
behaviorism : A Framework for Dynamic Data Visualization

Angus Graeme Forbes, Tobias Höllerer, and George Legrady

Abstract— While a number of information visualization software frameworks exist, creating new visualizations, especially those that
involve novel visualization metaphors, interaction techniques, data analysis strategies, and specialized rendering algorithms, is still
often a difficult process. To facilitate the creation of novel visualizations we present a new software framework, behaviorism, which
provides a wide range of flexibility when working with dynamic information on visual, temporal, and ontological levels, but at the
same time providing appropriate abstractions which allow developers to create prototypes quickly which can then easily be turned
into robust systems. The core of the framework is a set of three interconnected graphs, each with associated operators: a scene
graph for high-performance 3D rendering, a data graph for different layers of semantically-linked heterogeneous data, and a timing
graph for sophisticated control of scheduling, interaction, and animation. In particular, the timing graph provides a unified system to
add behaviors to both data and visual elements, as well as to the behaviors themselves. To evaluate the framework we look briefly
at three different projects all of which required novel visualizations in different domains, and all of which worked with dynamic data in
different ways: an interactive ecological simulation, an information art installation, and an information visualization technique.

Index Terms—Frameworks, information visualization, information art, dynamic data.

”But the greatest thing by far is to be a master of metaphor.
It is the one thing that cannot be learned from others; and
it is also a sign of genius, since a good metaphor implies an
intuitive perception of the similarity in dissimilars.” Aris-
totle [3]

”We shall define a database as the model of an evolving
physical world.” J.R. Abrial [1]

1 INTRODUCTION

Developers of visualization projects are primarily engaged in de-
signing and implementing ”good metaphors” at different levels of a
project, including the organization of the data, the visual presentation
of the data and the techniques for interacting with the data. Despite
various approaches to define methodological principles, there is a lack
of consensus about appropriate, sufficiently detailed methodologies
for creating effective visualizations quickly and robustly. Moreover,
the types of projects which come under the rubric of information vi-
sualization continue to expand, and methodological principles need to
address related visualization domains such as information art, knowl-
edge visualization, and network visualization, among others. The
kinds of data that need to be represented are often heterogeneous and
increasingly complex in nature, and software frameworks need to al-
low developers to create specific ontologies that work with different
combinations and categories of data. Many projects also incorporate
temporal elements, and the use of animation to create interactive nar-
ratives which enhance information visualization tasks is another issue
that needs to be addressed by the software framework. This paper
examines these issues and introduces a new information visualization
framework called behaviorism which address some of the concerns
inherent in the above issues in order to facilitate the creation of novel
visualizations.

behaviorism provides a wide range of flexibility that lets developers
work with dynamic information on visual, temporal, and ontological

• Angus Graeme Forbes is with the Media Arts & Technology Department at
the University of California, Santa Barbara, E-mail:
angus.forbes@mat.ucsb.edu.

• Tobias Höllerer is with the Department of Computer Science at the
University of California, Santa Barbara, E-mail: holl@cs.ucsb.edu.

• George Legrady is with the Media Arts & Technology Department at the
University of California, Santa Barbara, E-mail: legrady@arts.ucsb.edu.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online
24 October 2010; mailed on 16 October 2010.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

levels, but at the same time provides appropriate abstractions which
allow developers to create prototypes quickly which can then easily
be turned into robust systems. The core of the framework is a set
of three interconnected graph structures, each with associated opera-
tors: a high-performance scene graph to render 3D graphics, a data
graph to store and analyze different layers of semantically-linked het-
erogeneous data, and a sophisticated timing graph to control schedul-
ing, interaction, and animation. In particular, the timing graph pro-
vides a unified system with which to create and schedule behaviors
that can organize both data and visual elements, as well as the behav-
iors themselves. The data graph holds various kinds of Node objects
which represent data elements and Relationship objects which
represent the connections between Nodes. The scene graph holds
Geom objects which contain methods to draw themselves based on
Node objects they reference from the data graph. The timing graph
holds Behavior objects which control both data operations on the
data graph, including the retrieval, filtering, processing, and analysis
of Nodes, and visual operations on the scene graph, including the
layout, rendering, and animation of Geoms.

2 MOTIVATION AND RELATED WORK

2.1 Methodological Concerns
An issue discussed recently within the information visualization litera-
ture is the fact that there is no universal methodological framework that
guides visualization designers and developers to create or prototype all
flavors of visualization projects easily and quickly. For example, [10]
surveys common taxonomies, guidelines, and reference models and
notes that they tend to be data-oriented approaches that do not address
“creativity and problem-solving challenges that occur in the design
process.” In a recent survey of challenges and unsolved problems in
human-centered visualization environments, [21] bemoans the incom-
pleteness of visual taxonomies and the lack of a working methodol-
ogy to create effective visual metaphors, making it difficult to manage
the constant proliferation of new data. Some authors have pointed to
the fact that any overarching visualization methodology is necessar-
ily complex and incomplete. The processes involved in information
visualization tasks are not fully understood, either in terms of cog-
nition or perception, and finding effective visualization strategies is
enmeshed in social, cultural, and linguistic constructions [5]. A more
pragmatic article proposes a model which emphasizes the importance
of correctly characterizing the domain problems for a visualization
project, and then iteratively addressing threats to a tiered set of com-
mon implementation issues [27]. Other recent articles describe “de-
sign ideation” strategies from the domain of architecture and graphic
design that might help to generate new communicative ideas, for ex-
ample see [6, 7]. The behaviorism framework provides an effective
programming framework in the absence of an exhaustive methodolog-



ical framework. By making it easier to characterize data and generate
visual and interaction metaphors, developers can more quickly test out
ideas, using different methodologies to create them.

Complicating this awareness of various methodological issues is
the expansion of the domain of information visualization to include
broader conceptualizations of the targeted tasks and goals of visual-
ization projects. Early discussions of information visualization, such
as [30], attempted to categorize both the kinds of data types that visu-
alization projects worked with as well as the tasks users would carry
out using them. This categorization generally assumed that data was
static and amenable to a straightforward mapping to visual encoding.
More recently, there have been a number of re-evaluations of this as-
sumption, leading to new considerations of what inputs to visualiza-
tion projects are appropriate, what types of data processing might need
to be done to transform raw data into visual encodings, and also what
kinds of outputs are acceptable and valuable. For instance, [22] dis-
cusses the positive effects of aesthetics on information visualization,
pointing to projects which have an “extrinsic” focus and an “interpre-
tive mapping” of the raw data to its visual output. In particular, it
claims that broadening the scope of information visualization to in-
clude extrinsic concerns allows for “high-level interpretations of com-
plex datasets.” Similarly, a recent paper measures how certain kinds
of “visual embellishment” in fact increase even the fundamental com-
prehension of data [4].

Another kind of broadening involves the use of data analysis tech-
niques to provide more sophisticated manipulation of the raw data in
order to facilitate human reasoning about a particular problem. In this
view, the mapping of raw data to visual representation is mediated by
iterations of clustering, filtering, and analyzing data. That is, an effec-
tive visualization project may involve the creation of new types of data
through aggregation, sampling, and other types of processing [36].

A third kind of broadening involves what constitutes raw data. The
raw data can often come from disparate sources, and needs to be or-
ganized in a way amenable to analysis operations and visual repre-
sentations. For instance, [36] discusses the challenges of integrating
space and time, looking at systems which need to handle streams of
dynamic, constantly arriving data, and which need to perform some
kind of automated “information synthesis” prior to being visually en-
coded. According to [21], generating effective “time dependent visu-
alization techniques” is an ongoing challenge: “Watching objects in
motion generally provides more insight than static images, but also re-
quires more cognition on behalf of the viewer. The transient nature
of a dynamic visualization can make some things not only easier to
see, but also more difficult to see.” The dynamism inherent in this
kind of data may need to be handled differently than static data, and
visual representations of it might more naturally be displayed as ani-
mations. A recent article explores the often under-utilized role of time
and narrative in information visualization and argues for the impor-
tance of motion as a primary perceptual form that aids comprehension
of visual representations. In particular, it draws parallels to film edit-
ing and examines the connection between dynamics and narrative and
ways in which the movements between frames and editing techniques
influence meaning [25]. Another interesting possibility arises if data
is thought of having some form of agency. For example, [17] explores
the idea of “organic information” in which data simulates certain prop-
erties of living organisms to create emergent data and/or emergent vi-
sualizations. A recent paper also mentions that simulations, or perhaps
hybrids between information visualization systems and simulation en-
gines, might function as a “creativity support tool” to inspire novel,
creative approaches to problems [31].

2.2 Visualization Frameworks

Historically, there is a correlation between methodological approaches
and the software toolkits that are created to assist in creating visual-
izations. That is, the approaches and concerns of the software toolkits
echo those methodological concerns. For instance, an influential ar-
ticle concerned with developing a basic taxonomy of common static
data types and appropriate visualizations [30] led, perhaps indirectly,
to a host of visualization frameworks which focused on providing tools

to simplify the creation of visualizations that addressed this taxonomy,
for example [9, 14, 29]. Various models that describe the need for a
transformation of raw data to visual data (for example, see [10, 8])
are paralleled by frameworks that manage that transformation. For
instance, [20] enables developers to create custom data filtering and
processing methods. Programmers can then create visualizations by
defining “executable chains that can then be run to manipulate visual
data and perform animation.” That is, the visualizations are created
through direct transformations of the data model.

Issues central in the visual analytics community, such as being able
to generate knowledge through statistical analysis and being able to
keep track of the reasoning processes, are paralleled by frameworks
which address those concerns. For instance, [32] supports the pro-
cess of analytical reasoning through “foraging” and “sensemaking”
tasks which are used to posit and judge hypotheses about the data. A
knowledge database is used to keep track of sensemaking tasks, such
as recognizing correlations between different data elements. Other ap-
proaches, such as [35], emphasize the availability of a statistical toolkit
which can be used to analyze the data.

Current or ongoing concerns in the information visualization com-
munity involve the use of time and animation and strategies for think-
ing about how new visual analogies can be generated quickly. Vi-
sual languages (such as [37, 11]) or general prototyping programming
frameworks (such as [24, 28]) aim to let developers “sketch” visual-
ization and interaction ideas quickly before deciding whether or not to
commit to developing a more robust implementation. Another frame-
work enables the overlap of time-dependent processes with informa-
tion visualization techniques, allowing users to create “process visual-
izations” which incorporate dynamic and temporal data [13].

behaviorism echoes the current methodological concerns by allow-
ing developers create rich visual representations of raw or processed
real-time, heterogeneous data and also addresses the likely possibil-
ity that new concerns will become important in the future. It aims to
be a robust creativity support tool providing flexible mechanisms for
developing visualizations that need to provide more sophisticated in-
tegration between elements of time, graphics, and data. In particular,
it allows developers to quickly create visual narratives which directly
or indirectly map the source data. In so doing, it is able to support
the development of a wide variety of visualization projects, including
ambient data visualization, data art projects, social networking visu-
alizations, simulations, as well as traditional interactive information
visualization projects.

2.3 Design Decisions
behaviorism was designed to address the various concerns related to
the complexity that dynamic data introduces into a project. These
include programming issues that arise from modeling complex data,
concurrency issues that arise from working with multiple input streams
and user inputs, and scalability issues that arise from working with
large data sets. behaviorism is primarily structured using separate
graph components which address the organization of data, the render-
ing of visual elements, and the scheduling of processes. Developers
can create and reassess the data, visual, or temporal models of the vi-
sualization system at any stage of the design without disrupting other
aspects.

The organization of data is an important design decision in and of
itself which potentially affects performance and scalability. For com-
plex visualization projects, the relevant information that needs to be
visualized may exist at the crossroads of raw information, statistical
analyses, and user interaction. In other words, the data may be dy-
namic in multiple ways, and a primary task of an information visual-
ization designer is to develop an effective model of the data which en-
ables successful visualization representation. Due to memory or pro-
cessing constraints it may not be feasible to keep all raw data within
the data graph; a node may represent an aggregation of information
or an abstraction or summary of data stored remotely or within an
external database. In order to manage large amounts of data, spe-
cialized data elements can be used which simplify or combine sets of
discrete elements, discarding the original information either program-



matically or in response to user-interaction. Similarly, visual elements
can be grouped together to minimize rendering time if needed. The
data, scene, and timing graphs are all built on concurrent data struc-
tures which can be safely updated by different threads. All updates to
the graphs are handled by different types of scheduled events (called
Behaviors, discussed in detail below). These events, though poten-
tially executing asynchronously, update the graphs within a synchro-
nized rendering loop which regulates their interaction with data and
visual elements and minimizes problematic side effects. In order to
provide the flexibility necessary to render novel visualizations of dy-
namic data, behaviorism includes a real-time, hardware-accelerated,
3D graphics engine with mechanisms to link visual elements to data
as well as methods to create text, images, video, and user interface ele-
ments. Animation is particularly well-suited to demonstrate changing
data and narrative elements, and behaviorism supports the animation
of visual elements, both supporting transition effects and the use of
animation as a meaningful indicator of particular qualities of data.

Defining a visualization project as a set of graphs controlled by
behaviors is similar in some ways to dependency graphs used in 3D
modelling applications (described for instance in [19]). Core differ-
ences include the ability to programmatically update and restructure
the graphs during runtime via user-interaction of incoming data events.
Additionally, there is an emphasis on interactive information visualiza-
tion representations which run in real time. behaviorism also bears a
resemblance to media engines and rich internet application environ-
ments such as [2] and [26]. While an information visualization frame-
work could certainly be built upon them, these environments in and of
themselves are more generalized programming platforms and as such
do not incorporate, for instance, a dedicated data graph for organizing
and analyzing data.

3 IMPLEMENTATION AND CORE COMPONENTS

behaviorism is made up of three interlocking core components of the
framework: the data graph, the scene graph, and the timing graph. The
data graph stores pieces of data as Node objects, each of which can be
linked together via one or more Relationship objects. The scene
graph stores visual objects, or Geoms, within a hierarchy of mod-
elviews. The timing graph stores scheduled events, or Behaviors,
that update elements in the data graph and the scene graph. Nodes
of data can be created programmatically or defined automatically by
parsing the results of queries to external databases. The creation and
visual appearance of Geoms can be based on the structure of the
data graph or the information in one or more of the Nodes. The
timing graph is defined initially by the developer, but Behaviors
can also be created or altered by user input, or by examinations of
the data graph and the scene graph. These core graph components
use concurrent data structures which allow for robust asynchronous
traversals and updates from different threads. The behaviorism scene
graph uses OpenGL for hardware-accelerated rendering of the Geoms.
The framework itself is written in Java 6 and utilizes the JOGL2 Java
OpenGL bindings [34, 18]. The graph structures are accessed within
the main programming thread (or sub-threads spawned from that main
thread), via user interface handlers, or in response to new data events.
Figure 1 shows a high-level view of the various threads creating and
placing Behaviors within the timing graph, which then add or up-
date elements on the data graph and the scene graph, or the timing
graph itself. Additionally, Geoms in the scene graph can be updated
by Nodes on the data graph.

3.1 The Data Graph
Data in behaviorism is semi-structured and linked together by seman-
tic relationships defined by the developer for a particular visualization
task. This layer of representation is useful for conceptually organiz-
ing the data and also for traversing the data for data processing and
analysis.

3.1.1 Properties of Data
The data graph can be used for different purposes. For instance it can
be used as a local repository of some portion of remote data. It can also

timing 
graph

data 
graph

scene 
graph

concurrent graph structuresupdating threads

mouse & keyboard input

data events

programming threads

Fig. 1. High-level overview of behaviorism architecture. The various
programming, input device, and data event threads create Behaviors
and place then on the timing graph. When the timing graph is traversed
during the rendering loop they further create and update elements the
data graph and the scene graph.

be used as a dynamic model of locally generated information (e.g.,
for simulations or knowledge representations). The data graph has a
number of properties which make it adaptable to various purposes and
able to represent different kind of data. It is heterogeneous, semantic,
traversable, filterable, analyzable, and dynamic. That is, it can con-
tain arbitrary types of data, the data is connected by semantic links, it
can be traversed, filtered and analyzed through special Nodes, and it
is dynamic both in that it can receive new information from external
sources, and in that it can contain data that fluctuates in response to
external sources, user input, or as the result of intrinsic properties that
cause it to change in some way over time. Data objects, called Nodes,
are linkable, via Relationships, to other Nodes, which embeds
them within the data graph. The basic Node class can be extended
by adding any attributes necessary to describe the data it contains. In
addition to the Nodes that represent raw data, a number of additional
Nodes which special functionality can be placed in the data graph.
These include, among others, Collector objects, which group sub-
sets of the data graph based on particular filters, and Analyzer ob-
jects, whose attributes are the results of an analysis of one or more
other Nodes. Since these Collector and Analyzer objects are
themselves Nodes, they can be used by a Geom to indicate how they
will be rendered.

3.2 The Scene Graph
behaviorism includes a high-performance 3D scene graph for stor-
ing information about the visual objects, or Geoms, attached to the
World, which is the root of the scene graph. Similar to the original
scene graph implementations (such as [33]) and those that are used
in game engines (such as [12]), the behaviorism scene graph allows
developers to position Geoms in relation to a parent Geom, and to
inherit the transformations that are applied to the parent. A special
camera Geom is attached to the World and positioned in absolute co-
ordinates. Rather than being rendered, the camera controls the view of
the 3D space. As the scene graph is traversed, the modelview matrix
of each Geom is calculated and then rendered with appropriate state
for lighting, blending, and material properties.

3.2.1 Properties of Geometry
All Geoms share a number of basic properties, defined by a set of vari-
ables and methods to update these variables: they are transformable,
selectable, texture-able, shade-able, controllable, and reflective. That
is, they can: be positioned in space; selected or “picked” by various
inputs; overlaid with one or more textures; be bound to one or more
GLSL shader programs that run on the GPU; have animation attached;
and can be associated with one or more nodes of data. Some of these
properties can be ignored or set to default values, or they can be cus-
tomized or extended for specific situations. Less central properties
which are available to all Geoms include color, material, and light-
ing. Additionally, various default state parameters such as blending
information and depth testing can be specified on a per-Geom basis. A
large set of default Geoms are included with Behaviorism, including



Geoms for basic 2D and 3D shapes, images, videos, and text. Any of
these can be subclassed to add customized attributes or functionality,
or new ones can easily be created.

3.3 The Timing Graph
The timing graph contains Behavior objects which define and
schedule operations upon Geom objects in the scene graph and Node
objects in the data graph, and which can also control or manipulate
other Behaviors in the timing graph. A set of base packages which
define a range of different types of Behaviors are provided with
behaviorism. Alongside common timing mechanisms, different inter-
faces are available that specifically control the items in either the scene
graph or the data graph.

3.3.1 Properties of Behaviors
By providing scheduled building blocks of logic, behaviorism aims
to make it simple to program complex, temporal operations and also
to make it easy to to think about and customize the various parts of
a complex operation. To that end, Behaviors have the following
properties: they are stackable, chain-able, flexible, mutable, and rel-
ative. That is, a Behavior can be stacked onto multiple elements;
multiple Behaviors can be chained together to compose more com-
plex actions; they are flexible in that they can contain arbitrary logic;
they are mutable and both the strength and type of effect they have on
elements can change; and they are relative in that they do not interfere
with other Behaviors from concurrently updating or changing the
same element.

The Behaviors are categorized into three types– continuous, dis-
crete, intermittent– based on scheduling functionality, and then further
defined by their effect on Geoms, Nodes or other Behaviors. A
continuous Behavior interpolates a value or a set of values across a
span of time. The most basic version simply determines what percent-
age of time has passed between its activation time and its deactivation
time, performing a linear interpolation. A set of customizable easing
functions are also included with behaviorism. By attaching an easing
function to a continuous behavior we create a new value from the raw
percentage of time passed between activation and deactivation. Easing
functions are commonly used for pleasing transition effects, but they
can in fact be used for any purpose. A discrete Behavior changes
the state of a set of discrete variables associated with a Behavior or
a Geom. For instance, a behavior might send a pulse to a Geom at par-
ticular intervals to trigger its visibility within the scene. An intermit-
tent Behavior combines the continuous and discrete types, allowing
a user to specify particular times at which to update a set of variables
within a specified range.

Each Behavior is scheduled to execute (for discrete
Behaviors) or to begin and end updating (for continuous
Behaviors) at a particular times. The current time is marked at
the start of each iteration of the rendering loop. Each Behavior
will be activated when the current time is greater than or equal to
its scheduled time. All Behaviors can be scheduled to repeat
indefinitely or for a certain number of iterations. Additionally, the
action they take upon repeating can be modified as needed. The value
affected by the Behavior can be reset if needed, and the direction
of the Behavior can be reversed. Behaviors can also be run in a
separate thread if they may perform intensive processing which might
potentially slow down the frame rate of the renderer.

In order to attach the behavior to a Geom, Node or another
Behavior, a Behavior must implement either the interface
GeomUpdater, NodeUpdater, or BehaviorUpdater (or some
combination of them). Additionally, if some other use for a
Behavior arises, a user could potentially create their own interface
and have their custom Behavior implement that instead of (or in
addition to) the provided interfaces. In general, unless custom func-
tionality is required, Behaviors extend from base classes which im-
plement a particular interface which defines the type of elements it
works with. Each of the interfaces requires an update method which
describes the logic necessary to update the desired aspects of a partic-
ular element.

3.3.2 The GeomUpdater Interface
If a behavior implements the GeomUpdater interface then any ac-
tive Geom attached to the scene graph that is also attached to that
Behavior will execute a method called updateGeom, required
by the GeomUpdater interface. A single Behavior can af-
fect multiple Geoms simultaneously, if desired. Likewise, a sin-
gle Geom can have multiple Behaviors attached, even if the
Behavior is of the same class. That is, a Behavior repre-
sents an unfixed process that can be combined together with a num-
ber of other processes. As a simple example, we can attach a
BehaviorTranslate to an object to move it from point A to point
B. At the same time, we could attach a second Behavior that extends
from BehaviorTranslate to the same object to represent a grav-
itational force. And we could also attach a third Behavior that also
extends from BehaviorTranslate that might represent a wind re-
sistance. By so doing we could easily set up a physical simulation of,
say, a projectile being fired on a windy day. That is, even though we are
moving an object from a specified point to another. These points are
not necessary proscribed by a rigid timeline, but can be decided by a
multitude of different forces, each modeled with different Behavior
instances. Of course, these forces do not need to represent physical
models; they are flexible enough to be building blocks for any number
of concepts. Figure 2 shows an example of Behaviors updating the
scene graph.

b1
b2 b2

+
b3 -

W

G

W

G

W

G

W W

behaviors

scene graph

display

t1t0 t2 t3 t4

Fig. 2. Diagram of simple Behaviors using the GeomUpdater inter-
face. At t0 the scene graph is empty. At t1 a Behavior adds a Geom to
the scene graph (which is rendered as a diamond in the display). At t2
a second Behavior translates the Geom across the screen and back.
At t3 a third Behavior removes the Geom from the scene graph. At t4
the scene graph is again empty.

3.3.3 The NodeUpdater Interface
The NodeUpdater interface is similar to the GeomUpdater inter-
face, checking to see if a particular operation should occur at a certain
time. While Geoms attached to the scene graph need to be re-rendered
every frame of the display loop, most Nodes will change only occa-
sionally. Often the data graph functions as a local repository or rep-
resentation of information that is stored in another location, for in-
stance, an SQL database or the file system or a webservices database.
Behaviors can be set up to retrieve new information from these
sources at given intervals based upon information gathered from the
data graph. Figure 3 shows an example of Behaviors updating the
Nodes on the data graph.

As an example, a Behavior implementing NodeUpdater could
check if Nodes or Relationships are outdated and then remove
them from the data graph. Another example Behavior could peri-
odically re-run an analysis on a particular Node or set of Nodes to
determine if the results have changed. Since Geoms can have data
attached to them and may have their drawing methods determined by



b1+
b5

behaviors

data graph

t1t0 t2 t3 t5

b2
b3
b4

b6 b6 b6
C

A A A

N N

N

N N

N N N

N

C
A

N N

N

C

t4

Fig. 3. Diagram of simple Behaviors using the NodeUpdater in-
terface. At t0 a Behavior b1 retrieves dynamic data from an ex-
ternal source and defines the relationships between the data. At t1,
Behaviors b2, b3, and b4 that update data attributes are created and
scheduled to run indefinitely. At t2, Behavior b5 creates a Collector
and schedules it to traverse the data graph to find nodes that match
certain parameters. At t3, t4, and t5 a behavior b6 first creates an
Analyzer and then schedules it to analyze the updated attributes of
the collected Nodes at certain times. Geoms using the Analyzer to
determine how to render themselves will be automatically updated.

this data, a Behavior that updates an analysis node will have a rip-
ple effect that changes the visual rendering as well. Another example
Behavior could sample the data graph when instructed by the user.
Since the data graph might be too large to conveniently analyze for
particular properties, a Behavior which samples only certain loca-
tions of the data graph is useful for statistical tests.

3.3.4 The BehaviorUpdater Interface

The BehaviorUpdater interface allows a Behavior to be at-
tached to any active Behavior. This allows for he programmatic
sequencing and control of scheduling and timing objects in the scene
graph. Behaviors implementing this interface can alter various as-
pects of other Behaviors including the timing, rate, and even their
functionality. For instance, one Behavior might be set up to bounce
an object back and forth along a trajectory every 10 seconds. A sec-
ond Behavior could be modified to alter the original behavior such
that the speed of that trajectory changes from 10 seconds to 4 seconds
over a period of 1 minute. That is, every 10 seconds, the speed of
the trajectory increases by a rate of 1 second. As with the continuous
BehaviorGeoms, the continuous BehaviorBehaviors can be
aggregated as desired, so that for instance two BehaviorSpeeds
might act as a composite function built out of two acceleration func-
tions.
Behaviors can also programmatically create and add new

Behaviors, or remove existing behaviors, to Geoms. For example,
a Behavior could direct a Geom to move toward some other Geom
when a certain condition is met. If that condition is no longer met,
then the Geom could be directed to move away from it. We can eas-
ily model this by creating a Behavior that listens to an Analyzer
node on the data graph. When the analysis changes (for whatever rea-
son) it can notify the Behavior that is moving the Geom to now
move in the opposite direction. In some cases, it will make sense
to use normal programming strategies to define meta-Behaviors of
this sort, in other cases it may be convenient to have this option. Fig-
ure 4 describes an example of one Behavior being updated by a
second Behavior.

behaviors

t0 t2 t3t1

B1

timing 
graph

B1

B1

B2

B1

B1

B2

B2

B1

B2

B1

B2

B1

B2

Fig. 4. Diagram of a simple Behavior updating a second Behavior.
At t0 a Behavior B1 (using the GeomUpdater interface) is created
which translates a Geom back-and-forth indefinitely at a set rate. At
t1, a Behavior B2 (using the BehaviorUpdater interface) is created
which updates the rate of B1. By t2, B2 has increased the rate of B1 by
50%. At t3, B2 has increased the rate of B1 by 100%, doubling the rate
of the translation. B2 is then removed from the timing graph.

3.4 User Interaction
User interaction, via the keyboard, mouse, or other input device, can
be bound to a particular visual Geom or the entire display (in which
case it gets handled by methods in the current World class). De-
fault functionality is defined for common interactions such as camera
manipulation and selecting or moving individual Geoms. For custom
interactions, developers can override one or more of a series of func-
tions that handle key presses or various device inputs, which include
clicking, hovering, and dragging, among others. In addition to regis-
tering a particular function for a Geom, the developer is responsible
for defining the Behaviors which then act on that Geom, or instead
that execute some other functionality (such as updating one or more
other Geoms or updating data Nodes). The framework is flexible
enough so that Geoms which represent user interface elements can
adapt to information on the data graph or the scene graph. For ex-
ample, a slider element could have its minimum and maximum values
change based upon the number of a particular type of Geom currently
attached to the scene graph. While the input events are initially cap-
tured independently of the graph operations and rendering loop, their
application to the visual system is always integrated via the creation
of Behaviors.

3.5 The Rendering Loop
The main rendering loop has an active OpenGL context and runs
within its own thread, controlling all of the core components. It runs
as often as possible, synchronizing with the refresh rate of the display.
The rendering loop is segmented into three main tasks: scheduling,
rendering, and handling interactions. The rendering loop first exam-
ines the behaviors in the following order: behaviors which implement
the BehaviorUpdater interface are examined and run if neces-
sary; Behaviors which implement the NodeUpdater interface
are examined and run if necessary; Behaviors which implement the
GeomUpdater interface are examined and run if necessary. These
Behaviors will update either elements within the timing graph,
data graph, or scene graph, or change the structure of these graphs by
adding or removing elements from them. After the Behaviors have
run, the scene graph is traversed, and the modelview of each Geom
object is updated and then ultimately rendered according to the data
it refers to and the drawing instructions defined by the Geom’s draw



Nodes

scene 
graph

Relationships

timing 
graph

data 
graph

RenderLayers

MouseHandler 

KeyHandler 

TextureManager

listen for 
customs

update 
textures

update 
data

update 
geoms

update 
behaviors

geom 
transforms

set render 
state

draw on 
screen

listen for 
mouse 

listen for 
keyboard

camera 
transforms

Geoms

Behaviors

schedule

render

interact

Fig. 5. Schematic of the rendering loop.

method. Once each Geom is rendered to the display, the system checks
for mouse, keyboard, or other types of interaction with the Geoms.
Depending on the interaction methods defined for the Geoms, various
Behaviors are created which update the core components which
will be reflected in the next iteration of the rendering loop. Figure 5
provides an overview of the iterated steps of each frame of the display
loop.

If certain tasks, defined by Behaviors, such as data analysis or
data retrieval, have the potential to stall the rendering loop, they can
be placed in a background thread, activating when the task is com-
plete. Potential difficulties when working with concurrent graph struc-
tures include the possibility of pathological situations during graph
traversal and processing, especially when multiple actions occurring
on independent threads affect the same set of elements. While there
is no dedicated mechanism to automatically detect these situations,
the organization of the system into separate graphs mitigates against
this, making it easier to troubleshoot and refactor code which leads
to problematic scenarios. A feature of the behaviorism architecture is
that it simplifies the development of projects by not requiring to de-
velopers to think about the low-level organization of data structures.
However, in certain situations, a finer control over the flow of infor-
mation may be necessary. Developers can specify an ordering to the
Behaviors so that during the rendering loop a specified Behavior
can be guaranteed to run before others. Similarly, if the processing on
a background thread becomes invalidated due to the creation of a new
Behavior which is more current, the invalidated Behavior can
be interrupted and discarded. The rendering loop is the sole location
for coordinating changes to the elements within the graphs. This in
effect flattens the graph traversals, and gives the developer the oppor-
tunity to reason about indeterminacy issues. In practice thus far it has
been straightforward to identify bottlenecks and develop simple so-
lutions to address them. For instance, one of the projects described
below launches a background thread for each movement of the mouse
without any loss of performance. Another project uses a Collector
node which is only available in the rendering loop once a specified
number of remote data calls has completed. Functionality to handle
concurrency issues may be added to elements within data graph, the
timing graph, or the scene graph as needed.

4 EXAMPLE PROJECTS

behaviorism has been used in a number of real world projects, rang-
ing from traditional information visualization techniques, to public in-
formation art installations, to scientific modeling and simulation. In
examining three example projects with different visualization goals,
we highlight the effectiveness of using the behaviorism framework to

model and to represent dynamic data.

4.1 Coil Maps
Coil Maps is an information visualization technique that uses an an-
imated tree map algorithm to display a dynamic overview of geo-
graphic data [16]. A map is initially recursively subdivided to a speci-
fied depth. The final subdivision constitutes the leaf tiles, which cover
the entire map. As new events are attached to a leaf tile, the tile in-
creases in size, which causes its parent tile to increase in size, which
in turn causes its parent tile to increase in size, and so on up until the
root subdivision. This causes a change to be very apparent on the lo-
cal level, but also to more subtly show changes on a global scale. For
example, if initial tiling covered a map of the world, and an event ar-
rives on, say, New York City, then that tile would immediately greatly
increase in comparison to its neighboring tile, but also lesser changes
would affect all of the parent tiles, up to and including a minor increase
in size of the northern hemisphere and a related minor decrease in the
size of the southern hemisphere. This distortion allows a viewer to see
at a glance the most active regions of a map over time while retaining
the perceptual grounding of the map itself.

Fig. 6. Adding +4 events to a cell in the Coil Maps algorithm. Each leaf
node is initialized with a uniform count; receiving new events causes an
adjustment of all of the cells.

behaviorism places the incoming streaming of data into the data
graph, parses it and links it to a specific tile based on its geographic
location. As a tile is updated, a series of Behaviors are initiated
which control visual indicators of the event and which animate the
restructuring of the map representation. Because all of the incom-
ing data is temporally as well as geographically located. A user can
switch to an ”historical” mode and playback the events between a par-
ticular start and end time. Another version of the Coil Maps algorithm
treats the tree map as an interactive zoom-able interface. Informa-
tion is arranged in a grid of tiles. When a user mouses over or clicks
on a tile, the tile expands, pushing the other tiles out of the way so
that the user can see the information in greater detail. In this version,
Behaviors controlling the animation and updates to the coil map
data structure are linked directly to user interaction. Each movement
of the mouse triggers an animation which lasts a specified amount of
time. Rapid mouse movements will trigger many Behaviors which
can take place concurrently with no loss of performance. Because of
the separation of data, time, and graphics, and because of the modular
formation of Behaviors and the ease of intertwining these elements,
it is easy to create very different visualizations using, in this case, the
same dynamic data structure. Figure 6 shows an example Coil Map
with 16 leaf nodes and the cascading effects of updating one of the
leaf nodes, causing all levels of the map shift. Each update, indicated
in the figure with an arrow, is animated using Behaviors which



control the change in data and subsequent visual changes. Figure 7
depicts screenshots from a realized project using a real-time stream of
geographic data.

(a) after 25 events

(b) after 100 events

Fig. 7. An example visualization using the Coil Maps algorithm on geo-
graphic data.

4.2 Ecotone
Ecotone is a nutrient dynamics simulation which explores how ratio-
nal agents within a dynamic system evolve to occupy a particular niche
within that system. The knowledge base for each agent is made up of
a set of dynamically changing nodes situated within the data graph.
Each agent retains information about the other agents in has encoun-
tered within the simulation. An Analyzer is used to evaluate this
information in order to plan the agent’s next action. Additionally, the
agents can use information gathered from an encounter with a partic-
ular individual to make inferences about the species as a whole. This
information is also stored on the data graph and updated as necessary.
Each agent’s knowledge is also stored temporally and monitored by
a Behavior. The weights of particular inferences that are not rein-
forced will be attenuated and eventually removed from the data graph
entirely. Users can add or remove new elements to the simulation in-
teractively via keyboard and mouse input to test new hypotheses dur-
ing runtime. Figure 8 shows snapshots from a simulation of a virtual
environment over a period of time.

4.3 Cell Tango
Cell Tango is an interactive multimedia artwork consisting of a series
of visualizations based on a dynamically evolving collection of cell-
phone photographs contributed instantly by the general public [23].
These images, and the accompanying tags which categorize and de-
scribe them, are projected large-scale in the gallery, continuously shift-
ing as new contributions are added. The layout and animation for each
of the visualizations is defined by the textual associations between
the photos, and additionally shows relationships with a set of simi-
lar photographs retrieved from the popular Flickr photograph-sharing
database via their public API [15]. The visualizations are directly
based upon a dynamic database of images and tags. A Behavior ob-
ject controls how often the Flickr database is polled, asynchronously
placing retrieved photographs into the data graph. During each of the
visualizations the data graph is traversed to collect the necessary pho-
tos and tags and connections between them. Figure 9 shows an exam-
ple of the Cell Burst visualization after the tags from a user-submitted
cellphone photograph have retrieved related photographs from Flickr.
A series of Behaviors governs the layout and movement of the pho-
tos as first the user-submitted photograph appears, followed by its tags,

(a) after 30 seconds (b) after 1 minute

(c) after 5 minutes (d) after 10 minutes

Fig. 8. An example run of the Ecotone simulation. The animations of the
agent’s movement (indicated by the lines trailing the squares) and the
growth of the nutrients (indicated by the colored circles) are controlled
by a series of Behaviors.

and finally by the related photographs. Working with the behaviorism
framework allowed the developers to separate the data collection and
representation from the visual presentation, speeding up development
time and facilitating the iterative prototyping of multiple visualiza-
tions.

Fig. 9. Detail of ”Cell Burst” view of Cell Tango project

5 CONCLUSION

Software frameworks for information visualization exist to simplify
the creation of a project by providing abstractions which facilitate vi-
sualization tasks for a particular domain. While this facilitation can be
provided by a toolkit of previous solutions to the problem of reaching
some commonly desired goal, a more general purpose of a framework
is to provide mechanisms which allow developers ways to reason about
their goals. Since the knowledge and aims within a particular field is
ever-changing, it is more important to provide frames in which to think
about domain knowledge. Rather than simply providing specific tools,
a framework helps developers create their own tools. Thus a frame-
work needs to provide a high amount of flexibility. At the same time, it
needs to offer some incentive to being used over coding “from scratch”



using a high level language. In general, the more flexible a framework
is, the more time it takes a developer to be productive with it. On the
other hand, the easier it is to do something, the less likely a devel-
oper will have the necessary control to customize it, who instead will
be forced to find workarounds or to bypass the intended functionality.
The aim of behaviorism is find this sweet-spot along the continuums of
flexibility and productivity. This aim is of course is exactly repeated
in every information visualization project, where the goal is to take
raw data and provide appropriate visualizations of the data to facilitate
comprehension or discovery. If the visual metaphor is too rigid, only
particular types of understandings will be available to the viewer. If
the visual metaphor is too amorphous, there is not enough of a struc-
ture to work with, and the viewer may as well be looking at raw data or
using low-level tools to parse and filter it. behaviorism makes it easier
for developers to design effective metaphors for dynamic data at the
various levels of the project and to provide the appropriate scaffold-
ing to present them. By segmenting the design process into the data
graph, the scene graph, and the timing graph, developers can choose
to evaluate the efficacy of their decisions at any time. Changing ele-
ments from one area does not invalidate the elements from other areas.
Visual elements, for instance, can be changed simply by altering the
draw methods of the objects on the scene graph. Broader structural
changes can be made by adding new behaviors which control the data
processing or the timing of the visual representations.

As exemplified in the previous section, evaluation of the behav-
iorism framework has so far been largely pragmatically measured in
terms of the success of visualization projects created with it, the speed
and relative ease in which they were developed, and also in terms of the
wide range of projects that can be created. Future work still needs to
be done to evaluate specific information visualization tasks generated
using behaviorism in comparison with other frameworks and toolkits.
behaviorism is an open source project; the full source code is freely
available at http://github.com/angusforbes/behaviorism.

ACKNOWLEDGMENTS

The authors wish to thank everyone who provided feedback while de-
veloping projects using this framework. Basak Alper especially was
influential during the early stages of development. This work was sup-
ported in part by NSF IGERT grant DGE-0221713.

REFERENCES

[1] J. R. Abrial. Data semantics. In J. W. Klimbie and K. L. Koffeman, edi-
tors, Data base management : proceedings of the IFIP Workshop Confer-
ence on Data Base Management, pages 1–60, New York, 1974. American
Elsevier.

[2] Adobe. Adobe flex. http://www.adobe.com/products/flex/, May 2010.
[3] Aristotle. Poetics. Translated by Ingram Bywater. Kessinger Publishing,

2004.
[4] S. Bateman, R. Mandryk, C. Gutwin, A. Genest, D. McDine, and

C. Brooks. Useful junk? the effects of visual embellishment on com-
prehension and memorability of charts. In CHI 2010: Proceedings of the
SIGCHI conference on Human factors in computing systems, 2010.

[5] S. Bertschi and N. Bubenhofer. Linguistic learning: a new conceptual
focus in knowledge visualization. In Ninth International Conference on
Information Visualisation (IV’05), pages 383–389, 2005.

[6] R. Brath. Use of Analogy in Synthesizing Novel Visualizations. In Infor-
mation Visualisation, 2008. IV’08. 12th International Conference, pages
481–484, 2008.

[7] R. Burkhard. Towards a framework and a model for knowledge visu-
alization: synergies between information and knowledge visualization.
Lecture notes in computer science, 3426:238, 2005.

[8] S. K. Card. Information visualization. In The Human-Computer Interac-
tion Handbook. CRC Press, 2007.

[9] E. Chi, J. Konstan, P. Barry, and J. Riedl. A spreadsheet approach to infor-
mation visualization. In Proceedings of the 10th annual ACM symposium
on User interface software and technology, page 80. ACM, 1997.

[10] B. Craft and P. Cairns. Directions for Methodological Research in In-
formation Visualization. In Proceedings of the 2008 12th International
Conference Information Visualisation, pages 44–50. IEEE Computer So-
ciety Washington, DC, USA, 2008.

[11] Cycling ’74. Max/msp/jitter. http://cycling74.com, November 2009.
[12] D. H. Eberly. 3D game engine architecture: engineering real-time ap-

plications with Wild Magic. Morgan Kaufman Publishers, Amsterdam,
2005.

[13] K. Einsfeld, A. Ebert, and J. Wolle. Hannah: A vivid and flexible 3d
information visualization framework. International Conference on Infor-
mation Visualisation, pages 720–725, 2007.

[14] J. Fekete. The infovis toolkit. In Proceedings of the IEEE Symposium
on Information Visualization, pages 167–174. IEEE Computer Society
Washington, DC, USA, 2004.

[15] Flickr. Flickr services. http://www.flickr.com/services/api/, June 2010.
[16] A. G. Forbes. Coil maps. In Proceedings of the Workshop on Media

Arts, Science, and Technology (MAST): The Future of Interactive Media,,
Santa Barbara, CA, January 2009.

[17] B. J. Fry. Organic information design. Master’s thesis, Massachusets
Institute of Technology, 1997.

[18] S. Gothel. Java binding for the opengl api. http://github.com/sgothel/jogl,
March 2010.

[19] D. A. D. Gould. Complete maya programming. Morgan Kaufmann, 2003.
[20] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive

information visualization. In CHI 2005: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 421–430, New
York, NY, USA, 2005. ACM.

[21] R. Laramee and R. Kosara. Challenges and unsolved problems. In
Human-Centered Visualization Environments, pages 231–254. Springer,
2007.

[22] A. Lau, A. Moere, et al. Towards a model of information aesthetics in
information visualization. In Proceedings of the 11th International Con-
ference Information Visualization, pages 87–92. Citeseer, 2007.

[23] G. Legardy and A. G. Forbes. Cell tango.
http://www.mat.ucsb.edu/~g.legrady/glWeb/Projects/celltango/cell.html,
March 2010.

[24] Z. Lieberman, T. Watson, and A. Castro. Openframeworks.
http://www.openframeworks.cc, November 2009.

[25] C. MacGillivray. Slices of Time-Appraising the Use of Dynamics in De-
sign. In Proceedings of the 2009 13th International Conference Informa-
tion Visualisation-Volume 00, pages 598–604. IEEE Computer Society,
2009.

[26] Microsoft. Windows forms / windows presentation foundation.
http://windowsclient.net/wpf/, May 2010.

[27] T. Munzner. A Nested Model for Visualization Design and Valida-
tion. IEEE Transactions on Visualization and Computer Graphics, 15(6),
2009.

[28] C. Reas and B. Fry. Processing home page. http://www.processing.org,
September 2009.

[29] W. Schroeder, K. Martin, and W. Lorensen. The design and implemen-
tation of an object-oriented toolkit for 3D graphics and visualization. In
Proceedings of the 7th conference on Visualization’96. IEEE Computer
Society Press Los Alamitos, CA, USA, 1996.

[30] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proc. Of the 1996 IEEE Symposium on
Visual Languages, IEEE Computer Society, Washington, DC, pages 336–
343, 1996.

[31] B. Shneiderman. Creativity support tools: accelerating discovery and
innovation. Communications of the ACM, 50(12):32, 2007.

[32] Y. B. Shrinivasan and J. J. van Wijk. Supporting the analytical reason-
ing process in information visualization. In CHI ’08: Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in computing
systems, pages 1237–1246, New York, NY, USA, 2008. ACM.

[33] P. S. Strauss. Iris inventor, a 3d graphics toolkit. ACM SIGPLAN Notices,
28(10):192–200, 1993.

[34] Sun Microsystems. Java standard edition 6 api specification.
http://java.sun.com/javase/6/docs/api/, November 2009.

[35] D. F. Swayne, D. Temple Lang, A. Buja, and D. Cook. GGobi: evolving
from XGobi into an extensible framework for interactive data visualiza-
tion. Computational Statistics & Data Analysis, 43:423–444, 2003.

[36] J. Thomas and K. Cook. Illuminating the path: The research and devel-
opment agenda for visual analytics. IEEE Computer Society, 2005.

[37] VVVV group. Vvvv: a multipurpose toolkit. http://vvvv.org, November
2009.


