
 MAT-265 Open Projects in Computational Processes
Project Documentation

Experiments with Sonic Sculptures

Overarching theme:

Experimental abstract sound driven sculptures generated through the interaction of audio data
and simple physics simulation.

Focus:

- Visualizing audio spectrum data from an audio source, audio clip or microphone into
abstract 3D art worlds in Unity

- Development of a framework to use spectrum data to drive any phenomena and
behavior in Unity

- Experimentation with generating abstract immersive sonic sculptures using audio data
and physics simulation functionality

Methodology:

Unity game engine was used to prototype the experiments in this project. Audio in Unity is
handled by a component called AudioSource which is attached to a GameObject to play back
sounds in a 3D environment. An AudioListener is attached to the Camera to capture the run
time mix based on player’s movement and directionality.

In order to extract data from an AudioSource, we must create a reference to the ‘AudioSource’
component of a Unity GameObject and a pair of float arrays to store the spectrum data for each
channel.

AudioSource _audioSource;
private float[] _samplesLeft = new float[512];
private float[] _samplesRight = new float[512];
_audioSource = GetComponent<AudioSource>();

We then run the GetSpectrumData() method for each channel on the audiosource component
referenced in _audiosource. This method provides a block of the currently playing audio
source’s spectrum data. The number of samples must be a power of 2, with a minimum of 64
and maximum of 8192. There are six types of windows available to reduce leakage between

1

frequency bins/bands. The more complex the window type, the better the quality, but reduced
speed. On testing the different window options, there was no noticeable difference at the level of
sampling and computation that this experiment is working with so Unity’s default window choice,
FFTWindow.Blackman was used.

_audioSource.GetSpectrumData(_samplesLeft, 0, FFTWindow.Blackman);
_audioSource.GetSpectrumData(_samplesRight, 1, FFTWindow.Blackman);

SWITCH TO MANUAL

public void ​GetSpectrumData​​(float[] ​samples​​, int ​channel​​, ​FFTWindow​window​​);

The spectrum arrays _samplesLeft and _samplesRight can be used directly to drive
visualization, however since these are FFT values designed to give a precise reading, they will
not create a lot of movement to drive easily perceptual changes. In order to condense the
spectrum information for real time playback purposes, a set of eight and sixty four frequency
bands were chosen to ultimately drive visualizations.

When the number of samples for the FFT function are set to 512, and with a sampling rate of
44100, there are 43Hz for every sample ((44100 / 2) / 512). We then categorize the samples
into eight frequency bands. To find the range limits of each band, we run an iteration loop with a
simple algorithm to set our ranges. Below is a table showing the number to be multiplied by 43
on each iteration to get the frequency count (number of frequencies in the range) in each
iteration. The start of the range is the upper limit of the previous iterations frequency range plus
one, and the upper limit of the current iteration is the start value plus frequency count.

0 - 2 = 86Hz = 0 - 86
1 - 4 = 172Hz = 87 - 258
2 - 8 = 344Hz = 259 - 602
3 - 16 = 688Hz = 603 - 1290
4 - 32 = 1376Hz = 1291 - 2666
5 - 64 = 2752Hz = 2667 - 5418
6 - 128 = 5504Hz = 5419 - 10922
7 - 256 = 11008Hz = 10923 - 21930

The numbers to be multiplied can be calculated using the Mathf.Pow(F,P) exponent function,
which returns F raised to P. We can efficiently approximate frequency band ranges with shorter
sizes at the low frequency and exponentially larger sizes for the very high frequencies that are
generally not used in music.

8 Frequency Bands:

2

https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/ScriptReference/FFTWindow.html

Two nested loops are used, one to calculate the sampleCount for each frequency band range
and the other to populate the frequency band array with the average value of the FFT samples
for that range.

private float[] _freqBand = new float[8];
void MakeFrequencyBands()
 {
 int count = 0;

 for(int i = 0; i < 8; i++)
 {
 float average = 0;
 int sampleCount = (int)Mathf.Pow(2, i) * 2;

 if(i == 7)
 {
 sampleCount += 2;

 }
 for(int j = 0; j < sampleCount; j++)
 {
 if(channel == _channel.Stereo)
 {
 average += (_samplesLeft[count] + _samplesRight[count]) * (count + 1);
 }
 if(channel == _channel.Left)
 {
 average += _samplesLeft[count] * (count + 1);
 }
 if(channel == _channel.Right)
 {
 average += _samplesRight[count] * (count + 1);
 }
 count++;
 }
 average /= count;
 _freqBand[i] = average * 10;
 }
 }

3

64 Frequency Bands:

Dividing up the samples for 64 frequency bands required a custom logic as the method used for
the 8 frequency bands would not work here without modification. The table below shows the
currently used distribution of FFT samples per band:

0-15 bands = 1 sample/band = 16
16 - 31 bands = 2 samples/band = 32
32 - 39 bands = 4 samples/band = 32
40 - 47 bands = 6 samples/band = 48
48 - 55 bands = 16 samples/band = 128
56 - 64 bands = 32 samples/band = 256

 += 512 samples total

void MakeFrequencyBands64()
 {
 int count = 0;
 int sampleCount = 1;
 int power = 0;

 for (int i = 0; i < 64; i++)
 {
 float average = 0;

 if (i == 16 || i == 32 || i == 40 || i == 48 || i == 56)
 {
 power++;
 sampleCount = (int)Mathf.Pow(2, power);
 if (power == 3)
 {
 sampleCount -= 2;
 }

 }
 for (int j = 0; j < sampleCount; j++)
 {
 if (channel == _channel.Stereo)
 {
 average += (_samplesLeft[count] + _samplesRight[count]) * (count + 1);
 }
 if (channel == _channel.Left)

4

 {
 average += _samplesLeft[count] * (count + 1);
 }
 if (channel == _channel.Right)
 {
 average += _samplesRight[count] * (count + 1);
 }
 count++;
 }
 average /= count;
 _freqBand64[i] = average * 10;
 }
 }

Buffers were added as an option to slowly reduce the value of the bands to prevent abrupt
scaling down, which helps with the aesthetics of the visualization.

void BandBuffer()
 {
 for(int g = 0; g < 8; ++g)
 {
 if (_freqBand[g] > _bandBuffer[g])
 {
 _bandBuffer[g] = _freqBand[g];
 _bufferDecrease[g] = 0.005f;
 }
 if(_freqBand[g] < _bandBuffer[g])
 {
 _bandBuffer[g] -= _bufferDecrease[g];
 _bufferDecrease[g] *= 1.2f;
 }
 }

 }

The arrays _audioBand[] and _audioBandBuffer[] are assigned and populated based on the
frequency band range.

void CreateAudioBands()
 {
 for (int i = 0; i < 8; i++)
 {

5

 if (_freqBand[i] > _freqBandHighest[i])
 {
 _freqBandHighest[i] = _freqBand[i];
 }
 _audioBand[i] = (_freqBand[i] / _freqBandHighest[i]);
 _audioBandBuffer[i] = (_bandBuffer[i] / _freqBandHighest[i]);
 }
 }

The normalized data from the _audioBand[] and _audioBandBuffer[] arrays are used to
calculate the amplitude of the audiosource.

void GetAmplitude()
 {
 float _CurrentAmplitude = 0;
 float _CurrentAmplitudeBuffer = 0;

 for (int i = 0; i < 8; i++)
 {
 _CurrentAmplitude += _audioBand[i];
 _CurrentAmplitudeBuffer += _audioBandBuffer[i];
 }
 if (_CurrentAmplitude > _AmplitudeHighest)
 {
 _AmplitudeHighest = _CurrentAmplitude;
 }
 _Amplitude = _CurrentAmplitude / _AmplitudeHighest;
 _AmplitudeBuffer = _CurrentAmplitudeBuffer / _AmplitudeHighest;
 }

Visualization Experiments

Now that we have our audio data organized, we can start plugging in the frequency band values
into parameters of objects in Unity. The main variables used are _audioBand[] and
_audioBandBuffer[] for 8 bands; _audioBand64[] and audioBandBuffer64[] for 64 bands.

For these set of experiments, a template visualization was created using 64 Cylinder 3D objects
representing each of the 64 frequency bands. Tests were done with 8 bands but the more
interesting visualizations emerged out of using 64 bands of frequency ranges. The scales of the
cylinders were driven by the value of the frequency bands using the transform.localScale
function and the following vector calculation:

6

transform.localScale = new Vector3((_audiopeer._AmplitudeBuffer * _scaleMultiplier) +
_startScale, (_audiopeer._AmplitudeBuffer * _scaleMultiplier) + _startScale,
(_audiopeer._AmplitudeBuffer * _scaleMultiplier) + _startScale);

_startScale and _scaleMultipliers are user set variables that are visible in the Unity Editor menu
under each cylinder object, or any object that contains a script with this functionality in it.

The visualizations explored how audio data reacts with physics simulation data. Each set of
cylinders were made to attract to different objects using an attraction force script. The cylinders
were also given rigid body physics dynamics and colliders so they would interact with each
other as they cycled through their attraction logic.

Rigidbody _rigidbody;
 public Transform _attractedTo;
 public float _strengthOfAttraction, _maxMagnitude;
 Vector3 direction = _attractedTo.position - transform.position;
 _rigidbody.AddForce(_strengthOfAttraction * direction);

With this basic setup, the geometry was cycled between cylinders, spheres and cubes being a
combination of attractor object or attracted particle objects or both. The scale of the attractor
object was also driven by either a frequency band or the amplitude of the audiosource. Trail
renderer components were also added to each particle object to draw a path of their movement
over time. The trails are set to decay after five seconds.

The frequency data for 64 bands was then used to drive the color properties of the materials
and shaders associated to the particle objects, such as surface shaders and trail shaders. A
color variable was driven by the frequency data, which in turn modified the material and shader
attributes in real time. A user defined color gradient is set before run time and divided by the
number of rows to determine the color for each frequency band.

_color[i] = _colorGradient.Evaluate((1f / 64f) * i); // set colours to the gradient, dividing the
gradient by the number of rows. You can change the gradient in the inspector
Color DiffuseColor = new Color (

(_color [i].r * _audioPeer._audioBandBuffer64 [i]) *
_diffuseColorMultiplier,

(_color [i].g * _audioPeer._audioBandBuffer64 [i]) *
_diffuseColorMultiplier,

(_color [i].b * _audioPeer._audioBandBuffer64 [i]) *
_diffuseColorMultiplier, 1); // the diffuse color is always updating, to the bandbuffers, and
multiplied by the amount specified on the slider

_materialLine [i].SetColor ("_Color", DiffuseColor); //apply the color above
 _materialTrails[i].SetColor("_Color", DiffuseColor);

7

Results:

The sphere attractors produced the more immersive and compelling visualizations as the curved
surfaces allowed the particles to spread out around the entire surface area. With cylinders and
cubes, particles seemed to bunch up either around the equator of the cylinder or at the center of
the four lateral sides. Below are the images showing the visualizations produced with sphere
attractors:

Sphere Attractor Sphere Particles

8

Sphere Attractor Cylinder Particles

9

Sphere Attractor Cube Particles

10

Music driven colors for Spheres on Sphere

11

Music driven colors for Cylinders on Sphere

Conclusions:

The interaction between audio frequency data and physics simulation was interesting to
observe. When the particle objects were cylinders, the visualization produced the most noise,
variance and asymmetry, while the spheres produced more uniform and symmetric
visualizations. The cubes were on the noisy side, but their movements were not as erratic as the
cylinders.

12

This project has been an exercise in understanding and exploring Unity’s audio analysis
capabilities as well as developing a framework to use audio spectrum data to drive any
phenomena in an interactive experience. On that front, the code developed to drive the
attractors, particle objects and colors using audio data will be reused for any future functionality
that requires audio spectrum analysis.

The examples showed that this system can almost be used as a plug and play asset on any
Unity object that has an AudioSource component. In this way, there still is a lot more
experimentation left to do in order to find every permutation and combination of visualization
that is possible using just the variables and audio values derived from this project. The prospect
of quickly prototyping functionality in order to validate a concept is where Unity really shines,
and the ability to develop experimental functionality as a modular asset allows for creative
media artists to eventually start plugging individually developed functionality together in order to
create new forms of code based or simulation based art and abstract immersive environments.

The next stages for this project involve further development of this framework using Unity’s
particle system, high definition render pipeline and GPU processing to enable simulation of
thousands and possibly millions of particles, while using the maximum number of samples
available through the FFT function - 8192. With flocking behavior and advanced physics
simulation, there are a lot of applications for this functionality in building 3D objects that deform
over time based on the interaction between them and the particle objects driven by frequency
bands. This requires development of an efficient way of working with real time deformation,
which can be computationally intensive.

References & Inspiration:

Soundself:
https://www.soundself.com/

Cymatics:
https://www.youtube.com/watch?v=Q3oItpVa9fs
https://www.youtube.com/watch?v=ftoFKlTcYEc

Golan Levin:
http://www.flong.com/projects/messa/
https://youtu.be/STRMcmj-gHc

The Well:
https://www.mat.ucsb.edu/g.legrady/academic/courses/06w256/projects/final/will-anne-marie/ind
ex.html

George Legrady MAT

13

https://www.soundself.com/
https://www.youtube.com/watch?v=Q3oItpVa9fs
https://www.youtube.com/watch?v=ftoFKlTcYEc
http://www.flong.com/projects/messa/
https://youtu.be/STRMcmj-gHc
https://www.mat.ucsb.edu/g.legrady/academic/courses/06w256/projects/final/will-anne-marie/index.html
https://www.mat.ucsb.edu/g.legrady/academic/courses/06w256/projects/final/will-anne-marie/index.html

https://www.mat.ucsb.edu/g.legrady/academic/courses/overview.html
https://www.mat.ucsb.edu/g.legrady/academic/courses/06w256/06w256.html

Adrien M & Claire B
L’ombre de la vapeur: ​https://vimeo.com/278181935
Mirages et miracles: ​https://vimeo.com/248983439

14

https://www.mat.ucsb.edu/g.legrady/academic/courses/overview.html
https://www.mat.ucsb.edu/g.legrady/academic/courses/06w256/06w256.html
https://vimeo.com/278181935
https://vimeo.com/248983439

