
Space-Time Volumetric Depth Images for In-Situ Visualization
Oliver Fernandes∗

University of Stuttgart
Steffen Frey†

University of Stuttgart
Filip Sadlo‡

University of Stuttgart
Thomas Ertl§

University of Stuttgart

ABSTRACT

Volumetric depth images (VDI) are a view-dependent representa-
tion that combines the high quality of images with the explorability
of 3D fields. By compressing the scalar data along view rays into
sets of coherent supersegments, VDIs provide an efficient repre-
sentation that supports a-posteriori changes of camera parameters.
In this paper, we introduce space-time VDIs that achieve the data
reduction that is required for efficient in-situ visualization, while
still maintaining spatiotemporal flexibility. We provide an efficient
space-time representation of VDI streams by exploiting inter-ray
and inter-frame coherence, and introduce delta encoding for further
data reduction. Our space-time VDI approach exhibits small com-
putational overhead, is easy to integrate into existing simulation en-
vironments, and may help pave the way toward exascale computing.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image Genera-
tion; I.6.6 [Simulation and Modeling]: Simulation Output Analysis

1 INTRODUCTION

Scientific computing and parallel visualization are at the cusp of
the new era of exascale computing. In-situ visualization plays a
key role in this transition, since the involved data rates are expected
to be beyond the capabilities of future storage systems. A central
difficulty with in-situ visualization in parallel computing is to con-
form to bandwidth constraints. On the one hand, parallel scientific
computing requires very high bandwidth, e.g., for the communi-
cation between different simulation processes, on the other hand,
high-resolution visualization at high frame rates is a prerequisite
for successful research and development. While many simulations
are intrinsically global and require substantial parallelization traffic,
there is large potential for optimization in the visualization stage.

Since the available bandwidth typically does not allow for the
transmission of the entire data stream to dedicated visualization
nodes, the data reduction has to take place directly at the simula-
tion nodes. In this paper, our approach is to generate intermediate
visualization representations directly at the compute nodes for each
time step of the simulation, and communicate those to the visual-
ization nodes. There, they can be subsequently used to generate
the final image. In particular, we focus on volume visualization
due to its wide applicability throughout many areas of science and
engineering. In this context, intermediate visualizations tradition-
ally consist of color images accompanied with opacity and depth
information, which are eventually composited to yield the result-
ing image. However, visual interaction, e.g., a camera rotation,
requires the communication of changes from the visualization to
the compute nodes, as well as the subsequent transfer of the visu-
alization results back to the visualization nodes. As each frame is
subject to strict constraints in bandwidth and latency, the high and
continuous frame rates that are necessary to provide perceptually

∗e-mail: oliver.fernandes@visus.uni-stuttgart.de
†e-mail: steffen.frey@visus.uni-stuttgart.de
‡e-mail: filip.sadlo@visus.uni-stuttgart.de
§e-mail: thomas.ertl@visus.uni-stuttgart.de

appropriate data exploration typically cannot be achieved this way
in large-scale simulation setups.

Two main sources of visualization traffic can be distinguished:
update of the simulation data, and interaction with the visualiza-
tion. While visualization traffic due to update of simulation data
is inevitable, it is one of the aims of this paper to avoid or at least
reduce visualization traffic due to interaction. We decouple these
two processes by maintaining an explorable space-time represen-
tation of the volume rendering on the visualization nodes. This
approach not only avoids traffic due to visual interaction, it also
allows for efficient temporal exploration, i.e., investigating previ-
ous data while the simulation continues. Critically, this decoupled
exploration maintains full interactivity even when data updates are
rare in case of slow simulation.

Our approach is based on volumetric depth images (VDI) [4],
which have been recently proposed as an extension of layered depth
images (LDI) [18] for volume data. LDIs are a view-dependent
representation with multiple ‘pixels’ along each line of sight, that
allows for deferred interaction. Each of these ‘pixels’ features a
distinct depth value to represent the intersection of the viewing ray
with geometry. In contrast, VDIs represent a generalization for
volumes and store depth intervals instead. VDIs provide a dense
representation of the volume that can be rendered with arbitrary
camera configurations. VDIs represent classified volume data, i.e.,
color and opacity after application of a transfer function. We ex-
tend VDIs to a space-time representation, with the goal to yield
better compression and achieve the temporal decoupling of simula-
tion and visualization.

In particular, our contributions include:

• Space-time VDI representation for decoupled interactive in-
situ volume visualization.

• Parallel generation, compression, and reconstruction of space-
time VDIs inducing only small overhead in parallel simulation
environments.

2 RELATED WORK

In-Situ and Remote Rendering
Remote rendering based on the transmission of rendered frames has
been used for a wide range of applications, including rendering on
mobile devices [1], cloud gaming (OnLive or Gaikai), protection of
proprietary data [6], as well as in-situ visualization of time-varying
volume data [11] and visualization in medical applications [3]. To
maintain interactivity, the transfer size is typically reduced by em-
ploying JPEG [6] or MPEG [5] compression. An alternative tech-
nique employing a CUDA-based parallel compression method was
presented by Lietsch and Marquardt [9], while Pajak et al. [14] dis-
cuss efficient compression and streaming of frames rendered from
a dynamic 3D model. Level-of-detail techniques are frequently em-
ployed [13, 6] to handle excessive server load. However, in these
approaches, the chosen level of detail has no direct influence on the
image data size that needs to be transferred to the display client.

Explorable Images
Shade et al. [18] introduced LDIs representing one camera view
with multiple pixels along each line of sight. Multi-layered rep-
resentations have since been popularized in commercial rendering

59

IEEE Symposium on Large Data Analysis and Visualization 2014
October 9–10, Paris, France
978-1-4799-5215-1/14/$31.00 ©2014 IEEE

Generate VDI

Simulation

Spatial & Temporal
VDI Delta Encoding

Simulation Node 0

Entropy
Encoder

Simulation Node N

...

Visualization Node

Entropy
Decoder

Render VDI

User Interaction

VDI Delta Decoding

Storage

...

user requestdata �ow

Storage

Change Camera

Change
Time Step

function storage accessed on demand

Figure 1: Integrated simulation and visualization system.

software to simulate complex materials like skin on synthetic ob-
jects [2]. In volume rendering, layer-based representations have
been used to defer operations such as lighting and classifica-
tion [17, 16]. Layer-based representations have also been proven
effective to cache results [10, 8] or certain volumetric properties
along the view rays [12], which can be reused for efficient transfer
function exploration. Tikhonova et al. [20] convert a small num-
ber of volume renderings to a multi-layered image representation,
enabling interactive exploration in transfer function space. In an-
other work, Tikhonova et al. [21] use an intermediate volume data
representation based on ray attenuation functions, which encode
the distribution of samples along each ray. Shareef et al. [19] use
image-based modeling to allow for efficient GPU-based rendering
of unstructured grids based on parallel sampling rays and 2D tex-
ture slicing. In contrast to VDIs which represent volumes, LDIs and
related techniques are targeted toward surfaces (with specific depth
values and ‘vacuum’ in between).

Volumetric Depth Images

Volumetric depth images are a condensed representation for classi-
fied volume data, providing high quality and reducing both render
time and data size considerably. Instead of only saving one color
value for each view ray as in standard images, or sets of pixels as
in the case of LDIs, VDIs store a set of so-called supersegments,
each consisting of a depth range with composited color and opacity.
This compact representation is independent from the representation
of the original data and can quickly be generated by a slight modifi-
cation of existing raycaster codes. VDIs can be rendered efficiently
at high quality with arbitrary camera configurations [4].

VDIs can be generated efficiently during volumetric raycasting
from a certain camera configuration by partitioning the samples
along view rays according to the similarity of the composited color,
providing the additional possibility to skip ‘empty’ regions. These
partitions are then stored as lists of so-called supersegments con-
taining the bounding depth pair (z f ,zb) and respective accumulated
color and opacity value. Geometrically, each (quadrilateral) pixel
in the image plane forms a pyramid. For visualization, the super-
segments are rendered as frustums of these pyramids. Frustums
generated by the same ray are conceptually grouped into a frustum
list. Color and opacity are modeled constant within a frustum, as
determined during VDI generation. During rendering, the frustum
lists are depth-ordered and composited. For this, the length l a ray
passes through each frustum needs to be accounted for, in order to

Local
Connectivity

(Sec. 4.1)

Connected
Regions
(Sec. 4.2)

Delta
Encoding

(Sec. 5)

∆

∆

∆

∆

∆ ∆

∆ ∆

∆ Delta Relative To Root / Full Reference Value

1

1

0

0 Front Pass Id

2

2 3 1

12

0

0

Neighborhood Similarity Region

Figure 2: The stages of space-time VDI generation.

Timesteps
Produced by Simulation

Add VDI of latest
Timestep t
to Window

Remove VDI of last
Timestep t-w
from Window

Delta-encoded
VDI Time Window

tt-w

Window Size w

+-

Figure 3: Sliding window approach to constantly update our VDI
representation with new simulation results.

compute its opacity contribution. Note that VDIs provide render-
ings identical to those of the original data when rendered from the
view used for their generation, but provide high-quality approxima-
tions also for deviating views.

3 OVERVIEW

This paper addresses typical in-situ visualization setups consisting
of a parallel simulation environment with integrated visualization
(Fig. 1). N + 1 simulation nodes generate the data, employing do-
main decomposition for parallel execution. On each compute node,
we generate a VDI from each time step of the respective part of
the simulation domain. To achieve the compression rates required
for in-situ visualization and to provide replay functionality for ex-
ploring previous time steps, we generate a space-time VDI from
the temporal sequence of traditional VDIs. In detail, we extend
the clustering process—that originally only operates along rays—
across view rays and time steps. Our spatiotemporal VDI represen-
tation is continuously updated with new time steps, i.e., new VDIs
from the simulation are continuously incorporated.

Fig. 2 gives an overview on the main steps of our algorithm
for space-time VDI delta encoding, i.e., on removing statistical re-
dundancy from the space-time VDI representation. We first estab-
lish groups of space-time connected supersegments (Sec. 4). Then,
based on this, we employ delta encoding for further data reduction
(Sec. 5). To limit memory requirements, we use a sliding-window
approach in time for our space-time VDI construction (Fig. 3), i.e.,
as soon as the window reaches its maximum capacity, the oldest
time step VDI is removed from the space-time representation.

Finally, the compressed data is stored locally. Upon request, it
is transfered to the client, i.e., to the visualization node, or some
intermediate storage, where it is cached locally. Our implementa-
tion uses a combination of Huffman and LZ4 compression for fast

60

T
im

e/
[T
im

es
te
p
]

500 600 700 800

Depth/[Voxel]

0

4

8

12

16

20

Figure 4: Illustration of a space-time VDI excerpt.

(a) All regions. (b) One Region. (c) Other Region.

Figure 5: Connected regions determined by our algorithm.

and efficient encoding. On the visualization node, the pipeline is
executed in reverse order (Fig. 1), providing a sequence of VDIs
that are rendered efficiently using opacity-corrected blending and
rasterization [4]. This not only allows for interactive exploration
by the user, it also provides temporal navigation within the time
interval spanned by the sliding window. Among others, this may
also be employed to enable computational steering of the simula-
tion (e.g., [7, 15]).

4 ESTABLISHING CONNECTIVITY

A space-time VDI can be seen as a collection of supersegments, as
illustrated schematically in Fig. 4. In order to reduce the size of the
VDI sequence within the sliding time window, i.e., to merge super-
segments to coherent regions, we first determine the connectivity
of the supersegments in terms of spatiotemporal adjacency (Local
Connectivity, Sec. 4.1). In detail, this means that we determine for
each supersegment v its space-time neighborhood N(v). Each co-
herent region is represented by an id and thus at initialization, when
the sliding window contains only a single VDI, we assign a unique
id to each supersegment. Next, from the local connectivity informa-
tion and based on color similarity, regions of connected components
are determined by propagating the ids between connected super-
segments, also to those of VDI time steps newly inserted into the
sliding time window. To assure global merging of the regions, we
add a subsequent region labeling pass (Region Labeling, Sec. 4.2),
resulting in the connected regions of supersegments (Fig. 5).

4.1 Local Connectivity
The local connectivity between supersegments is determined in two
passes, applying two different criteria, one in space-time and one
in terms of color similarity. Space-time connectivity between two
supersegments v,w is given iff

1. they were generated from adjacent pixels (according to 4-
connectivity) in the same time step or they belong to the same
pixel in successive time steps, and if

2. their depth ranges zv and zw overlap.

This first pass establishes a spatiotemporal graph G, where connec-
tivity represents edges and the supersegments represent nodes.

In the second pass (Alg. 1), we propagate the ids along G but
not across edges where, similar to the merging criterion along rays

Algorithm 1 Local connectivity computation. Region ids are prop-
agated along edges V (G) of the space-time connectivity graph G.

1: procedure COLORSIMILARITY
2: // Add all supersegments to the current changeset C
3: C←V (G)
4: repeat
5: D← /0
6: for all v ∈C do
7: for all w ∈ N(v) do
8: // Compare supersegment color to
9: // neighboring region color

10: if i(v)> i(w) ∧ d(c(v),c(i(w))< ε then
11: i(v)← i(w)
12: // Add all neighbors
13: D← D∪N(v)
14: C← D
15: until D = /0

Algorithm 2 Region labeling. Determine connected regions along
edges V (G) of the space-time connectivity graph G.

1: procedure COMPONENTLABELING
2: // Add all supersegments to the current changeset C
3: C←V (G)
4: repeat
5: D← /0
6: for all v ∈C do
7: for all w ∈ N(v) do
8: if i(v)> i(w) then
9: i(v)← i(w)

10: D← D∪N(v)
11: C← D
12: until D = /0

during VDI generation [4], the Euclidean distance d(·, ·) of pre-
multiplied color in RGB space exceeds a user-defined threshold ε

(Alg. 1, Line 10). We denote by i(v)← i(w) the propagation of id
i(w) of supersegment w to supersegment v, and propagate the small-
est id if multiple edges apply. Note that c(v) represents the origi-
nal color of supersegment v while c(i(v)) represents the color of
the coherent region with id i(v). Coherent regions inherit the orig-
inal color of the supersegment where the id was propagated from,
hence the color distance between a supersegment and the color of its
containing coherent region is constrained by ε . Alg. 1 is executed
whenever a new VDI time step is added to the sliding window, after
assigning each of this VDI’s supersegment a unique id, and after up-
dating G according to spatiotemporal connectivity. Note however,
that, due to disruption of regions during propagation, it is still pos-
sible for regions to be spatiotemporally disconnected but to share
the same region id.

4.2 Region Labeling
To ensure unique ids for the regions obtained so far, we employ
connected-component labeling (Alg. 2). The key difference be-
tween Alg. 1 and Alg. 2 is that the color test can now be omitted,
since color similarity has already been confirmed. Finally, we gen-
erate a set of root supersegments r by simply selecting one super-
segment from each region. As explained in detail in Sec. 5.1, these
root supersegments are employed to convert the individual region
graphs for delta encoding.

5 DELTA COMPUTATION

To reduce the overall size of the space-time VDI representation, the
data structure containing the geometry of the coherent regions is

61

S1

z

S2

S3

S4

x

S5

S6

S7

S8

Deltas

Neighbors

320 11

∆(S2,S1)
∆(S2,S4)
∆(S2,S3)

∆(S4,S7)

S2:[1,2] S4:[0,1]
S3:[0,2]

S6:[0,1]

Pass k

Figure 6: Delta encoding of a region with supersegment S2 be-
ing the root r. The x-axis is in the pixel domain, while the z-axis
denotes depth.

reorganized and prepared for efficient compression by the entropy
encoding scheme. Based on the fact that field data is typically con-
tinuous, and the assumption that data changes sufficiently linearly
on a small scale (i.e., in the order of several units of the underlying
sampling grid), entropy encoding can achieve better compression
if merely delta differentials need to be stored (Sec. 5.1). To recon-
struct the original values, i.e., to decode the data, one must integrate
along the path along which the differentials were obtained, starting
at the integration boundary (Sec. 5.2).

5.1 Delta Encoding

For each region, we define paths in our connectivity graph G for
delta encoding, by traversing it in a breadth-first manner, thereby
establishing a tree structure. This conversion of the graph G to a tree
is parallelized by exploiting the fact that supersegments are already
organized in a certain manner from the VDI generation process, i.e.,
groups of supersegments generated from the same ray belong to the
same pixel. As a consequence, spatially adjacent supersegments
necessarily belong to neighboring pixels. The pixels p(v) belonging
to every supersegment v (node of G) residing at tree depth k are
collected in the frontier set Fk(G) (Fig. 6). Initially, we start at the
root r of each region graph G that has been determined in the region
labeling step (Sec. 4.2). The respective supersegment is marked as
a frontier node, and its corresponding pixel is added to the frontier
set F0(G).

In every iteration k, our delta encoding algorithm first checks the
current frontier nodes to gather their neighbors as the new frontier
(Alg. 3, Lines 8–16). For each pixel p in the set Fk(G), we check
for marked frontier nodes. If a marked frontier node v is found, its
mark is removed and its status is changed to ’visited’. We traverse
the node edge list in a fixed order, marking all connected neighbors
w, while omitting the visited ones, and storing their pixels p(w) in
Fk+1(G). The number of marked neighbors is stored in ap. Once
the new frontier Fk+1(G) has been gathered, its elements are sorted
by pixel position in the image, and a prefix scan on the neighbor
counts ap defines storage offsets sp for all pixels in the current fron-
tier. This enables us to process the elements of Fk+1(G) in parallel,
while maintaining a well-defined sequence for remapping the data
to the respective pixels when reconstructing the region later on.

In a second step, the newly marked neighbors and the storage off-
sets sp are used to convert their data into a stream (Alg. 3, Lines 21–

Algorithm 3 Delta Encoding (⊗ denotes concatenation.)

1: procedure DELTAENCODING
2: F0← p(r)
3: cacc← 0
4: ΣG← /0
5: repeat
6: Fk+1← /0
7: // Gather new frontier and determine its size
8: for all p ∈ Fk do
9: ap← 0

10: for all v ∈ p do
11: if marked(v)∧¬visited(v) then
12: visited(v)← true
13: for all w ∈ N(v) do
14: ap← ap +1
15: marked(w)← true
16: Fk+1← Fk+1∪ p(w)
17: Fk← Sort(Fk)
18: sp← PrefixSum(ap∈Fk)
19: σ ← /0
20: // Output deltas and neighbor counts from new frontier
21: for all p ∈ Fk+1 do
22: for all w ∈ p do
23: if marked(w) then
24: cacc← cacc + c(w)/|z|
25: ∆← z(w)− z(v)
26: σsp ← ∆∪ap

27: ΣG← ΣG⊗σ

28: k← k+1
29: until Fk+1 = /0
30: // Store normalized region color
31: cG← cacc

27). Instead of storing the topology directly, we simply save the
neighbor count for every direction. Since the edge list was tra-
versed in a well-defined order, the mapping for our data stream is
unambiguous, for each pixel. For every neighbor w of every seg-
ment v (from all pixels collected in Fk(G)), the difference of their
depth range z is stored, and its color c(w) is accumulated in cacc,
weighted by the supersegment length |z|. This results in a unique set
of deltas, and a neighbor count set (for all directions) for every node
v in pixel p, from which all neighbors can later be reconstructed by
means of their relative position. With the prefix scan providing a
defined stream position for all individual pixels and the cumulative
substream from all pixels p can be turned into a byte sequence σ

which is added to the region output stream ΣG, and the algorithm
iterates on the set Fk+1(G). Once Fk+1(G) is empty, the region’s
final color cG is stored along with the position for the root r.

5.2 Delta Decoding
For interactive visualization on the client side, a VDI needs to be
reconstructed from the stream generated in Sec. 5.1. To match the
construction of the tree from Sec. 5.1, the algorithm rebuilds the
data in a corresponding breadth-first fashion (Alg. 4). For every
region, the root node is added to the VDI in construction at the po-
sition stored by (Alg. 3). The pixel containing the root is added to
the frontier set F0. The algorithm then builds the region by retriev-
ing the data for each tree depth from the stream to construct the
next set of connections. The frontier Fk is then sorted by pixel po-
sition. This ensures that the pixels have the same sequence within
the current frontier as during the corresponding encoding iteration
k. For every node in the pixels in Fk, a neighbor count is retrieved
from the stream, which determines the exact number of neighbors
for each direction, due to the fixed order defined earlier. The cor-

62

Algorithm 4 Reconstruction of a single region.

1: procedure RECONSTRUCT(S)
2: // Add pixel containing r from Stream ΣG
3: // Store the reconstruction in result R
4: F0← p(r)
5: R← /0
6: repeat
7: Fk← Sort(Fk)
8: R← Pop(ΣG)
9: Fk+1← /0

10: for all p ∈ Fk(G) do
11: for all v ∈ p do
12: if marked(v)∧¬visited(v) then
13: visited(v)← true
14: R← R∪∆

15: marked(∆)← true
16: Fk+1(G)← Fk+1(G)∪ p(∆)
17: k← k+1
18: until Fk+1(G) = /0

(a) Rayleigh-Taylor dataset, 128×128×256, 24 time steps (2, 7, 12, and 17).

(b) λ2 dataset, 529×529×529, 77 time steps (0, 20, 40, and 60).

Figure 7: Renderings for different time steps of our datasets.

rect number of deltas necessary to construct all neighbors is now
known as well and can be retrieved from the stream. The neighbors
of a node v are then constructed by adding the delta to the current
nodes depth range value z. Also, the containing pixel of any newly
constructed node is added to Fk+1(G). The algorithm iterates until
Fk+1(G) evaluates empty.

6 RESULTS

For our performance measurements, we analyze the results of two
time-dependent datasets from simulation in detail: the Rayleigh-
Taylor dataset and the λ2 dataset (Fig. 7). The Rayleigh-Taylor
dataset shows two fluids of different density under the influence of
gravity. It consists of 24 individual timesteps, each having the di-
mensions 128 × 128 × 256, and a size of 8.0 MB. The λ2 dataset
depicts the temporal development of a vortex cascade, visualized
with the λ2 criterion. It consists of 76 individual timesteps, with the
dimensions 529 × 529 × 529, and a size of 142.0 MB each. The
data is defined on a grid of uniform voxels. As our method is based
on the representation generated by the VDI step, compression ratios
are presented by comparing VDI output to our space-time clustering
(STC). As the Rayleigh-Taylor dataset has larger regions of simi-
lar color, it fullfills the assumption of a locally linearly changing
dataset a better than the λ2 data, and has larger regions of similar
color for the clustering. The λ2 dataset is rather noisy and produces
a VDI with many smaller regions. The sizes of these datasets rep-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

D
a
ta

 R
e
d

u
ct

io
n
 R

a
ti

o

Time Step

100%
VDI to Orig ratio
STC to VDI ratio

STC To Orig ratio

Figure 8: Compression ratios for the λ2 dataset.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 2.2e+07

 0 5 10 15 20 25

Q
u
a
n
ti

za
ti

o
n
 E
ff

e
ct

 R
a
ti

o

Time Step

No Quantization
1.0 precision
0.1 precision

0.01 precision

(a) Compression ratio

(b) None (c) qg=0.1 (d) qg=0.01

Figure 9: Different geometrical quantization qg settings for the
Rayleigh-Taylor dataset using original colors.

resent the chunks of a large-scale simulation, which are available
on a single node at a given time. Unless noted otherwise, data size
comparisons are given relative to output compressed by a lossless
entropy encoder. To better exploit similar values for depth differ-
ences, accuracy was reduced by truncating floating point values to
a limited amount of decimals. The remaining accuracy is denoted
as qg. For VDIs, geometrical quantization has been applied with
the same precision as for STC, to keep results comparable. Unless
noted otherwise, we used a color merge ε value of 0.001, a geom-
etry quantization precision qg of 0.1, and an image resolution of
512× 512 throughout our measurements. The performance mea-
surements were obtained on a node featuring a 3.4 GHz CPU with
8 cores and a GeForce GTX580. While the VDI is generated on
the GPU using CUDA, our STC component runs in parallel on the
CPU using OpenMP.

Fig. 8 shows the compression ratios that were obtained with the
λ2 dataset. It can be seen that significant reductions in data size
can be achieved, with only marginal decrease in rendering quality,
as discussed in detail below. Despite the high variety in the data,
VDIs already achieve a reduction down to 25%–40% in comparison
to the classified volume size. Our STC is able to further reduce
this significantly down to 10%–30%. The ratio between VDIs and
STC is relatively constant. However, in particular in the beginning
with larger, more homogeneous regions in the dataset, the strongest
compression ratios are achieved, as can be expected.

63

(a) Original VDI, 19.4 kB (b) STC ε = 0.0001, 13.3 kB (c) STC ε = 0.001, 13.0 kB (d) STC ε = 0.01, 11.0 kB

Figure 10: Different color merge settings applied to the λ2 dataset.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25

T
im

e
 i
n
 s

e
co

n
d

s

Time Step

Geometrical Connectivity
Color Connectivity
Connected Components
Delta Encoding
Entropy Encoding
Total
Reconstruction

(a) Rayleigh-Taylor dataset.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80

T
im

e
 i
n
 s

e
co

n
d

s

Time Step

Geometrical Connectivity
Color Connectivity
Connected Components
Delta Encoding
Entropy Encoding
Total
Reconstruction

(b) λ2 dataset.

Figure 11: Timings across different time steps for the Rayleigh-Taylor and the λ2 dataset.

Table 1: Color mean square errors for the Rayleigh-Taylor dataset.
The compression ratio is given for color data only in comparison to
original VDI.

User error MSE Max Comp. ratio
0.1 0.0110 0.0127 0.07%
0.01 0.00192 0.00226 1.71%
0.001 0.00024 0.00027 36.06%

Fig. 9 shows the influence of different geometric quantization
settings qg. Stronger geometry quantization leads to a higher com-
pression, yet trading this reduction in size for a loss in quality.
However, for the λ2 dataset, the total data size is influenced more
strongly by the color values. Fig. 10 depicts the impact of different
color merge values ε . It can be seen that the larger the ε , better
compression can be achieved, yet at the cost of loss of detail.

Fig. 11 shows the timings of different steps of our STC approach
for the Rayleigh-Taylor (Fig. 11(a)) and the λ2 dataset (Fig. 11(b)).
In general, compared to the delta encoding step, the local connectiv-
ity computation takes considerably longer and dominates the total
run time. It can also be seen that timings differ significantly with
datasets and time steps, i.e., the complexity of the underlying data.
It can also be seen that reconstruction is a very fast process, taking
significantly less than a second in any of our experiments. Fig. 13
shows renderings of different views. It can be seen that our tech-
nique is able to sustain good quality for a variety of view perspec-
tives, while also reducing data size significantly as demonstrated
above.

To get a comparison for the loss of quality, we matched the actual
mean square error in color distance to the user defined limit ε for

this error. The results are shown in Tab. 1. The table shows the av-
erage error for all timesteps, and largest deviation. For direct visual
comparison, see Fig. 12. Note how the premultiplied color fails for
large ε , and introduces heavy artifacts, without any significant gain
to compression.

Discussion and Limitations. As basically all in-situ ap-
proaches, the STC method loses information that is outside the de-
fined scope of interest. In our case, any volume data not inside the
viewport during VDI generation is discarded and cannot be recon-
structed. Some prior information regarding the data is also required
for choosing an appropriate transfer function. This also has an in-
fluence on the compression ratio that can be achieved. Additionally,
the merging criterion used here (Euclidian premultiplied color dis-
tance) may lead to artifacts in regions of low opacity.

7 CONCLUSION

In this paper, we extended VDIs to exploit space-time coherence
typically found in time-dependent scientific data, with the main
goal being the efficient representation of volumes stemming from
large-scale simulations. The coherence and continuity between
time steps can be efficiently exploited to achieve an in-situ data
reduction, which caters to the bandwidth-critical nature of exascale
settings. For future work, we intend to test the system in the con-
text of a real-world large-scale in-situ simulation setup. In addition,
our algorithms were designed with massive parallelism in mind, but
only evaluated on multicore CPUs in the context of this paper. We
therefore intend to evaluate the usage of GPUs with the goal to fur-
ther diminish the processing overhead.

64

(a) Raycast (b) ε = 0.001

(c) ε = 0.01 (d) ε = 0.1

Figure 12: Rayleigh-Taylor dataset space-time clusterings merged
for different color error settings.

ACKNOWLEDGEMENTS

This work was primarily funded by Deutsche Forschungsgemein-
schaft (DFG) under grant SPP 1648 (ExaScale FSA) and the Cluster
of Excellence in Simulation Technology (EXC 310/1). The authors
would like to thank Andrea Beck (IAG, University of Stuttgart) for
providing the vortex cascade dataset and Verena Krupp (Simula-
tion Techniques & Scientific Computing, University of Siegen) for
providing the Rayleigh-Taylor instability dataset.

REFERENCES

[1] J. Diepstraten, M. Gorke, and T. Ertl. Remote line rendering for mo-
bile devices. In Computer Graphics International, pages 454–461,
2004.

[2] C. Donner and H. W. Jensen. Light diffusion in multi-layered translu-
cent materials. ACM Trans. Graph., 24(3):1032–1039, 2005.

[3] K. Engel, T. Ertl, P. Hastreiter, B. Tomandl, and K. Eberhardt. Com-
bining local and remote visualization techniques for interactive vol-
ume rendering in medical applications. In Proceedings of IEEE Visu-
alization ’00, pages 449–452, 2000.

[4] S. Frey, F. Sadlo, and T. Ertl. Explorable volumetric depth images
from raycasting. In Proceedings of the Conference on Graphics, Pat-
terns and Images, pages 123–130, Aug 2013.

[5] R. Herzog, S. Kinuwaki, K. Myszkowski, and H.-P. Seidel.
Render2MPEG: a perception-based framework towards integrating
rendering and video compression. Computer Graphics Forum,
27(2):183–192, 2008.

[6] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia, P. Cignoni,
and R. Scopigno. Protected interactive 3d graphics via remote ren-
dering. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages
695–703, 2004.

[7] O. Kreylos, A. M. Tesdall, B. Hamann, J. K. Hunter, and K. I. Joy. In-
teractive visualization and steering of cfd simulations. In Proceedings
of the Symposium on Data Visualisation, pages 25–34, 2002.

[8] E. LaMar and V. Pascucci. A multi-layered image cache for scien-
tific visualization. In IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, pages 61–67, 2003.

[9] S. Lietsch and O. Marquardt. A CUDA-supported approach to remote
rendering. In Proceedings of the 3rd international conference on Ad-
vances in visual computing - Volume Part I, ISVC’07, pages 724–733.
Springer-Verlag, 2007.

(a) 0 ◦ (Raycasting, VDI Original, STC)

(b) 20 ◦ (Raycasting, VDI Original, STC)

(c) 40 ◦ (Raycasting, VDI Original, STC)

Figure 13: Renderings of time step 14 of the Rayleigh-Taylor
dataset at different angles, comparing raycasting, VDI, and STC.

[10] E. J. Luke and C. D. Hansen. Semotus visum: a flexible remote visu-
alization framework. In Proceedings of IEEE Visualization ’02, pages
61–68, 2002.

[11] K.-L. Ma and D. M. Camp. High performance visualization of time-
varying volume data over a wide-area network. In Proceedings of the
2000 ACM/IEEE conference on Supercomputing (CDROM), 2000.

[12] K.-L. Ma, M. F. Cohen, and J. S. Painter. Volume seeds: A volume
exploration technique. The Journal of Visualization and Computer
Animation, 2(4):135–140, 1991.

[13] K. Moreland, D. Lepage, D. Koller, and G. Humphreys. Remote ren-
dering for ultrascale data. Journal of Physics: Conference Series,
125(1):012096, 2008.

[14] D. Pajak, R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Sei-
del. Scalable remote rendering with depth and motion-flow augmented
streaming. Computer Graphics Forum, 30(2):415–424, 2011.

[15] S. Rathmayer. A tool for on-line visualization and interactive steering
of parallel HPC applications. In Proceedings of the 11th International
Symposium on Parallel Processing, pages 181–186, 1997.

[16] P. Rautek, S. Bruckner, and E. Gröller. Semantic layers for illustrative
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1336–1343, 2007.

[17] T. Ropinski, J. Prassni, F. Steinicke, and K. Hinrichs. Stroke-based
transfer function design. In IEEE/EG International Symposium on
Volume and Point-Based Graphics, pages 41–48, 2008.

[18] J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered depth images.
Proceedings on Computer Graphics and Interactive Techniques, pages
231–242, 1998.

[19] N. Shareef, T.-Y. Lee, H.-W. Shen, and K. Mueller. An image-based
modeling approach to GPU-based unstructured grid volume render-
ing. Proceedings of Volume Graphics, pages 31–38, 2006.

[20] A. Tikhonova, C. Correa, and K.-L. Ma. Explorable images for visu-
alizing volume data. In IEEE Pacific Visualization Symposium, pages
177–184, 2010.

[21] A. Tikhonova, C. D. Correa, and K.-L. Ma. An exploratory technique
for coherent visualization of time-varying volume data. In Proceed-
ings of the Eurographics conference on Visualization, pages 783–792,
2010.

65

