
High-Resolution Multi-Scale Neural Texture Synthesis
Xavier Snelgrove

Toronto, Ontario, Canada
xs@wxs.ca

(a) Source texture (b) Synthesized image

Figure 1: High resolution texture synthesis matching CNN texture statistics at 5 image scales

ABSTRACT
We introduce a novel multi-scale approach for synthesizing high-
resolution natural textures using convolutional neural networks
trained on image classification tasks. Previous breakthroughs were
based on the observation that correlations between features at inter-
mediate layers of the network are a powerful texture representation,
however the fixed receptive field of network neurons limits the
maximum size of texture features that can be synthesized.

We show that rather than matching statistical properties at many
layers of the CNN, better results can be achieved by matching
a small number of network layers but across many scales of a
Gaussian pyramid. This leads to qualitatively superior synthesized
high-resolution textures.

CCS CONCEPTS
• Computing methodologies→ Texturing;

KEYWORDS
texture synthesis, neural networks, Gaussian pyramid

SA ’17 Technical Briefs, November 27–30, 2017, Bangkok, Thailand
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SA ’17 Technical
Briefs: SIGGRAPH Asia 2017 Technical Briefs, November 27–30, 2017, Bangkok, Thailand,
https://doi.org/10.1145/3145749.3149449.

ACM Reference Format:
Xavier Snelgrove. 2017. High-Resolution Multi-Scale Neural Texture Syn-
thesis. In SA ’17 Technical Briefs: SIGGRAPH Asia 2017 Technical Briefs, No-
vember 27–30, 2017, Bangkok, Thailand. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3145749.3149449

1 INTRODUCTION
There have been recent significant improvements in the quality of
example-based texture synthesis techniques by taking advantage
of intermediate representations in a convolutional neural network
(CNN) trained to classify images [Gatys et al. 2015b].

Correlations between features maps at these intermediate layers,
represented by a Gram matrix, turn out to be a powerful represen-
tation of texture. By synthesizing new images whose Gram matrix
is close to that of an exemplar image (for instance via gradient
descent), we get images with similar texture.

However, this only works well when the semantically significant
features in the image are at the correct scale for the network, and in
practice the receptive field of a feature at an intermediate layer for
common CNN architectures is relatively small [Luo et al. 2016]. The
popular VGG architectures from Simonyan and Zisserman [2014],
used by Gatys et al. and others, are trained on 224×224 pixel images,
in which relevant features will be quite a bit smaller.

So, given a high-resolution source image, for optimal results
an artist must scale down that image until the pixel-scale of the
features of interest match the receptive field of the appropriate
semantic layer of the network. This limits the resolution of the
rendered image, and further breaks down for source images with



SA ’17 Technical Briefs, November 27–30, 2017, Bangkok, Thailand Xavier Snelgrove

textures at multiple scales. The artist must choose to capture one
scale of texture at the expense of the other.

In this work we propose a multi-scale neural texture synthesis
approach, in which the optimization simultaneously matches tex-
tures at every layer of a Gaussian pyramid [Adelson et al. 1984].
The artist no longer needs to trade off between image resolution
and texture fidelity, and further can synthesize textures with statis-
tics at multiple scales. For neural texture synthesis this issue has
been tackled by exploiting side-effects of the optimization process
[Gatys et al. 2016b], however despite the long history of multi-scale
pyramid methods in texture synthesis[Han et al. 2008; Lefebvre
and Hoppe 2005; Portilla and Simoncelli 2000], as far as the authors
know this is the first work using these in the context of neural
texture synthesis.

2 GRAMMATRIX TEXTURE SYNTHESIS
Gatys et al. [2015a] introduced the idea of using the Gram matrix
as a spatially invariant representation feature correlations, which
has been used in many works since. [Gatys et al. 2016a; Johnson
et al. 2016; Saito et al. 2016; Sendik and Cohen-Or 2017].

Their approach is as follows: they take a vectorized source image
®x , and feed it into a CNN (in their case, VGG-19 [Simonyan and
Zisserman 2014]), computing the activations at each layer of the
network.

Defining the number of feature maps for layer l as Nl , with
vectorized size Ml , they define the feature matrix for layer l as
Fl ∈ R

Nl×Ml , where F ljk shows the activation at layer l of the jth

feature in position k .
They define the Gram matrix at layer l as Gl ∈ RNl×Nl , the

inner product between the vectorized feature map i and j in layer
l summing across every neuron in that map. We slightly modify
their definition to normalize the representation

Gl
i j =

1
Ml Nl

∑
k

F lik F
l
jk (1)

This Gram matrix parameterizes a texture at a particular layer
of the CNN. Entry Gi j is proportional to how often feature i and
feature j are active in the same spatial location. We can determine
the difference between the same layer of a source image and synthe-
sized image by taking the squared Frobenius norm of the difference
between the source image’s Gram matrix Ĝl and the synthesized
image’s Gram matrix Gl

El =
∑
i, j

(
Ĝl
i j −Gl

i j

)2
(2)

In order to synthesize a new image Gatys et al. directly minimize
the sum of these terms across multiple layers:

L(®̂x , ®x) =
L∑
l=0

wl El (3)

with wl a selectable weighting factor. They use the L-BFGS opti-
mizer [Zhu et al. 1997] with analytic gradients since every operation
is differentiable.

3 MULTI-SCALE TEXTURE SYNTHESIS
Natural textures may contain regular structure at multiple scales.
Portilla and Simoncelli [2000] showed very good texture synthesis
with a bank of multi-scale linear filters called a “steerable pyramid”.

Gatys’ work can be seen as an extension of (and indeed credits)
Portilla and Simoncelli’s, but instead of a multi-scale linear filter-
bank uses a non-linear multi-scale filter bank that is given by the
CNN. This is one reason why Equation 3 sums across many layers
of the CNN.

However even at the highest layers of the CNN the effective
receptive field is relatively small [Luo et al. 2016]. What’s more,
the degree of abstraction increases with higher levels of the CNN
so it is not a purely multi-scale representation but a multi-scale
multi-semantic representation.

All this conspires to lead to Gatys’ approach not being suited
to high-resolution images, which are effectively images with long-
range spatial dependencies between pixels [Berger and Memisevic
2016].

We propose resolving this by disentangling the semantic and
spatial terms in the optimization. We pick only one or two interme-
diate layers of VGG-19, but we feed in many layers of a Gaussian
pyramid [Adelson et al. 1984]. Each layer of a Gaussian pyramid is
formed by blurring and downsampling the previous layer.

We can now modify the equations of Section 2 to incorporate
scale. Let the feature matrix for the sth scale octave of the Guassian
pyramid and l th CNN layer as Fikl,s , and the corresponding Gram
matrix be

Gl,s
i j =

1
Ml Nl

∑
k

F l,sik F l,sjk (4)

We can now modify Equations 2 and 3 to include terms for both
layers and scales.

Esl =
∑
i, j

(
Ĝs
i j −Gs

i j

)2
(5)

and

L(®̂x , ®x) =
S−1∑
s=0

vs

L−1∑
l=0

wl E
s
l (6)

where S is the number of octaves. In practice we only setvs (octave
weights) and wl (CNN layer weights) to values of either 0 or 1,
uniformly weighting all layers and scales of interest. Refer to Figure
2 for a block diagram of our system.

4 EXPERIMENTAL RESULTS
For our experiments we use the VGG-19 architecture, but replace the
max-pooling layers with average-pooling layers, following Gatys et
al. and further use their re-scaled VGG-19weights1 which normalize
the average activation of every feature map across images to 1.

We use valid-mode convolution for all convolutional layers,
which is important for boundary effects, especially when synthe-
sizing images of a different scale than the source image (so with a
different ratio of boundary to internal pixels).

We find good results in general using 5 octaves in our Gaussian
pyramid, andmatching simultaneously against layers block1_pool
1Available at https://github.com/leongatys/DeepTextures



High-Resolution Multi-Scale Neural Texture Synthesis SA ’17 Technical Briefs, November 27–30, 2017, Bangkok, Thailand

G3

G2

G1

G0block1_conv1,2

block2_conv1,2

block3_conv1,2,3,4

block1_pool

block2_pool

®̂x0

®̂x1

®̂x2
®̂x3

(more)

®x0

®x1

®x2
®x3

(more)
Ĝ3

Ĝ2

Ĝ1

Ĝ0

N7

N
7

−

−

−

−

L(®̂x , ®x)

∑

·2

·2

·2

·2

Figure 2: Block diagram of our system. The left-hand-side shows the source image, with Grammatrices of feature correlations
being extracted for VGG-19 layer block3_conv2 across 4 distinct spatial scales. On the right is the current state of the opti-
mization ®x , whose feature correlation matrices are extracted in the same fashion. The sum of the squared difference of these
matrices corresponds to the loss function L which is minimized by gradient descent on ®x .

and block3_conv2 (the 3rd and 8th layers). Using both a low level
layer and an intermediate layer sometimes allows the optimization
to escape local optima that it would get stuck in using only the
higher level layer.

Figure 3 shows an example result. The source texture in 3a shows
texture at multiple scales. At the macro scale it is dominated by
regions of blue paint and rusty-red wall, with red streaks in the
blue regions. At the micro-scale we see that the red region has a
rough texture, whereas the blue region has a smooth texture, and
a distinct rounded "paint-chipping" shape at the border between
the regions. All of these effects are captured in the synthesized
image 3b. Using Gatys et al. we find that some of the micro-scale
properties are captured, but the macro-scale red/blue alternation
is almost completely missing. Further we can see strong artefacts
around the bright blue point in the corner. Refer to Figure 4 for
many more results.

Experiments were performed using the Keras [Chollet et al. 2015]
neural networks framework. We used the Scipy [Jones et al. 2001]
implementation of L-BFGS-B [Zhu et al. 1997]. The code for these
experiments is available online2.

2http://github.com/wxs/subjective-functions

5 DISCUSSION
This work has shown the power of usingmulti-scale representations
in conjunction with neural texture synthesis. Gatys et al. can be
seen as a special-case of this work for a single scale octave S = 1.
As such, much of work building on their approach would also be
applicable to ours.

A natural extension would be to attempt multi-scale style trans-
fer, following [Gatys et al. 2015a] but using our objective function
to represent the “style loss”.

We use a simple optimization process to synthesize our images.
Other work has shown that feed-forward neural networks can be
trained to approximate this optimization [Johnson et al. 2016] so
it would be interesting to attempt those methods with our multi-
scale objective. It is likely that some similar multi-scale approach
would be required for the architecture of that network as otherwise
the same receptive-field issues would apply for that feed-forward
network.

Finally, combing our work with other approaches for finding
larger structures in images such as by finding symmetries as in
[Berger and Memisevic 2016; Sendik and Cohen-Or 2017] would
also be interesting.



SA ’17 Technical Briefs, November 27–30, 2017, Bangkok, Thailand Xavier Snelgrove

(a) Source image

(b) Our method and detail (c) [Gatys et al. 2015b]

Figure 3: Our results on a photograph with texture at mul-
tiple scales. Zoom in to see the small-scale surface texture
within the red and blue areas.
Photo credit: https://commons.wikimedia.org/wiki/File:Detail_of_rusty_van.JPG

ACKNOWLEDGMENTS
We would like to thank Laura Lewis, Martin Snelgrove, Claire
Freeman-Fawcett, and Severin Smith for useful discussions and
for reading drafts of this work.

REFERENCES
E H Adelson, C H Anderson, and J R Bergen. 1984. Pyramid methods in image

processing. RCA Eng. 6, 29 (1984), 33–41.
G Berger and R Memisevic. 2016. Incorporating long-range consistency in CNN-based

texture generation. (June 2016). arXiv:1606.01286
François Chollet et al. 2015. Keras. https://github.com/fchollet/keras. (2015).
Leon A Gatys, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. 2016a. Pre-

serving Color in Neural Artistic Style Transfer. (June 2016). arXiv:1606.05897
Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015a. A Neural Algorithm of

Artistic Style. (Aug. 2015). arXiv:1508.06576
Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015b. Texture Synthesis

Using Convolutional Neural Networks. NIPS cs.CV (2015).
Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron Hertzmann, and Eli Shecht-

man. 2016b. Controlling Perceptual Factors in Neural Style Transfer. (Nov. 2016).
arXiv:1611.07865

Charles Han, Eric Risser, Ravi Ramamoorthi, and Eitan Grinspun. 2008. Multiscale
texture synthesis. ACM Transactions on Graphics 27, 3 (2008), 1.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. In Computer Vision – ECCV 2016. Springer,
Cham, Cham, 694–711.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001. SciPy: Open source scientific
tools for Python. (2001). http://www.scipy.org/ [Online; accessed May 23, 2017].

Source image Our results [Gatys et al. 2015b]

Figure 4: Comparing our results to Gatys et al. [2015b] on
a variety of source images with texture at multiple scales.
Generated images are high resolution at 1024 × 1024 pix-
els, so best viewed zoomed-in on screen. Our results match
against both layers block1_pool and block3_conv2 at 5 scale
octaves. Gatys et al. matching layers conv1_1, block1_pool,
block2_pool, block3_pool, block4_pool. Note that source tex-
tures are slightly cropped for display here
Photos all creative commons licensed on Wikimedia Commons by users: HaleiLaihaweadu, MikeLynch, Vik Nanda,
Brocken Inaglory, Jacopo Werther

Sylvain Lefebvre and Hugues Hoppe. 2005. Parallel controllable texture synthesis.
ACM Transactions on Graphics (TOG) 24, 3 (July 2005), 777–786.

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S Zemel. 2016. Understanding the
Effective Receptive Field in Deep Convolutional Neural Networks. NIPS (2016).

Javier Portilla and Eero P Simoncelli. 2000. A Parametric Texture Model Based on
Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer
Vision 40, 1 (2000), 49–70.

Shunsuke Saito, Lingyu Wei, Liwen Hu, Koki Nagano, and Hao Li. 2016. Photorealistic
Facial Texture Inference UsingDeepNeural Networks. (Dec. 2016). arXiv:1612.00523

Omry Sendik and Daniel Cohen-Or. 2017. Deep Correlations for Texture synthesis.
ACM Transactions on Graphics (April 2017), 1–15.

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks
for Large-Scale Image Recognition. (Sept. 2014). arXiv:1409.1556

Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. 1997. Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization.
ACM Transactions on Mathematical Software (TOMS) 23, 4 (Dec. 1997), 550–560.


