
Bridging Reinforcement Learning and Creativity:
Implementing Reinforcement Learning in Processing

Jieliang Luo
Media Arts & Technology

jieliang@ucsb.edu

Sam Green
Computer Science

sam.green@cs.ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, 93106

10.1145/3277644.3277796

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SA '18 Courses, December 04-07, 2018, Tokyo, Japan
ACM 978-1-4503-6026-5/18/12.
10.1145/3277644.3277796

Abstract

Artists are underrepresented in the reinforcement learning (RL) community due to the
steep learning curve involved in in-depth understanding of RL algorithms. However,
artists can play an important role in the RL community by defining innovative problems,
designing creative environments, and creating novel applications. As a popular tool for
artists to experiment with programming, Processing has been highly adapted by many
artists as their entry point to programming. Given the popularity of Processing in the
creative community, we use this tutorial as a steppingstone to bridge RL and creativity
by introducing RL core concepts in Processing. The purpose of this workshop is twofold:
1) to attract more artists to the RL community by demonstrating RL demos in their
familiar IDE; 2) to demystify RL problems by implementing them in a high-level
language without any external libraries. Importantly, this tutorial is not about introducing
a specific programming language, but will focus on how to analyze, frame, and solve RL
problems.

Course Motivations

- Why we need artists in RL

For decades, media artists have played an essential role in advancing AI, exploring its
full extent, and pushing the boundaries. Back to the 1970s, artists like Harold Cohen
started to investigate the use of machines for autonomous drawings. Cohen’s iconic
project AARON, a computer program creating original artistic physical images, has been
used as an artistic equivalent of the Turing Test. In the modern AI age, GANs and RNNs
have been widely adapted for artistic expressions that were featured at major technical
conferences, such as I Touch You And You Touch Me at SIGGRAPH Asia 2017, and
Magenta and deeplearng.js: Real-time Control of DeepGenerative Music Models in the
Browser at NIPS 2017. ECCV 2018 even opens a workshop called Computer Vision for
Fashion, Art and Design and actively calls for artworks.

As a breakthrough technology in AI in 2015, deep reinforcement learning is an efficient
class of sequential decision-making algorithms that have achieved remarkable success
in a broad range of applications, such as image classification, robotic manipulation, and
strategic games. The most well-known example of RL is AlphaGo, a computer program
that plays the board game Go and outperforms top human Go players. Recently, Prof.
Sergey Levine’s lab from UC Berkeley used reinforcement learning to create interactive
natural skeleton animations that has great potentials to be adapted by animation artists.
Unlike other machine learning techniques, such as GANs or RNNs, in which media
artists are actively engaged, RL has resulted in very few artworks. The current RL tools
require an in-depth understanding of RL algorithms that can create a barrier for artists to
explore RL. On the other hand, many intriguing RL problems, such as robotic
architecture, cannot be solved without artists’ engagement.

Regarding the collaboration between artists and computer scientists, one common
misconception is that artists are only responsible for proposing creative ideas, and
computer scientists are responsible for solving technical challenges. However, this solid
distinction obscures the communication between the two groups as the languages might
be entirely different. A better approach would be enabling artists to have some hands-on
experience in solving some basic RL problems, which can inspire them to provide more
constructive ideas. In addition, artistic/creative applications of RL can generate a larger
social impact and attract more public attention to the RL community.

- Why Processing

As discussed in the previous section, artists need easier access to basic RL problems.
Popular deep learning libraries, such as PyTorch and TensorFlow, are designed
primarily for researching algorithms and optimizations. On the other hand, Processing,
initiated by Ben Fry and Casey Reas in 2003, has become the steppingstone for many
artists to practice programming in their artworks. Given the facts that Processing does
not require any extra configurations to install and that its code can be compiled across
platforms, it is convenient for artists to rapidly examine new technologies. Many

important libraries, such as OpenCV, OSC, and Box2D, all have their Processing
versions, and many artworks based on those libraries have been featured at major
conferences and art galleries. A small sample of examples includes: 1) The Ghost in the
Dandelion at IEEE Vis 2017, 2) Abstract Reality at SIGGRAPH Asia 2017, and 3)
California Drought Impact v2 at CHI 2017.

Thus far, neither neural network libraries nor RL demos are available for Processing.
Such technologies are, however, completely implementable by only using the native
Processing language. For example, the tabular Q-learning algorithm can be
implemented within 200 lines of code without any external libraries. Jieliang (Rodger)
Luo, one of the presenters, has implemented the algorithm in Processing during
OpenAI’s one-day Hackathon. The work has been featured on the OpenAI’s website . 1

hJps://blog.openai.com/hackathon-follow-up/1

Course Overview

5 minutes: Welcome and Introduction

Welcome, overview of course & motivation for attending. Speaker introductions

10 minutes: What is Reinforcement Learning

A brief introduction to the concepts of reinforcement learning

10 minutes: Reinforcement Learning and Creativity

Discussion the importance to have reinforcement learning accessible to creative
community

10 minutes: Why Processing

A brief introduction to Processing and the reasons of choosing it as the entrance of
reinforcement learning for non-experts

35 minutes: Q-Learning & Policy Gradient

Explain two fundamental reinforcement learning algorithms

30 minutes: Implementing Tabular Q-Learning in Processing

Discuss how to create a reinforcement learning environment
Show how to implement tabular q-learning in Processing without external libraries

5 minutes: Next Steps, Conclusion, Questions & Answers

Discuss the future trends, wrap up, questions

Goals & Target Audience

The general purpose of this workshop is twofold: 1) to attract more artists to the RL
community by demonstrating RL demos in their familiar IDE; 2) to demystify RL
problems by implementing them in a high-level language without any external libraries.
That said, the tutorial is NOT about introducing a specific programming language, but
will focus on how to analyze, frame, and solve RL problems. The highlights covered in
the tutorial, such as defining environments and implementing neural networks, are
normally neglected because libraries like OpenAI Gym or PyTorch have taken care that.
But those details are important not only for artists but also for non-experts to have a
better understanding of RL problems. Therefore, the target audience of the tutorial are
artists and non-experts who are interested to apply reinforcement learning in creative
domain.

Presenters Information

Jieliang Luo is a researcher and media artists working with reinforcement learning,
robotics, and visualization. Currently, he is a Ph.D. candidate and lecturer in Media Arts
& Technology at UC Santa Barbara, where he teaches Reinforcement Learning, Data
Visualization, and Intelligent Machine Vision. His research focuses on bridging
reinforcement learning and creativity by exploring potential simulated and physical
platforms for artists, designers, and architects to have easy access to reinforcement
learning. He also has worked for Autodesk Robotics Lab as a robotic and machine
learning researcher since June, 2018.

Sam Green is a Ph.D. candidate in Computer Science, at the University of California,
Santa Barbara. His research is focused on numerical and architectural optimizations for
reinforcement learning, as well as visualization diagnostics for CNN-based RL policies.
Prior to attending UCSB, Sam was a Senior Member of Technical Staff, at Sandia
National Laboratories, where he gained five years of experience contributing to and
leading cryptographic hardware assessment R&D. Sam holds a master's in Applied
Math and a bachelor's in Computer Science from the University of Central Arkansas.

In the Spring of 2018, the two presenters gave a graduate seminar course at UCSB in
deep RL. The course covered Value Iteration, Deep Q-Learning, Policy Gradients,
Actor-Critic, Deep Deterministic Policy Gradients, Temporal Difference Models, and
World Models. Instruction was provided for both theory and coding implementation.

University of California, Santa Barbara

SIGGRAPH Asia 2018
Tokyo, Japan
December, 2018

Bridging Reinforcement Learning and Creativity: 
Implementing Reinforcement Learning in Processing

Jieliang Luo Media Arts & Technology

Sam Green Computer Science

Course Agenda

• What is reinforcement learning

• Reinforcement learning and creativity

• Why Processing

• Q-Learning & Policy Gradient

• Implementing Tabular Q-Learning in Processing

• Next Steps

Chapter I:

What is reinforcement learning?

Trial-and-error Learning
• B.F. Skinner, 20th century psychologist
• Also called operant conditioning
• Give rewards or punishments to encourage

behavior

Pigeon learning ping pong
Credit: Psychology Pictures

Reinforcement Learning Paradigm

• Agent – Makes actions on an environment.
Attempts to collect rewards

• Environment – Hosts the agent. Partially
influenced by agent. Gives agent rewards

AlphaZero

• Trained RL agent to play
– Chess
– Go
– Shogi

• Used a single algorithm to achieve super
human levels of performance

• State observation for Go includes
– Last 8 board configurations for player 1 and 2
– Current player’s color

Credit: Wikipedia

Dactyl
• Used robotic hand and RL to achieve human-

level dexterity
• Reward was cube position relative to desired
• Used three cameras and finger tip locations

for state observation

Credit: OpenAI

Dactyl

Credit: OpenAI

Chapter II:

Reinforcement Learning + Creativity

Reinforcement Learning + Creativity

Credit: "A TDK SA90 Type II Compact Cassette" from Wikipedia (public domain)

A TDK SA90 Type II Compact Cassette, developed by Philips

Reinforcement Learning + Creativity

Credit: "An untitled AARON drawing" from Computer History Museum

An untitled AARON drawing

Reinforcement Learning + Creativity

Credit: Mike Tyka's Portraits of Imaginary People from the NIPS 2017 creativity art gallery

Portraits of Imaginary People

Reinforcement Learning + Creativity

Credit: Performance RNN from magenta.tensorflow.org

Performance RNN

Reinforcement Learning + Creativity

Credit:Autodesk Robotics Lab

Robotic Joint-Assembly Tasks

Reinforcement Learning + Creativity

Why we don’t see many creative applications in RL?

Reinforcement Learning + Creativity

Credit: Deep Deterministic Policy Gradient algorithm by DeepMind

Hurdle I: In-depth understanding of RL algorithms

Reinforcement Learning + Creativity

Hurdle II: Current RL tools are designed for scientific researches

Chapter III:

Why Processing

Why Processing

A screenshot of Processing IDE

Why Processing

Abstract Reality, Jieliang Luo, SIGGRAPH Asia 2017

Why Processing

Machinery Interference
Jieliang Luo, Times Arts Museum, Beijing, 2018

Why Processing

Human Portraits Decomposition, Jieliang Luo, IEEE VIS 2018

Chapter IV:

Q-Learning & Policy Gradient

A B

Q: How to assign value to actions?

Credit: Poker Chips Wholesale

10% +10
25% +7
25% +3
25% +2
15% -5

5% +25
20% +10
50% +0
20% -5
5% -15

Secret

A

Idea: Pull lever many times and keep
track of each reward and its frequency

Value Frequency
+10
+7
+3
+2
-5

10% +10
25% +7
25% +3
25% +2
15% -5

Secret

Credit: Poker Chips Wholesale

Try
1
2
3
4
.
.
.
N

Reward
7
-5
7
7
.
.
.

Average
7/1 = 7
(7-5)/2 = 1
(7+7-5+7)/3 = 3
(7+7-5+7)/4 = 4
.
.
.
Total rewards/N ͌3.25

Idea: Pull lever many times and
keep track of the average reward

10% +10
25% +7
25% +3
25% +2
15% -5

Expected value
3.25

Secret

Use average value for decision making

A B

10% +10
25% +7
25% +3
25% +2
15% -5

5% +25
20% +10
50% +0
20% -5
5% -15

Secret

Expected value
3.25

Expected value
1.5

Play A
Credit: Poker Chips Wholesale

How to calculate efficiently?

Try
1
2
3
4
.
.
.
N

Reward
7
-5
7
7
.
.
.

Average
7/1 = 7
(7-5)/2 = 1
(7+7+7)/3 = 3
(7+7-5+7+7)/4 = 4
.
.
.
Total rewards/N ͌ 3.25

Must recalculate
numerator each
time!

What if N is
1,000,000?

Use moving average (MA)

Try
1
2
3
4
.
.

Reward
7
-5
7
7
.
.

Step size

MA
7 (MA initialized to first reward)
5.8
5.92
6.03

.

.

Estimate from last step

Updated estimate

Reward from this step

Estimate error

Over time, MA converges
to expected value.

Recalculated vs. Moving Average

The “noise” of the moving average is worth the
computational savings.

• A mathematical model where agent tries to
extract rewards from environment

Markov Reward Process

1

63

2

5

0 T
Reset Terminal

Agent

L

L

F

F

F

F

R R

R

R

Rewards given at state transition

1

63

2

5

0 T

Rewards given at state transition

1

63

2

5

0 T
+1

F

Rewards may be stochastic

1

63

2

5

0 T

Rewards may be stochastic

1

63

2

5

0 T

+1R

Rewards may be stochastic

1

63

2

5

0 T

Rewards may be stochastic

1

63

2

5

0 T

+3R

Rewards may be stochastic

1

63

2

5

0 T

Rewards may be stochastic

1

63

2

5

0 T

-10
R

R

• The return (R) is the expected sum of rewards:

• Example of impact of discount factor

Agent needs to maximize the return

Timesteps in episode

Discount factor

Reward at timestep

r0 r1 r2 R

1 -7 3 6 2

.5 -7 3 6 -4

Track the moving average of the return
to evaluate actions ()

1

63

2

5

0 T

-10 -1

3

Track the moving average of the return
to evaluate actions ()

1

63

2

5

0 T

-5 2

4

How to use the information?

• Explore the environment many times
• Calculate Q-values for storing the value of

decisions
• After training, use the Q-values to make

actions

Derive a policy by taking the action with largest
Q-value:

Q-value table for states 0, 1, and 2
State Action Q-value
0 L -4.5
0 F 3.0
0 R 4.7
1 F 4
1 R -8.5
2 F 3.2

Monte Carlo vs Temporal Difference

• Previous approach was Monte Carlo:
perform entire rollouts to calculate returns

• Temporal difference methods are online:
update Q-values as soon as possible

Old estimate Target value

TD error

Clarifying temporal difference error

Old estimate New estimate

New information Old information

Q-values approximate the expected value when
the current action “a” is taken in state “s” and then
the best known actions are taken in all subsequent
steps.

• So far we have exhaustively explored the
environment

• How to reuse information we already
have?

• One approach is -greedy: choose
random action (explore) with probability ,
choose greedy action (exploit) with
probability 1-

• commonly set to .05

Exploration vs Exploitation

• Use random number generator to get a value:
rand = random()

• If rand < then pick L, F, or R randomly
• Otherwise pick action R (it has highest Q-

value)

-greedy example in state 0
State Action Q-value
0 L -4.5
0 F 3.0
0 R 4.7

Intro to Gradient Methods

• Q-Learning tracks the average return for
state-action pairs

• Gradient methods assign a numerical
preference to state-action pairs:

• Preference converted to probability with
softmax:

• Update preference using following rule

where is the action taken,
and is the reward at time t,
and is the average reward at time t

Intro to Gradient Methods

Approximate methods

• If number of states is extremely high
and/or number of actions is high (e.g. images)

• Then tables become impractical:
#entries = #states x #actions

• Use regression to approximate the table
• Neural network used for regression
• Basis for all modern reinforcement learning
• Uses similar update rules for the network

Chapter V:

Implementing Tabular Q-Learning in Processing

Implementing Tabular Q-Learning in Processing
Part I: Create a RL environment

Reinforcement learning environments

CartPole, OpenAI Gym Tennis, Unity ML

Collect Box, Luo & Green KUKA Grasp, pyBullet

Reinforcement learning environments

Grid in Processing, Luo & Green

Reinforcement learning environments

• Observations

• Actions

• Starting/Reset State

• Terminal State

• Step Function

• Reward

• Render Function

• Sample Function

Reinforcement learning environments

• Observations

 Type: Box

 Observation Min Max
 Cart Position -4.8 4.8
 Cart Velocity -Inf Inf
 Pole Angle -24° 24°
 Pole Velocity At Tip -Inf Inf

 Type: Discrete

 Observation Min Max
 Grey Cube Position Position 0 Red Cube

…0 1 2 3 NN-1N-2

Reinforcement learning environments

• Actions

Type: Discrete(2)

Num Action
 0 Push cart to the left
 1 Push cart to the right

Type: Discrete(2)

Num Action
 0 Push cube to the left
 1 Push cube to the right

Reinforcement learning environments

• Starting/Reset State

CartPole

All observations are assigned a uniform
random value between ±0.05

 Type: Box

 Observation Min Max
 Cart Position -4.8 4.8
 Cart Velocity -Inf Inf
 Pole Angle -24° 24°
 Pole Velocity At Tip -Inf Inf

Grid in Processing

At state 0

…0 1 2 3 NN-1N-2

Reinforcement learning environments

• Terminal State

CartPole

• Pole Angle is more than ±12°

• Cart Position is more than ±2.4 (center of the
cart reaches the edge of the display)

• Considered solved when the average reward is
greater than or equal to 195.0 over 100
consecutive trials.

Grid in Processing

At state N

…0 1 2 3 NN-1N-2

Reinforcement learning environments

• Terminal State

CartPole

• Pole Angle is more than ±12°

• Cart Position is more than ±2.4 (center of the
cart reaches the edge of the display)

• Considered solved when the average reward is
greater than or equal to 195.0 over 100
consecutive trials.

Grid in Processing

At state N

…0 1 2 3 NN-1N-2

• Reward

Reward is 1 for every step taken,
including the termination step

Reward is 0 for every step taken,
excluding the termination step

Reward is 1 for the termination
step

Reinforcement learning environments

• Step Function

observation, reward, done, info = step_function(action)

Observation: any state between 0 and N

Reward: 0 or 1

Done: true or false

Info: none

Codes:
https://github.com/RodgerLuo/RL_Processing/blob/master/Tabular_Q_Learning/Env.pde#L35

Reinforcement learning environments

• Basic Structure in Processing

class Grid{

 // initialize parameters
Grid(){}

 // reset the state to 0
reset(){}

 // agent interacts with the environment
step(){}

// visualize the environment in Processing
render(){}

// randomly select an action
sample(){}

}

Codes:
https://github.com/RodgerLuo/RL_Processing/blob/master/Tabular_Q_Learning/Env.pde

Implementing Tabular Q-Learning in Processing
Part II: Tabular Q-Learning Algorithm

Tabular Q-Learning Algorithm

Algorithm:

Implementations:

https://github.com/RodgerLuo/RL_Processing

Live Coding Session

Chapter VI:

Next Steps

A Reinforcement Learning Library for Processing

• Tabular Q-Learning & Policy Gradient

• Deep Neural Network

• Policy Gradient

• Actor-Critic

• DDPG

• Customizable Environments

• Demos with Physical Objects

A Reinforcement Learning Library for Processing

• Demos with Physical Objects

Obor & Nog
Credit:Andreas Schlegel

Thank you!

Jieliang Luo
jieliang@ucsb.edu

Sam Green
sam.green@cs.ucsb.edu

