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Abstract

Neural style transfer has been demonstrated to be pow-
erful in creating artistic image with help of Convolutional
Neural Networks (CNN). However, there is still lack of com-
putational analysis of perceptual components of the artistic
style. Different from some early attempts which studied the
style by some pre-processing or post-processing techniques,
we investigate the characteristics of the style systematically
based on feature map produced by CNN. First, we compu-
tationally decompose the style into basic elements using not
only spectrum based methods including Fast Fourier Trans-
form (FFT), Discrete Cosine Transform (DCT) but also la-
tent variable models such Principal Component Analysis
(PCA), Independent Component Analysis (ICA). Then, the
decomposition of style induces various ways of controlling
the style elements which could be embedded as modules in
state-of-the-art style transfer algorithms. Such decomposi-
tion of style brings several advantages. It enables the com-
putational coding of different artistic styles by our style ba-
sis with similar styles clustering together, and thus it facili-
tates the mixing or intervention of styles based on the style
basis from more than one styles so that compound style or
new style could be generated to produce styled images. Ex-
periments demonstrate the effectiveness of our method on
not only painting style transfer but also sketch style transfer
which indicates possible applications on picture-to-sketch
problems.

1. Introduction

Painting art, like Vincent van Gogh’s “The Starry Night”,
have attracted people for many years. It is one of the most
popular art forms for creative expression of the conceptual
intention of the practitioner. Since 1990’s, researches have
been made by computer scientists on the artistic work, in
order to understand art from the view of computer or to turn
a camera photo into an artistic image automatically. One
early attempt is Non-photorealistic rendering (NPR)[18], an

area of computer graphics, which focuses on enabling artis-
tic styles such as oil painting and drawing for digital images.
However, NPR is usually limited to specific styles and hard
to generalize to produce styled images for any other artistic
styles.

One significant advancement was made by Gatys et al. in
2015 [7], called neural style transfer, which could separate
the representations of the image content and style learned
by deep CNN and then recombine the image content from
one and the image style from another to obtain styled im-
ages. During this neural style transfer process, fantastic
stylized images were produced with the appearance simi-
lar to a given real artistic work, such as Vincent van Gogh’s
“The Starrry Night”. The success of the style transfer indi-
cates that artistic styles are computable and are able to be
migrated from one image to another. Thus, we could learn
to draw like some artists apparently without being trained
for years.

Following Gatys et al.’s pioneering work, a lot of efforts
have been made to improve or extend the neural style trans-
fer algorithm.[25] considered the semantic content and in-
troduced the semantic style transfer network.[15] combined
the discriminatively trained CNN with the classical Markov
Random Field (MRF) based texture synthesis for better
mesostructure preservation in synthesized images. Seman-
tic annotations were introduced by [1] to achieve seman-
tic transfer. To imporve the efficiency, [14] as well as [22]
introduced a fast neural style transfer method, which is a
feed-forward network to deal with a large set of images per
training. With help of an adversarial training network, re-
sults were further improved in [16]. For a systematic review
on neural style transfer, please refer to [13].

The success of recent progress on style transfer relies on
the separable representation learned by deep CNN, in which
the layers of convolutional filters automatically learns low-
level or abstract representations in a more expressive fea-
ture space than the raw pixel-based images. However, it is
still challenging to use CNN representations for style trans-
fer due to their uncontrollable behavior as a black-box, and
thus it is still difficult to select appropriate composition of
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styles (e.g., textures, colors, strokes) from images due to
the risk of incorporation of unpredictable or incorrect pat-
terns. In this paper, we take a further step on the separated
representations of image content and styles. We aim at a
computational understanding of the artistic styles, and de-
compose them into basis elements that are easy to be se-
lected and combined to obtain enhanced and controllable
style transfer. Specifically, we propose two types of decom-
position methods, i.e., spectrum based methods featured by
Fast Fourier Transform (FFT), Discrete Cosine Transform
(DCT), and latent variable models such as Principal Com-
ponent Analysis (PCA), Independent Component Analysis
(ICA). Then, we suggest methods of combination of styles
by intervention and mixing. The computational decompo-
sition of styles could be embedded as a module to state-of-
the-art neural transfer algorithms. Experiments demonstrate
the effectiveness of style decomposition in style transfer.
We also demonstrate that controlling the style bases enables
us to transfer the Chinese landscape painting very well and
to transfer the sketch style for a task similar to picture-to-
sketch [2, 20].

2. Related Work
Style transfer generates a styled image having similar

semantic content as the content image and similar style as
the style image. Conventional style transfer is realized by
patch-based texture synthesis methods [5, 23] where style
is approximated as texture. Given a texture image, patch-
based texture synthesis methods can automatically gener-
ate new image with the same texture. However, arbitary
style images are quite different from textures images [23],
since patches of arbitary style images from different regions
are usually distinguished while patches of texture images
from different regions are always similar, which limits the
functional ability of patch-based texture synthesis method
in style transfer. Moreover, control of the texture trans-
ferred by varying the patch size (shown in Figure 2 of [5]) is
limited due to the duplicated texture patterns in the texture
image.

The neural style transfer algorithm proposed by Gatys et
al. [7] is a milestone in style transfer referring to his pre-
vious research [8] which pioneers to take advantage of pre-
trained CNN on imageNet [3]. Rather than using previous
texture synthesis methods which are implemented directly
on the pixels of raw images, [8] uses the feature map of the
image which proves to preserve better semantic infomation
of the image. Content similarity is measured by compar-
ing the feature map while style similarity is measured by
comparing the Gram matrix of the feature map. Algorithm
proposed in [7] starts with a noise image and finally con-
verges to the styled image by iterative learning. The loss
function L is composed of the content loss Lcontent and the
style loss Lstyle. Lcontent is measured by the square er-

ror between the feature map of certain layer () while Lstyle
is measured by the square error between the Gram matrix
Gl of the feature maps from some certain layers. Notate
hl, wl, cl as the height, width and the channel number of
the feature map F in layer l and el as the weight of layer
l contributing to the style loss Lstyle. Fpredl , Fcontentl and
Fstylel denote the feature map of the styled image, content
image and style image correspondingly, where Fl is treated
as 2-dimensional data (Fl ∈ R(hlwl)×cl ).

L = αLcontent + βLstyle (1)

Lcontent =
1

2
(Fpredl −Fcontentl )2 (2)

Gl = FTl ×Fl, Gl ∈ Rcl×cl (3)

Lstyle =
∑
l

el
1

4h2lw
2
l c

2
l

(Gpredl −Gstylel )2 (4)

Gatys et al. then proposed the methods of spatial con-
trol, color control and scale control for neural style transfer
in [9]. Spatial control of neural style transfer can trans-
fer style of specific regions of the style image via guided
feature maps. Given the binary spatial guidance channels
for both content and style image, one approach to generate
the guided feature map is to multiply the guidance channel
with the feature map element-wise while another approach
is to concatnate the guidance channel with the feature map.
Spatial control of neural style transfer serves as an effective
method for semnatic control in neural style transfer [1, 24].
Color control is realized with help of YUV color space , by
which a styled image is first generated using [7]. The lumi-
nance channel of content image is replaced with that of the
styled image which manage to preserve the color of con-
tent image [10]. Besides, [9] referred to histogram match-
ing methods [11] which serve as the second approach to
preserve the color of the content image. Although both ap-
proaches are feasible for color control of style transfer, we
cannot control the color of style image transferred with ar-
bitrary degree which makes the control of color binary-like
(1: the styled image using [7] with all color of the style im-
age transferred; 0: the styled image using color control in
[9] with no color of the style image transferred). Moreover,
[9] proposed feasible method of mixing detailed texture of
one style image I1s (like stroke) with course texture of an-
other style image I2s (like color) as scale control which first
generates a new style image Inews with I1s , I

2
s as content im-

age and style image respectively using Gram matrix from

2



Figure 1. An overview of our method is indicated by red, where the dotted red rectangle represents the latent space expanded by the style
basis, f denotes computational decomposition of the style feature map Fs, g denotes mixing or intervention within the latent space. The
red part works as a computational module embedded in Gatys or other neural style transfer algorithms.

lower layers in CNN. It can be noticed that the scale levels
of the style depends on different layers in CNN which rep-
resents different abstract levels. However, since the number
of layers in CNN is finite (for VGG19 at most 19 layers),
the scale of style can only be controlled with finite degree.

The limitation of control over neural style transfer pro-
posed by pre-processing and post-processing methods in [9]
derives from the lack of computational analysis of the artis-
tic style which is the foundation of continuous control for
neural style transfer. Inspired by spatial control in [9] that
operations on the feature map could affect the style trans-
ferred, we implement different approaches to analyze the
feature map and succeed in computational decomposition
of the style via projecting feature map into latent space that
is expanded by style basis, like color and stroke. Since ev-
ery point in the well-organized latent space can be decoded
back to one style, the control of style basis can be contin-
uous. Meanwhile, our work facilitates the mixing or inter-
vention of styles based on the style basis from more than
one styles so that compound style or new style could be
generated which enhances the diversity of styled images.

3. Methods

Thanks to the powerful representation learning by deep
CNN, the separation of content and style enables style trans-
fer from an artistic painting to a natural image [7]. However,
it is still challenging to use CNN representations for style
transfer due to their uncontrollable behavior as a black-box,
and thus it is still difficult to select appropriate composi-
tion of styles (e.g., textures, colors, strokes) from images
due to the risk of incorporation of unpredictable or incor-
rect patterns. In the following, we propose to decompose
the feature map of the style image into style basis in a latent
space, in which it becomes easy to mix or intervene style

bases of different styles to generate compound styles or
new styles which are then projected back to the feature map
space. Such decomposition process enables us to continu-
ously control the composition of the style basis and enhance
the diversity of the synthesized styled image. Please refer
to Figure 1 for an overview of our method, which could be
implemented as a computational module in Gatys’ or other
neural style transfer algorithms.

Given the content image Icontent and style image Istyle,
we decompose the style by function f from the feature map
Fs of the style image to Hs in the latent space which is
consisted of style basis Si. We can mix or intervene the
style basis via function g which is operated on style basis to
generate the desired style coded by Ĥs. Using the inverse
function f−1, Ĥs is projected back to the feature map space
to get F̂s, which replace the original Fs for style transfer.
Our method can serve as embedded module for the state-of-
the-art neural style transfer algorithms, as shown in Figure
1 by red.

It can be noted that the module can be regarded as a gen-
eral transformation from original style feature map Fs to
new style feature map F̂s. If we let F̂s = Fs, our method
degenerates back to traditional neural style transfer [7].

Next, we will introduce two types of decomposition
function f and also suggest some control functions g. Since
the transformation of the feature map is only done on the
feature map of the style image, we simply notate Fs as F
the denote the feature map of the style image and Hs as H
in the rest of the paper. We notate h and w as the height and
width of each channel in the feature map.

3.1. Decomposed by spectrum transforms

We adopt 2-dimensional Fast Fourier Transform (FFT)
and 2-dimensional Discrete Cosine Transform (DCT) as the
decomposition function with details given in Table 1. Both
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Method Decomposition function f Projection back
2-d FFT H(u, v) = 1

hw

∑h−1
x=0

∑w−1
y=0 F(x, y)e−2(ux

h + vy
w )πi,F ∈ Rh×w×c inverse 2-d FFT

2-d DCT H(u, v) = c(u)c(v)
∑h−1
x=0

∑w−1
y=0 F(x, y)cos[

(x+0.5)π
h u]cos[ (y+0.5)π

w v] inverse 2-d DCT

F ∈ Rh×w×c, c(u) =
√

1
N , u = 0 and c(u) =

√
2
N , u 6= 0

PCA F = UDV T , U = [v1, . . . , vhw],H = U ×F ,F ∈ R(hw)×c, U ∈ R(hw)×(hw) F̂ = UT × Ĥ
ICA [S,A] = fastICA(F),H = S,F ∈ R(hw)×c, S ∈ Rc×(hw), A ∈ Rc×c F̂ = (A× Ĥ)T

Table 1. The mathematical details of f and f−1

methods are implemented in channel level of F where each
channel is treated as 2-dimensional data like a gray image.

Through the transform by 2-d FFT and 2-d DCT, the
style feature map was decomposed as frequencies in the
spectrum space where the style is coded by frequency that
forms style bases. We will see that some style bases, such
as stroke and color, actually correspond to different level of
frequencies. With help of decomposition, similar styles are
quantified to be close to each other as a cluster in the spec-
trum space, and it is easy to combine the existing styles to
generate compound styles or new styles Ĥ by appropriately
varying the style codes. Ĥ is then projected back to the fea-
ture map space via the inverse function of 2-d FFT and 2-d
DCT shown in Table 1.

3.2. Decomposed by latent variable models

We consider another type of decomposition by latent
variable models, such as Principal Component Analysis
(PCA) or Independent Component Analysis (ICA), which
decompose the input signal into uncorrelated or indepen-
dent components. Details are referred to Table 1, where
each channel of the feature map F is vectorized as one in-
put vector.

• Principal Component Analysis (PCA):

We implement PCA from the perspective of matrix
factorization. The eigenvectors are computed via Sin-
gular Value Decomposition (SVD). Then, the style is
coded as linear combination of orthogonal eigenvec-
tors, which could be regarded as style bases. By vary-
ing the combination of eigenvectors, compound styles
or new styles are generated and then projected back to
feature map space via the inverse of the matrix of the
eigenvectors.

• Independent Component Analysis (ICA):

We implement ICA via the fastICA algorithm [12], so
that we decompose the style feature map into statis-
tically independent components, which could be re-
garded as the style bases. Similar to PCA, we could
control the combination of independent components to
obtain compound styles or new styles, and then project
them back to the feature map space.

3.3. Control function g

The control function g in Figure 1 defines style opera-
tions in the latent space expanded by the decomposed style
basis. Instead of operating directly on the feature map
space, such operations within the latent space bring several
advantages. First, after decomposition, style bases are of
least redundancy or independent to each other, operations
on them are easier to control; Second, the latent space could
be made as a low dimensional manifold against noise, by fo-
cusing on several key frequencies for the spectrum or princi-
pal components in terms of maximum data variation; Third,
continuous operations, such as linear mixing, intervention,
and interpolation, are possible, and thus the diversity of the
output style is enhanced, and even new styles could be sam-
pled from the latent space. Fourth, multiple styles are able
to be better mixed and transferred simultaneously.

Let S(n)
i , i ∈ Z denote the i-th style basis of n-th style

image. Notate {S(n)
i |i ∈ I}, I ⊂ Z as S(n)

I .

• Single style basis: Project the latent space on one of
the style basis Sj . That is Si = 0 if i 6= j

• Intervention: Reduce or amplify the effect of one
style basis Sj by multiplying I while keeping other
style bases unchanged. That is Si = I ∗ Si if i = j

• Mixing: Combine the style bases of n styles. That is
S = {S(1)

I , S
(2)
J , . . . , S

(n)
K }

4. Experiments
We demonstrate the performance of our method using

the fast neural style transfer algorithm [6, 14, 22]. We take
the feature map ‘relu4 1’ from pre-trained VGG-19 model
[19] as input to our style decomposition method because
we try every single activation layer in VGG-19 and find that
‘relu4 1’ is more suitable for style transfer.

4.1. Inferiority of feature map and necessity of la-
tent space

Here, we demonstrate that it is not suitable for the style
control function g to be applied on the feature map space
directly because feature map space is possibly formed by a
complicated mixture of style bases. To check whether the
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basis of feature map F can form the style bases, we first
experimented on the channels of F , then the pixels of F .

(a)

Figure 2. (a)¬ content image (Stata Center); ­ style image (“The
Great Wave off Kanagawa” by Katsushika Hokusai); ® styled im-
age by traditional neural style transfer [7]; ¯°± are the results
of implementing control function directly on the feature map F .
Specifically, we amplify some pixles of F which generate ¯°

and preserve a subset of channels of F which generate ±.

4.1.1 Channels of F

Assume style is encoded in space H = {S1, S2, . . . , Sn}
which is expanded by style basis Si. The superiority of
spaceH should result in that the intuitive similarity of style
basis Si conforms to the cluster of Si in spaceH under Eu-
clidean distance.

Based on the above assumption, we generate the subset
C of channels of F that could possibly represent color basis
with semi-supervised method using style images in Figure
13(a-c). It can be noticed that Chinese paintings and pen
sketches (Figure 13(a,c)) share the same color style while
oil painting (Figure 13(b)) has an exclusive one. We it-
eratively find the largest channel set Cmax (384 channels
included) whose clustering result out of K-means [17] con-
forms to the following clustering standard for color basis:

• No cluster contains both oil painting and Chinese
painting or pen sketch.

• One cluster contains only one or two points, since K-
means is not adpative to the cluster number and the
cluster number is set as 3.

However, if we only use Cmax to transfer style, the
styled image (Figure 2(a)±) isn’t well stylized and doesn’t
indicate any color style of the style image (Figure 2­),
which probably indicates that the channels ofF are not suit-
able to form independent style basis.

In comparison, not only does the clustering result of the
color basis in spectrum space (defined in Section 4.2) us-
ing K-means conform to the above clustering standard, but
the styled image using single color basis (Figure 3(c)) also
works well and meets our intuitive standard for color, which
indicates that with help of proper decompostion functions,
the superiority of latent spaceH is reachable.

4.1.2 Pixels of F

We give intervention I = 2.0 to certain region of each chan-
nel of F to see if any intuitive style basis is amplified. The
styled images are shown in Figure 2(a)¯°. Rectangles in
style image (Figure 2(a)­) are the intervened regions core-
spondingly. Compared to the styled image using [7] (Fig-
ure 2(a)®), when the region of small waves in style image
is intervened (green rectangle in the style image), the ef-
fect of small blue circles in the styled image are amplyfied
(green rectangle in the styled image) while when the region
of large waves in style image is intervened (red rectangle in
the style image), the effect of long blue curves in the styled
image are amplyfied (red rectangle in the styled image). Ac-
tually, implementing control function g on the pixels of the
channels of F is quite similar to the methods proposed for
spatial control of neural style transfer [9] which controls
style transfer via a spatially guided feature map defined by
a binary or real-valued mask on a region of the feature map.
Yet it fails to computationally decompose the style basis.

4.2. Transfer by single style basis

To check whetherH is consisted of style bases, we trans-
fer style with single style basis preserved. We conduct
the experiment on H generated by different decomposition
functions, including FFT, DCT, PCA as well as ICA, with
details mentioned in Section 3 and results shown in Figure
3.

We preserve the DC component only and the rest fre-
quency components only in the spectrum space generated
by FFT respectively with results shown in Figure 3(c)(d).
Figure 3(c) preserves the color of style while Figure 3(d)
preserves the wave-like stroke, which indicates that FFT
is feasible for style decomposition. The result of DCT is
quite similar to that of FFT, with DC component represent-
ing color and the rest representing stroke.

Besides to visual eveluation shown in Figure 3(c)(d), we
analyze the spectrum space by projecting the style bases
into low dimensional space, which can analytically demon-
strate the effectiveness and robustness of spectrum based
methods. Given the spectrum space of F , we vector-
ize the DC component as well as the rest frequency com-
ponents as color vector vcolor and stroke vector vstroke,
(vcolor ∈ R1×c, vstroke ∈ R1×((hw−1)c)). Via Isomap
[21], we project vcolor and vstroke to ucolor, ustroke ∈ R
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. (a) the original content and style images; (b) styled image
by traditional neural style transfer [7]; (c-h) results of preserving
one style basis by different methods. Specifically, (c-d) FFT; (e-
f) PCA; (g-h) ICA where (c,e,g) aim to transfer the color of style
image while (d,f,h) aim to transfer the stroke of style image.

which forms X-axis and Y-axis of the 2-dimensional plane
for visualization where every style is encoded as a point.
We experiment on 3 artistic styles, including Chinese paint-
ing, oil painting and pen sketch, and each style contains 10
pictures which is shown in Figure 13(a-c). Chinese paint-
ings and pen sketches share similar color style which is
sharply distinguished with oil paintings’ while the stroke
of three artistic styles are quite different from each other.
Thus, as in shown in Figure 13(d), Chinese paintings and
pen sketches are close to each other and both stay away
from oil paintings in X-axis which represents color while
three styles are respectively separable in Y-axis which rep-
resents stroke, which completely satisfies our analysis of the
three artistic styles. When we apply to large scale of style
images (Figure 13(e)), X-axis represents the linear transi-
tion from dull-colored to rich-colored. However, we fail to
conclude any notable linear transition for Y-axis from the
2-dimensional visualization probably because it is hard to
describe the style of stroke (boldface,length,curvity,etc.) us-
ing only one dimension. Yet, clustering by K-means on the
original spectrum still conforms to the true label. In sum-
mary, spectrum based methods do work for large scale.

Unlike spectrum based methods, the bases of latent space
via PCA or ICA are either uncorrelated components or in-
dependent signals. Via PCA, the most principle component
(Figure 3(e)) fails to separate color and stroke well while
the rest components (Figure 3(f)) fail to represent any style
basis, which indicates PCA isn’t a suitable method for style
decomposition.

The results of ICA (Figure 3(g)(h)) are as good as the
results of FFT but show significant differences. The color
basis and stroke basis are formed by the following method.
We sum up each column of mixing matrixA whereAi,j de-

(a) (b) (c) (d)

(e)

Figure 4. (a) Chinese paintings; (b) Oil paintings (by Leonid Afre-
mov); (c) Pen sketches; (d) low-dimensional projections of the
spectrum of style(a-c) via Isomap; (e) low-dimensional projections
of the spectrum of large scale of style images via Isomap [21]. The
size of each image shown above does not indicate any other infor-
mation, but is set to prevent the overlap of the images only.

notes the contribution of j-th independent signal to the i-th
channel in F to get Asum ∈ Rc where Asumj denotes the
overall contribution of the j-th independent signal toF . Sort
Asum in acsent order to get arg ∈ Rc, where argj denotes
the index of signal which ranges j in Asum. The stroke
basis is formed with Sargi , i ∈ [0, n − 1] ∪ [c − n, c − 1]
while the color basis is formed with the rest independent
signals. Using ICA, the color basis (Figure 3(g)) is more
murky than Figure 3(c) while the stroke basis (Figure 3(h))
retains the profile of curves with less stroke color preserved
compared to Figure 3(d), which indicates both ICA and
spectrum based methods work for style decomposition, but
generates different results.

4.3. Transfer by intervention

We give intervention to the stroke basis via control func-
tion g to demonstrate the controllable diversified styles and
distinguish the difference in stroke basis between spectrum
based methods and ICA. We experimented on various styles
and we here demonstrate two of them (dur to space limita-
tion), ‘wave’ and ‘aMuse’, to indicate the robustness of our
experiment. The strokes of ‘wave’ (Figure 5(a)) are curves
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(a) (b) (c)

(d) (e) (f)

Figure 5. (a) the stroke of the style image ‘wave’; (d) the stroke of the style image ‘aMuse’(“A muse” by Pablo Picasso); (b,c,e,f) the results
of giving different intervention I to the stroke basis using different methods. Specifically, (b,e) spectrum based method; (c.f) ICA.

with light and dark blue while the strokes of ‘aMuse’ (Fig-
ure 5(d)) are black bold lines and coarse powder-like dots
in green, blue, yellow, etc. We further divide the concept
of stroke into stroke color and stroke profile (which is char-
acter like curve, bold line and coarse powder-like dot) to
better illustrate the difference between two methods.

Intervention impacts both stroke color and stroke profile
using spectrum based methods. With intervention increas-
ing, we see more exaggarated curves with darker blue in
Figure 5(b) and more black bold lines as well as greener
and yellower oil-painting-like sky in Figure 5(e).

Compared to spectrum based method, there is slight dif-
ference in color between results using different intervention.
Intervention only impacts stroke profile using ICA. With in-
tervention increasing, only the curvity of curves is amplified
(Figure 5(c)) and only the margin of profile and the grainy
of color become more obvious (Figure 5(f)).

However different two methods are, the stroke effect of
style can be reduced or amplified within our control, which
greatly enhances the diversity of styled image.

4.4. Transfer by mixing

Current style mixing method, interpolation, cannot mix
the style bases of different styles because styles are inte-
grally mixed however interpolation weights are modified
(Figure 19(g-i)), which limits the diversity of style mixing.
Based on the success spectrum based methods and ICA in
style decomposition, we experiment to mix the stroke of
‘wave’ with the color of ‘aMuse’ to check whether such
newly compound artistic style can be transferred to the
styled image.

Specifically, for ICA, we not only need to replace the
color basis of ‘wave’ with that of ‘aMuse’ but also should
replace the rows of mixing matrix A corresponding to the
exchanged signals. Both spectrum based methods (Figure
19(d-f)) and ICA (Figure 19(j-l)) work well in mixing style
bases of different styles and the difference conforms to the
conclusion given in Section 4.3. Moreover, we can inter-
venve the style basis when mixing, which further enhances
the diversity of style mixing.
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(a) content and style (b) wave style (c) aMuse style (d) I = 1.0 (e) I = 1.5 (f) I = 2.0

(g) I1 = 0.3, I2 = 0.7 (h) I1 = 0.5, I2 = 0.5 (i) I1 = 0.7, I2 = 0.3 (j) I = 1.0 (k) I = 2.0 (l) I = 3.0

Figure 6. (a) the content image and two style images; (b)(c) styled image of single style using traditional methods [7]; (g-i) interpolation
mixing where I1 and I2 are the weights of ‘wave’ and ‘aMuse’ in interpolation; (d-f,j-l) results of mixing the color of ‘aMuse’ and the
stroke of ‘wave’ where I is the intervention to the stroke of ‘wave’. Specifically, (d-f) use FFT; (j-l) use ICA.

(a) (b) (c) (d)

Figure 7. Picture-to-sketch using style transfer and binarization.
(a) content image and style image; (b-d) styled images. From (b)
to (d), the number of stroke increases as more details of the content
image are restored.

(a) (b) (c) (d)

Figure 8. Neural style transfer of Chinese painting with stroke con-
trolled. (a) content image and style image (by Zaixin Miao); (b-d)
styled images. From (b) to (d), the strokes are getting more de-
tailed which gradually turns freehand style into finebrush style.

4.5. Sketch style transfer

Picture-to-sketch problem challenges how computer can
understand and represent the concept of objects both ab-
stractly and semantically. State-of-the-art methods [2, 20]
use variance model of genarative adversary network (GAN)
via both supervised and un-supervised methods. One obsta-
cle mentioned by [20] is that using supervised learning only

may result in unstablity due to the noise in the dataset which
is caused by variant sketch styles for the same data sample.
Controllable neural style transfer proposed by us tackles the
above obstacle because inconsistent styles are no more bur-
dens, but can in turn increase the style diversity of output
images. Moreover, as is shown in Figure 7, our method can
control the abstract level by reserving major semantic de-
tails and minor ones automatically. In addition, our method
does not require vector sketch dataset, but as the tradeoff,
we cannot generate sketch stroke by stroke like [2, 20].

4.6. Chinese painting style transfer

Chinese painting is an exclusive artistic style which
does not have plentiful color like the Western painting, but
mostly represents the artistic conception by strokes. Taking
advantage of effective controls over stroke via our meth-
ods, the Chinese painting styled image can be either misty-
like (Figure 8(b)) which can be called as freehand-brush or
meticulous representation (Figure 8(d)) which is called as
fine-brush.

5. Conclusions
Artistic styles are made of basic elements, each with dis-

tinct characteristics and functionality. Developing such a
style decomposition method facilitate the quantitative con-
trol of the styles in one or more images to be transfer to
another natural image, while still keeping the basic con-
tent of natural image. In this paper, we proposed a novel
computational decomposition method, and demonstrated its
strengths via extensive experiments. To our best knowl-
edge, it is the first such study, which could serve as a com-
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putational module embedded in those neural style trans-
fer algorithms. We implemented the decomposition func-
tion by spectrum transform or latent variable models, and
thus it enables us to computationally and continuously con-
trol the styles by linear mixing or intervention. Experi-
ments showed that our method enhanced the flexibility of
style mixing and the diversity of stylization. Moreover, our
method could be applied in picture-to-sketch problems by
transferring the sketch style, and it captures the key feature
and facilitates the stylization of the Chinese painting style.
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Appendix

A. The Stylization Effect of Every Activation Layer
in VGG19

Since different layers in VGG19 [19] represent different
abstract level, we experiment the stylization effect of every
activation layer on a couple of different content and style
images as are shown in Figure 9 and Figure 10. From our
experiment, it can be noticed that not every layer is effective
in style transfer and among those that work, shallow layers
only transfer the coarse scale of style (color) while deep
layers can transfer both the coarse scale (color) and detailed
scale (stroke) of style, which conforms to the result of scale
control in [9]. Since ‘relu4 1’ performs the best in style
transfer after same amount of iterations, we determine to
study the feature map of ‘relu4 1’ in our research.

We further visualize each channel of the feature map of
the style image using t-SNE [4], as are shwon in Figure
11 and Figure 12 where the similarity of the result is quite
interesting. However, we could not explain the specific pat-
tern in the visualization result and the relationship between
the similarity of the visualization results with the similarity
of the stylization effects of different VGG layers yet.

B. The Manifold of Spectrum Based Methods

We analyze the spectrum space by projecting the style
bases via Isomap [21] into low dimensional space where
the X-axis represents the color basis and the Y-axis repre-
sents the stroke basis, which can analytically demonstrate
the effectiveness and robustness of spectrum based meth-
ods. Three artistic styles are experimented (shown in Figure
13(a-c)). Chinese paintings and pen sketches share similar
color style which is sharply distinguished with oil paintings’
while the stroke of three artistic styles are quite different
from each other. Thus, as in shown in Figure 13(d), Chi-
nese paintings and pen sketches are close to each other and
both stay away from oil paintings in X-axis which repre-
sents color while three styles are respectively separable in
Y-axis which represents stroke, which completely satisfies
our analysis of the three artistic styles.

When we apply the same method to large scale of style
images (Figure 14), X-axis clearly represents the linear
transition from dull-colored to rich-colored. However, we
fail to conclude any notable linear transition for Y-axis from
the 2-dimensional visualization probably because it is hard
to describe the style of stroke (boldface,length,curvity,etc.)
using only one dimension.

C. Stroke Intervention

We demonstrate more styled images with stroke basis in-
tervened using spectrum based method (Figure 15 and Fig-
ure 16) and ICA (Figure 17 and Figure 18) respectively.

D. Style Mixing

We demonstrate more styled images transferred with
compound style generated by mixing the color basis and
stroke basis of two different styles. The results of both spec-
trum based method and ICA method are shown in Figure 19
with comparison with traditional mixing method - interpo-
lation.
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(a) content (b) style

(c) relu1-1 (d) relu1-2 (e) relu2-1 (f) relu2-2

(g) relu3-1 (h) relu3-2 (i) relu3-3 (j) relu3-4

(k) relu4-1 (l) relu4-2 (m) relu4-3 (n) relu4-4

(o) relu5-1 (p) relu5-2 (q) relu5-3 (r) relu5-4

Figure 9. Styled images using [7] with 500 epoches using every single activation layer from the pre-trained VGG19.
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(a) content (b) style

(c) relu1-1 (d) relu1-2 (e) relu2-1 (f) relu2-2

(g) relu3-1 (h) relu3-2 (i) relu3-3 (j) relu3-4

(k) relu4-1 (l) relu4-2 (m) relu4-3 (n) relu4-4

(o) relu5-1 (p) relu5-2 (q) relu5-3 (r) relu5-4

Figure 10. Styled images using [7] with 500 epoches using every single activation layer from the pre-trained VGG19.
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(a) relu1-1 (b) relu1-2 (c) relu2-1 (d) relu2-2

(e) relu3-1 (f) relu3-2 (g) relu3-3 (h) relu3-4

(i) relu4-1 (j) relu4-2 (k) relu4-3 (l) relu4-4

(m) relu5-1 (n) relu5-2 (o) relu5-3 (p) relu5-4

Figure 11. Low dimensional projection of all channels of the feature map of style image (in Figure 9(b)) of every single layer via t-SNE
[4].
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(a) relu1-1 (b) relu1-2 (c) relu2-1 (d) relu2-2

(e) relu3-1 (f) relu3-2 (g) relu3-3 (h) relu3-4

(i) relu4-1 (j) relu4-2 (k) relu4-3 (l) relu4-4

(m) relu5-1 (n) relu5-2 (o) relu5-3 (p) relu5-4

Figure 12. Low dimensional projection of all channels of the feature map of style image (in Figure 10(b)) of every single layer via t-SNE
[4].
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(a) (b) (c) (d)

Figure 13. (a) Chinese paintings; (b) Oil paintings (by Leonid Afremov); (c) Pen sketches; (d) low-dimensional projections of the spectrum
of style(a-c) via Isomap [21].

(a)

Figure 14. low-dimensional projections of the spectrum of large scale of style images via Isomap [21]. The size of each image shown above
does not indicate any other information, but is set to prevent the overlap of the images only.
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Figure 15. The styled image with stroke basis intervened using spectrum based methods. The left most of each row shows the style images
(From top to bottom: The Great Wave off Kanagawa - Katsushika Hokusai; Composition - Alberto Magnelli; Dancer - Ernst Ludwig
Kirchner; Pistachio Tree in the Courtyard of the Chateau Noir - Paul Cezanne; Potrait - Lucian Freud). From left to right of each row, the
effect of stroke is increasingly amplified.
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Figure 16. The styled image with stroke basis intervened using spectrum based methods. The left most of each row shows the style images
(From top to bottom: A Muse (La Muse) - Pablo Picasso; Number 4 (Gray and Red) - Jackson Pollock; Shipwreck - J.M.W. Turner; Natura
Morta - Giorgio Morandi; The Scream - Edvard Munch). From left to right of each row, the effect of stroke is increasingly amplified.
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Figure 17. The styled image with stroke basis intervened using ICA. The left most of each row shows the style images. From left to right
of each row, the effect of stroke is increasingly amplified.
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Figure 18. The styled image with stroke basis intervened using ICA. The left most of each row shows the style images. From left to right
of each row, the effect of stroke is increasingly amplified.
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Figure 19. The left two columns are the style images used for mixing. Specifically, we mix the color of the most left one with the stroke of
the second left one. The third left column shows the styled images with traditional interpolation method. The second right column shows
the styled images using spectrum mixing method. The most right column shows the styled images using ICA mixing method.
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