
Reordering the Reorderable Matrix as an

Algorithmic Problem

Erkki Mäkinen and Harri Siirtola�

Department of Computer and Information Sciences
P.O. Box 607, FIN-33014 University of Tampere, Finland

{em,hs}@cs.uta.fi

Abstract. The Reorderable Matrix is a visualization method for tab-
ular data. This paper deals with the algorithmic problems related to
ordering the rows and columns in a Reorderable Matrix. We establish
links between ordering the matrix and the well-known and much studied
problem of drawing graphs. First, we show that, as in graph drawing, our
problem allows different aesthetic criterions which reduce to known NP-
complete problems. Second, we apply and compare two simple heuristics
to the problem of reordering the Reorderable Matrix: a two-dimensional
sort and a graph drawing algorithm.

1 Introduction

Bertin’s Reorderable Matrix [1,2] is a simple visualization method to explore
multivariate or multidimensional data. The basic principle is to transform a
multidimensional data set into a 2D interactive graphic. The graphical presenta-
tion of a data set closely resembles the underlying data table in that it contains
rows and columns. These rows and columns can be permuted, allowing different
views of the data set. The actual data values are replaced with circles that have
a size relative to the actual data value. The smallest value is represented as a
0-sized circle and the largest value as a circle filling the available area. While
interacting with the visual presentation, the user has a chance to detect pat-
terns in the presentation and to gain insight into the data. Human vision is well
equipped for this kind of pattern recognition.

Figure 1 contains a small Reorderable Matrix [1, p. 32] having binary values
only. In this simple example we have sixteen townships A,B,C, . . . , P for which
we know the presence or absence of nine characteristics, 1, 2, 3, . . .,9. The question
is whether the same planning decisions should be applied to all these townships?

Processing the Reorderable Matrix in Figure 1 involves bringing together
similar rows and columns. This in turn involves dragging rows and columns, one
by one, and can take a while. We leave the intermediate steps out and represent
the result in Figure 2.

From the arrangement in Figure 2 it is quite easy to see that there are obvious
groups in townships. Townships H,K have similar characteristics and could be
� HCI Group TAUCHI, http://www.cs.uta.fi/hci/

M. Anderson, P. Cheng, and V. Haarslev (Eds.): Diagrams 2000, LNAI 1889, pp. 453–468, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

454 Erkki Mäkinen and Harri Siirtola

Fig. 1. The townships planning decisions example

Fig. 2. An arrangement that reveals the correct decisions

labeled column-wise as CITIES and row-wise as URBAN. Similarly, townships
N, J, P,M, I, F,E and A could be classified column-wise as VILLAGES and row-
wise as RURAL. The remaining set could be called TOWNS, as an intermediate
level between CITIES and countryside.

Even for this simple example there is a large number of arrangements or
possible row and column permutations to be explored. For the townships example
the number of possible arrangements is

(# of rows)! × (# of columns)! > 7.5× 1018.

Many of the arrangements are isomorphic as patterns – e.g., mirroring the
matrix vertically or horizontally does not change the patterns – although the
arrangements are not the same. Still, even the number of different patterns is
high. In this example the size of the matrix was small, 16 × 9, when Bertin
suggests that the Reorderable Matrix should be usable with sizes up to x× y =
10, 000. The largest experiment he writes about was 415 × 76 = 31, 850. It is
obvious that finding the interesting patterns calls for automation.

1.1 Exploring the Reorderable Matrix

The Reorderable Matrix can assist in a knowledge acquisition task in a number
of ways. The general principle is to thread the matrix either horizontally or
vertically according to, a column or a row, respectively. The chosen column
or row should be one that seems to portray a phenomenon that has general

Reordering the Reorderable Matrix as an Algorithmic Problem 455

influence. After threading, the matrix should be arranged so that similar rows
appear together, forming black areas in the matrix. This kind of arrangement is
ready to be analyzed.

in X

in Y

elementary
question

two types
of questions

intermediate
question

overall
question

Fig. 3. Three levels of information: elementary, intermediate and overall [1, p. 13]

There are three kind of questions that can be answered with an appropriately
arranged matrix: questions about certain objects or characteristics, questions
about subsets of objects or characteristics and questions about overall object or
characteristic sets. Figure 3 illustrates these three levels of information.

1.2 Motivation for This Work

As far as we know, ordering the Reorderable Matrix has not been regarded before
as an algorithmic problem in the literature. Only [9] contains a remark on the
possible computational difficulty of the problem.

There exists a great variety of algorithmic problems concerning the Reorder-
able Matrix. The situation resembles that of graph drawing algorithms: depend-
ing on the aesthetic criterions applied, the graph drawing problem may reduce to
various known combinatorial and other problems. We can minimize the number
of edge crossings, display as much symmetries as possible, or draw the vertices
evenly over the drawing area, just to mention a few possibilities (for details and
other possibilities, see [4]). One of our main goals here is to show that the same
applies to the Reorderable Matrix, i.e., depending on the view chosen, we can
model the task of reordering the matrix by using various different combinatorial
problems. Notice that both in graph drawing and in ordering the Reorderable
Matrix, the different aesthetic criterions are often conflicting, i.e., it is not usually
possible to simultaneously fulfill more than one criterion.

Note that we do not give an exact mathematical definition for the problem of
reordering the Reorderable Matrix. As an implication, we cannot (mathemati-
cally) argue that the exactly formulated problems match to the original reorder-
ing problem. However, it is obvious that the exact problems to be discussed

456 Erkki Mäkinen and Harri Siirtola

later in this paper are closely related to relevant subproblems of reordering the
Reorderable Matrix. The situation is analogous to the one of drawing graphs
“nicely”: we have to always define what we mean by “nicely”, and the exact
mathematical definitions given do not cover all aspects of nice drawings.

2 Preliminaries

We assume a familiarity with the rudiments of the theory of computational
complexity and NP-complete problems as given in [8].

The Reorderable Matrix can be regarded as an m × n matrix with entries
from the set {0, 1, . . . , e}. The entry in row i and column j in matrix M is
denoted by Mij . The submatrix containing the entries Mij , where 1 ≤ i ≤ p
and 1 ≤ j ≤ q, is said to be the upper (p, q) − submatrix of M . Similarly, the
entries Mij , where p ≤ i ≤ m and q ≤ j ≤ n, form the lower (p, q)− submatrix
of M (see Figure 4).

a) b)

(p1,q1)

(p2,q2)

Fig. 4. (a) Upper (p1, q1)-submatrix and (b) lower (p2, q2)-submatrix

Graph bandwidth minimization [3,7,8] is perhaps the most well-known prob-
lem type involving matrices and row and column permutations. In bandwidth
minimization our goal is to permute the rows and columns of a given matrix
such that the non-zero entries of the matrix form as thin a “band” as possible
along the main diagonal (see Figure 5).

*
* * *
 * * *
 * * *
 * **

 *

Fig. 5. The purpose of bandwidth minimization (* stands for a non-zero entry)

Reordering the Reorderable Matrix as an Algorithmic Problem 457

However, the link between graphs and matrices implies that in these problems
row and columns permutations are performed simultaneously, while in reordering
the Reorderable Matrix row and column permutations are independent of each
other. Despite the differences in formulation, the NP-completeness of various
bandwidth problems gives us a hint that most reasonable problems concerning
the Reorderable Matrix must also be NP-complete.

Another well-knownmatrix operation closely resembling the Reorderable Ma-
trix permutation is Gaussian elimination, where rows and columns are multiplied
by and subtracted from each other. Contrary to the bandwidth problems, we
now handle rows and columns independently. On the other hand, in Gaussian
elimination we do not permute rows and columns, but perform arithmetic opera-
tions between them. For a NP-complete problem formulation related to Gaussian
elimination (DIRECTED ELIMINATION ORDERING), see [8,12].

At least the following known NP-complete problems have a close connection
with the Reorderable Matrix.

MATRIX DOMINATION [8]
Instance: An n×n matrix M with entries from {0, 1}, and a positive integer K.
Question: Is there a subset C ⊆ {1, 2, . . . , n} × {1, 2, . . . , n} with at most K
elements such that Mij = 1 for all (i, j) ∈ C, and whenever Mij = 1, then there
exists an (i′, j′) in C for which either i = i′ or j = j′?

RECTILINEAR PICTURE COMPRESSION [8]
Instance: An n×n matrix M with entries from {0, 1}, and a positive integer K.
Question: Is there a collection of K or fewer quadruples (ai, bi, ci, di), 1 ≤ i ≤
K, where ai ≤ bi, ci ≤ di, such that for every pair (i, j), 1 ≤ i, j ≤ n, Mij = 1 if
and only if there exists k, 1 ≤ k ≤ K, such that ak ≤ i ≤ bk and ck ≤ j ≤ dk?

3 Reordering Aesthetics

The problem formulations presented in the previous section use square matrices.
The Reorderable Matrix is not usually square, but for notational convenience
and with no loss of generality, we will only deal with square matrices.

A typical approach in ordering the Reorderable Matrix is to arrange the rows
and columns such that there are “black areas” in the top left and bottom right
corners implying “white areas” in the top right and bottom left corners. As
we assume that the matrix entries are from the set {0, 1, . . . , e}, we can define
’white’ to be any of the values 0, 1, . . . , c, and ’black’ to be any of the values
c+1, c+2, . . . , e, with an appropriate constant c (the value of which is not fixed
here). This aesthetic can be formalized as follows.

PROBLEM1

Instance: An n× n matrix M with non-negative entries, and an integer K.
Question: Is it possible to perform K or less row permutations and K or less

458 Erkki Mäkinen and Harri Siirtola

column permutations such that all the non-white entries appear in the upper
(K,n)-submatrix or in the lower (K + 1, n+ 1)-submatrix?

Since PROBLEM1 clearly is in NP, its NP-completeness can be proved by
defining a polynomial transformation from MATRIX DOMINATION.

Theorem 1. PROBLEM1 is NP-complete.

Proof. Consider an instance of MATRIX DOMINATION with an n×nmatrix P
and an integer k. The corresponding instance of PROBLEM1 consists of an
(n+ k)× (n+ k) matrix and an integer K = k. The new matrix M has the form
shown in Figure 6. The n× n submatrix is the original matrix P , while the new
upper (k, n)-submatrix, the new lower (k+1, n+1)-submatrix and the new k×k
matrix in the upper right corner contain zeros only.

k× n

n× n
n
×
k

Fig. 6. The matrix in the instance of PROBLEM1

Suppose the instance of MATRIX DOMINATION is related with “yes” an-
swer, i.e. there areK or less non-zero entries dominating P . Arbitrarily order the
dominating entries: Pi(1)j(1), Pi(2)j(2), . . . , Pi(κ)j(κ), where κ ≤ k. For each dom-
inating entry Pi(t)j(t), t = 1, . . . , κ, permute rows t and k + it and columns jt

and n + t in M . Since each non-zero entry of P is dominated by some of the
entries Pi(t)j(t), t = 1, . . . , κ, the permutations done move all the non-white
elements of M to the upper (k, n)-submatrix or to the lower (k + 1, n + 1)-
submatrix. On the other hand, if such permutations are possible in M , then P
must be dominated by k = K or less entries. This completes the proof.

Wilf [15, Section 2.4.], has posed open the completeness status of a problem
somewhat similar to PROBLEM1. In Wilf’s problem one is asked to find row
and column permutations such that the resulting matrix is triangular.

PROBLEM1 is related to a case where we expect that there are two “clusters”
of positively correlating factors. In general, there can be any number of such
clusters, i.e., any number of “black areas” in the matrix. This, in turn, can be
modeled by RECTILINEAR PICTURE COMPRESSION. Again, we consider
binary matrices and leave open the definitions of “white” and “black” entries.

PROBLEM2

Instance: An n×n matrix M with entries from {0, 1}, and a positive integer K.
Question: Is it possible to perform row and column permutations inM such that

Reordering the Reorderable Matrix as an Algorithmic Problem 459

there eventually is a collection ofK or fewer quadruples (ai, bi, ci, di), 1 ≤ i ≤ K,
where ai ≤ bi, ci ≤ di, 1 ≤ i ≤ K, such that for every pair (i, j), 1 ≤ i, j ≤
n, Mij = 1 if and only if there exist a k, 1 ≤ k ≤ K, such that ak ≤ i ≤ bk

and ck ≤ j ≤ dk?
As an example, consider the matrix in Figure 2. Its black areas can be rep-

resented by five rectangles in several different ways. One of the solutions with
five rectangles is {(1, 2, 1, 3), (3, 3, 3, 3), (3, 8, 4, 6), (8, 16, 7, 8), (15, 16, 9, 9)}.

Theorem 2. PROBLEM2 is NP-complete.

Proof. PROBLEM2 has RECTILINEAR PICTURE COMPRESSION as a sub-
problem. Since PROBLEM2 clearly is in NP, the theorem follows immediately
by restriction [8](pp. 63–66) from the NP-completeness of RECTILINEAR PIC-
TURE COMPRESSION.

Also the following known NP-complete problems could be used as the basis
for formulating a reordering aesthetic:

MATRIX COVER [8]
Instance: An n× n matrix M with non-negative entries, and an integer K.
Question: Is there a function f : {1, 2, . . . , n} → {+1,−1} such that

∑

1≤i,j≤n

Mij · f(i) · f(j) ≤ K?

TRIE COMPACTION [5,11]
Instance: A multiset {X(1), X(2), . . . , X(n)} of bit strings of length m and an
integer K.
Question: Is it possible to place the strings such that overlapping is possible if
in overlapping positions at most one of the strings has a non-null content and
such that the total length of the resulting bit string is at most K?

However, we omit the details of these aesthetics here.

4 Methods for Reordering

We have shown that certain subproblems of reordering the Reorderable Matrix
are closely related to well-known NP-complete problems. Hence, it is reasonable
to consider heuristic approaches to the problem.

We present two methods for reordering the Reorderable Matrix. The former is
a simple two dimensional (2D) sort and the latter is a variant of Sugiyama’s graph
layout algorithm. Both algorithms were implemented and tested with a number
of matrices (see web page http://www.cs.uta.fi/~hs/iv99/). We present two
of these test cases in the following discussion.

460 Erkki Mäkinen and Harri Siirtola

Fig. 7. The townships matrix

4.1 The Townships Example

The first test case is the townships matrix we presented earlier. It is a sim-
ple binary matrix with obvious ‘interesting’ sets of arrangements. The initial
arrangement is displayed again in Figure 7.

In Figure 8 we have one of the ‘interesting’ arrangements for the townships
example. Subsets in the data with similar characteristics can be easily seen.

Fig. 8. One of the ‘optimal’ arrangements for the townships example

The set of ‘interesting’ arrangements in this example is quite large, as Figure 9
illustrates. Most of the rows and columns inside subsets CITIES, TOWNS and
VILLAGES could be in any order and the information would still be the same.

4.2 The Hotel Example

The second test case contains monthly data compiled from an imaginary hotel [1,
pp. 1–11]. The object set is twelve months and the characteristics are properties
that hotel management could use for business planning.

The data contains various numbers describing the clientele, the average price
of room and the average length of stay. Most of the numbers are percent figures,
except for the average length of stay, the average price of rooms and the infor-
mation whether or not there was a convention during that month. The average
length of stay is given in days and the average price of room is given in the local

Reordering the Reorderable Matrix as an Algorithmic Problem 461

CITIES

TOWNS

VILLAGES

RURAL

URBAN

Fig. 9. The interesting subsets for the townships example

J F M A M J J A S O N D
26 21 26 28 20 20 20 20 20 40 15 40 1 % CLIENTELE FEMALE
69 70 77 71 37 36 39 39 55 60 68 72 2 % LOCAL
7 6 3 6 23 14 19 14 9 6 8 8 3 % U.S.A.
0 0 0 0 8 6 6 4 2 12 0 0 4 % SOUTH AMERICA

20 15 14 15 23 27 22 30 27 19 19 17 5 % EUROPE
1 0 0 8 6 4 6 4 2 1 0 1 6 % M.EAST, AFRICA
3 10 6 0 3 13 8 9 5 2 5 2 7 % ASIA

78 80 85 86 85 87 70 76 87 85 87 80 8 % BUSINESSMEN
22 20 15 14 15 13 30 24 13 15 13 20 9 % TOURISTS
70 70 75 74 69 68 74 75 68 68 64 75 10 % DIRECT RESERVATIONS
20 18 19 17 27 27 19 19 26 27 21 15 11 % AGENCY
10 12 6 9 4 5 7 6 6 5 15 10 12 % AIR CREWS
2 2 4 2 2 1 1 2 2 4 2 5 13 % CLIENTS UNDER 20 YEARS

25 27 37 35 25 25 27 28 24 30 24 30 14 % 20-35
48 49 42 48 54 55 53 51 55 46 55 43 15 % 35-55
25 22 17 15 19 19 19 19 19 20 19 22 16 % MORE THAN 55

163 167 166 174 152 155 145 170 157 174 165 158 17 PRICE OF ROOMS
1.65 1.71 1.65 1.91 1.90 2.00 1.54 1.60 1.73 1.82 1.66 1.44 18 LENGTH OF STAY
67 82 70 83 74 77 56 62 90 92 78 55 19 % OCCUPANCY

X X X X X X X 20 CONVENTIONS

Fig. 10. The hotel example data table [1, pp. 1–11]

currency. Hotel management would use this kind of data to design marketing,
to define price structure, and to plan services offered to the customers.

The data table in Figure 10 is displayed as a Reorderable Matrix in Figure 11.
This matrix is not a binary one, but contains numbers from very different do-
mains.

4.3 2D Sort Method

The 2D sort method is a simple heuristics that tries to build black areas to the
top left and the bottom right corners of the matrix. This is done by comparing
weighted row and column sums and sorting the matrix repeatedly according to
these values.

The 2D sort method first arranges the matrix into ascending order according
to weighted row sums. The weights are the column positions of each cell. The next
phase arranges the matrix again in a similar manner, but now in column-wise
direction. These two phases are repeated until no row or column exchanges occur.
This termination condition requires that the sort algorithm must be stable.

462 Erkki Mäkinen and Harri Siirtola

Fig. 11. The hotel data table as a Reorderable Matrix

Generally, when we want to find interesting arrangements, we can have some
kind of hypothesis to start with. Usually we want to specify a row or a column
that we believe to have overall influence in the data set. In 2D sort this can be
accomplished by sorting the matrix according to a single row or a column and
then running the 2D sort. This reference row or column will not necessarily stay
where we place it – or even remain unchanged during the 2D sort – but it will
certainly be one of the driving factors in the sort. This feature can be used to
generate different arrangements from the matrix.

4.4 2D Sort: The Townships Example

In Figure 12 we have the townships matrix sorted with the 2D sort. As can be
seen, the subsets CITIES, TOWNS and VILLAGES were formed, but townships
C, B, J and N caused problems. These townships do not fall completely inside
classifications, but have some characteristics that the other similar townships
lack. However, for a user it would be a simple task to ‘correct’ the arrangement
to the one preferred by human readers (as in Figure 8).

The 2D sort could be further tuned by experimenting with the weight distri-
bution. Possibly a non-linear distribution of weights could ‘draw’ the black areas
together even better.

4.5 2D Sort: The Hotel Example

Figure 13 shows the result of arranging the hotel example with the 2D sort.
This particular operation was initiated by threading the matrix according to the

Reordering the Reorderable Matrix as an Algorithmic Problem 463

Fig. 12. The townships matrix sorted with the 2D sort

row %BUSINESSMEN and then issuing the sort command. As can be seen, the
reference row is not the top row in the resulting arrangement, but it is still part
of the black area appearing in the top left corner.

Fig. 13. The hotel matrix sorted with the 2D sort

What can be seen from or how should we interpret the arrangement in Fig-
ure 13? At least the following facts are easily found:

– Businessmen are mainly from the age group 35 to 55 years old.
– Businessmen make their room reservations through an agency.
– Businessmen stay at the hotel when there is a convention in town.
– Businessmen usually stay longer than other guests.

464 Erkki Mäkinen and Harri Siirtola

Choosing another reference row not appearing in this arrangement’s black
areas will probably produce new observations from the data set.

4.6 Sugiyama’s Algorithm

The problem of drawing bipartite graphs with as few edge crossings as possible is
a much studied subproblem of graph drawing. It is assumed that the vertices are
drawn in horizontal lines such that separate vertex sets are placed in different
horizontal lines and edges are drawn as straight lines between the sets. The
drawing problem reduces to the problem of ordering the vertices in the lines
such that the number of edge crossings is minimized.

There are actually two separate problems: we can fix the order in one of the
horizontal lines and ask the optimal order of vertices in the other line, or we
can order the vertices in both vertex sets of the bipartite graph in question, i.e.,
order the vertices in both of the horizontal lines. Even the former problem is
known to be NP-complete [6]. Next, we will discuss the latter, somewhat harder
problem. Since there is no possibility of confusion, we call it simply the drawing
problem.

A well-known heuristic approach to the drawing problem is Sugiyama’s algo-
rithm [14] which is based on the average heuristic (sometimes called the barycen-
ter heuristic). In the average heuristic we order the vertices according to the
averages of their adjacent vertices in the opposite vertex set. By repeating this
ordering process in turns in the two vertex sets, we (hopefully) reach orderings
of vertices which minimize the number of edge crossings. Figure 14 illustrates
a sample bipartite graph whose vertices are ordered according to this heuristic.
For further information concerning the drawing problem, consult [4,6,10].

D B A C

1 3 2 5 41 2 3 4 5

A B C D 1 2 3 4 5 1 3 2 5 4

A

B

C

D

D

B

A

C

Fig. 14. Applying the average heuristic to a simple bipartite graph

Figure 14 shows how the adjacency matrices of the bipartite graphs are
changed when applying the averaging heuristic. It is evident that when applying
the heuristic, the corresponding adjacency matrices have the tendency to be re-
ordered so that there are “black areas” in the top left and bottom right corners.
This is just what we wanted to establish in connection with PROBLEM1. In
what follows we try to make use of the averaging heuristic when ordering the
Reorderable Matrix.

A clear difference between the drawing problem and the ordering of the
Reorderable Matrix is that while in the former problem we have binary values

Reordering the Reorderable Matrix as an Algorithmic Problem 465

only, the latter one deals with the set {0, 1, . . . , e}. Our first solution to this
problem is very simple: we suppose that the possible values of the matrix are
divided into two categories: “blacks” and “whites” or 1’s and 0’s. Although in
some sense self-evident, this approach has also a “deeper” rationale: the user
of the Reorderable Matrix can define different “threshold values” for different
objects and their attributes. For some object in an application, a certain value
is “black” if the user considers it significant enough.

4.7 Sugiyama’s Algorithm: The Townships Example

Sugiyama’s algorithm will produce different arrangements depending on the
number of up and down iterations. With some data sets the arrangement will
converge and become stationary, but with some other data sets the arrangement
may converge for a moment and then pulsate between a number of states. So,
the problem in producing ‘interesting’ arrangements with Sugiyama’s algorithm
is with these stationary layouts – you get exactly one arrangement, no matter
what the initial setting is.

Fig. 15. The townships example drawn with Sugiyama’s algorithm

The townships example is almost a stationary arrangement. The only ele-
ments in the matrix that do not converge are the townships that do not fit into
classifications. The arrangement in Figure 15 is remarkably close to the optimal
human-arranged one: moving three columns will produce the same arrangement
as in Figure 8.

4.8 Sugiyama’s Algorithm: The Hotel Example

Instead of dividing the matrix entries into “blacks” and “whites” we can also
deal with the original value set {0, 1, . . . , e}. In that case we have to replace
the normal averages by weighted ones. As above, we deal with the rows and
columns of the matrix in turns. Since the entries of an m×n matrix M can have
values 0, 1, . . . , k, we count the sums

∑n
j=1 j · Mij (for rows) and

∑m
i=1 i · Mij

(for columns), and order the rows and columns according to the sums obtained.
In Figure 16 we have chosen on purpose an arrangement that is close to the

arrangement presented in Figure 13, the 2D sort version of the hotel example.

466 Erkki Mäkinen and Harri Siirtola

The difference in the layout is clear: in this version the black area will occur on
the diagonal and close to the middle of the matrix. However, the same kind of
observations from the data as made with the 2D sort version can also be made
from this arrangement.

Fig. 16. The hotel example drawn with Sugiyama’s algorithm

In the implementation that produced the arrangement in Figure 16, we used
normalized values in the range [0, 1]. The threshold value for considering cells
‘black’ was 0.89 and was chosen by experimenting with various settings. In Fig-
ure 16 the cells that have a value above the threshold value are black and the
cells below the threshold value are grey.

5 Concluding Remarks

We have proved that various problems related to the reordering aesthetics of the
Reorderable Matrix are NP-complete. This suggests that it is reasonable to try
heuristic reordering approaches.

We have shown that the averaging heuristic for minimizing the number of
edge crossings when drawing bipartite graphs is well suited reordering the Re-
orderable Matrix. We have implemented both a binary version and its general-
ization which works with all entry values.

We believe that both the 2D sort method and Sugiyama’s algorithm are
useful in assisting the user while exploring the Reorderable Matrix. However,
the usability of these ideas must be verified with user testing. We have already
done usability experiments with the basic Reorderable Matrix [13].

Reordering the Reorderable Matrix as an Algorithmic Problem 467

Acknowledgements

This work was supported by the Academy of Finland (project 35025) and by the
National Technology Agency TEKES (project 20287).

References

1. J. Bertin. Graphics and Graphic Information Processing. Walter de Gruyter & Co.,
Berlin, 1981. (Originally La graphique et le traitemente graphique de l’information,
1967, translated in English by William J. Berg and Paul Scott). 453, 455, 460,
461

2. J. Bertin. Semiology of Graphics – Diagrams Networks Maps. The University of
Wisconsin Press, 1983. (Originally Sémiologue graphique, 1967, translated in En-
glish by William J. Berg). 453

3. P. Z. Chinn, J. Chvátalová, A. K. Dewdney, and N. E. Gibbs, The bandwidth
problem for graphs and matrices – a survey. J. Graph Theory 6 (1992), 223–254.
456

4. G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Annotated bibliography on
graph drawing algorithms. Comput. Geom. Theory Appl. 4 (1994) 235–282. 455,
464

5. J. M. Dill, Optimal trie compaction is NP-complete. Cornell University, Dept. of
Computer Science, Report 87-814, March 1987. 459

6. P. Eades and N. Wormald, Edge crossings in drawings of bipartite graphs. Algo-
rithmica 10 (1994), 361–374. 464

7. M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth, Complexity results
for bandwidth minimization. SIAM J. Appl. Math. 34 (1978), 477–495. 456

8. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman, 1979. 456, 457, 459

9. H. Hinterberger and C. Schmid, Reducing the influence of biased graphical percep-
tion with automatic permutation matrices. In Proceedings of the Seventh Confer-
ence on Scientific Use of Statistic-Software, SoftStat93, Heidelberg. Gustav Fischer
Verlag, Stuttgart, 1993, pages 285–291. 455

10. M. Jünger and P. Mutzel, 2-layer straightline crossing minimization: performance
of exact and heuristic algorithms. J. Graph Algorithms and Applications 1 (1997),
1–25. 464

11. J. Katajainen and E. Mäkinen, A note on the complexity of trie compaction.
EATCS Bull. 41 (1990), 212–216. 459

12. D. J. Rose and R. E. Tarjan, Algorithmic aspects of vertex elimination of directed
graphs. SIAM J. Appl. Math. 34 (1978), 176–197. 457

13. H. Siirtola. Interaction with the Reorderable Matrix. In E. Banissi, F.
Khosrowshahi, M. Sarfraz, E. Tatham, and A. Ursyn, editors, Informa-
tion Visualization IV’99, pages 272–277. Proceedings International Confer-
ence on Information Visualization, IEEE Computer Society, July 1999.
http://www.cs.uta.fi/~hs/iv99/siirtola.pdf. 466

14. K. Sugiyama, S. Tagawa, and M. Toda, Methods for visual understanding of hi-
erarchical system structures. IEEE Trans. Syst. Man Cybern. SMC-11 (1981),
109–125. 464

468 Erkki Mäkinen and Harri Siirtola

15. H. S. Wilf, On crossing numbers, and some unsolved problems. B. Bollobás and
A. Thomason (eds), Combinatorics, Geometry, and Probability: A Tribute to Paul
Erdös. Papers from the Conference in Honor of Erdös’ 80th Birthday Held at Trin-
ity College, Cambridge University Press, 1997, pages 557-562. 458

	Introduction
	Exploring the Reorderable Matrix
	Motivation for This Work

	Preliminaries
	Reordering Aesthetics
	Methods for Reordering
	The Townships Example
	The Hotel Example
	2D Sort Method
	2D Sort: The Townships Example
	2D Sort: The Hotel Example
	Sugiyama's Algorithm
	Sugiyama's Algorithm: The Townships Example
	Sugiyama's Algorithm: The Hotel Example

	Concluding Remarks

