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Abstract:  
DeepGlitch   was   a   project   of   discovery   and   self-education.   In   the   past   I   had   worked   with   machine  
learning   algorithms   as   though   they   were   big   black   boxes.   To   ‘do   machine   learning’   had   'really'  
meant   exploring   AWS   virtual   machines,   the   Docker   container   workflow,   and   building   pipelines  
that   would   combine   the   almost   magical   abilities   of   these   stochastic   algorithms   with   each   other  
such   as   in   my   earlier   projects   DeepCollage   (2018)   and   SilentNET   (2019).  
 
This   project   was   my   opportunity   to   a)   become   adept   at   using   machine   learning   techniques   so   I  
could   control   the   outcomes   with   greater   intentionality   and   B)   to   create   effects   for   my   film   Echo,   a  
dark   cyberdelic   romance   film   I   have   been   working   on   for   over   a   year   now.  
 
The   final   concrete   objective   to   the   project   was   to   recreate   what   others   have   already   achieved:  
style   transfer   for   audio.   That   specific   journey   can   be   found   in   this   report   under   the   header:  
TraVelGAN   hacking .  
 
Story:  
The   initial   proposal   for   the   course   was   to   create   a   real   time   openGL   post-processing   pipeline  
that   used   a   parallel   instance   of   the   pix2pix   style   transfer   network   for   each   image   in   the   scene.  
The   intended   outcome   would   be   explorable   3D   scenes   were   the   grass   could   be   styled   after  
Monet,   the   characters   could   be   styled   after   Francis   Bacon,   the   sky   after   Van   Gogh,   and   so   on.  
 
I   began   by   learning   how   to   control   OpenGL   with   C++.   I   had   some   experience   with   the   similar  
WebGL   framework   working   on   my   web   project   WebDead   (2017),   but   C++   and   its   quirks  
represented   a   particular   challenge.  
 
I   created   a   basic   OpenGL   scene   using   some   dynamic   elements   and   textures   sourced   from  
photos   I   had   taken:  

 



 
While   I   was   working   on   this,   I   was   working   on   building   a   campaign   to   raise   funds   for   my   film  
project   ‘Echo’.   I   commissioned   concept   art   that   involved   detailed   discussions   of   character   and  
story   to   achieve,   resulting   in:  
 

 
 
And   a   second   piece   (on   the   left)   along   with   a   poster   I   made   using   various   effects   for   the  
background   including   running   the   image   into   Audacity   as   audio   and   doing   the   ‘echo’   effect   on   it:  

 



I   also   created   merchandise   photos:  

 
 

 
 
Did   my   own   concept   art   drawings:  

 
 
And   created   a   rough   animated   storyboard   to   explain   the   story:  

 
 



TravelGAN   Hacking:  
After   I   had   finished   my   excursion   into   the   ‘Echo’   campaign,   I   decided   to   switch   my   direction   in  
the   class,   moving   towards   audio   style   transfer,   again   for   the   reasons   stated   in   the   abstract.  
 
My   technique   of   self-education   was   to   read   through   the   code   of   a   pre-existing   machine   learning  
network,   specifically   the   TraVelGAN   style   transfer   network,   and   make   sure   that   I   understood  
what   each   line   was   doing.  
 
I   explored   down   every   rabbit   hole   of   misunderstanding   -   I   read   papers   about   convolutional  
neural   networks   and   GANs,   learned   about   loss/cost   functions   and   optimizers   and   stochastic  
mathematics,   and   about   strategies   for   overcoming   the   famous   overfitting   and   underfitting  
problems   in   machine   learning   including   randomcrops,   batch   norms,   and   layer   skipping.  
 
A   huge   technical   hurdle   was   learning   how   Tensorflow   and   Keras   implemented   these   techniques.  
 
Knowledge   Gained   Summary   -   Tensorflow   and   Keras  
Tensorflow   works   declaratively   -   that   is,   it   works   by   specifying   a   'graph'   of   data   (tensors)   and  
operations   that   are   then   run   alltogether   by   'sessions'.   The   purpose   of   such   a   workflow   is   that  
under   the   hood   Tensorflow   optimizes   the   graph   to   take   the   most   advantage   of   available  
resources,   instead   of   allowing   the   silly   dumb-dumb-head   data   scientists   to   build   their   own  
algorithms   for   processing   the   operations   and   tensors.  
 
Keras   was   just   a   collection   of   useful   common   machine   learning   operations   such   as   2D  
convolutions   and   batch   norms.  
 
Knowledge   Gained   Summary   -   Style   Transfer   From   the   Bottom   Up  
The   Convolutional   Neural   Networks   (CNNs)   used   in   TraVelGAN   were   a   flavor   called   U_net,  
originally   designed   for   the   task   of   object   segmentaiton   in   biomedical   imaging.  
 
A   U_net   works   by   'encoding'   the   features   of   a   source   domain   of   images   into   a   'latent   feature  
space'   through   a   'down'   set   of   convolutions,   and   then   'decoding'   those   features   into   'new'  
images   through   an   'up'   set   of   convolutions.  
 
As   the   U_net   encodes   'down'   or   decodes   'up',   it   recursively   convolves   the   source   domain  
images   with   kernels   that   have   parameterized   weights.  
 
These   kernel   weights   are   what   is   being   'trained'   or   'learned',   and   represent   what   is   called   the  
'model'   in   machine   learning.  
 
In   a   typical   GAN,   two   U_nets   are   'trained'   with   opposing   objectives.  
 
The   Generator   U_net   is   attempting   to   encode   images   from   a   source   domain   into   a   vector   within  
the   feature   space   that   can   be   decoded   into   a   new   image   in   some   target   domain.  



 
And   the   Discriminator   U_net   is   attempting   to   encode   the   images   generated   by   the   Generator  
into   a   vector   within   the   feature   space   that   can   represent   the   probability   that   the   generated   image  
is   in   the   target   domain.  
 
In   a   style   transfer   GAN,   the   target   domain   will   be   different   than   the   source   domain.   Ordinarily  
this   would   mean   the   generator   would   generate   new   examples   of   the   target   domain   and   ignore  
anything   about   the   source   domain.  
 
Therefore   additional   constraints   are   added   to   incentivize   the   Generator   U_net   to   retain   the  
'content'   from   the   source   domain,   but   still   create   images   that   are   realistically   from   the   target  
domain.  
 
TraVelGAN   incentivizes   the   Generator   to   do   this   by   adding   a   third   CNN   called   a   Siamese  
network.   A   Siamese   network   encodes   the   source   image   and   the   generated   image   each   into   a  
1000-dimensional   vector   in   a   'content   space'.  
 
They   adjust   the   incentive   for   the   Generator   to   also   minimize   the   difference   between   the   content  
space   vector   for   the   generated   image   and   the   content   space   vector   for   the   source   image.  
Therefore,   the   generated   images   must   still   plausibly   exist   in   the   target   domain   (in   a   different  
style)   AND   maintain   the   same   'content'   of   the   source   domain.  
 
What   I   Changed   With   The   TraVelGAN  
The   addition   that   I   put   myself   to   hacking   into   the   TraVelGAN   was   an   additional   constraint   on   the  
generator   that   would   incentivize   it   to   be   stable   across   images   concatenated   horizontally   -   that   is,  
spectrograms   of   arbitrary   width   stitched   together   from   spectrograms   of   a   specific   width.  
 
Within   the   Tensorflow   graph   I   was   to   split   the   images   in   half,   then   generate   two   images   that   are  
then   concatenated   together   before   put   through   the   discriminator.  
 
Before   entering   the   graph,   I   would   have   to   convert   each   audio   clip   into   spectrograms   of  
standard   dimensions,   mapped   in   a   way   I   could   unmap   from,   and   after   the   graph   I   would   have   to  
concatenate   the   generated   images   into   their   full   length   versions   and   convert   backwards   from  
Mel   Spectrograms   to   audio   files.  
 
In   order   to   do   that   I   had   to   put   my   knowledge   to   the   test   -   adjust   hyperparameters,   disable  
certain   quirks   about   the   original   TraVelGAN   implementation,   play   ball   with   the   tensor  
dimensions   they   had   set,   and...  
 
Most   importantly,   I   had   to   get   it   working   on   my   laptop.   In   the   later   stages,   I   had   already  
successfully   written   the   changes   to   the   graph,   and   the   preprocessing   and   postprocessing   steps  
were   integrated   into   the   code,   but   then   I   started   getting   the   OOM   errors   (out   of   memory),  
'memory   errors',   and   'unable   to   allocate   array'   errors.  



 
I   had   to   re-roll   my   list   comprehensions   into   loops,   do   some   VERY   'I   dont   care   just   let   me   do   it'  
error   handling,   learn   about   file-like   objects,   streams,   and   buffers,   and   compromise   on   some  
hyperparameters   like   batch   size.   The   current   network   works   in   batches   of   4   images   at   a   time,  
which   is   tiny   for   these   sorts   of   things.  
 
Here’s   a   code   snippet   with   some   explanations   of   its   function   in   the   ‘#’   comments:  
 
inputDir   =   args.datadirb1  
D   =   128  
 
b1   =   []  
for   filename   in   os.listdir(inputDir):  
     inputPath   =   inputDir   +   filename  
     outputPath   =   outputDir   +   filename.split('.')[0]   +   '.jpg'   #   change   file   ending   to   '.jpg'  
     b1.append(inputPath)  
 
b1   =   [fn   for   fn   in   b1   if   any(['mp3'   in   fn.lower(),   'wav'   in   fn.lower(),   'aif'   in   fn.lower(),   'flac'   in   fn.lower()])]  
 
out   =   []  
for   path   in   b1[:20]:  
     try:   #   this   try-except   block   just   skips   audio   files   that   won't   load   properly  
         with   open(path,   'rb')   as   audioFile:  
             #   read   the   file  
             tmp   =   io.BytesIO(audioFile.read())  
             rawAud,   sr   =   sf.read(tmp)  
             #   transpose   and   resample   it  
             rawAud   =   rawAud.T  
             rawAud   =   librosa.resample(rawAud,   sr,   44100)  
             #   average   the   stereo   channels   into   a   single   mono   channel  
             rawAud   =   (rawAud[0,:]   +   rawAud[1,:])   /   2  
             #   convert   the   loaded   audio   into   a   mel   spectrogram   -   map   to   -1:1   range   -   cast   to   three   channels  
each   with   the   same   data   (   using   np.repeat()   and   np.newaxis)  
             melSpec   =  
np.repeat((librosa.power_to_db(librosa.feature.melspectrogram(y=rawAud,sr=sr),ref=np.max)/40+1)[:,:,np 
.newaxis],3,axis=2)  
             #   calculate   how   many   images   of   width   128   we   can   squeeze   out   of   melSpec  
             nimgs   =   int(np.ceil(melSpec.shape[1]/D))  
             #   grab   those   images   from   melSpec   and   save   them   to   out.   In   case   we're   looking   at   an   image   that  
doesn't   fit   into   128   width,   then   pad   the   rest   of   the   values   before   saving   it  
             for   j   in   range(nimgs):  
                 res   =   melSpec[:,j*D:j*D+D,:]  
                 if   res.shape[1]   <   D:  
                     res   =   np.pad(res,   ((0,0),(0,D-res.shape[1]),(0,0)),   constant_values=(0,0))  
                 out.append(res)  
     except   Exception:  
         pass  



Experiments  
The   final   result   produced   the   following   images   when   trained   on   dog   barks   ->   car   honks.   Images  
with   cutoff   portions   are   the   ends   of   certain   files   being   padded:  
 
At   iteration   10,   500,   1000   (source   images   on   left,   generated   images   on   right):  

 
 
You   can   see   that   as   they   progress   in   iteration   count,   the   information   in   the   outputs   starts   to  
match   the   details   in   their   sources   more   closely.   It   also   seems   as   though   the   lower   halves   of   the  
images   show   a   distinct   boundary   in   some   of   the   generated   images.  
 
As   I   made   the   code   translate   the   spectrograms   back   to   audio,   I   have   those   as   well,   though   I   do  
not   embed   them   here.   The   first   thing   I   recognized   in   the   audio   is   that   the   source   domain   audio   is  
distorted   due   to   the   conversion   to   and   from   a   spectrogram.   The   second   thing   is   that   the   target  
audio   has   a   slightly   more   tinny   sound   to   it   -   lower   frequency   information   has   been   converted   to  
higher   frequency   sound.   This   squares   with   the   domain   shift   from   dog   barks   to   car   horns.  
 
  



Future   Work:  
More   extravagant   examples   showing   the   kind   of   magic   this   network   can   do   will   be   soon   to  
come.  
 
Working   with   AWS   cloud   computing   will   allow   me   to   escape   the   resource   boundaries   of   my  
laptop,   and   reduce   the   amount   of   time   spent   to   reach   the   high   iteration   count   (50,000   and  
above)   required   to   reach   that   kind   of   magic.  


