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Abstract 

Artists are underrepresented in the reinforcement learning (RL) community due to the 
steep learning curve involved in in-depth understanding of RL algorithms. However, 
artists can play an important role in the RL community by defining innovative problems, 
designing creative environments, and creating novel applications. As a popular tool for 
artists to experiment with programming, Processing has been highly adapted by many 
artists as their entry point to programming. Given the popularity of Processing in the 
creative community, we use this tutorial as a steppingstone to bridge RL and creativity 
by introducing RL core concepts in Processing. The purpose of this workshop is twofold: 
1) to attract more artists to the RL community by demonstrating RL demos in their
familiar IDE; 2) to demystify RL problems by implementing them in a high-level
language without any external libraries. Importantly, this tutorial is not about introducing
a specific programming language, but will focus on how to analyze, frame, and solve RL
problems.



Course Motivations  

- Why we need artists in RL  

For decades, media artists have played an essential role in advancing AI, exploring its 
full extent, and pushing the boundaries. Back to the 1970s, artists like Harold Cohen 
started to investigate the use of machines for autonomous drawings. Cohen’s iconic 
project AARON, a computer program creating original artistic physical images, has been 
used as an artistic equivalent of the Turing Test. In the modern AI age, GANs and RNNs 
have been widely adapted for artistic expressions that were featured at major technical 
conferences, such as I Touch You And You Touch Me at SIGGRAPH Asia 2017, and 
Magenta and deeplearng.js: Real-time Control of DeepGenerative Music Models in the 
Browser at NIPS 2017. ECCV 2018 even opens a workshop called Computer Vision for 
Fashion, Art and Design and actively calls for artworks.   

As a breakthrough technology in AI in 2015, deep reinforcement learning is an efficient 
class of sequential decision-making algorithms that have achieved remarkable success 
in a broad range of applications, such as image classification, robotic manipulation, and 
strategic games. The most well-known example of RL is AlphaGo, a computer program 
that plays the board game Go and outperforms top human Go players. Recently, Prof. 
Sergey Levine’s lab from UC Berkeley used reinforcement learning to create interactive 
natural skeleton animations that has great potentials to be adapted by animation artists. 
Unlike other machine learning techniques, such as GANs or RNNs, in which media 
artists are actively engaged, RL has resulted in very few artworks. The current RL tools 
require an in-depth understanding of RL algorithms that can create a barrier for artists to 
explore RL. On the other hand, many intriguing RL problems, such as robotic 
architecture, cannot be solved without artists’ engagement. 

Regarding the collaboration between artists and computer scientists, one common 
misconception is that artists are only responsible for proposing creative ideas, and 
computer scientists are responsible for solving technical challenges. However, this solid 
distinction obscures the communication between the two groups as the languages might 
be entirely different. A better approach would be enabling artists to have some hands-on 
experience in solving some basic RL problems, which can inspire them to provide more 
constructive ideas. In addition, artistic/creative applications of RL can generate a larger 
social impact and attract more public attention to the RL community.  

- Why Processing  

As discussed in the previous section, artists need easier access to basic RL problems. 
Popular deep learning libraries, such as PyTorch and TensorFlow, are designed 
primarily for researching algorithms and optimizations. On the other hand, Processing, 
initiated by Ben Fry and Casey Reas in 2003, has become the steppingstone for many 
artists to practice programming in their artworks. Given the facts that Processing does 
not require any extra configurations to install and that its code can be compiled across 
platforms, it is convenient for artists to rapidly examine new technologies. Many 



important libraries, such as OpenCV, OSC, and Box2D, all have their Processing 
versions, and many artworks based on those libraries have been featured at major 
conferences and art galleries. A small sample of examples includes: 1) The Ghost in the 
Dandelion at IEEE Vis 2017, 2) Abstract Reality at SIGGRAPH Asia 2017, and 3) 
California Drought Impact v2 at CHI 2017.  

Thus far, neither neural network libraries nor RL demos are available for Processing. 
Such technologies are, however, completely implementable by only using the native 
Processing language. For example, the tabular Q-learning algorithm can be 
implemented within 200 lines of code without any external libraries. Jieliang (Rodger) 
Luo, one of the presenters, has implemented the algorithm in Processing during 
OpenAI’s one-day Hackathon. The work has been featured on the OpenAI’s website .   1

hJps://blog.openai.com/hackathon-follow-up/1



Course Overview  

5 minutes: Welcome and Introduction 

Welcome, overview of course & motivation for attending. Speaker introductions  

10 minutes: What is Reinforcement Learning  

A brief introduction to the concepts of reinforcement learning  

10 minutes: Reinforcement Learning and Creativity  

Discussion the importance to have reinforcement learning accessible to creative 
community 

10 minutes: Why Processing  

A brief introduction to Processing and the reasons of choosing it as the entrance of 
reinforcement learning for non-experts  

35 minutes: Q-Learning & Policy Gradient  

Explain two fundamental reinforcement learning algorithms  

30 minutes: Implementing Tabular Q-Learning in Processing  

Discuss how to create a reinforcement learning environment  
Show how to implement tabular q-learning in Processing without external libraries 

5 minutes: Next Steps, Conclusion, Questions & Answers   

Discuss the future trends, wrap up, questions  



Goals & Target Audience  

The general purpose of this workshop is twofold: 1) to attract more artists to the RL 
community by demonstrating RL demos in their familiar IDE; 2) to demystify RL 
problems by implementing them in a high-level language without any external libraries. 
That said, the tutorial is NOT about introducing a specific programming language, but 
will focus on how to analyze, frame, and solve RL problems. The highlights covered in 
the tutorial, such as defining environments and implementing neural networks, are 
normally neglected because libraries like OpenAI Gym or PyTorch have taken care that. 
But those details are important not only for artists but also for non-experts to have a 
better understanding of RL problems. Therefore, the target audience of the tutorial are 
artists and non-experts who are interested to apply reinforcement learning in creative 
domain.       



Presenters Information 

Jieliang Luo is a researcher and media artists working with reinforcement learning, 
robotics, and visualization. Currently, he is a Ph.D. candidate and lecturer in Media Arts 
& Technology at UC Santa Barbara, where he teaches Reinforcement Learning, Data 
Visualization, and Intelligent Machine Vision. His research focuses on bridging 
reinforcement learning and creativity by exploring potential simulated and physical 
platforms for artists, designers, and architects to have easy access to reinforcement 
learning. He also has worked for Autodesk Robotics Lab as a robotic and machine 
learning researcher since June, 2018.  

Sam Green is a Ph.D. candidate in Computer Science, at the University of California, 
Santa Barbara. His research is focused on numerical and architectural optimizations for 
reinforcement learning, as well as visualization diagnostics for CNN-based RL policies. 
Prior to attending UCSB, Sam was a Senior Member of Technical Staff, at Sandia 
National Laboratories, where he gained five years of experience contributing to and 
leading cryptographic hardware assessment R&D. Sam holds a master's in Applied 
Math and a bachelor's in Computer Science from the University of Central Arkansas. 

In the Spring of 2018, the two presenters gave a graduate seminar course at UCSB in 
deep RL. The course covered Value Iteration, Deep Q-Learning, Policy Gradients, 
Actor-Critic, Deep Deterministic Policy Gradients, Temporal Difference Models, and 
World Models. Instruction was provided for both theory and coding implementation. 
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Course Agenda

• What is reinforcement learning 

• Reinforcement learning and creativity  

• Why Processing  

• Q-Learning & Policy Gradient 

• Implementing Tabular Q-Learning in Processing  

• Next Steps 



Chapter I: 

What is reinforcement learning?



Trial-and-error Learning
• B.F. Skinner, 20th century psychologist
• Also called operant conditioning
• Give rewards or punishments to encourage 

behavior

Pigeon learning ping pong
Credit: Psychology Pictures



Reinforcement Learning Paradigm

• Agent – Makes actions on an environment. 
Attempts to collect rewards

• Environment – Hosts the agent. Partially 
influenced by agent. Gives agent rewards



AlphaZero

• Trained RL agent to play
– Chess
– Go
– Shogi

• Used a single algorithm to achieve super 
human levels of performance

• State observation for Go includes
– Last 8 board configurations for player 1 and 2
– Current player’s color

Credit: Wikipedia



Dactyl
• Used robotic hand and RL to achieve human-

level dexterity
• Reward was cube position relative to desired 
• Used three cameras and finger tip locations 

for state observation

Credit: OpenAI



Dactyl

Credit: OpenAI



Chapter II: 

Reinforcement Learning + Creativity



Reinforcement Learning + Creativity

Credit: "A TDK SA90 Type II Compact Cassette" from Wikipedia (public domain)

A TDK SA90 Type II Compact Cassette, developed by Philips



Reinforcement Learning + Creativity

Credit: "An untitled AARON drawing" from Computer History Museum

An untitled AARON drawing



Reinforcement Learning + Creativity

Credit: Mike Tyka's Portraits of Imaginary People from the NIPS 2017 creativity art gallery

Portraits of Imaginary People 



Reinforcement Learning + Creativity

Credit: Performance RNN from magenta.tensorflow.org

Performance RNN



Reinforcement Learning + Creativity

Credit:Autodesk Robotics Lab

Robotic Joint-Assembly Tasks



Reinforcement Learning + Creativity

Why we don’t see many creative applications in RL?



Reinforcement Learning + Creativity

Credit: Deep Deterministic Policy Gradient algorithm by DeepMind

Hurdle I: In-depth understanding of RL algorithms



Reinforcement Learning + Creativity

Hurdle II: Current RL tools are designed for scientific researches



Chapter III: 

Why Processing



Why Processing

A screenshot of Processing IDE



Why Processing

Abstract Reality, Jieliang Luo, SIGGRAPH Asia 2017



Why Processing

Machinery Interference 
Jieliang Luo, Times Arts Museum, Beijing, 2018



Why Processing

Human Portraits Decomposition, Jieliang Luo, IEEE VIS 2018



Chapter IV: 

Q-Learning & Policy Gradient



A B

Q: How to assign value to actions?

Credit: Poker Chips Wholesale

10% +10
25% +7
25% +3
25% +2
15% -5

5% +25
20% +10
50% +0
20% -5
5% -15

Secret



A

Idea: Pull lever many times and keep 
track of each reward and its frequency

Value Frequency
+10
+7
+3
+2
-5

10% +10
25% +7
25% +3
25% +2
15% -5

Secret

Credit: Poker Chips Wholesale



Try
1
2
3
4
.
.
.
N

Reward
7
-5
7
7
.
.
.

Average
7/1 = 7
(7-5)/2 = 1
(7+7-5+7)/3 = 3
(7+7-5+7)/4 = 4
.
.
.
Total rewards/N    ͌3.25

Idea: Pull lever many times and 
keep track of the average reward

10% +10
25% +7
25% +3
25% +2
15% -5

Expected value
3.25

Secret



Use average value for decision making

A B

10% +10
25% +7
25% +3
25% +2
15% -5

5% +25
20% +10
50% +0
20% -5
5% -15

Secret

Expected value
3.25

Expected value
1.5

Play A
Credit: Poker Chips Wholesale



How to calculate efficiently?

Try
1
2
3
4
.
.
.
N

Reward
7
-5
7
7
.
.
.

Average
7/1 = 7
(7-5)/2 = 1
(7+7+7)/3 = 3
(7+7-5+7+7)/4 = 4
.
.
.
Total rewards/N   ͌ 3.25

Must recalculate 
numerator each 
time!

What if N is 
1,000,000?



Use moving average (MA)

Try
1
2
3
4
.
.

Reward
7
-5
7
7
.
.

Step size

MA
7 (MA initialized to first reward)
5.8
5.92
6.03

.

.

Estimate from last step

Updated estimate

Reward from this step

Estimate error

Over time, MA converges 
to expected value.



Recalculated vs. Moving Average

The “noise” of the moving average is worth the 
computational savings.



• A mathematical model where agent tries to 
extract rewards from environment

Markov Reward Process

1
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5
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Reset Terminal

Agent

L
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F

F

F

F

R R

R

R



Rewards given at state transition
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Rewards given at state transition
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Rewards may be stochastic

1
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2
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0 T



Rewards may be stochastic

1
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Rewards may be stochastic
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Rewards may be stochastic

1
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Rewards may be stochastic

1
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Rewards may be stochastic

1

63

2

5

0 T

-10
R

R



• The return (R) is the expected sum of rewards:

• Example of impact of discount factor

Agent needs to maximize the return

Timesteps in episode

Discount factor

Reward at timestep

r0 r1 r2 R

1 -7 3 6 2

.5 -7 3 6 -4



Track the moving average of the return 
to evaluate actions (                     )

1

63

2

5

0 T

-10 -1

3



Track the moving average of the return 
to evaluate actions (                     )

1

63

2

5

0 T

-5 2

4



How to use the information?

• Explore the environment many times
• Calculate Q-values for storing the value of 

decisions
• After training, use the Q-values to make 

actions



Derive a policy by taking the action with largest 
Q-value:

Q-value table for states 0, 1, and 2
State Action Q-value
0 L -4.5
0 F 3.0
0 R 4.7
1 F 4
1 R -8.5
2 F 3.2



Monte Carlo vs Temporal Difference

• Previous approach was Monte Carlo: 
perform entire rollouts to calculate returns

• Temporal difference methods are online: 
update Q-values as soon as possible 

Old estimate Target value

TD error



Clarifying temporal difference error

Old estimate New estimate

New information Old information

Q-values approximate the expected value when 
the current action “a” is taken in state “s” and then 
the best known actions are taken in all subsequent 
steps.



• So far we have exhaustively explored the 
environment

• How to reuse information we already 
have?

• One approach is   -greedy: choose 
random action (explore) with probability   , 
choose greedy action (exploit) with 
probability 1-

• commonly set to .05

Exploration vs Exploitation



• Use random number generator to get a value: 
rand = random()

• If rand <     then pick L, F, or R randomly
• Otherwise pick action R (it has highest Q-

value)

-greedy example in state 0
State Action Q-value
0 L -4.5
0 F 3.0
0 R 4.7





Intro to Gradient Methods

• Q-Learning tracks the average return for 
state-action pairs

• Gradient methods assign a numerical 
preference to state-action pairs:

• Preference converted to probability with 
softmax:



• Update preference using following rule

where      is the action taken,
and      is the reward at time t,
and      is the average reward at time t 

Intro to Gradient Methods



Approximate methods

• If number of states is extremely high
and/or number of actions is high (e.g. images)

• Then tables become impractical:
#entries = #states x #actions

• Use regression to approximate the table
• Neural network used for regression
• Basis for all modern reinforcement learning
• Uses similar update rules for the network



Chapter V: 

Implementing Tabular Q-Learning in Processing 



Implementing Tabular Q-Learning in Processing 
Part I: Create a RL environment



Reinforcement learning environments

CartPole, OpenAI Gym Tennis, Unity ML

Collect Box, Luo & Green KUKA Grasp, pyBullet



Reinforcement learning environments

Grid in Processing, Luo & Green



Reinforcement learning environments

• Observations 

• Actions 

• Starting/Reset State 

• Terminal State 

• Step Function 

• Reward 

• Render Function 

• Sample Function



Reinforcement learning environments

• Observations

 Type: Box 
  
 Observation              Min      Max 
 Cart Position              -4.8      4.8 
 Cart Velocity              -Inf        Inf 
 Pole Angle                 -24°       24° 
 Pole Velocity At Tip   -Inf         Inf 

 Type: Discrete 
  
 Observation              Min            Max 
 Grey Cube Position    Position 0  Red Cube

…0 1 2 3 NN-1N-2



Reinforcement learning environments

• Actions

Type: Discrete(2) 

Num        Action 
  0        Push cart to the left 
  1        Push cart to the right 

Type: Discrete(2) 

Num        Action 
  0        Push cube to the left 
  1        Push cube to the right 



Reinforcement learning environments

• Starting/Reset State

CartPole 

All observations are assigned a uniform  
random value between ±0.05

 Type: Box 
  
 Observation              Min      Max 
 Cart Position              -4.8      4.8 
 Cart Velocity              -Inf        Inf 
 Pole Angle                 -24°       24° 
 Pole Velocity At Tip   -Inf         Inf 

Grid in Processing 

At state 0

…0 1 2 3 NN-1N-2



Reinforcement learning environments

• Terminal State

CartPole 

• Pole Angle is more than ±12° 

• Cart Position is more than ±2.4 (center of the 
cart reaches the edge of the display) 

• Considered solved when the average reward is 
greater than or equal to 195.0 over 100 
consecutive trials.

Grid in Processing 

At state N

…0 1 2 3 NN-1N-2



Reinforcement learning environments

• Terminal State

CartPole 

• Pole Angle is more than ±12° 

• Cart Position is more than ±2.4 (center of the 
cart reaches the edge of the display) 

• Considered solved when the average reward is 
greater than or equal to 195.0 over 100 
consecutive trials.

Grid in Processing 

At state N

…0 1 2 3 NN-1N-2

• Reward

Reward is 1 for every step taken,  
including the termination step

Reward is 0 for every step taken,  
excluding the termination step 

Reward is 1 for the termination 
step



Reinforcement learning environments

• Step Function

observation, reward, done, info = step_function(action) 

Observation: any state between 0 and N 

Reward: 0 or 1 

Done: true or false 

Info: none 

Codes:  
https://github.com/RodgerLuo/RL_Processing/blob/master/Tabular_Q_Learning/Env.pde#L35



Reinforcement learning environments

• Basic Structure in Processing

class Grid{ 

    // initialize parameters  
Grid(){} 

   // reset the state to 0 
reset(){} 

   // agent interacts with the environment  
step(){} 

// visualize the environment in Processing 
render(){} 

// randomly select an action  
sample(){} 

}

Codes:  
https://github.com/RodgerLuo/RL_Processing/blob/master/Tabular_Q_Learning/Env.pde



Implementing Tabular Q-Learning in Processing 
Part II: Tabular Q-Learning Algorithm



Tabular Q-Learning Algorithm

Algorithm:

Implementations: 

https://github.com/RodgerLuo/RL_Processing



Live Coding Session



Chapter VI: 

Next Steps



A Reinforcement Learning Library for Processing 

• Tabular Q-Learning & Policy Gradient 

• Deep Neural Network 

• Policy Gradient 

• Actor-Critic 

• DDPG 

• Customizable Environments 

• Demos with Physical Objects  



A Reinforcement Learning Library for Processing 

• Demos with Physical Objects  

Obor & Nog
Credit:Andreas Schlegel



Thank you! 

Jieliang Luo 
jieliang@ucsb.edu 

Sam Green 
sam.green@cs.ucsb.edu


