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We introduce a new method to describe shape relationships
over time in a photograph. We acquire both range and im-
age information in a sequence of frames using a station-
ary stereo camera. From the pictures taken, we compute a
composite image consisting of the pixels from the surfaces
closest to the camera over all the time frames. Through oc-
clusion cues, this composite reveals 3-D relationships be-
tween the shapes at different times. We call the composite a
shape-time photograph.

Small errors in stereo depth measurements can create ar-
tifacts in the shape-time images. We correct most of these
using a Markov network to estimate the most probable front-
surface pixel, taking into account (a) the stereo depth mea-
surements and their uncertainties, and (b) spatial continu-
ity assumptions for the time-frame assignments of the front-
surface pixels.

1 Introduction

With a single still image, we seek to describe the changes in
the shape of an object over time. Applications could include
artistic photographs, instructional images (e.g., how does
the hand move while sewing?), action summarization, and
photography of physical phenomena.

How might one convey, in a still image, changes in
shape? A photograph depicts the object, of course, but not
its relationship to objects at other times. Multiple-exposure
techniques, pioneered in the late 1800’s by Marey and Mur-
bridge [1, 9] can give beautiful depictions of objects over
time. They have two drawbacks, however: (1) The control
of image contrast is a problem; the image becomes over-
exposed where objects at different times overlap. Back-
grounds may need to be dark to avoid over-exposure. (2)
The result doesn’t show how the various shapes relate to
each other in three-dimensions. What we see is like an X-
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ray photograph, showing only a flattened comparision be-
tween 2-d shapes.

Using background stabilization techniques from com-
puter vision, researchers have developed video summariza-
tion tools which improve on multiple-exposure methods.
Researchers at both Sarnoff Labs [13] and Salient Stills
[7] have shown single-frame composites where the fore-
ground image at each time overwrites the overlapping por-
tions of all the previous foreground images, over a single,
stabilized background. We will refer to this compositing
as the “layer-by-time”algorithm, since it is time, not 3-D
shape, which determines object visibility. The layer-by-
time method avoids the contrast reduction of multiple expo-
sure techniques, However, since temporal order, not shape,
determines the occlusion relationships, this method cannot
describe the shape relationships between foreground objects
at different times. Video cubism [5] is a less structured ap-
proach to rendering video information into a single frame,
and also does not incorporate shape information into the
composite.

Our solution for displaying shape changes over time
makes use of 3-D information which is captured along with
the images. We form a composite image where the pix-
els displayed are those showing the surfaces closest to the
viewer among all surfaces seen over the entire sequence.
The effect is to display a photograph of the union of the sur-
faces in all the photographs (without mutual illumination
and shading effects). This allows occlusion cues to reveal
the 3-D shape relationships between objects seen over dif-
ferent times in the original video sequence.

Figure 1 illustrates these summarization methods for the
case of a familiar motion sequence: the rattling spiral of a
coin as it rolls to a stop on a table. (a) shows the individual
frames of the sequence. (To avoid motion blur, we placed
the coin in those positions, using clay underneath). The
multiple-exposure summary, (b), shows the loss of image
contrast where foreground objects overlap. The layer-by-
time algorithm, (c), shows more detail than (b), but doesn’t
reveal how the coins of different times relate spatially. (d)
is our proposed summary of the sequence. The composite
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Figure 1: (a) Image sequence of rolling coin. (b) Multiple
exposure summary. (c) Layer-by-time summary. (d) Shape-
time summary. (Color-based foreground masks were used
in (c) and (d) to isolate the foreground coins from the back-
ground: in (c) to specify the foreground object and in (d) to
remove the unreliable stereo depth for the featureless back-
ground.)

image is constructed to make sense in 3-D. We can see how
the coin occludes itself at other times; these occlusions let
us picture the 3-D relationships between the different spatial
configurations of the coin. To emphasize that the technique
describes shapes over time, we call it “shape-time photog-
raphy”.

1.1 Related effects

In some special cases of natural viewing, we are accus-
tomed to viewing shape-time images. Extrusion processes,
such as squeezed blobs of toothpaste or shaving cream,
leave a shape-time history of the motion of the extrusion
source. Shape-time photographs have some resemblance
to Duchamp’s “Nude Descending a Staircase”, the clas-
sic depiction of motion and shape in a static image. The
comic book Nogenon uses drawn shape-time outlines in its
story [14]. In unpublished independent work, researchers at
Georgia Tech have made graphical displays of data from a
motion-capture system using a shape-time style rendering,
but not using visual input [2].

2 Problem Specification

To make a shape-time photograph, we need to record both
image and depth information. Various technologies can
measure depth everywhere in a scene, including shape-
from-defocus, structured light systems, and stereo. While
stereo range can be less accurate than others, a stereo cam-
era is quite portable, allowing a broad range of photographic
subjects in different locations. Stereo also avoids the prob-
lem of registering range and image data, since disparities
are computed from the image data itself. Fig. 2 shows the
stereo camera we used. The beam-splitter system allowed
us to capture left and right images using a single shutter,
assuring temporally synchronized images.

The simplest version of shape-time photography as-
sumes a stationary camera which photographs N time-
frames of stereo image pairs. (Background stabilization
techniques such as [16] might be used to generalize the re-
sults of this paper to non-stationary cameras). At each po-
sition, we need to select for display a pixel from one of the
N frames captured over all times at that position. We can
then generate a single-frame composite, from one camera’s
viewpoint (left, for our examples), or a composite stereo
image.

Let and denote the values at the th pixel at
time frame recorded in the left and right images, respec-
tively. Let be the distance to the surface imaged at the

th pixel (of the left camera) at frame . Pixel of the left
view shape-time image, , is simply

argmin (1)
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Figure 2: The apparatus for taking synchronized stereo im-
age sequences: Olympus Camedia C-3040 camera, and a
Pentax stereo adapter (connected using a Kenco 41mm -
52mm adapter ring). The digital camera can take 5 full-
resolution shots in a row at 1/3 second intervals. The L/R
split-screen image is visible in this photo on the camera’s
LCD display. Insert: a typical split-screen image recorded
by the camera.

We call argmin the frame assignment at pixel , since
it indicates which time-frame’s pixel is displayed at position

in the shape-time composite image.
With perfect depth data, the frame assignment is triv-

ial to compute; we simply find the frame of minimum
depth for each position. However, substituting the measured
stereo depth, for the true depth in Eq. (1) typically
gives unacceptable artifacts, illustrated in Fig. 3. Equa-
tion (1) for shape-time rendering involves comparisons be-
tween very similar depth values from different frames and
can reveal even small errors in stereo depth. We will need
to estimate the proper frame assignments for each pixel in
much the same way as one approaches other low-level vi-
sion problems: combining local evidence (the measured
stereo depths and their uncertainties) with regularization
constraints (penalties for inconsistent frame assignments
over space). Shape-time composites made using depth mea-
surements other than stereo may also benefit from the pro-
cessing steps below.

3 Algorithm

One might design an algorithm to estimate the time-frame
assignments directly from image data without first comput-
ing stereo depth. Motion coherence over time, as well as
stereo, could then be used to estimate depth, as in [12].
However, we are often interested in sequences with large
motions between frames, which are not amenable to that
integrated approach. To address that more general case,
we chose a modular architecture. We first measure stereo

disparity, , and its uncertainty, , independently
at each time, . (Since we are only interested in ordi-
nal relationships, we treat stereo disparity like depth.) We
then assign the time frame to be displayed at each pixel
based on those depth estimates. This modular approach will
also let us incorporate improved stereo algorithms into our
shapetime system as they are developed in the future. We
can also substitute other depth measurement methods in-
stead of stereo.

Our stereo camera is uncalibrated. We found the fun-
damental matrix by using the web-based automatic point
matching algorithm of Zhang [18]. We rectified the image
so epipoles are along scan lines using the algorthm of [11].

We used the stereo algorithm of Zitnick and Kanade
(ZK) [19] which constructs a 3-dimensional array of match
values in disparity space. The iterative algorithm enforces
global constraints of uniqueness (one disparity value per
point) and continuity (neighboring pixels have similar dis-
parities) by diffusing or inhibiting support among neighbor-
ing match values. After the algorithm has converged, oc-
cluded areas are explicitly identified. A version of the code
is available for download [19].

3.1 Probabilistic formulation

Small errors in depth estimates lead to islands of pixels
where the selected frame switches in the shape-time com-
posite, illustrated in Fig. 3. To remove those spurious frame
switches, we add two assumptions: (1) that a pixel’s time-
frame assignment is likely to be the same as its neighbors,
and (2) that time-frame assignment transitions are more
likely to occur at image edges, because they may be oc-
cluding edges where a frame switch should occur. These
are analogous to assumptions about disparity used in stereo
[6, 15], but we are applying this to estimate the frame of
minimum depth from a collection of frames, not the dispar-
ity.

A probabilistic formulation can combine these assump-
tions with the noisy stereo disparity data to compute the
most probable frame of minimum disparity for each pixel.
We assume that the frame assignments at each pixel form a
Markov random field (MRF) [4, 6, 3, 15]. Let the vector
denote the frame assignments at all the pixel locations, ie,

, where is the number of pix-
els in the image. We seek to define a probability such
that the time-frame assignments which maximize re-
sult in an artifact-free shape-time composite image.

Toward this end, we write as a product of (a) lo-
cal evidence terms, , incorporating stereo dispar-
ity information, and (b) neighbor compatibility matrices,

, encouraging spatially consistent pixel frame as-

3



signments for the composite image:

(2)

is a normalization constant, independent of . The paren-
theses in mean the product is taken over only neigh-
boring pixels and .

3.1.1 Local evidence terms

is an N-vector describing the probability, based on
stereo depth and uncertainty measurements, that time-frame

is in front of the others, at pixel . We assume that
each frame’s depth measurement , at pixel , is an
independent Gaussian random variable of mean and
standard deviation . We want to transform these un-
certain depth measurements into a set of probabilities that
each time-frame corresponds to the front-most surface, see
Fig. 5. Let be the independent, but not
identically distributed Gaussians (dropping the subscript
for brevity here). We want to compute the probability that

(say) is the smallest among all the ’s, namely,
. We condition on the

value of :

(3)

because the ’s are independent (4)

This lets us evaluate the integration over the joint probabil-
ity in N-dimensions using a 1D integral. We evaluate that
integral numerically using simple trapezoid quadrature.

The ZK stereo algorithm returns a confidence value,
, for every disparity estimate. We used the confidence

value to estimate a standard deviation, , of the Gaus-
sian distribution used to model each pixel’s true disparity.
We used a heuristically selected function, mapping ZK con-
fidence 0.05 to Gaussian disparity ; confidence
0.002 to , linearly interpolating in between. We
clamped to the extremal values outside that interval.

In Eq. (5) below for belief propagation, the resulting lo-
cal evidence vectors, describing the probability that each
time-frame corresponds to the front-most surface pixel, are
treated as a message coming into the node at that pixel.

(a) (b)

(c) (d)

Figure 3: (a) Time-frame assignments for the front-most
surface pixels, based on stereo depth measurements alone,
without MRF processing. Grey level indicates the time-
frame assignment at each pixel. (b) Shape-time image based
on those assignments. (c) Most probable time-frame assign-
ments, computed by MRF. (d) Resulting shape-time image.
Note that the belief propagation in the MRF has removed
spurious frame assignment changes.

(a)

(b)

Figure 4: (a) Component frames of banner in wind. (b)
Shape-time composite, showing the evolving flag shapes in
relation to each other.

4



(a) output from stereo (b) local evidence input to MRF

Figure 5: (a) From the stereo algorithm, for any given pixel,
we find the disparity estimate and its uncertainty for each
time frame. (b) We convert these to the probability that each
time frame has the maximum disparity at the given pixel.
Note that the probability is not necessarily monotonic with
the mean disparity (illustrated by the synthetic data plotted
here, which are monotonically decreasing in mean disparity
over the time frames shown, but not monotonically decreas-
ing in the probability of maximum disparity). These prob-
abilities (in (b)) are the input to the MRF which computes
an approximation to the optimal time frame assignment at
each pixel.

3.1.2 Neighbor compatibility matrices

The compatibility matrix, , between neighbor-
ing nodes is an matrix determining the probabil-
ity of a minimum disparity frame transition from frame
to frame between the (neighboring) pixels and . We
set these probabilities to more easily allow frame assign-
ment breaks in regions of large image gradients. Let the
squared magnitude of the image gradient at time and pixel

be (scaled to range from 0 to 1). The diagonal
entries of are 1. The off-diagonal entries are

.

3.1.3 Belief propagation

We have constructed Eq. (2) so that the which maximizes
represents our best estimate for the desired time-frame

assignments for the shape-time composite image. Exact
maximization of is NP-hard, but good approximate
methods exist [17, 6]. We found good results using belief
propagation [10, 17, 3] (see [8] for code), which imposes no
constraints on the form of the matrices . (See
[15] for stereo depth estimation using belief propagation in
a Markov random field.)

In belief propagation, each node sends a “message”,
, to all the neighboring nodes. The messages are N-

vectors, initialized to all ones. The iterative update equation
for the message from node to node is:

(5)

Upon convergence, the marginal probability that time-
frame has the maximum disparity is contained in the
“belief” at a node, , , obtained from the messages
through:

(6)

Twenty iterations of passing messages between all pairs
of pixels yielded an estimate for the belief , the
marginal probability that time-frame is in front at pixel .
We selected the maximizing ; the displayed shape-
time composite image was .

We obtained improved stereo disparity results if we
bandpass filtered and contrast normalized the rectified im-
ages before calculating disparities [3]. This lessened the
effect of brightness variations within our stereo camera and
fixed some matching problems in low-contrast regions in
the image. For Figs. 6 and 8, the stereo disparity values in
the distant background were too noisy to be useful, so we
generated a mask isolating the foreground person from the
image. Both the disparity calculation and the shape-time
computation took roughly 90 seconds to compute for typi-
cal images shown here, computed on a 500 MHz machine.

4 Results

We show results indicating possible applications of the
shape-time technique. Fig. 4 shows a blowing flag where
fluid dynamics controls the shape evolution over time. The
method allows a new way to visualize those shape changes
over time.

Figs. 6, 7 and 8 show shape-time applied to people.
Figs. 6 and 7 give instructional single-frame summaries of
short actions, such as someone’s style of throwing, or a par-
ticular sewing stitch. Fig. 8 shows relationship between dif-
ferent shapes on the body or face.

Fig. 9 examines the water height at different phases of
a wave breaking on the shore, revealing the surge in wa-
ter height relative to the other frames at the final frame of
the sequence, which dominates in the shape-time composite
image. Fig. 1 (d) shows shape over time as the coin falls.

Some artifacts are visible in the composite images. The
face is broken-up slightly in Fig. 6, and some background
pixels are seen attached to the index finger of the left hand
in Fig. 7. These are caused by edge artifacts in the depth
data from the stereo algorithm. The MRF processing can
tolerate small stereo depth errors, but the approach cannot
work for imaging conditions where stereo depth gives no
useful information, or when such regions cannot be masked
out of the image.

One feature of our present implementation is that the
composite image does not depict the temporal ordering;
we treat all time frames identically. This could be easily
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(a)

(b)

Figure 6: (a) Frames of girl throwing snowball. (b) Shape-
time photograph showing the girl’s throwing form.

changed by altering each displayed pixel by some function
of its time frame: for example, by darkening, reducing the
color saturation or reducing the opacity of pixels further
back in time. We chose the current implementation to em-
phasize the depiction of shape relationships over the depic-
tion of temporal dynamics.

5 Conclusions

We proposed a new method for showing the shape relation-
ships between objects at different times. We point out the
usefulness of shape-time photography, and show a method
to implement it. We developed an algorithm to reduce the
artifacts resulting from noise in stereo disparity measure-
ments. Since this rendering method is sensitive to small er-
rors in depth, the algorithm may be needed for shape-time
renderings from other depth modalities, as well.

The method occupies a a special-effects niche. Shape-
time photography could be useful for summarizing action,
for instructional photographs, or physics illustrations. It can
describe in a picture how things move. It may reveal a pat-
tern or spatial relationship in the world that is not clear from
the video sequence or its individual frames.

The shape-time rendering of this paper is a special case

(a)

(b)

Figure 7: (a) Frames of sewing stitch example. (b) Shape-
time rendering of the sewing stitch, illustrating the hand’s
movement.

Figure 8: Portrait of a man, from frontal and profile views.
Intersection contours in the shape-time image describe his
face shape.
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(a)

(b)

(c)

Figure 9: (a) Images in wave sequence. (b) Shape-time
composite image of ocean wave breaking. (c) Inside-out
rendering of wave (furthest surface shown at every point).

of a more general problem: given a stack of images cap-
tured from one viewpoint, use computer vision analysis to
select which pixels to display in a composite image. The
pixel selection could depend on object motion (show where
the objects moved fastest, or where something moved to-
ward you), or on the orientation of a face (show wherever
the dancer looked back). As one example of this general-
ization, in Fig. 9 (c) we show the wave rendered “inside
out”: we display the surfaces furthest away from the cam-
era. This gives a picture of the lowest water in the breaking
wave during its cycle.
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