in data sets 1 and 2, 
fret mean could be an indicator of how frequently a player’s left 
hand lost contact with the string. In data set 3, fret mean is a 
crude indicator of pitch register for each improvisation. The 
amount of fret variance per window could perhaps suggest the 
amount of distance and range covered by the players fretting 
hand at different moments of a performance. 

4.2 Windowing 
Each of our data sets consists of 60-second recordings.  In 
addition to computing each feature once per 60-second 
performance, we also experimented with “windowing” the 
performances into non-overlapping time segments and 
computing the features once per segment. For example, with 
10-second segments we divide each 60 second data recording 
into six 10-second “chunks” and compute our features for each 
chunk, multiplying our amount of training data by a factor of 
six by computing each feature over a smaller excerpt of music.  
(See the Windowing Results section below). 

4.3 Classification 
Five different classifiers were used in the machine learning 
experiments. These include a support vector machine trained 
using Sequential Minimal Optimization (SMO), a multi-layer 
perceptron (MLP) backpropagation artificial neural network, 
IBk, which implements the k-nearest-neighbors classifier, 
decision tree (J48), and Naïve Bayes. More detailed information 
about these classifiers and Weka, the data mining tool used in 
these experiements can be found in [14]. 

5. Results and Discussion 
This section describes the outcomes obtained from our various 
machine-learning experiments.  In each case we evaluated 
performance with 10-fold cross validation. Keep in mind that 
every data set had 5 performers, so chance performance would 
be 20% performer recognition accuracy. 

5.1 Audio-only Results 
This section demonstrates the classification results achieved by 
examining only the features extracted from the audio 
recordings. The advantage of this technique is that it can be 
performed with any instrumental player, using only the audio 
output of their instrument (either with a microphone or direct 
input), without requiring any modifications to the instrument. 

Table 2 shows the classification results achieved using 3 
different classifiers, for each data set alone, as well as all three 

data sets combined into one large corpus. Multilayer Perceptron 
proved to be the most accurate classifier in these tests, with the 
best accuracy being achieved on the exercises and Yaman gat 
composition data sets. For each pass in those two data sets, each 
player repeated the same sequence of defined notes/plucks for 
the duration of 60 seconds. Additionally, in data set 2, each pass 
contained the same pattern being played for its entirety. These 
two best accuracies may therefore be the result of slight data 
over fitting. Still, accuracy on the free improvisation data set, as 
well as combining all the data into one large pool yielded very 
satisfactory results.  

 
 Exerc. 

(%) 
Yaman 

(%) 
Improv 

(%) 
All 
(%) 

MLP 96.33 100 90 85 
SMO 79.33 95.5 81 66.43 
Naïve Bayes 87.33 98 71.5 58.14 

Table 2 – Accuracy Achieved using Audio Only  
(15 Second Windowing) 

5.2 Sensor-only Results 
Table 3 shows the results of the same machine learning 
processes applied to only the sensor data. While the accuracy 
percentage achieved was slightly below the results from our 
audio features, the results are very exciting because they show 
that useful data does indeed reside in the musicians’ 
physical/gestural information.  
 Exerc. 

(%) 
Yaman  

(%) 
Improv 

(%) 
All (%) 

MLP 84.33 100 89 75.15 
SMO 63.67 100 67 60 
Naïve Bayes 55.67 99 69 46 

Table 3 - Accuracy Achieved using Sensors Only  
(15 Second Windowing) 

Again, the highest accuracy was achieved using the Yaman 
gat data set, for which the sitarists were instructed to play the 
same scalar and plucking patterns repeatedly, for 10, 60 second 
long passes. We attribute part of the success of the achieved 
accuracy to the fact that the repetition asked of the players by 
the data set routine afforded the players ample time to get into a 
comfortable physical pattern, requiring the least amount of 
physical change and adjustment compared to the other data sets. 

Using features derived only from our sensor data, the 
improvisation data set yielded the 2nd most accurate player 
identification across all three classifiers. While this could be the 
result of chance, it raises the possibility that when improvising, 
the musicians might have fallen into physical comfort-zones or 
patterns that they naturally tended to play. In the exercise 
routines (data set 1), for each pass the sitarists were required to 
change the fretting and plucking patterns to a hard defined set 
of practice routines. Because the exercise data set required 
specific plucking patterns that changed on each pass, and the 
improv data set allowed the musicians to freely play whatever 
came to them naturally, it is highly possible that specific 
plucking tendencies of the players technique were exposed 
through the improv data set, resulting in a higher classification 
accuracy than the exercise data set. 

5.3 Single Sensor Feature Results 
In addition to testing the accuracy of our sensors using a 
combined set of features, we decided to test each feature 
independently to see which features extracted from our sensor 
data were the strongest. Table 4 shows our results using a 15 



second window on the sensor data obtained from all of our data 
sets combined. The best results were 62.29% accuracy using 
Multilayer Perceptron with our thumb-pressure mean feature. 
We experimented with different combinations of sensor features 
to choose the final feature-set combination for our system 
(described in section Sensor Features). When comparing tables 
3 and 4, we can see that a multi-sensor approach helped 
increase our performer recognition accuracy by 12.86% (from 
62.29% [thumb mean alone], to 75.15% [all sensor features]) on 
all data sets using Multilayer Perceptron. 
 

 MLP  
(%) 

SMO 
 (%) 

Naïve Bayes 
(%) 

Mean (T) 62.29 57.86 59.15 
Variance (T) 36 36 34.71 
RMS (T) 37.57 34.86 36.43 
SC (T) 20.57 24.57 23.43 
Mean (F) 21 20.71 20.43 
Variance (F) 22 18.71 23.57 
RMS (F) 27 21.14 23.71 
SC (F) 20.57 24.43 20.57 

Table 4 - Accuracy Achieved using Individual Sensor 
Features on All Data Sets, T=Thumb F=Fret (15 Second 

Windowing) 

5.4 Multimodal Results 
 Exerc. 

(%) 
Yaman 

(%) 
Improv 

(%) 
All 
(%) 

MLP 100 100 100 100 
SMO 97.33 100 92.5 86.14 
Naïve Bayes  85.33 100 93.5 67 
Table 5 - Accuracy Achieved using Multimodal Data (15 

Second Windowing) 

The results in this section were achieved by combining both the 
audio and sensor features into a multimodal database. Table 5 
(above) shows the accuracy of the same three classifiers applied 
to all of the data sets as in tables 2 and 3. Multilayer Perceptron 
proved to be our best classifier here, yielding 100% accuracy on 
all data sets. While our experiments using either the audio 
data/features only or the sensor data/features only were 
satisfactory, combining them together into a multimodal 
database proved to be the most effective solution for performer 
recognition. This corroborates the use of a multimodal approach 
to improve systems for musical practice information 
acquisition. 

5.5 Windowing results 
Table 6 shows the accuracy of our system using Multilayer 
Perceptron over a variety of window periods. Our machine-
learning experiments yielded the best results with a window 
size of 15 seconds. 

The decrease in reliability of the computer’s ability to 
perform musician recognition around our 15 second window 
sweet-spot can be attributed to a variety of factors. As the 
window size decreases, size of the training set increases 
accordingly, however, as a result, each feature describes a 
smaller (and perhaps less meaningful) piece of music. For 
example, the mean value derived from the thumb pressure 
sensor at 5 second windows, while providing more “mean 
values” than larger window sizes may not provide a large 
enough chunk of music for the extracted mean to be 
meaningful. Likewise, 30 second intervals may not be an 
appropriate representation of the actual thumb-pressure mean 
because the mean was not determined frequently enough. 

Furthermore, (with the one exception of our sensor corpus at 
10-second windows), the accuracy identification at 10-seconds, 
5-seconds, and 3-seconds, reduces. This suggests that the 
features need to be determined over a longer window period to 
allow enough information (samples) to be examined for an 
accurate representation of the feature.  

 
Window 

Size 
(seconds) 

Audio 
only (%) 

Sensor only 
(%) 

Multimodal     
(%) 

60 84.57 72 93.14 
30 85.71 74.57 96.28 
15 85 75.15 100 
10 84.09 79.24 98.85 
5 82.33 76.38 97.76 
3 74.97 72.43 96.29 

Table 6 – Identification Accuracy of Sensors vs. Audio vs. 
Multimodal Fusion using a combined corpus from all data 

sets  (at various window periods) 

5.6 Training and Testing on Different Data 
Sets 

 
Chart 1 - Audio vs. Sensor vs. Multimodal Accuracy 

Achieved for Improv data set after training with Exercise 
and Yaman data sets.  

For this experiment we trained the machine learning algorithms 
using the Exercises and Yaman gat data sets, then attempted 
player recognition on the improvisation data.  This is a much 
more difficult, but perhaps a more “real” situation, in which we 
trained the system on a particularly defined set of data and 
asked it to classify freely improvised playing. 

Chart 1 (above) is a bar graph comparing the results we 
achieved for audio-only, sensor-only, and our multimodal 
approach, using the Multilayer Perceptron classifier in each 
case. In contrast to previous trends, sensors features alone had a 
slightly higher success rate than audio features alone (30.4% 
accuracy vs. 28% accuracy). But as with previous experiments 
however, our multimodal approach was the most successful, 
with an accuracy rate of 39.2%.  Although these results are far 
from perfect, they are very encouraging in that a multimodal 
approach improves successful musician recognition even in this 
more difficult case.  The fact that the audio features alone 
performed only 8% more accurately than chance indicates that 
there may be room for improvement with our system’s audio 
features. 

6. Conclusion 
We have developed a multimodal system to gather performance 
data from musicians and extract features that relate elements of 
their technique and personal style.  Promising initial results in 
performer recognition show that our system is able to capture 



something meaningful about these performances and suggest 
that our system may also be useful for other tasks. 

We hope that gathering a larger data set, with data from 
additional sensors, will allow future work to more accurately 
perform player identification. In addition, we hope to explore 
additional audio features to make our multimodal system more 
robust. We have built our framework on this concept, and our 
software suite, Super Recorder, already supports additional 
sensors on the ESitar. We hope to advance our work both on the 
ESitar, as well as to other instruments so that our research will 
reach and benefit a wider audience of training musicians.  

Even with our simple features, the success at performer ID 
of our multimodal machine learning approach suggests that this 
approach captures something essential about an individuals sitar 
playing,. Much like a training athlete records workout routines, 
weight-lift increases, or fastest running times, we hope to use 
our system to quantify information about a player’s 
performance. For example, because our data were recorded 
synchronously with a metronome, we can compare, for each 
note, when the player’s left hand pressed the fret versus when 
the note was actually played (using an audio-based onset 
detector) versus when the note was expected to be played 
(based on tempo). Additionally, by examining the thumb sensor 
data synchronously recorded, it may be possible to determine if 
the player used the correct plucking stroke (up/down). This 
proposes many exciting questions regarding a musician’s 
playing technique. How close to the expected pluck time did the 
player actually play the note? Was it early? Late? How does the 
players’ performance change at different speeds (tempos) or 
musical contexts (practice exercises, improvisation…etc)? Did 
the musician use the correct stroke when playing? All of these 
questions are important to a musician’s practice as he/she trains 
to become a more accurate, and expressive musician, and a tool 
to quantify and track these empirical aspects of musical 
performance could be quite valuable for musicians’ 
development. In addition to developmental-centric information 
about a musicians playing, reliably extracting stylistic elements 
from a player’s performance is also a possibility of future 
research using this approach. Because two similarly skilled 
musicians can develop individually stylistic elements to their 
playing, it is also possible that by examining our data, stylistic 
differences can be identified through empirical means. We 
believe our results showing the ability of the computer to 
perform musician recognition suggests the data sets recorded 
provide insight into the answers of these questions.  

While this research attempts to test our multimodal 
approach using traditional classification techniques, we have 
also tried to create an umbrella in which under, a future of 
interactive learning can take place through a musician’s 
interaction with intelligent machines. We have provided 
empirical data that shows it is possible to create unobtrusive, 
HCI-minded instruments that require very little adjustment on 
the part of the musician, while opening the doors to a world of 
possibilities through the use of HCI and machine learning. 
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