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Figure 1: Coded exposure enables recovery of fine details in the deblurred image. (a) Photo of a fast moving vehicle. (b) User clicks on four
points to rectify the motion lines and specifies a rough crop. (c) Deblurred result. Note that all sharp features on the vehicle (such as text)
have been recovered.

Abstract
In a conventional single-exposure photograph, moving objects or
moving cameras cause motion blur. The exposure time defines a
temporal box filter that smears the moving object across the image
by convolution. This box filter destroys important high-frequency
spatial details so that deblurring via deconvolution becomes an ill-
posed problem.

Rather than leaving the shutter open for the entire exposure du-
ration, we “flutter” the camera’s shutter open and closed during
the chosen exposure time with a binary pseudo-random sequence.
The flutter changes the box filter to a broad-band filter that pre-
serves high-frequency spatial details in the blurred image and the
corresponding deconvolution becomes a well-posed problem. We
demonstrate that manually-specified point spread functions are suf-
ficient for several challenging cases of motion-blur removal includ-
ing extremely large motions, textured backgrounds and partial oc-
cluders.

1. Introduction

Despite its usefulness to human viewers, motion is often the bane
of photography: the clearest, most detailed digital photo requires a
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perfectly stationary camera and a motionless scene. Relative mo-
tion causes motion blur in the photo. Current practice presumes a
0th order model of motion; it seeks the longest possible exposure
time for which moving objects will still appear motionless. Our
goal is to address a first-order motion model: movements with con-
stant speed rather than constant position. Ideally, the camera would
enable us to obtain a sharp, detailed record of each moving compo-
nent of an image, plus its movement.

This paper takes first steps towards this goal by recoverably encod-
ing large, first-order motion in a single photograph. We rapidly
open and close the shutter using a pseudo-random binary sequence
during the exposure time so that the motion blur itself retains de-
codable details of the moving object. This greatly simplifies the
corresponding image deblurring process. Our method is not fully
automatic: users must specify the motion by roughly outlining this
modified blurred region. We then use deconvolution to compute
sharp images of both the moving and stationary components within
it, even those with occlusions and linear mixing with the back-
ground.

Deconvolution to remove conventional motion blur is an old, well-
explored idea, but results are often disappointing. Motion blurred
images can be restored up to lost spatial frequencies by image
deconvolution [Jansson 1997], provided that the motion is shift-
invariant, at least locally, and that the blur function (point spread
function, or PSF) that caused the blur is known. However, im-
age deconvolution belongs to the class of ill-posed inverse prob-
lems for which the uniqueness of the solution cannot be estab-
lished, and the solutions are oversensitive to any input data pertur-
bations [Hadamard 1923] [Tikhonov and Arsenin 1977]. In com-
parison, the proposed modification of the capture process makes the
deblurring problem well-posed.



1.1. Contributions

The motion deblurring problem involves three parts: capture-time
decision for motion encoding, PSF estimation and image deconvo-
lution (Figure 2). The key novelty of our methods stem from modi-
fying the capture-time temporal integration to minimize the loss of
high spatial frequencies of blurred objects.

• We compute a near-optimal binary coded sequence for modu-
lating the exposure and analyze the invertibility of the process,

• We present techniques to decode images of partially-occluded
background and foreground objects,

• We show how to handle extremely large degrees of blur.

We do not perform PSF estimation, but instead rely on easy user
interactions to estimate the blur path. Image deconvolution is ill-
posed for traditional blur, but coded exposure makes the problem
well-posed for small as well as large degrees of blur. Thus, even a
simple least squares approach can be used for image deconvolution.

Limitations Our technique is limited to scenes that meet the con-
stant radiance assumption. While points in the scene may move or
occlude each other, their intensities must remain constant through-
out the exposure time: spurious highlights as in Figure 14 produce
artifacts. In addition, coded exposure necessarily reduces the open-
shutter exposure time by about half (one f-stop), even without pho-
tographed motion. However, the resulting photo is visually similar
to an un-coded photo taken with a traditional camera.

Our current implementation uses an external liquid-crystal shutter,
but several machine vision cameras support external binary trigger
input for on-off control of light integration on the camera sensor
chip. Although our techniques cover only a subset of possible ob-
ject and camera motions, we demonstrate that several cases exist for
which our techniques are very effective. These techniques look be-
yond the traditional camera-shake examples and primarily address
object motion within the scene.

1.2. Related Work

Capture-time Solutions Short exposure time reduces blur, but in-
creases noise and needlessly penalize static areas of the image.
High speed cameras can capture fast motion, but require expensive
sensing, bandwidth and storage. A high speed camera also fails to
exploit the inter-frame coherence, while our technique takes advan-
tage of a simplified model of motion. These cameras often require
brilliant scene lighting. Edgerton and others [Edgerton 1951-1963]
have shown visually stunning results for high speed objects using
a modest exposure time but an extremely narrow-duration flash.
Flash, however, is impractical in outdoor or distant scenes. In ad-
dition, it captures an instant of the action and fails to indicate the
general movement in the scene.

Smarter Cameras To overcome camera shake, some newer cam-
eras optically stabilize their lenses. Adaptive optical elements con-
trolled by inertial sensors compensate for camera motion to re-
duce blur [Canon 2006][Nikon 2005]. Alternatively, some CMOS
cameras perform multiple high-speed frame captures within nor-
mal exposure time, enabling multiple image-based motion blur re-
moval [Liu and Gamal 2001]. These methods are able to produce
clear and crisp images, given a reasonable exposure time. Ben-Ezra
and Nayar [2004] proposed a hybrid imaging system that accurately
estimates the PSF using an auxiliary low resolution high frame rate
camera, enabling deblurring even after long exposure times. These
methods compensate for camera motion but do not usually respond
to object motion within the scene.

PSF
Estimation

Image
Deconvolution

Modulated
Capture

Figure 2: Motion deblurring involves three steps. Our key contri-
bution changes the first stage: temporal shutter modulation reduces
loss of high spatial frequencies, permitting use of simple well-posed
linear solutions for the last stage. We rely on user-assisted methods
to estimate the point-spread function.

Video Analysis Several authors have proposed to remove mo-
tion blur using video cameras, where PSF is estimated by com-
bining partial information from successive video frames of a sin-
gle camera [Schultz and Stevenson 1996][Bascle et al. 1996] or
from frames captured by multiple co-located cameras with over-
lapped exposure time [Shechtman et al. 2002]. This staggered ex-
posure approach also assisted a novel reconfigurable multi-camera
array [Wilburn et al. 2005].

Post-processing Solutions Image restoration methods such as
blind deconvolution or Wiener filtering [Yitzhaky et al. 1998] at-
tempt to estimate the PSF from the blurred image alone and use
the PSF to deconvolve the image. More sophisticated algorithms
such as the iterative restoration approach presented by Tull and Kat-
saggelos [1996] can further improve the quality of restored images.

Without estimating PSF, Jia et al. [2004] improved a short expo-
sure noisy image by using color constraints observed in a long
exposure photo. Blind deconvolution is widely adopted to en-
hance a single blurred image, based on various assumptions ap-
plied to the PSF [Kundur and Hatzinakos 1998]. PSF estimation
remains a challenging problem for arbitrary motions. Even when
the PSF is known, deblurred results have amplified noise and re-
sampling/quantization problems. High frequencies are usually lost
in the deblurred results and deblurring is often limited to blur from
small movements. Our techniques can gracefully handle a very
large degree of motion blur using frequency preserving coded tem-
poral sampling.

Coded Sampling Binary and continuous codes are commonly used
in signal processing for modulation and they act as broadband,
limited-power substitutes for an ideal impulse signal. These in-
clude chirps that sweep the carrier over a wide frequency band dur-
ing the pulse interval. Maximum length sequences (m-sequences)
and Modified Uniformly Redundant Arrays (MURA) are popular
choices for coding and decoding by circular convolution. Coded-
aperture astronomical imaging uses MURA codes [Gottesman and
Fenimore 1989] to improve the signal to noise ratio while captur-
ing X-ray and gamma-ray wavelengths unsuitable for conventional
lenses. Broadband codes find wide application in spread spectrum
coding for noise-robust communication and in code division mul-
tiplexing (CDMA) that minimizes interference between adjacent
broadcast channels. Acousticians have used m-sequences to de-
sign two-dimensional panels that exhibit minimal sound diffrac-
tion [Trevor J. Cox 2003]. However, as shown in later sections,
motion blur corresponds to zero-padded circular convolution, and
the zero padding makes MURA codes non-optimal.

2. Image Deconvolution

Consider the problem of deblurring a 1-D signal via deconvolution.
The goal is to estimate the signal S(x), that was blurred by a linear
system’s point-spread function P(x). The measured image signal
I(x) is then known to be

I(x) = P(x)∗S(x), (1)
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Figure 3: The 1-D motion blur process. (Left) A time-to-space
projection for a moving object of size n, with blur of k pixels,
chopped with a binary code of length m and the intensity profile
of the n+k−1 blurred pixels. (Right) A linear system to transform
the unknown image into a blurred photo.

with ∗ denoting convolution. In the ideal case, a good estimate of
the image, S′(x), can be recovered via a deconvolution filter P+(x).

S′(x) = P+(x)∗ I(x). (2)

In the case of band-limited point-spread functions or point-spread
functions with incomplete coverage of the Fourier domain, infor-
mation is lost and therefore, deconvolution is not possible. For ex-
ample, capturing an image with exposure duration T is equivalent
to a convolution with a box filter in the temporal domain. We there-
fore call the resultant alteration a flat blur. In the frequency domain,
the signal is multiplied by a band-limited sinc function with zeros
at the intervals of 2π/T and significant attenuation at most other
frequencies (Figure 5). To overcome this problem, several previ-
ous algorithms choose their reconstruction from the range of possi-
ble solutions using an iterative maximum-likelihood estimation ap-
proach. A well-known class of techniques follow the Richardson-
Lucy algorithm [Richardson 1972][Lucy 1974] which uses a statis-
tical model for image formation and is based on the Bayes formula.
The Richardson-Lucy algorithm is a non-linear ratio-based method
that produces non-negative gray level values.

The iterative deconvolution technique is applicable for whole-
motion blur and assumes the complete signal I(x) is available, but it
fails to handle cases where different parts of the scene have different
PSFs. For example, in the case of a moving object on a static tex-
tured background, the background contribution to the blurred image
is different from the foreground object smear.

3. Coded Exposure

Rather than leaving the shutter open for the duration of the expo-
sure, we ‘flutter’ it open and closed in a rapid irregular binary se-
quence. We call the resultant alteration a coded blur. The fluttering
toggles the integration of motion on and off in such a way that the
resultant point spread function, P(x), has maximum coverage in the
Fourier domain. Although the object motion is unknown a priori,
the temporal pattern can be chosen so that the convolved (blurred)
image I(x) preserves the higher spatial frequencies of moving ob-
jects and allows us to recover them by a relatively simple decoding
process.

3.1. Motion Model

For greater generality, we describe convolution using linear algebra.
Let B denote the blurred input image pixel values. Each pixel of B
is a linear combination of the intensities in the desired unblurred
image, X and can be written as

AX = B+η . (3)
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Figure 4: Key idea behind coded exposure is to temporally sample
the motion with minimum loss of spatial frequencies. (a,b) Photos
of a moving target pattern with varying spatial frequencies show
that motion blur in conventional exposure loses high spatial fre-
quencies, but coded exposure preserves those frequencies with at-
tenuated magnitudes. (c,d) The deblurred results show recovered
spatial frequencies. (e,f) Images of the static scene.

The matrix A, denoted as the smearing matrix, describes the convo-
lution of the input image with the point spread function P(x) and η
represents the measurement uncertainty due to noise, quantization
error, and model inaccuracies. For two-dimensional PSF’s, A is
block-circulant while for one-dimensional PSF, A is circulant. For
simplicity, we will describe the coding and decoding process for a
one-dimensional PSF case.

Given a finite exposure time of T seconds, we subdivide the integra-
tion time into m time slices, called chops, so that each chop is T/m
seconds long. The on/off chop pattern then is a binary sequence
of length m. The motion blur process is a time to space projection
(Figure 3), where, in the one-dimensional motion case, the motion
in T seconds causes a linear blur of k pixels. Hence, within one
single chop’s duration, the smear covers k/m pixels.

Consider a simple case of an object moving downwards in front of
a black background and evaluated along a vertical scan line (Fig-
ure 3). If the PSF is length k in image pixel coordinates, a pixel at
a location (u,v) in the first chop is smeared linearly up to the pixel
(u,v+k−1). If the object length along the direction of motion is n
pixels, then the total blur width is w where w = (n+ k−1).

Our goal is to find the best estimate of the n pixels from the ob-
served n + k− 1 pixels. The smear matrix A can be obtained as
follows. Each pixel in the unknown image X contributes to a total
of k pixels after smearing. The first column of circulant matrix A
is the PSF vector of length k followed by n− 1 zeros. And each
column is obtained from the previous one by cyclically shifting the
entries one step forward. Therefore, in case of a black background,
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(a) Linear Convolution Filter DFT (b) Decoding Filter DFT (c) Circular Convolution Filter DFT
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Figure 5: Frequency, covariance and matrix conditionality analysis of codes used for linear convolution. Each 52-length code is padded with
300 zeros. (a) The DFT of the box filter (flat blur) is a sinc function and frequencies with sharp dips are lost. The MURA code filter is better
than box filter but the variance of the frequency magnitudes is high compared to our code. Our coded filter is more efficient with a nearly
constant broadband response. (b) The DFT of decoding filters show that box and MURA filters require significant amplification of certain
high frequencies. (c) For comparison, we show that for circular convolution (i.e. without zero padding), MURA code actually has a flatter
frequency response than our code. (d,e,f) Noise covariance matrix of X corresponding to smear matrix A has large diagonal and sub-diagonal
entries for box and MURA code. The sub-diagonal entries in covariance matrix indicate ringing and banding artifacts in the deblurred results.
(g) The condition number can be analyzed using singular values of the smearing matrix.

the linear convolution with P(x) (or multiplication by the circulant
matrix A) is equivalent to a circular convolution with a PSF vector
of length k padded with n− 1 zeros. In practice, since X has only
n unknown values in the smear direction, one can build up an over-
constrained least square system by truncating A to keep only its first
n columns. Thus, the size of A becomes (n+k−1)×n. In the case
of flat blur, the time-to-space projection of an input signal of length
n with constant values creates a response with a trapezoidal inten-
sity profile. The ramps have a span of k pixels each and the plateau
is n− k−1 pixels long. For coded blur, the overall intensity profile
shape is still trapezoidal, but the shutter’s rapid flutter changes the
ramps to a more jagged shape as shown in Figure 3.

3.2. Code Selection

Our goal is to select a temporal code that improves the invertibility
of the imaging process. We analyze the invertibility by studying
the condition number of the coding matrix and the variance of the
frequency spectrum of the code. The invertibility of the smearing
matrix A, in the presence of uncertainty and noise, can be judged
by the standard matrix conditioning analysis. The condition num-
ber is the ratio of the largest to the smallest singular value and indi-
cates the sensitivity of the solution X to the noise in the input image
B. We note that the eigenvalues of a circulant matrix comprise the
magnitude of the DFT of the first column of the circulant matrix and
that each column in A is the PSF vector padded with zeros. Based
on this observation, we choose a coded sequence with a broadband
frequency response so that the corresponding condition number
for the smearing matrix is as small as possible.

In theory, we could modulate the opacity of the filter continuously
over time to achieve a broadband frequency response, e.g. using a

chirp like function. However, in practice a binary (on/off) opacity
switching with fixed chop duration is much easier to implement.
Choices for broadband binary codes include Walsh-Hadamard
codes, maximum length sequences and MURA codes. The MURA
sequence may seem the obvious choice as its discrete Fourier trans-
form is flat. However, for motion blurring, circular convolution oc-
curs with the PSF vector of length k padded with n−1 zeros, where
n is the size of the object in pixels. As discussed below, a MURA is
not optimal for zero padded patterns, and prompted our search for
the best possible code.

The DFT of a MURA pattern without zero padding is flat. However,
the DFT can resolve with exactness only the discrete frequencies.
There is spectral leakage for components falling between the DFT
bins. Zero-padding results in greater resolution in the frequency
components and shows the weakness of MURA patterns.

Because the decoding involves inversion of the frequency spec-
trum, we also add a smoothness constraint to our search for the
best binary chop pattern. The frequency response should have low
variance so that a mis-estimation of the PSF will not cause strong
changes in amplification for nearby but incorrect spatial frequen-
cies during decoding. Note that the frequency response of both the
box filter sequence and the padded MURA sequence (Figure 5) in-
cludes deep dips or zeros, producing a high variance for both. These
spikes in the frequency domain leads to the spurious amplification
of frequencies during deconvolution.

Finally, one must decide the sequence length m. As described later,
an ideal chop-count is the one equal to the blur size k. Ideally, the
camera would feature an auto-flutter mode to decide m on-the-fly
based on sensed optical flow, a form of motion-adaptation simi-
lar to the auto-focus feature. Given our hardware constraints, we
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Figure 6: Comparison with other exposure settings: short exposure, traditional shutter exposure, MURA code and our code. The blur k in
each case is between 118 and 121 pixels (≈ 16% of n). (a,b,c,d) Shutter sequence and corresponding photos used as input images. (e) Log
intensity for short exposure. (f,g,h) Deblurred results using a linear solution. (i) Experimental setup with toy train. (j) Flat blurred image
deblurred using Richardson-Lucy (RL) algorithm. (k) Photo of static toy train. (l) Enlarged regions taken from deblurred results for flat (top),
MURA (middle) and coded exposure (bottom). Datasets and source code available at http://www.merl.com/people/raskar/deblur/.

settled for a compromise value by experimentation, choosing a se-
quence of m = 52 chops with 50% duty cycle, i.e., with 26 ones and
zeros. The first and last bit of the code should be 1, which results
in 50C24 ≈ 1.2×1014 choices. Among them, there are a multitude
of potential candidates with acceptable frequency magnitude profile
but different phase. We computed a near-optimal code by imple-
menting a randomized linear search and considered approximately
3× 106 candidate codes. We chose a code that (i) maximizes the
minimum of the magnitude of the DFT values and (ii) minimizes
the variance of the DFT values. The near-optimal code we found is

1010000111000001010000110011110111010111001001100111.

The plot in Figure 5 demonstrates that the chosen code is a signifi-
cant improvement over padded MURA code. The deblurred images
in Figure 6 shows banding and artifacts for flat blur and MURA
coded blur as compared to coded blur using our code.

4. Motion Decoding

Given the estimated PSF, we can deblur the captured high resolu-
tion image using existing image deconvolution algorithms. How-
ever, in several cases described below, we discovered that adding

more constraints is difficult via deconvolution, and instead a linear
algebra approach is more practical.

4.1. Linear Solution

We use a least-square estimation to solve for the deblurred image X̂
as

X̂ = A+B, (4)

where A+ is the pseudo-inverse of A in the least-square sense. Since
the input image can have a motion blur k different from m, we first
expand/shrink the given blurred image by factor m/k. We then esti-
mate X and scale it back by k/m. All the images in this paper have
been deblurred using this simple linear approach with no additional
post-processing.

In the following sections, we focus on one dimensional PSFs. Mo-
tion of real-world objects within a frame tends to be one dimen-
sional due to energy and inertial constraints. We refer to the one
dimensional line-like paths for motion as motion lines. Note that
scene features on a given motion line contribute only to pixels on
that motion line and therefore the motion lines are independent. The
solution for each motion line can be computed independent of other
motion lines. In the explanation below, without loss of generality,



(a) Case 1 (c) Case 2(ii)

(b) Case 2(i) (d) Case 3

Figure 7: Different types of backgrounds. (a) Case 1: The estimated background shows continuity with the unblurred part of the face. (b)
Case 2(i): With a striped background aligned with motion lines, we can recover the moving train assuming a single unknown value for the
background per motion line. (c) Case 2(ii): The user specifies an approximate crop which has strong gradients in the background. By keeping
only the low gradients, this cropped part is left with only the blurred pixels, which is decoded. (d) Case 3: The narrow piece of paper (with
Boston06 logo) smears across the face. The unblurred foreground estimate, shown on the right, has distortions due to ambiguities in the
solution.

the motion lines are assumed to be oriented along the horizontal
scan lines. However, in examples such as camera shake, the PSF
is typically a collection of 1-D manifolds in 2-D and we show how
our method can extend to these PSF’s as well.

In general, deblurring algorithms need to know which pixels be-
long to the blurred portion of the image and which belong to the
unblurred portion. A misclassification can lead to decoding errors
where the unblurred background pixels will contaminate the results
along the entire motion line. The regions can be classified into
blurred and unblurred areas using several automatic methods. In the
case of static video cameras, a cutout for the moving object can be
obtained via frame differencing or by comparing the position of the
moving object in two successive frames. In an interactive deblur-
ring process, the user specifies an approximate axis-aligned bound-
ing box around the blurred object. The length of the box, wb, would
typically be slightly greater than the blur width w (= n+k−1). The
user specifies the length of blur, k, which indicates to the program
that the shape of the object is n′ = wb− k +1. The value n′ can be
considered a close approximation of n. If the length differs along
each motion line, the user specifies a cut-out rather than a bounding
box.

4.2. Background Estimation

We now address the problem of motion blur due to an opaque object
moving in front of a stationary (non-blurred) but non-zero-valued
background. This is a commonplace but difficult case because the
moving object blends with the background and it is, therefore, not
sufficient to know the moving object’s PSF to deblur the image.
One also needs to estimate the background simultaneously. We
explore this problem, classify the cases and show that in some in-
stances, the unknown background visible at the edges of the blurred
object can be recovered during the deblurring process. In the case

of a non-zero background, the blurred image is given by

B = AX +AgXg, (5)

where X is the moving foreground object, Xg is the static back-
ground and Ag is the background attenuation matrix. Ag is a diago-
nal matrix whose elements attenuate the static background. Ag can
be written as

Ag = I−diag(A∗ I(n+k−1)×1), (6)

where Iq×1 is a vector of length q with all 1’s and diag(v) returns
a square matrix by placing the vector v on the main diagonal.

The analysis of background estimation is based on the number of
background pixels, g, that contribute to the blurred region. In the
blurred region of size (n + k− 1), when n > k, the background is
visible only near the edges and contributes to only 2k pixels. How-
ever, when n < k, the object smears more than its length and hence
the background is partly visible in all the blurred pixels. Hence
g = min(2k,n + k− 1). Given observations at (n + k− 1) pixels,
we must estimate a minimum of n+2k values. The additional k+1
unknowns can be estimated by adding constraints on the object mo-
tion and on the complexity of the texture corresponding to the back-
ground image.

We consider the five critical cases for simultaneously estimating
foreground X and background Xg.

1. Wide object with known shape and textured background: n >
k.

2. Wide object with unknown shape: n > k and (i) constant back-
ground; (ii) textured background but with edges of the texture
outside the blur region; (iii) textured background with edges
of the texture passing through the blur region.

3. Narrow object blurred over a distance greater than its length,
i.e. n < k.



Figure 7 shows examples on the above background cases. In case
1, we constrain a specified region of length n′ = n so that the spec-
ified cutout precisely marks the shape of the blurred object. As
we know the precise location of the ramps of the trapezoidal con-
tribution of the background pixels, we can write the background
attenuation matrix Ag. We estimate up to k−1 values from among
the 2k possible values for the background by making a simplifying
assumption that the background is low frequency, by assuming each
consecutive pair of background pixels (on a motion line) to have the
same color. Figure 7 shows recovery of the partially occluded face.
In this case, the shape of the moving rectangular sheet of paper is
specified by the user. The geometric and photometric continuity of
the recovered low-frequency background (right part of the face) is
validated by presenting it together with the original un-attenuated
portion of the background (left part of the face).

In case 2(i), the shape of the object is unknown. When the back-
ground is constant, we can treat the background as part of the mov-
ing object that creates the smeared values. Only the task of estimat-
ing the single unknown background color remains. As each motion
line is independent, we can recover a different background color
for each motion line. Figure 7 demonstrates that we can decode a
striped cloth that follows motion lines and still reliably recover the
foreground image.

In case 2(ii) the background is not constant, but we can still re-
cover the foreground if the edges of the background are outside
the blurred region. We use a gradient domain method to eliminate
those variations in the background. The highest possible gradient
in the foreground is attenuated by a factor of m/2 or more due to
blurring. Hence, all the gradients along motion lines with a magni-
tude greater than a threshold are likely to be background edges and
are set to zero. The motion line is reconstructed by integrating the
modifying gradients starting from the foreground region outwards.
The modified motion lines are then decoded. Figure 7 (top right)
demonstrates that we are able to deblur by eliminating those edges
in the background which do not pass through the blur. However,
in case 2(iii), the background edges are mixed with the foreground
blur and gets highly attenuated. One can only hallucinate or syn-
thesize the background texture for this case.

Finally, in case 3 (n < k), every blurred pixel has a contribution from
background. This case does not have a unique solution. Since the
background attenuation is non-zero for all the pixels, one can get
multiple solutions for X and Xg that will result in the same blurred
image. Specifically, given a solution X1 and Xg1, one can find an-
other solution X2 and modify the background so that

AX1 +AgXg1 = AX2 +AgXg2. (7)

Xg2 is then given by Xg2 = (Ag)−1(A(X1−X2)+AgXg1). Note that
when n > k, the background is not seen completely and Ag is not
invertible, while Ag is invertible for n < k. Figure 7 shows an ex-
ample where a thin piece of paper moves in front of the face, along
with one of the possible solutions.

Although we have focused on linear or iterative estimation of the
physical values, more imaginative solutions can be obtained for
visually pleasing results. Such techniques include texture synthe-
sis, image inpainting, structure propagation, or capture of an un-
occluded background or “clean plate” image. Note that all the re-
sults presented here are simple least squares solutions without any
post-processing, demonstrating the strength of the coded exposure
technique.

4.3. Simple Motion Generalization

Applying image warping can permit our technique to decode a
much broader set of simple motions that project as affine trans-

(a) Blurred Image

(b) Rectified Crop

(c) Deblurred Image

Figure 8: Simple motion generalization. (a) Photo of a fast moving
vehicle with a blur of k = 235 pixels, which is 24% of the vehicle
length in the image. We click on 4 points shown in yellow to spec-
ify motion lines. (b) An approximate crop of the rectified motion
lines. (c) Despite vignetting on the left, spatial high frequencies are
recovered in the deblurred result.

(a) Blurred Image (b) Deblurred Image

Figure 9: Two dimensional PSF due to camera motion. For a known
PSF, coded exposure method also extends to 2D blur from camera
shake. (a) We include a point-light source (LED) in the scene to
estimate the 2D PSF. (Inset) Enlarged view of the LED blur. (b)
Deblurred result retains facial features.

forms, in plane rotations around a fixed center, as well as move-
ment in perspective along lines that meet at a vanishing point.
While the PSF of the coded blur is initially nonlinear and position-
dependent, most of the linear motions can be warped to produce
an image with spatially invariant uniform-length displacement vec-
tors aligned with image scanlines (e.g. Figure 8). As motion blur
follows this same displacement vector field, the warped image pro-
vides uniform-width coded-blur regions that are now suitable for
decoding. To produce the final result, we simply apply the inverse
warp to return the decoded image to its original geometric form.

In the case of perspective warp, rectification can be applied after
estimating the vanishing point of motion lines. Following rectifica-
tion, all the warped motion lines are parallel in the camera image
space. We used this technique for Figure 1, Figure 8 and several
other example images. In-plane rotations (e.g. a rotating fan or
swinging pendulum) create motion lines that form concentric cir-
cles around the center of rotation. These can be handled by deblur-
ring in polar coordinates.

5. Applications

Camera Motion Camera motion is usually resolved by using a
gyro-based stabilization of the optics. Although not a prime focus
of this paper, it is also possible to deblur blurred images caused
by camera shake. In this case, the PSF is complex and a sepa-
rate method may be needed to estimate the 2D PSF. This can be
achieved via accelerometers or gyroscopes embedded in the cam-



(a) Blurred Image (b) Deblurred Image

Figure 10: Motion deblur in presence of partial occluders. (a) A
moving car occluded with a pole. We deblur the image without
considering pixels occluded by the pole. (b) Deblurred image.

era or with an auxiliary low resolution high frame rate camera [Ben-
Ezra and Nayar 2004]. But because we assume shift invariance (all
points share the same PSF) only a single feature needs to be tracked.
For our experiment, we placed a point light source (light emitting
diode (LED)) in the field of view and used its smear as our PSF.
Figure 9 shows the complex PSF captured via the static light source
along with the blurred and the deblurred result. Note that all the
sharp features of the face are recovered.

Partial Occlusion Removal Motion blur widely distributes
the colors of a moving object along its motion lines. If the mov-
ing object is partially occluded by a narrow and stationary fore-
ground object, we can still recover colors for all the partially oc-
cluded portions of the moving object. Techniques such as image
inpainting hallucinate the possible pixel values [Wang and Adel-
son 1994][Black and Anandan 1996], but encoded blur allows us to
encompass a completely observed system.

Returning to the 1-D PSF case, if the blur width size is w and the
partial occluder length is d then of the n + k− 1 pixels recorded,
only n+k−1−d pixels are available to reconstruct the n pixels. If
blur size k is larger than the occluder length d, then deblurring can
be done. Figure 10 shows the recovered car from the blurred image
with a pole as the occluder.

6. Implementation and Analysis
Prototype We built a simple device to capture coded-blur pho-
tographs (Figure 11) and used it for all the images shown in this
paper. We began with an 8 megapixel Canon Pro 1 digital still cam-
era and interfaced it to a PIC microcontroller connected to the cam-
era’s hotshoe. The PIC controls a DisplayTech ferro-electric shutter
placed over the camera lens, and drives the shutter to follow the bi-
nary coded sequence, when triggered by the hotshoe signals. The
ferro-electric shutter’s on/off contrast is high (1000 : 1) and switch-
ing time is less than 100 microseconds. Nearly all our pictures were
taken with a total exposure time of 200 milliseconds and a coded
exposure sequence of 52 chops. We used a LGB 72402 toy electric
train (www.lgb.com) with adjustable repeatable speed to acquire
controlled datasets. The datasets and source code are available at
the project website [RAT 2006].

Noise Analysis Let us compare the noise in the decoded image
using coded and traditional exposure techniques. For a linear sys-
tem Ax = b, assuming IID Gaussian noise of mean 0 and variance
σ2 in b, the covariance matrix Cx of noise in x is given by

Cx = σ2(AT A)−1. (8)

Figure 5 shows the absolute of the covariances matrices (assum-
ing σ2 = 1). For traditional exposure (flat blur), Cx has large off-
diagonal entries, indicating that noise in any one pixel severely af-
fects several other pixels in the deblurred image. The maximum
value of Cx (for object size n = 300 pixels) is 9270.9, corresponding
to noise amplification of 39.67db. For the 52 chop sequence that we

Figure 11: Our prototype coded-exposure camera with ferro-
electric liquid crystal shutter.

Figure 12: For a given code size, m, the resolution of the deblurred
image is related to blur size, k. (Top Row) Blurred images corre-
sponding to k = 44,78 and 193 respectively for m = 52. (Bottom
Row) Corresponding deblurred images. Note that at k = 193, high
frequencies (bottom fourth row) are not recovered, while these are
recovered when k = 44.

have used, the effect of the off-diagonal entries in the correspond-
ing Cx matrix is reduced. The maximum value in Cx corresponding
to our coded sequence is 77.6, which gives a noise amplification of
only 18.9db.

Our system can deblur the image to the extent of the motion within
a single chop. Let us compare to an image captured with an ex-
posure of a single chop, which is equal to T/m seconds. As the
cumulative exposure time for coded exposure is roughly T/2, SNR
is potentially better by m/2 in the blurred region. However, the
key advantage with respect to short exposure photo is that in the
areas without motion blur (which do not need to be deblurred), our
system can record a sharp image with reduced noise.

Resolution Analysis A test target with varying spatial fre-
quencies (Figure 4) was used to measure which frequencies can be
reliably recovered. As expected the flat blur case not only fails to
recover higher frequencies, but it also erroneously amplifies noise
in lower frequencies.

Let us analyze the choice of the code length. A long code (large m)
subdivides the exposure time finely and allows decoding of a large
amount of blur, but it proves ineffective for small amounts of blur.
Conversely, a short code has a longer duration per chop and blur
within a single chop cannot be resolved. We would like to keep the
ratio k/m close to 1 pixel per chop to achieve best possible sampling
of the blur. Figure 12 shows the input images and the corresponding
deblurred results for the test pattern with varying spatial frequencies
for blur sizes 44, 78 and 193. Note that when the blur is 193 pixels,
high frequencies (bottom fourth row) cannot be recovered. Thus,
as the blur size k differs from chop count m, the decoding fails to
resolve very fine frequencies. However, in practice, we do not need
to know the blur size to determine the code length. Using our 52
chop code, we were able to handle motion blur ranging from k = 27
to k = 300 pixels.
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Figure 13: The one-dimensional search for blur size k. The figure
shows deblurred values on a scanline for different values of k for
the toy train image (Figure 7(b)). Notice that the image is sharp at
the correct value of k = 97 but at incorrect k values, solutions have
spurious high frequencies.

7. Discussion

Deblurring via a fluttered exposure sequence has several advantages
while suffering from limitations as described below.

7.1. Benefits

Coded imaging methods such as those used in astronomy or tomog-
raphy, typically sense a raw image that is meaningless to a human
observer. Fortunately, in our case the coded exposure image is use-
ful even if it is not decoded. Compared to flat blur, the image is,
in the worst case, half blurred at half the intensity. The coded se-
quence is easy to implement because it requires toggling of binary
opacity as opposed to a more complex continuous opacity control.
We hope camera manufacturers can implement the binary switching
feature directly on a sensing chip.

7.2. Limitations

Our technique is dependent on the knowledge of the PSF. However,
PSF estimation is an active area of research in computer vision and
image analysis. An ideal method would compute the degree of blur
(defined by blur length k) as well as the motion lines (e.g. van-
ishing points in perspective warped motion). For the 1-D case, we
perform a linear search in the blur width k. Figure 13 shows that
the solution for incorrect values of k exhibits high frequency bands,
but at the optimal value (k = 97) the image is sharp. Image vari-
ance analysis is commonly used to create automatically re-focused
photos from light-fields. However, during decoding of the fluttered
exposure photos, the incorrect k does not produce a low frequency
output. Hence, a new algorithm is required to estimate the correct
k automatically and this remains an open area of research.

Large occlusions and dis-occlusions break the spatially-invariant
PSF assumption, because a given object patch may only contribute
to a partial PSF. Other view dependent effects such as speculari-
ties and non-diffuse BRDF can also cause problems. We currently
cannot handle transparent or translucent objects that create a cou-
pling or superposition of PSFs at two different scales. Figure 14
shows an example of a transparent teapot on a green background.
The recovery fails at strong specular highlights but the least-square
estimate does recover outlines of the transparent teapot and high-
lights which are not saturated in the blurred image. In other cases,

(a) Blurred Image (b) Deblurred Image

Figure 14: Limitations of our technique. The blurred image of
a teapot has view dependent properties such as transparency and
specularities. Our method fails to recover a sharp image at several
locations.

we have noticed that within a reasonably short finite duration some
view-dependent objects show minimal distortions of PSF.

For the linear mixing model, the camera response must be linear.
Therefore gamma correction, saturation, under-exposure and other
non-linearities must be corrected or removed. Spatial distortions
such as vignetting and radial distortion may also interfere if left
uncorrected. However, these effects appear small: in our examples
we did not perform any corrections beyond linearizing the camera
response,

7.3. Future Directions

The nature of coded blur photography points to a range of new re-
search problems.

Exploring the Codes We have analyzed the coded exposure
in discrete frequency domain and via matrix conditioning analy-
sis. However, the relationship among the various elements: code
sequence, code length, the blur length and the corresponding noise
after decoding requires further investigation in the continuous do-
main. The code may have applications in other areas where a linear
mixing model is inverted during decoding.

Deconvolution via coded exposure exhibits similarities to code di-
vision multiplexing and de-multiplexing of a single communica-
tion channel. Advances from the CDMA world in simultaneous
orthogonal codes or channel reception with background noise may
improve and broaden results in coded blur photography. The cod-
ing and reconstruction has several similarities with tomography and
coded-aperture imaging, and exploiting this connection may yield
further benefits in temporal image processing.

Effects Extension to video cameras and motion video could spur
future research by exploiting frame-to-frame coherence. Over-
lapped chops for two or more cameras might permit very fine tem-
poral resolution as well. Similarly, methods to decode blur from
overlapping motions of more than one object will allow more com-
plex occlusion effects. Focus and depth also affects blur size, but
in two dimensions, suggesting that coded focusing combined with
coded exposure might yield a decodable depth map based on maxi-
mized local variance in the image.

PSF Estimation Coded exposure may make PSF estimation
within a single frame easier as it preserves higher frequencies. The
coherence in successive frames can also be used for better back-
ground modeling.

Camera Hardware We used an externally toggled opacity to
gather images for our results, but coded-exposure sensor chip im-
plementation is straightforward. For example, Pointgrey cameras
support a ’multiple exposure pulse width mode’ where the integra-
tion time for all pixels is globally controlled by a binary waveform
via external trigger input [Pointgrey Research 2006]. With on-chip



fluttering, the R, G and B pixels might each use a different bi-
nary code that exploits the Bayer grid (color sensor interleaving)
for finer spatio-temporal resolution. We have explored constant du-
ration codes, but variable width codes may prove beneficial in video
to adapt to intra-frame motion.

The codes can be used for strobed lighting flashes. Strobed pre-
flashes are already employed in scene analysis and red-eye reduc-
tion. Narrow duration flash is typically used to freeze scene motion,
but a coded flash sequence will provide greater ability to control
motion sensing. In ambient light, the resultant image is a linear
combination of two PSF’s; flat blur due to ambient lighting and
coded blur due to strobed lights. An orthogonal coding of coded
flashes and coded exposure in a multi-camera multi-illumination
setup may prove useful for recovering moving silhouettes, self-
shadowing, and occlusion ordering.

Finally, our work may inspire a manual or automatic motion knob
on cameras. Similar to auto-focus systems, the camera can have an
auto-flutter facility wherein the camera electronics can determine
on-the-fly the best code sequence length and duration. An ultra-
sound sensor or an auxiliary low resolution camera [Ben-Ezra and
Nayar 2004] can trigger fluttering by detecting and measuring ob-
ject motion. As the coded sequencing preserves the look and feel
of the conventional flat motion-blurred image, we feel that the cam-
era manufacturers could add fluttered integration without annoying
uninterested consumers.
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Appendix: Source Code

m = 52; % Coded Sequence length

CodeSeq=double('1010000111000001010000110011110111010111001001100111')-'0';

% Read input image

InputImage = double(readpfm_color('InputTaxi.pfm')); 

[H,W,CH] = size(InputImage);

k = [235]; % Assume Blur Size in pixels = 235

% Resize image height by m/k so that the effective blur is m

InputImage1 = imresize(InputImage,[ceil(H*m/k) W],'bicubic');

% Get object size, n, knowing blurredSize = n + m - 1

n = size(InputImage1,1) - m + 1;

% Foreground: Get A matrix for foreground which encodes the blurring

Af = ComposeMotionBlurMatrix(CodeSeq, n);

% Background: bk is contribution vector of bkgrnd in blurred img for all pix

bk = abs(1 - Af*ones(n,1));

% Assume constant background in first m and last m pixels (effective blur is m)

bkLeft = zeros(size(bk)); bkLeft(1:m)=bk(1:m);

bkRite = zeros(size(bk)); bkRite(end-m+1:end)=bk(end-m+1:end);

% Ready to Solve AX=B for each color channel

A = [Af bkLeft bkRite];

for colorchannel = 1:CH

B = InputImage1(:,:,colorchannel); % coded img for channel

X = A\B; %Least square solution

OutColorImage(:,:,colorchannel) = X(1:end-2,:);

End

% Expand/shrink the deblurred image to match blur size of k 

OutColorImage = imresize(OutColorImage,[H-k+1 W],'bicubic');

% Motion Deblurring Source Code for a Simple Case Shown in Figure 3

% Solves for 1D motion blur assuming object is moving from top to bottom

% Using the 52 element binary sequence for fluttering

function [A] = ComposeMotionBlurMatrix(CodeSeq,n)

CodeSeq = CodeSeq(:)/sum(CodeSeq);

k = size(CodeSeq,1);

ZeroPaddedCodeSeq = sparse([CodeSeq; zeros(n-1,1)]);

A = gallery('circul',ZeroPaddedCodeSeq)';% Create Circulant Matrix

A = A(:,1:n); % Keep first n columns out of (n+k-1) columns


