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Experiments with Sonic Sculptures 
 

 
Overarching theme:  
 
Experimental abstract sound driven sculptures generated through the interaction of audio data 
and simple physics simulation. 
 
Focus: 
 

- Visualizing audio spectrum data from an audio source, audio clip or microphone into 
abstract 3D art worlds in Unity 

- Development of a framework to use spectrum data to drive any phenomena and 
behavior in Unity 

- Experimentation with generating abstract immersive sonic sculptures using audio data 
and physics simulation functionality 

 
Methodology: 
 
Unity game engine was used to prototype the experiments in this project. Audio in Unity is 
handled by a component called AudioSource which is attached to a GameObject to play back 
sounds in a 3D environment. An AudioListener is attached to the Camera to capture the run 
time mix based on player’s movement and directionality. 
 
In order to extract data from an AudioSource, we must create a reference to the ‘AudioSource’ 
component of a Unity GameObject and a pair of float arrays to store the spectrum data for each 
channel. 
 
AudioSource _audioSource;  
private float[] _samplesLeft = new float[512]; 
private float[] _samplesRight = new float[512]; 
_audioSource = GetComponent<AudioSource>(); 
 
We then run the GetSpectrumData() method for each channel on the audiosource component 
referenced in _audiosource. This method provides a block of the currently playing audio 
source’s spectrum data. The number of samples must be a power of 2, with a minimum of 64 
and maximum of 8192. There are six types of windows available to reduce leakage between 
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frequency bins/bands. The more complex the window type, the better the quality, but reduced 
speed. On testing the different window options, there was no noticeable difference at the level of 
sampling and computation that this experiment is working with so Unity’s default window choice, 
FFTWindow.Blackman was used.  
 
_audioSource.GetSpectrumData(_samplesLeft, 0, FFTWindow.Blackman); 
_audioSource.GetSpectrumData(_samplesRight, 1, FFTWindow.Blackman); 

SWITCH TO MANUAL 

public void ​GetSpectrumData​​(float[] ​samples​​, int ​channel​​, ​FFTWindow​window​​); 

The spectrum arrays _samplesLeft and _samplesRight can be used directly to drive 
visualization, however since these are FFT values designed to give a precise reading, they will 
not create a lot of movement to drive easily perceptual changes. In order to condense the 
spectrum information for real time playback purposes, a set of eight and sixty four frequency 
bands were chosen to ultimately drive visualizations. 
 
When the number of samples for the FFT function are set to 512, and with a sampling rate of 
44100, there are 43Hz for every sample ( (44100 / 2) / 512). We then categorize the samples 
into eight frequency bands. To find the range limits of each band, we run an iteration loop with a 
simple algorithm to set our ranges. Below is a table showing the number to be multiplied by 43 
on each iteration to get the frequency count (number of frequencies in the range) in each 
iteration. The start of the range is the upper limit of the previous iterations frequency range plus 
one, and the upper limit of the current iteration is the start value plus frequency count. 
 
0 - 2 = 86Hz = 0 - 86 
1 - 4 = 172Hz = 87 - 258 
2 - 8 = 344Hz = 259 - 602 
3 - 16 = 688Hz = 603 - 1290 
4 - 32 = 1376Hz = 1291 - 2666 
5 - 64 = 2752Hz = 2667 - 5418 
6 - 128 = 5504Hz = 5419 - 10922 
7 - 256 = 11008Hz = 10923 - 21930 
 
The numbers to be multiplied can be calculated using the Mathf.Pow(F,P) exponent function, 
which returns F raised to P. We can efficiently approximate frequency band ranges with shorter 
sizes at the low frequency and exponentially larger sizes for the very high frequencies that are 
generally not used in music. 
 
 
 
8 Frequency Bands: 
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Two nested loops are used, one to calculate the sampleCount for each frequency band range 
and the other to populate the frequency band array with the average value of the FFT samples 
for that range. 
 
private float[] _freqBand = new float[8]; 
void MakeFrequencyBands() 
    { 
        int count = 0; 
 
        for(int i = 0; i < 8; i++) 
        { 
            float average = 0; 
            int sampleCount = (int)Mathf.Pow(2, i) * 2; 
 
            if(i == 7) 
            { 
                sampleCount += 2; 
 
            } 
            for(int j = 0; j < sampleCount; j++) 
            { 
                if(channel == _channel.Stereo) 
                { 
                    average += (_samplesLeft[count] + _samplesRight[count]) * (count + 1); 
                } 
                if(channel == _channel.Left) 
                { 
                    average += _samplesLeft[count] * (count + 1); 
                } 
                if(channel == _channel.Right) 
                { 
                    average += _samplesRight[count] * (count + 1); 
                } 
                count++; 
            } 
            average /= count; 
            _freqBand[i] = average * 10; 
        } 
    } 
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64 Frequency Bands: 
 
Dividing up the samples for 64 frequency bands required a custom logic as the method used for 
the 8 frequency bands would not work here without modification. The table below shows the 
currently used distribution of FFT samples per band: 
 
0-15 bands = 1 sample/band = 16 
16 - 31 bands = 2 samples/band = 32 
32 - 39 bands = 4 samples/band = 32 
40 - 47 bands = 6 samples/band = 48 
48 - 55 bands = 16 samples/band = 128 
56 - 64 bands = 32 samples/band = 256 

          += 512 samples total 
 
void MakeFrequencyBands64() 
    { 
        int count = 0; 
        int sampleCount = 1; 
        int power = 0; 
 
        for (int i = 0; i < 64; i++) 
        { 
            float average = 0; 
  
 
            if (i == 16 || i == 32 || i == 40 || i == 48 || i == 56) 
            { 
                power++; 
                sampleCount = (int)Mathf.Pow(2, power); 
                if (power == 3) 
                { 
                    sampleCount -= 2; 
                } 
 
            } 
            for (int j = 0; j < sampleCount; j++) 
            { 
                if (channel == _channel.Stereo) 
                { 
                    average += (_samplesLeft[count] + _samplesRight[count]) * (count + 1); 
                } 
                if (channel == _channel.Left) 
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                { 
                    average += _samplesLeft[count] * (count + 1); 
                } 
                if (channel == _channel.Right) 
                { 
                    average += _samplesRight[count] * (count + 1); 
                } 
                count++; 
            } 
            average /= count; 
            _freqBand64[i] = average * 10; 
        } 
    } 
 
 
Buffers were added as an option to slowly reduce the value of the bands to prevent abrupt 
scaling down, which helps with the aesthetics of the visualization. 
 
void BandBuffer() 
    { 
        for(int g = 0; g < 8; ++g) 
        { 
            if (_freqBand[g] > _bandBuffer[g]) 
            { 
                _bandBuffer[g] = _freqBand[g]; 
                _bufferDecrease[g] = 0.005f; 
            } 
            if(_freqBand[g] < _bandBuffer[g]) 
            { 
                _bandBuffer[g] -= _bufferDecrease[g]; 
                _bufferDecrease[g] *= 1.2f; 
            } 
        } 
 
    } 
 
The arrays _audioBand[] and _audioBandBuffer[] are assigned and populated based on the 
frequency band range. 
 
void CreateAudioBands() 
    { 
        for (int i = 0; i < 8; i++) 
        { 
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            if (_freqBand[i] > _freqBandHighest[i]) 
            { 
                _freqBandHighest[i] = _freqBand[i]; 
            } 
            _audioBand[i] = (_freqBand[i] / _freqBandHighest[i]); 
            _audioBandBuffer[i] = (_bandBuffer[i] / _freqBandHighest[i]); 
        } 
    } 
 
The normalized data from the _audioBand[] and _audioBandBuffer[] arrays are used to 
calculate the amplitude of the audiosource. 
 
void GetAmplitude() 
    { 
        float _CurrentAmplitude = 0; 
        float _CurrentAmplitudeBuffer = 0; 
 
        for (int i = 0; i < 8; i++) 
        { 
            _CurrentAmplitude += _audioBand[i]; 
            _CurrentAmplitudeBuffer += _audioBandBuffer[i]; 
        } 
        if (_CurrentAmplitude > _AmplitudeHighest) 
        { 
            _AmplitudeHighest = _CurrentAmplitude; 
        } 
        _Amplitude = _CurrentAmplitude / _AmplitudeHighest; 
        _AmplitudeBuffer = _CurrentAmplitudeBuffer / _AmplitudeHighest; 
    } 
 
Visualization Experiments 
 
Now that we have our audio data organized, we can start plugging in the frequency band values 
into parameters of objects in Unity. The main variables used are _audioBand[] and 
_audioBandBuffer[] for 8 bands;  _audioBand64[] and audioBandBuffer64[] for 64 bands. 
 
For these set of experiments, a template visualization was created using 64 Cylinder 3D objects 
representing each of the 64 frequency bands. Tests were done with 8 bands but the more 
interesting visualizations emerged out of using 64 bands of frequency ranges. The scales of the 
cylinders were driven by the value of the frequency bands using the transform.localScale 
function and the following vector calculation: 
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transform.localScale = new Vector3((_audiopeer._AmplitudeBuffer * _scaleMultiplier) + 
_startScale, (_audiopeer._AmplitudeBuffer * _scaleMultiplier) + _startScale, 
(_audiopeer._AmplitudeBuffer * _scaleMultiplier) + _startScale); 
 
 
_startScale and _scaleMultipliers are user set variables that are visible in the Unity Editor menu 
under each cylinder object, or any object that contains a script with this functionality in it. 
 
The visualizations explored how audio data reacts with physics simulation data. Each set of 
cylinders were made to attract to different objects using an attraction force script. The cylinders 
were also given rigid body physics dynamics and colliders so they would interact with each 
other as they cycled through their attraction logic. 
 
Rigidbody _rigidbody; 
    public Transform _attractedTo; 
    public float _strengthOfAttraction, _maxMagnitude; 
 Vector3 direction = _attractedTo.position - transform.position; 
            _rigidbody.AddForce(_strengthOfAttraction * direction); 
 
With this basic setup, the geometry was cycled between cylinders, spheres and cubes being a 
combination of attractor object or attracted particle objects or both. The scale of the attractor 
object was also driven by either a frequency band or the amplitude of the audiosource. Trail 
renderer components were also added to each particle object to draw a path of their movement 
over time. The trails are set to decay after five seconds. 
 
The frequency data for 64 bands was then used to drive the color properties of the materials 
and shaders associated to the particle objects, such as surface shaders and trail shaders. A 
color variable was driven by the frequency data, which in turn modified the material and shader 
attributes in real time. A user defined color gradient is set before run time and divided by the 
number of rows to determine the color for each frequency band. 
 
_color[i] = _colorGradient.Evaluate((1f / 64f) * i); // set colours to the gradient, dividing the 
gradient by the number of rows. You can change the gradient in the inspector 
Color DiffuseColor = new Color ( 

(_color [i].r * _audioPeer._audioBandBuffer64 [i]) * 
_diffuseColorMultiplier,  

(_color [i].g * _audioPeer._audioBandBuffer64 [i]) * 
_diffuseColorMultiplier,  

(_color [i].b * _audioPeer._audioBandBuffer64 [i]) * 
_diffuseColorMultiplier, 1); // the diffuse color is always updating, to the bandbuffers, and 
multiplied by the amount specified on the slider 

_materialLine [i].SetColor ("_Color", DiffuseColor); //apply the color above 
            _materialTrails[i].SetColor("_Color", DiffuseColor); 
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Results: 
 
The sphere attractors produced the more immersive and compelling visualizations as the curved 
surfaces allowed the particles to spread out around the entire surface area. With cylinders and 
cubes, particles seemed to bunch up either around the equator of the cylinder or at the center of 
the four lateral sides. Below are the images showing the visualizations produced with sphere 
attractors: 
 
 

 
Sphere Attractor Sphere Particles 
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Sphere Attractor Cylinder Particles 
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Sphere Attractor Cube Particles 
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Music driven colors for Spheres on Sphere 
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Music driven colors for Cylinders on Sphere 

 
 
 
Conclusions: 
 
The interaction between audio frequency data and physics simulation was interesting to 
observe. When the particle objects were cylinders, the visualization produced the most noise, 
variance and asymmetry, while the spheres produced more uniform and symmetric 
visualizations. The cubes were on the noisy side, but their movements were not as erratic as the 
cylinders. 
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This project has been an exercise in understanding and exploring Unity’s audio analysis 
capabilities as well as developing a framework to use audio spectrum data to drive any 
phenomena in an interactive experience. On that front, the code developed to drive the 
attractors, particle objects and colors using audio data will be reused for any future functionality 
that requires audio spectrum analysis. 
 
The examples showed that this system can almost be used as a plug and play asset on any 
Unity object that has an AudioSource component. In this way, there still is a lot more 
experimentation left to do in order to find every permutation and combination of visualization 
that is possible using just the variables and audio values derived from this project. The prospect 
of quickly prototyping functionality in order to validate a concept is where Unity really shines, 
and the ability to develop experimental functionality as a modular asset allows for creative 
media artists to eventually start plugging individually developed functionality together in order to 
create new forms of code based or simulation based art and abstract immersive environments. 
 
The next stages for this project involve further development of this framework using Unity’s 
particle system, high definition render pipeline and GPU processing to enable simulation of 
thousands and possibly millions of particles, while using the maximum number of samples 
available through the FFT function - 8192. With flocking behavior and advanced physics 
simulation, there are a lot of applications for this functionality in building 3D objects that deform 
over time based on the interaction between them and the particle objects driven by frequency 
bands. This requires development of an efficient way of working with real time deformation, 
which can be computationally intensive. 
 
References & Inspiration: 
 
Soundself: 
https://www.soundself.com/ 
 
Cymatics: 
https://www.youtube.com/watch?v=Q3oItpVa9fs 
https://www.youtube.com/watch?v=ftoFKlTcYEc 
 
Golan Levin:  
http://www.flong.com/projects/messa/ 
https://youtu.be/STRMcmj-gHc 
 
The Well: 
https://www.mat.ucsb.edu/g.legrady/academic/courses/06w256/projects/final/will-anne-marie/ind
ex.html 
 
George Legrady MAT 
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https://www.mat.ucsb.edu/g.legrady/academic/courses/overview.html 
https://www.mat.ucsb.edu/g.legrady/academic/courses/06w256/06w256.html 
 
Adrien M & Claire B 
L’ombre de la vapeur: ​https://vimeo.com/278181935 
Mirages et miracles: ​https://vimeo.com/248983439 
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