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Instead, we put smartphones in our pockets and walk out into the world armed with search 

engines, Wikipedia, social networking services, and advanced mapping services. Without giving 

it much thought, we have turned into augmented beings existing in a world that is simultaneously 

real and virtual.

This revolution would be impossible without a new understanding of software as cultural artifact. 
Where we once saw text processors as literal typewriter replacements, we now download and 
exchange apps as a popular pastime. Websites that used to be closed domains of proprietary 
information now sport public APIs, enabling professionals and enthusiasts alike to create ever-
popular “mashups” based on their data. 

In the creative field, the most significant development is the realization that software processes 
aren’t simply tools, but can become the very material from which works are made. New design 
disciplines like interaction design and information visualization are based on the application of 
computational solutions to design problems, while generative art has become a household term 
describing artworks articulated as code. A new generation of electronic artists has turned to code 
as fertile ground for conceptual and formal experimentation, simultaneously providing a pragmatic 
framework for computational creativity and a theoretical context for the created artwork.

The roots of this trend can be traced back to the mid-1990s, when creatives began experimenting 
with HTML, Shockwave, Flash, and Java applets as a creative medium. Predating iPhone and 
Android by more than a decade, the World Wide Web was the first media platform to deliver 
computational content, authored using tools aimed at creatives rather than computer scientists. 
But despite the important work done in this “golden age” of the web, the real revolution came 
with the introduction of open source tools such as Processing.1.

Written by artists for artists and initially intended as teaching tool, Processing is a simplified 
language built on top of Java, focusing on creative applications like real-time graphics and 
interactive systems. It eliminates tedious tasks typical to regular programming tools, allowing even 
novices to get sketching with code quickly. But despite its simplicity, Processing is a powerful 

1.  Processing is just one of many free development tools intended for artists. Pure Data (PD) and 
vvvv are both so-called visual patching tools, popular for video and sound manipulation. NodeBox and 
Scriptographer are specialized for graphic programming, and systems like Structure Synth and Context 
Free are based on recursive shape grammars.

The last decade has seen a signif icant shif t in our understanding of digital tools. Not only 

do we now take them for granted, we are becoming the cyborg creatures much-prophesied  

in 1990s mil lennial theory but without the neural implants and vir tual reality that so al ienated 

mainstream audiences.

foreword
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platform capable of supporting the most demanding digital media application. It’s designed to 
be extended through user-contributed libraries that add functionality to the core framework, 
and is easily integrated with other systems like the popular Arduino microcontroller. A recent 
development lets users develop apps for Google’s Android OS, making Processing a veritable 
Swiss Army knife for creative computational.

Although generative art has grown in popularity, it remains somewhat mystical as a practice, 
the domain of vaguely mathematical magic. How are these works created? How do we sketch in 
code? The technical aspects of writing code are tricky enough, let alone manipulating algorithms 
into serving aesthetic principles. 

Visual thinkers think in terms of logically connected workflows: take a photo, manipulate it, 
combine it with graphic elements, add typography. Coding often involves obscure steps that at 
first might seem completely disconnected from the aim of producing a visual composition: find a 
dataset, write a parser, analyze boundary values, write an algorithm for visual translation, tweak 
the parameters, and rewrite. Code requires identifying logical connections between elements 
and describing behaviors in terms of rules that might seem unrelated, and beginners tend to find 
it frustrating when the need for trigonometry invades even the simplest animation.

Fortunately, most of the essential tools in the generative artist’s repertoire can be described as 
a set of simple principles. As Matt Pearson writes, generative art is easy—at least, sometimes. 
Using Processing as his tool of choice, Matt shows how to progress from primitive drawing 
to more complex topics like interactive animation and simulated phenomena such as cellular 
automata. But rather than just demonstrating syntax, he describes the creative process involved 
in designing generative systems, showing how manipulating parameters and tweaking algorithms 
can result in radically different outcomes. 

Having grown up with the ZX Spectrum and worked many years as a programmer while also being 
involved in the arts, Matt is perfectly placed at the intersection of code and creative thinking. 
In this book, he sets out to provide the reader with a toolbox of recommended practices while 
simultaneously introducing a deeper cultural context to the work. It should have readers quickly 
thinking beyond simple code tricks to the more complex ideas that underlie a computational 
model of form. My personal favorites are the sections on “wrong” ways to do things, showing 
how a simple form like a line or a circle can be transformed into complex systems by thinking 
creatively about the way they’re constructed. 

Happy coding!

Marius Watz

Marius Watz is an artist working 

with code as his material,  

who has shown his work around 

the world. He is the founder of 

the Generator.x platform for 

generative art and design and is  

a lecturer in interaction design at 

the Oslo School of Architecture 

and Design. He is currently based 

in Oslo and New York.  

http://mariuswatz.com/
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As a young man, this career shift wasn’t entirely motivated by a need to restore the right-left 

hemisphere balance to my young brain; it may also have had something to do with the worry 

that knowing a lot about Alan Turing and C++ was probably not the best way to get a girlfriend. 

My studies of early 1990s ideas of computing had so repulsed me that I made efforts to stay 

as far away from computers as I could for the next 10 years. For much of the 90s, I didn’t even 

own a computer; instead I had a guitar, an attitude, and an ill-advised haircut. I was only drawn 

back toward the end of the decade when the web started to take off, and a lot of creative people 

suddenly discovered that what they’d been doing recently with video cameras, photography, 

and hypertext was now being called New Media, and everyone was doing it. This rehabilitation 

of computing has continued unabated, to the point that today, to say you “work with computers” 

is about as meaningful as saying you breathe air.

At the time I dropped out, I couldn’t imagine anything worse than spending the rest of my days 

communing with these soulless beasts of logic and wires. But in adulthood, I discovered a 

new enthusiasm for computing after stumbling across a simple realization; that computers and 

computing were not the same thing. What hadn’t been made apparent to me during my university 

days was that computation is everywhere, and it can be a thing of beauty. 

Computing is what a stream does as it finds its way downhill toward the ocean. It’s what the 

planets do as they move in their orbits. It’s what our bodies do as they maintain the balance 

needed to keep us upright. It’s what our DNA does as it unravels. Computing is what I’m doing 

now as I process these ideas and output them as text—and what your brain is doing as you 

read the words and form your own ideas as a result. 

This is why I can say, without contradiction, that while I still find computers boring, I think 

computing is cool. The only place computers really come into it is in attempting to simulate 

these computations or creating new ones to rival those of the natural world. Which brings me 

to the subject in hand: generative art.

As a jobbing coder, I always dabbled with generative ideas when I could. Whenever I got my 

hands on a new bit of kit, the first thing I’d run would be a few fractal creations to test its limits.  

But I’d never taken it seriously as an art form, and I was only dimly aware of the growing 

movement of artists who did. But this side of the millennium, that movement was gathering pace 

and becoming more visible, as the tools also became increasingly powerful and accessible. 

preface
I’m going to issue a disclaimer before we proceed: I tr ied doing it the right way, I tr ied becoming 

a “real” programmer, I really did. But I failed. I star ted a computer science degree, but dropped 

out af ter about a year and a half. I ’m sorry, but it bored me senseless.
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I’ve always believed that if you want to do something, the best way to go about it is to stop talking 

yourself out of it and just get on with it. Nothing should stop you, as long as you’re happy to work 

without reward. Although, as experience testifies, I’ve found that if you do something long enough 

and maintain an enthusiasm for it, sooner or later someone will end up offering you money for 

it. Or ask you to write a book about it. Admittedly, this principle may not apply to self-abuse or 

serial killing, but it’s certainly true of most artistic endeavors.

So, you could say the genesis of the book you’re now holding (physically or virtually) was in 

a project I started, in accordance with this principle, in 2008. I decided that if I was going to 

take generative art seriously, I’d start a generative art blog. I called it 100 Abandoned Artworks 

and set myself the task of producing a generative artwork every week, throwing it out there in 

whatever state I had got it to (hence the abandoned ) before real-life commitments intruded on 

my playtime. I included the source code, Creative Commons licensed, so anyone could take 

my abandoned, half-finished works and find some use in them. I pledged that I wouldn’t allow 

myself to stop until I reached 100. This strict, self-imposed schedule was a conscious way to 

force myself to reorder my priorities. I knew that somehow I found time to spend hours reading 

comic books and watching no end of god-awful movies, yet generative art, something I enjoyed, 

was the thing I never found the time for. 

The discipline worked. Not only did I find the schedule easy to maintain, my enthusiasm for 

Processing (the tool I had chosen) keep growing. The project took me on many diversions, into 

print and video, and started feeding back into my day job. It was somewhere around the 50 mark 

that Christina Rudloff at Manning got in touch to discuss the possibility of a book.

That project is now complete, as is the book. This book is a snapshot of where I am right now, of 

everything I’ve learned and unlearned in my programming career up to this point. I didn’t want to 

write yet another Processing book—I don’t particularly like programming books, and I’ve never 

read one from cover to cover. I wanted to write something more inspiring, something that was 

about the why as much as the how. Programming art is a different discipline than programming 

systems, and there should be no right or wrong way to use the powerful tools we have at our 

disposal. I wanted to get across how coding can be liberating and creative, not just structured 

and orderly, and accessible to more people than just the techies. Whether I’ve succeeded in 

this aim is for you to decide.

Licensed to george legrady <legrady@arts.ucsb.edu>



xiv

Alan Sutclif fe, Rob “SanchoTheFat” O’Rourke, Justin “Soulwire” Windle, Seb Lee Delisle,  

J4mie Matthews, Ron Wheedon, Robert Hodgin, Aaron Koblin, Jeremy Thorp, Jared Tarbell, 

Casey Reas, Ben Fry, Manfred Mohr, Reza Ali, Jerome “01010101” Saint-Clair, Dan Shiffman, 

Shardcore, Norman Klein, Kerry Mitchell, Orhan Alkan, Patrick Steger, Andy Dingley; at Manning: 

Marjan Bace, Emily Macel, Christina Rudloff, Jeff Bleiel, Mary Piergies, Tiffany Taylor, Barbara 

Mirecki, Irene Korol Scala, (and anyone else who had the misfortune of dealing with me); also 

Philip Galanter, Kevin “lomokev” Meredith, Marc Banks, Alice Eldridge, Rich “Text Format” Willis, 

Rifa Bhunnoo, Chris TT, Ewan Swain, Eric Bates, Iestyn Lloyd, Alec Morrison, everyone at 

dotBrighton, Ruth and Jo, plus my friends at FutureDeluxe and TGSi (in part for letting me leech 

desk space while I was writing).

Special thanks to Marius Watz, for his artworks and foreword; Frederik “w:blut” Vanhoutte for 

his artworks and technical review; and Cliff Pickford for the Alan Watts quote.

Apologies to anyone I’ve forgotten.

Most of all, thanks to my patient wife, Deborah, who somehow still loves me, despite my being 

a massive nerd.

acknowledgments
Huge thanks go out to all the following, for the work they contr ibuted, for making it possible, 

for being nice, for suppor ting the project, for putting up with my crap, for reviewing the 

manuscript, for giving feedback, and/or just saying the r ight thing at the r ight time: 

Licensed to george legrady <legrady@arts.ucsb.edu>



 xv xv

about this book

If this book were to be just a collection of recipes for you to follow, to produce certain aesthetically 
pleasing results, it would be missing the point—not to mention hugely arrogant. The appreciation 
of art is entirely subjective, so if I were to declare that there is a right way to go about creating 
art, I would be in need of a slap.

Similarly, this isn’t a book about “design.” With design, the intention is to produce a visual that 
produces the same response in everyone who sees it—the intention (such as “street,” “retro,” or 
“subtle”) should be mostly unambiguous. With art, you’re still aiming to produce a response, but 
if that response is different in different people that doesn’t matter. It’s fine for one person to like 
a piece while another sneers. Even better, if one viewer loves the work, we would hope another 
might hate it. If we can foster such an extremity of reaction, it’d be a measure of success. Perhaps 
the only cardinal sin of art is to be boring. 

This book is peppered throughout with stills from my own generative works, most of them relating 
to whatever topic is under discussion, but others are just randomly thrown in as a breather. 
Source code for many of these images can be downloaded from http://abandonedart.org and 
from the publisher’s website at www.manning.com/GenerativeArt. It is also published under a 
Creative Commons license, so you’re welcome to take these works and deconstruct them, adapt 
them, mash them up, and destroy them. But, importantly, you’re also entitled to think they’re 
rubbish. It wouldn’t bother me too much if you did—that isn’t the purpose of the book. 

I would hope that even if you hated every single piece of artwork within these pages, you may 
still get something from the book, if only the inspiration to do something better. In this way, even 
bad art can be good, as it is only the very worst that can inspire an extreme reaction. To not 
produce any reaction at all is to fail as an artist.

If there is one thing I want to get across with this book, it’s a style of programming rather than 
a rulebook for achieving certain types of results. I want to explore how programmers can open 
themselves to more artistic flurries, a way of freeing the brain to get creative with code. 

The roadmap for this approach is as follows: The first part of the book, “Creative Coding,” sets the 
scene and teaches all the necessary prerequisites. Chapter 1 looks at the concept of generative 
art from a few different angles; then, in chapter 2, we get up to speed with Processing, a simple 
programming language that will be our main tool for the rest of the book. 

Within these pages, you’l l learn how to begin experimenting with generative ar t. We’l l explore 

tools and algor i thms and creative approaches, and look at ways you can take ideas and 

develop them fur ther. But there is one thing you won’t learn from this book, and that is how to  

be an “ar t ist.” 
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Part 2, “Randomness and Noise,” begins to break down my process for creating generative 
visuals with Processing, looking at the algorithmic creation of the simplest of forms, and 
considering new ways of approaching them. We begin with the drawing of a line in chapter 
3; we see how even this can be spun out into interesting spaces with a more fluid approach, 
extending the idea to trigonometry with chapter 4. Chapter 5 explores animation and 3D drawing.

The final part of the book, “Complexity,” goes beyond the machine and looks at three organic 
processes taught to us by the natural world: emergence, autonomy, and fractals. We maintain 
a practical approach throughout though, exploring how we might simulate these phenomena in 
code, and learning, by stealth methods, more advanced object-oriented programming required 
for these experiments.

There is no right or wrong way to be a generative artist. There are no rules or recipes. Generative 
art is about the organic, the emergent, the beautiful, the imprecise, and the unexpected. It’s 
about exploring these within a world of logic and precise mechanics. This delightful paradoxicality 
makes it an almost Zen approach to computing: playful and organic, free of restraint, and inviting 
a natural flow. 

To put it more simply, generative art is about having fun with coding. Programming isn’t just about 
good practice, structure, and efficiency; it can be about freedom, creativity, and expression, too. 
The programming language can be an artistic tool, capable of making both profound statements 
and banal ones, if in the right hands.
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about the author
Matt Pearson is a creative coder and sometime writer. A perpetual freelancer, he has donned 

his coding gloves for clients such as London’s National Portrait Gallery, the Cleveland Museum  

of Art, Perth Arts Festival, the BBC, the Victoria and Albert Museum, London, The Art Institute of 
Chicago, the Vancouver Museum of Anthropology, Paramount Pictures, and the UK government. 
He lives in Brighton UK, where he shares a house with a number of small blonde children,  
a collection of MacBooks, and probably the most beautiful woman Wolverhampton ever 

produced. You can find more of his incessant babbling at http://zenbullets.com.

Author Online forum
You can also contact Matt through the Author Online forum run by Manning Publications at 
www.manning.com/GenerativeArt. Manning’s commitment to our readers is to provide a venue 
where a meaningful dialogue between individual readers and between readers and the author 
can take place. It isn’t a commitment to any specific amount of participation on the part of the 
author, whose contributions to the book’s forum remain voluntary (and unpaid). The Author Online 
forum and the archives of previous discussions will be accessible from the publisher’s website 

as long as the book is in print.
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From the standpoint of Taoist philosophy natural forms are not made but grown,  
and there is a radical difference between the organic and the mechanical.

Things which are made, such as houses, furniture, and machines, are an assemblage 
of parts put together, or shaped, like sculpture, from the outside inwards.

But things which grow shape themselves from within outwards—they are not 
assemblages of originally distinct parts; they partition themselves, elaborating their 
own structure from the whole to the parts, from the simple to the complex. ”Alan Watts, 1958

Alan Watts (1915–73), English philosopher and Zen monk, was a Buddhist in a very 1960s sense. 
He was a master of theology, a priest, and the author of more than 20 books on Zen philosophy. 
He also experimented with psychedelic drugs, both on a personal level and in laboratory trials. 
He had plenty to say on the subject of creativity and technology but never, as far as I know, said 
anything specifically on the subject of generative art.

In the above quote, he’s talking about the incongruity between the natural world and the 
manmade, separating creation into the organic and the mechanical. This concept of organic 
growth, whereby forms are constructed “from within outwards” describes this book’s topic rather 
well; but in such a clear bilateralism, how can we say that a work of computer programming 
belongs to the world of the organic rather than the mechanical? 

Generative art is neither programming nor art, in their conventional sense. It’s both and neither 
of these things. Programming is an interface between man and machine; it’s a clean, logical 
discipline, with clearly defined aims. Art is an emotional subject, highly subjective and defying 
definition. Generative art is the meeting place between the two; it’s the discipline of taking 
strict, cold, logical processes and subverting them into creating illogical, unpredictable, and 
expressive results.

Generative art isn’t something we build, with plans, materials, and tools. It’s grown, much like a 
flower or a tree is grown; but its seeds are logic and electronics rather than soil and water. It’s an 
emergent property of the simplest of processes: logical decisions and mathematics. Generative 
art is about creating the organic using the mechanical.

introduction: the organic 
vs. the mechanical

“
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Watts’ opposing categories of worldly things, the mechanical and the organic, are easy to 
separate. A building has straight edges and sharp corners: it’s functional and accurate; it’s in 
the realm of the mechanical. A tree is irregular and temporally inconstant, its leaves shake in the 
wind and shed in the autumn; it’s in the realm of the organic. Mechanical things are constructed; 
they’re fashioned, as Watts says, from the outside in. They’re built, drawn, assembled, sculpted, 
manufactured. On the other hand, organic things are grown: they’re self-structuring, holistic. 
Their forms come about without intent; they don’t conform to designs or blueprints. 

Like the landscape gardener, the lot of the generative artist is to take naturally evolving 
phenomena and to fashion them into something aesthetically pleasing. It’s finding that point of 
balance between the beautiful unruliness of the natural world and the desired order of our ape 
brains. A garden that is unkempt and overgrown is unpleasing to us because it’s too far into the 
realm of the chaotic, whereas concreting the area instead is the tidiest, most ordered of solutions, 
which also removes all beauty. 

The sweet spot is between the two, where the grass is neat and evenly cut but still no two blades 
are alike or move in perfect synchronicity—where the colors of the flowers are evenly balanced, 
but not in a way that is exact and precise. The sweet spot is where the “art” lives.

Figures i.1, i.2, and i.3 

Opiamas Trangelo (2010) by Matt Pearson. Multiple artworks produced by a single algorithm.  

From here on, if the artist is unspecified, assume that the artworks are by the author.

You may be used to skimming figure captions for clues as to how the figure relates to the chapter. But 

sometimes a figure is just there because it’s prettier to look at than unbroken text. Sorry.
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Figure i.4  
Addition/Subtraction, Variant (2010) by Robert Hodgin, an artist whose work continues to be a huge inspiration. 

See also figures i.5 and i.6.
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Figure i.5 
Magnetic Ink by Robert Hodgin (2007).  This work was created using a flocking algorithm, each agent leaving a mist of ink. 

See www.flight404.com/blog/?p=86 for further explanation. You’ll learn more about flocking in chapter 6.

Figure i.6 
Jelly (Magnetosphere) by Robert Hodgin (2007) . Most of Robert’s early work, including this image, was created 

using Processing, a tool you’ll be learning a lot about.
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Generative art is easy
If you were to decide to become an artist, you would need to take only one step: write your 

name, write “(artist)” after it, and then print it on a business card. Congratulations: you’re an 

artist. From this point on, every scribble, gesture, utterance, or movement you make can be 

defined as art, if you so choose. Every stool you leave in the cistern of life can find meaning to 

someone, somewhere, even if it’s only yourself. You may not be a particularly good artist, but 

an artist is what you are.

Becoming a “generative artist” is a little more specific, but not that much more difficult. You 
may infer that some kind of skill set is required to qualify for this title. Perhaps you see learning a 
programming language as a significant barrier to entry. This isn’t the case; the language isn’t a 
barrier, it’s a shortcut. Compared with other disciplines of the arts, where a minimum skill level 
is necessary for your work be taken seriously, with generative art most of the skill doesn’t have 
to be learned; it’s already encapsulated within the tools. 

It takes many years to learn to paint, to draw, or to sculpt, but the programming aptitude required 

to get professional results in generative art can be learned in a matter of days. And if you don’t 

believe me, I hope this book will prove it. The images in figure i.7 were generated in only 24 

lines of code, which you can view in the listing on the next page. Every time it runs, it produces 

a different still image.

All this code does is iterate through a grid using two loops; then, a function call on line 14 draws 
a circle at each grid point and displaces it in 3D space using a mathematical variance. Don’t 
worry if you don’t understand the code, or indeed the previous sentence, at this point: that’s 

what this book is for. We’ll unpack all these concepts in the first few chapters. 

Figure i.7 
Four generative works created by the 24 lines of code in listing i.1
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Listing i.1 A generative system in 24 lines of code

void setup() {

  size(2000, 2000, P3D);

  background(150);

  stroke(0, 50);

  fill(255, 200);

  float xstart = random(10);

  float ynoise = random(10);

  translate(width/2, height/2, 0);

  for (float y = -(height/8); y <= (height/8); y+=3) {

    ynoise += 0.02;

    float xnoise = xstart;

    for (float x = -(width/8); x <= (width/8); x+=3) {

      xnoise += 0.02;

      drawPoint(x, y, noise(xnoise, ynoise));

    }

  } 

}

void drawPoint(float x, float y, float noiseFactor) {

  pushMatrix();

  translate(x * noiseFactor * 4, y * noiseFactor * 4, -y);

  float edgeSize = noiseFactor * 26;

  ellipse(0, 0, edgeSize, edgeSize);

  popMatrix();

}

Even if you’ve never coded before, by the end of chapter 2 you’ll have a powerful programming 
language under your belt. Then, from chapter 3 onward, you’ll learn a number of techniques that 
will enable you to quickly achieve generative art proficiency. Taking this proficiency on toward 
mastery is then up to you. 

If you come blessed with programming skills, you’re already most of the way there. In fact, the 
main problem for experienced programmers may be unlearning the strict practices you’re used 
to. Chaos is something we don’t usually expect or welcome from computing devices, but for the 
next few hundred pages it will be our friend and collaborator. Order and chaos may be mutually 
exclusive, but that doesn’t mean they can’t work together. 

Licensed to george legrady <legrady@arts.ucsb.edu>



xxiv

Figure i.8
Perth Arts Festival Branding (2010). Image from a print/video/online generative branding  

project I created in collaboration with Brighton's FutureDeluxe (http://futuredeluxe.co.uk).  

See http://vimeo.com/20096257 for the full story.
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Order and chaos
The image in figure i.9 shows Newton, painted by William Blake in 1795. To the left of the picture 

are brightly colored flora and fauna, the complexity of the natural world. To the right is order, 

the precision of geometry and the compass. In the middle, between these two incongruous 

elements, sits Man. 

Except, in this case, it isn’t just any man, it’s Isaac Newton, writer of Principia Mathematica, the 
founding work of classical mechanics. Blake’s painting is a criticism of Newton’s world view; he 
is turning his back upon the beauty of the natural world, his sole interest is in his scroll and compass. 

William Blake was a Romantic, with a capital R. He was part of the Romanticism movement, the 
artistic, literary, and intellectual reaction to The Enlightenment of the late 18th century. The Age 
of Enlightenment was the time that heralded the birth of modern science, when purest reason 

Figure i.9 

Newton, by William Blake is a beautiful illustration of the incongruity between the chaos of nature and 

the precision of science and mathematics.

William Blake (1757–1827) Newton, ca. 1795, print with ink and watercolor, Tate, London
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Figure i.10 

Life in 2050 (2010), a video ident I created for a film festival, again collaboration with FutureDeluxe (http://futuredeluxe.co.uk).  

It was made using Perlin noise and deconstructed spheres, a process described in chapter 5.  

The finished film is at http://vimeo.com/10924639.
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was the dominant philosophical trend. The Romantics feared the coming godless world and clung 
to the dying remnants of an idea of natural idyll: the aesthetic, the rural, and the picturesque. 
They saw the future on their horizon, the world of the rational and scientific, the future we now 
live in. And it repulsed them.

Modern computer programmers may adopt the same pose as Newton. They spend their working 
days entranced before a screen, squinting at a glowing monitor in a dimmed office, making only 
the barest micro-movements with their mouse-hand and keyboard fingers, only vaguely aware of 
what is beyond the screen, outside the window, outside the city. The chaos of the natural world 
isn’t welcome in this world of logic; unpredictability isn’t something we want from a computer.

Figure i.11 
Frosti (2010). Here, I reused the same system that generated the video work in figure i.10 for a print work. 
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Figure i.12 

Contact sheets for Twill (2010). This book’s cover image was chosen from a run of several hundred generative images. 

But the generative artist would be the programmer sitting facing the other direction, straddling 
that rock like Christine Keeler.1 The generative artist comes from the world of logic to look toward 
the natural world for inspiration.

Is there an inherent contradiction in using computers to explore the realm of the organic? What 
could be less mechanical than the 1s and 0s of a humming box of electronics? Is generative art 
little more than a fool’s errand?

And furthermore, if we declare our work as art, aren’t we implying an intent to explore emotion 
and aesthetic? Can we reasonably expect to create works with emotional resonance using only 
procedures, logic, and mathematics? Relying on a computer to create an artwork and expecting 
it to connect with a viewer on a human level is surely akin to waiting for an infinite number of 
monkeys, with an infinite number of synthesizers, to write the perfect pop song. 

Herein lies the challenge.

Order and chaos, simplicity and complexity, the mechanical and the organic, aren’t necessarily 
at opposite ends of a spectrum. They’re symbiotic, intertwined. Any line we might walk between 
the two is a knife edge. Our very existence is poised between entropy and order, between the

1.  If you aren’t old (or British) enough to remember the scandalous tale of John Profumo and Christine Keeler, 
visit Wikipedia to learn what a “defiant straddle” looks like: http://en.wikipedia.org/wiki/Profumo_Affair.
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 Figure i.13 
Process 14 / Image 4 by C. E. B. Reas (2008). Casey Reas was one of the initiators of the 

Processing project. This print is from a series of Processing works exhibited at the bitforms 

gallery in New York in Spring 2008.
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Figure i.14 
100 Abandoned Artworks (2008–2010). Two years of weekly generative animation experiments, and their source code, which 

you can find at http://abandonedart.org. The code for many of the other works in this book can also be found there.
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turbulence of a hostile, chaotic environment, the natural world that we would find so difficult to 
survive unaided, and the simplicity of purest nothingness, the void that is equally fatal to our 
animal needs. We may think we have both mastered the chaos and fought off the boredom and 
madness of purest order. But any living being can testify that there is a constant fluctuation 
between the two. No matter how much order you impose upon your life, chaos is never more 
than a car crash away.

The mechanical and the organic, like order and chaos, are codependent; one couldn’t exist 
without the other. The complex appeals to us as much as the simple, the organic as much as the 
mechanical. Fashion or mood may sway us more toward one or another in any given situation, but 
we never go completely over to one side or the other. For to do so is to stop living; to eradicate 
chaos is to become a robot; to eradicate order is to become a savage.

Fortunately, no one is asking us to take sides. The aim of generative art, if it has any aim at all, is to 
make something beautiful. We can attempt to use the mechanical to create the organic, starting 
from order and heading toward chaos, careful not to stray too far in one direction or the other. And 
if we become adept at this, we may be able to consider ourselves both programmer and artist. 

Figure i.15  
(Left) Grid Distortion 02D 0018, a laser etching by Marius Watz (2010) 

Figure i.16  

(Right) KBGD01E 0012 by Marius Watz (2010)
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Figure i.17 
Illuminations B by Marius Watz (2007). Marius, who provided this book’s foreword, is another generative 

artist whose work has been a great inspiration to me. Two more of his creations appear in figures i.15 

and i.16. You can explore his other work and processes at www.unlekker.net.
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Figure i.18 
Renders from Aaron Koblin’s Flight Patterns (2005), a data-driven work that is discussed in chapter 7
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Programming as poetry
Some may think there is something counterintuitive about using a programming language as 
an artistic tool, like using a forklift to perform a ballet or a T-square to draw a curve. This is 
because, traditionally, programming languages have been the realm of logic, structure, and 
organization. They’re used for problem solving, modeling data, and accurate simulations. Highly 
logical activities such as these inevitably make coding unattractive to more creative thinkers. 
This is a waste. Programming languages are just tools; they don’t belong to one community or 
another. They can be equally effective in the hands of a designer or in the hands of a systems 
architect, but the works created by these tool users will be radically different.

The history of programming has been toward ever-greater sophistication of organization. When 
computer scientists talk about design patterns, they don’t mean aesthetics; in programming 
lingo, a design pattern is a useful framework for tackling programming problems homogeneously. 
The intention is that common challenges can be addressed the same way, in a move toward a 
more universal language of programming. The use and understanding of these tried and tested 
design patterns is typically the mark of a good programmer, but they’re also a highly rigid way of 

Figure i.19  

Strange Symmetry 2 by Frederik Vanhoutte (2008)
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Figure i.20 
Mondrian Architecture (2009). A fractal inspired by Piet Mondrian. The joy of creating fractal structures is 

exploring the detail: they can truly be said to work on many levels. Each detail is from zooming in to the upper-left 

corner of the previous image. These ideas are explained in chapter 8.
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Figure i.21 
Orbitals (2009). Perlin noise applied to 3D circles. All the necessary principles behind this work are discussed in chapters 4 and 5.
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approaching language use. What we’re doing with generative art is swimming against this tide 
and saying there isn’t a right or wrong way to do anything. We can still use these fine practices, 
and we can learn a lot from them, but we shouldn’t allow ourselves to be hindered by them. If 
rules exist, they’re for the breaking. 

But not the rules of programming syntax, unfortunately. It doesn’t take long to discover that 
there’s nothing iconoclastic about missing a semicolon: you just end up with broken code. This 
is an unfortunate reality. 

A programming language is, after all, just another language. And a language can be spoken in 
many different ways, with a variety of accents or inflections. The programming language differs 
from languages such as English, German, and French only in that it’s intended to facilitate 
communication between humans and machines, rather than humans and other humans. Because 
of this necessary unambiguity of human-to-machine communication, we wouldn’t imagine that 
we could use a language like Java or C++ to write a poem. But if a language isn’t capable of 
poetry, it has clearly lost its relevance on the human side of the equation. 

My conjecture is that code can be poetry, and code can be fun. But we may have to sacrifice 
some of the rigidity, good design, and best practices of professional, commercial programming 
to enable this. 

Figure i.22 
Broken Mirrors 1–4 (2011) Still from a gallery installation I built. It shows one of four generative 

animations created from the movement of the spectators viewing the piece 
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Figure i.23  
LORMALIZED by Reza Ali (2010). Ali published this work as an app, so others could create their 

own images using his system. You can download it from www.syedrezaali.com/.

Figure 1.24  
Drawing With Particles by 01010101 (2009). Jerome Saint-Clair, aka 01010101, fashioned this image with moves of the 

mouse, but the tool his mouse controlled was a generative particle system of 01010101’s own creation.
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Figure i.25 
Happy Place by Jared Tarbell (2006). Agent-oriented behaviors at the micro level, 

producing emergent complexity at the macro level. If these words mean nothing to you 

right now, chapters 6 and 7 will explain. 
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The chaos artist
Declaring our work as “art” is a bold and arrogant thing to do. By doing so, we’re saying that our 
work is beyond mere utility: it’s an expression of our humanity and individuality. It may even be 
in the realm of the ineffable. Unfortunately, it may also be an expression of our pretentiousness, 
but let’s try not to worry about that for now. If you’re of the opinion that nothing in life is worth 
doing if it’s without specific purpose or measurable value, you’ve picked up the wrong book.

Furthermore, to describe our work as “generative” art means we not only intend our work to 
express our individuality, but we also want it to express the chaos and abandonment of processes 
free of our control. Without this unpredictability, our art would belong in a box other than the 
one labeled generative. Generative artists are chaos artists. They have bred the unpredictable, 
welcomed it, harnessed it, and can fashion it into pleasing forms.

Common or garden chaos (as opposed to the mathematical kind, which we’ll touch on in part 
3 of this book) may seem anathema to the logician. Unpredictability is something unwanted in 
traditional programming practices, which is why more experienced programmers reading these 
words may be finding some of these ideas unpalatable. But trust me: it’s for your own good. 
Nonlinear approaches to the familiar can be healthy for the brain. And, who knows, you may 
even be able to take some of these creative angles back to your coder day job and make yourself 
incredibly unpopular with your bosses and colleagues.

Chaos isn’t to be feared. After all, we aren’t doing anything more dangerous than making attractive 
imagery with computers. Seriously, what is the worst that can happen? To engage in generative 
processes means we are expecting the unpredictable—it isn’t an unwelcome visitor. We’ll 
become comfortable with a lack of control over our work. We’ll embrace this chaos and learn 
to love it. n
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“The machine makes the music,  
   but I created the machine… 
I don’t know where responsibility lies  
  in that situation.”Autechre's Sean Booth, in interview, 2010
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In Theory and P

ractice

On f irst appraisal, the question “What is generative ar t?” may seem 

simple. But, as is the nature of all things generative, even this def inition 

has an emergent complexity. 

The elucidation most often cited in recent years is attributed to Philip 

Galanter, artist and professor at Texas A&M University, from his 2003 paper 

“What Is Generative Art? Complexity Theory as a Context for Art Theory”:1 

“Generative art refers to any art practice where the artist uses a system, such 

as a set of natural language rules, a computer program, a machine, or other 

procedural invention, which is set into motion with some degree of autonomy 

contributing to or resulting in a completed work of art.”

Although this is accurate and descriptive—and a long sentence with all 

the right words—a single phrase like this isn’t enough. I don’t think it quite 

captures the essence of generative art (GenArt), which is much more 

nebulous. In my mind, GenArt is just another byproduct of the eternal titanic 

battle between the forces of chaos and order trying to work out their natural 

harmony, as expressed in a ballet of light and pixels. But flowery crap like 

that isn’t going to get us anywhere either

1. You can read Prof. Galanter’s paper in full at  
www.philipgalanter.com/downloads/ga2003_paper.pdf.

1
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We have to be careful treading around this topic, because we want at all costs to avoid trying to 

define “What is art?” which is an argument best left alone. The concept of art can be so fragile 

and fuzzy that if we were to prod it too much, it would evaporate. So, instead of trying to carve 

up a subject that doesn’t want to be dissected in search of a pithy description, in the section that 

follows I’ll take a more delicate and obtuse approach. We’ll begin by examining what generative 

art isn’t.

1.1 Not your father’s art form
With more traditional art forms—sculpture, painting, or film, for example—an artist uses tools to 

fashion materials into a finished work. This is clearly doing it the hard way. With generative art, 

the autonomous system does all the heavy lifting; the artist only provides the instructions to the 

system and the initial conditions.

The artist’s role in the production process may be closer to that of a curator than a creator. You 

create a system, model it, nurture it, and refine it, but ultimately your ownership of the work 

produced may be no more than a parent’s pride in the work of their offspring. 

This is hideously unfair, of course. We shouldn’t underestimate the human role in the collaboration. 

In addition to the programming, the human contributes one other important skill: aesthetic 

judgment. It’s feasible for computers to develop a sense of aesthetics (plenty of work toward this 

aim has been done within the field of evolutionary systems2), but it will never be the best division 

of labor in a human-machine creative partnership. If we need to calculate pi to a million digits, it 

would be a misappropriation of resources to set a human brain to this task. Similarly, it’s probably 

best not to leave it to machines to decide what’s pretty and what isn’t.

Although GenArt is almost always abstract in nature, it can’t be defined by the style of the work. 

The common factor of generative artworks is the methodology of its production, not the style 

of the end result. 

Figure 1.1, for example, is an abstract work, and it’s a monochrome work, but we can only say 

that it’s a generative work if it happens to fit my claims as to how it was created. This particular 

arrangement of pixels may have been achieved in Adobe Illustrator (not by my cloddish paws,

2. Richard Dawkins’ book The Blind Watchmaker (1986) is a good, accessible introduction to the topic of 
genetic algorithms and their application.
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Figure 1.1 
Tube Clock (2009)
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I would hasten to add); by photography; or by pencil, paper, and scanner; and in all cases, it 

would still be a monochrome abstract. It may also still be generative, depending on the way each 

of these tools is used, but this isn’t a given. 

The tools used aren’t the defining factor; it’s the way they’re used that provides the commonality. 

In this book, the programming language, specifically the Processing language, is the chosen 

tool. But that doesn’t mean everything you create with that tool is generative. Programming 

languages are just ways of making computers do as they’re told; there is nothing inherently 

generative about following orders.

To be able to call a methodology generative, our first hard-and-fast rule needs to be that autonomy 

must be involved. The artist creates ground rules and formulae, usually including random or semi-

random elements, and then kicks off an autonomous process to create the artwork. The system 

can’t be entirely under the control of the artist, or the only generative element is the artist herself. 

The second hard-and-fast rule therefore is there must be a degree of unpredictability. It must be 

possible for the artist to be as surprised by the outcome as anyone else.

Creating a generative artwork is always a collaboration, even if the artist works alone. Part-

authorship of any generative work must belong in part to the mechanisms the artist uses: the 

system that generates it. Fortunately, anonymous autonomous systems aren’t usually bothered 

if their unscrupulous artistic partners decide to steal all the credit.

To retain a necessary focus, this book discusses only one tool—the programming language—

as a way of producing only one range of output: visuals. But generative methods may also be 

used to produce music, architecture, poetry, dance, storytelling or interactive experiences, 

and the autonomous systems behind their creation may also be mechanical, games of chance, 

natural phenomena, or subconscious human behavior. We’ll touch on some of these alternative 

approaches later in the book. 

1.2 The history of a new idea
Generative art has a history measured in decades, not long compared to other arts, which is 

probably why it’s still on the periphery of the art world. Art colleges across the globe are churning 

out tens of thousands of painters, potters, fashion designers, and graphic designers every 

year, but the number of practicing generative artists in the world at present could probably fit 

comfortably onto a single Caribbean cruise liner (which would be a lovely idea if anyone fancies 

arranging it). This demographic is changing fast, though. As popular computing technology 

accelerates, more creative people are getting theirs hands on the tools and discovering this 

novel art form. 
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The term generative art has only been in general use since the 1960s, but the concept has been 

with us much longer. Generative forms of music, for example, have been around since Mozart. 

His Musikalisches Würfelspiel (Musical Dice Game) was an early example of a generative artistic 

system.

The idea was to create a minuet by cutting and pasting together prewritten sections, making 

selections according to the roll of a die. Even with a single six-sided die, the number of possible 

combinations rises quickly: by 5 rolls, there are 7,776 possible combinations; and with 6 rolls, 

46,656. These types of artistic parlor games became popular in the eighteenth century.

In the last century, composers such as John Cage, Karlheinz Stockhausen, and Brian Eno 

expanded on the idea of generative music.3 John Cage’s 4’ 33”, his controversial note-less piece 

defined only by its length, takes environmental ambient sounds as its only content, meaning no 

two performances of the work are ever the same. 

Later, Stockhausen and Eno (and others) experimented with procedural methods of composition, 

where music is defined by a set of rules or conditions. Eno’s Discreet Music LP (1975) is a fine 

example of this. The first side is a 30-minute piece created by a tape-loop feedback system. A 

synthesized melody was recorded onto a tape machine, the output of which was fed into a second 

tape machine. The output of the second machine was then fed back into the first machine and 

the overlapping signals recorded. We know of this process because Eno included a diagram of 

his setup on the back cover of the LP (see figure 1.2). 

3. Even though Processing can be used to create generative music, this book focuses solely on the 
creation of visuals. Generative music is a huge and fascinating topic that warrants a book of its own. David 
Toop’s Haunted Weather might be a good place to start.

Figure 1.2  

Brian Eno’s Discreet Music album included a diagram on the sleeve explaining the synthesizer  

and tape-loop feedback system by which the music had been produced.
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Figure 1.3 
Lady Quark by Manfred Mohr (1972) , one of the earliest algorists (generative artists who work  

with computers). Mohr wrote his own software in order to explore his art.
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Visual forms of generative art started emerging in the 1960s, first with computers outputting to 

plotters, then with visual display units (VDUs), and later in more sophisticated forms of print and 

video. Early pioneers from the plotter years were Frieder Nake, George Nees, Vera Molnar, Paul 

Brown, and Manfred Mohr (see figure 1.3), who published a collection of computer-generated 

artworks called Artificiata I in 1969. 

But although the development of GenArt has been closely tied to the evolution of the computer, 

computers are just a useful convenience. The real tools of GenArt, the underlying constants to 

the various tools you can use, are the algorithms. Algorithms are a part of the natural world; they 

have a universality that transcends medium. So while the systems capable of creating GenArt 

change over time, evolving as technology evolves, the algorithms remain the same. Generative 

art may not be quite as old as art itself, but it may be said to be at least as old as mathematics.

This book is all about the algorithms. It’s about the philosophy, aesthetics, and experimentation 

too, but mostly it’s about the algorithms and the tools you use to explore them. You can, 

theoretically, perform the mathematics behind procedural GenArt with a stick of chalk and a 

large flat rock, but that would make life unnecessarily difficult—especially when we live among 

the ever-advancing sophistications of the twenty-first century and its remarkable digital toolset, 

which is what we’ll look at next. 

1.3 The digital toolset
If you’re a practitioner within the digital medium (and it’s difficult not to be these days), you likely 

already have a set of tools you favor for your creative endeavors. You’ve come to grips with a 

particular word processor or email client, so when you feel the need to craft words, you have 

the means to do so. You may also have invested time in learning a graphics package for when 

you’re inclined to say it with pixels. On a more fundamental level, you’ve probably developed 

relationships, perhaps even dependencies, with your devices—MP3 players, phones, laptops—

and have tamed them into serving your needs. Software and hardware alike, all of these are the 

tools in your digital toolbox. But how long-term are these man-machine marriages? 

1.3.1 Perpetual impermanence
In periods of rapid technological innovation (of which our current time is one, but so has been 

pretty much every other era in human history) we become highly focused on the latest tools. We 

invest a lot of time in mastering their quirks, and we upgrade them frequently. 
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Apple’s range of laptops is updated annually, with the top of the range reaching higher and higher 

levels of power and convenience. An application like Adobe Photoshop has, on average, a major 

new release every 18 months, with a dollar price for each release in the hundreds. It would be 

unimaginable to buy a chisel, or a paintbrush, or a set square, knowing that it would be obsolete 

in two years, yet this almost-immediate obsolescence is unquestioningly accepted on the cutting 

edge of both hardware and software. 

An unwritten complicity exists between users and manufacturers of technology. The manufacturer 

will have a roaring trade if every year it can deliver the same product to the same customer who 

bought it last year, but this is made possible only by the demand of the market: the users who 

eagerly await these upgrades and see value in every minor iteration. They’re driven by the desire 

for the latest technology has to offer, and they’re prepared to make the necessary sacrifices to 

have it within their grasp. This creates a cycle of perpetual impermanence, which marches the 

technology forward.

Figure 1.4  
The ZX Spectrum: the machine I learned to program on. It was the cutting edge of British home 

computing circa 1982: 48 KB RAM, no hard disk, and no mouse. The lack of a visual operating system 

meant you had to learn basic programming skills just to be able to load a game. 
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You should bear this in mind as you create digital artwork. If you work with pixels, there is already 

a fragility to the work you do: your art disappears the second the monitor is turned off. For this 

reason alone, many artists gravitate toward more tangible art forms such as print and sculpture 

(the decreasing prices of 3D printers promise some exciting possibilities for tangible generative 

art in the coming decade). Furthermore, if you become dependent on a machine to create your 

art, you know the machine and the software it runs are already halfway to obsolescence before 

you’ve taken them out the box. This isn’t a bad thing, though, because the next generation will be 

capable of even more remarkable mathematical feats, enabling ever-broader artistic possibilities.

From our limited temporal perspective, the evolution of digital tools may seem to be in a uniformly 

positive direction, with every release bringing greater sophistication, speed, simplicity and/

or intuitiveness. Moore’s Law; the 1960s observation that processing power is doubling, and 

its price halving, every few years, seems to be holding true and showing no sign of dropping 

away—which, for now, means the digital world is only ever going to get Faster! Better! Cheaper! 

But as we’re swept forward on this breakneck digital tide, we may fool ourselves into believing 

that our functional friends are at an unprecedented level of sophistication, that they’re the best 

our civilization can offer. But by what yardstick do we measure such sophistication? 

1.3.2 The latest in primitive technology
We’re in the very early days of digital technology. The computer is still in its first century—it’s 

but an infant, and the art of human-computer interaction is still a work in progress. Applications 

such as Photoshop, Flash, GarageBand, After Effects, Illustrator, Final Cut Pro, Maya, syntaxes 

such as C++, Java, HTML, CSS, and so on, all do incredibly cool things and have changed the 

way our media looks and behaves. But they aren’t tools with the simplicity or intuitiveness of the 

paintbrush or the scalpel. They’re clearly much removed from pencils, pens, chisels, guitars, 

drums, trowels, and scissors, from natural and instinctual ways of expressing ourselves that have 

evolved over the millennia, rather than the last few decades. Compared this way, our digital tools 

appear extremely primitive in their usability, and at times quite an impediment to our creative 

flow. The purpose of a tool is not only to extend our capabilities; it should also enhance the flow 

of our creativity. The newest software gives us the power to fashion the world in ways that would 

have been unimaginable only 50 years ago, but there is still a long way to go in terms of a natural 

artistry to their use. Almost all of the more powerful tools have a steep learning curve and require 

dedication and constant use to master. A child can’t quickly pick up Adobe Illustrator and draw a 

line. Even adults with a certain degree of techno-savvy can’t come fresh to a program like Maya 

and find a way to express themselves within a few minutes. On the other hand, using a pencil or 
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a paintbrush, a child could instantly make some kind of statement involving line and color without 

having to learn any keyboard shortcuts. Their efforts would likely be rather amateur, it’s true, but 

the important point is that they haven’t been at all hindered by their tool, only empowered by it.

An art form is defined by its tools. The tools give an art form its grammar. If the nature of a tool 

means it’s easy to perform one action or express one idea, and harder to perform another, the 

easier option will become more common. This is why so few landscape painters work in 3D, 

and why choreographers aren’t interested in bowls of fruit. In this way, our tools have a greater 

influence on the work they’re put into producing than you may realize. They can limit our creative 

choices at the same time they extend them. 

The trick is to appreciate these parameters and to come up with new ways of using the tools, 

to avoid falling into tired and over-familiar practices. This applies to a programming language as 

much as it does a paintbrush. If you’re an experienced programmer with a more formal grounding 

in your trade, that is one of the things I hope you’ll get from this book: a fresh way of approaching 

the art of coding. And if you’ve never coded before, I hope you’ll find novelty in these new toys. 

For what use is a paintbrush without an artist with the will to hold it? 

1.4 Summary
We’ve explored what generative art isn’t, and we’ve grudgingly accepted the limits of our primitive 

and impermanent toolset. Surely there must be something positive to take away from this chapter.

For starters, we’ve built a list a few things that, it’s probably safe to say, generative art definitely is. 

It’s:

• An algorithmic way of creating an aesthetic 

• A collaboration between an artist and an autonomous system

• An exercise in extracting unpredictable results from perfectly deterministic processes

• A quest for that sweet spot between order and chaos

• A fresh, fun approach to coding

• A growing medium with huge potential

It may be early days for the digital toolset, but these technological marvels award us some novel 

powers of expression. At the same time, they have a huge bearing on the type of work we produce 

with them. The tool we’ll focus on for the GenArt experiments in this book is a wonderfully simple 

language called Processing, which we’ll get started with in the next chapter. 
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In this chapter you’re going to become a programmer. Although you 

don’t necessarily need to know a programming language to experiment 

with generative ar t, you’l l f ind it makes things a hel l of a lot easier. 

Obviously, one chapter probably can’t cover everything there is to know 

about any one language, but I’m confident that in around 30 pages, I can 

introduce all you need to start getting creative with code: from Hello World, 

through basic syntax and functions, to publishing your work for print, video, 

or mobile phones. 

But first, if you plan to invest a significant amount of time in learning a tool, 

I feel I must justify the choice of programming language I’ve made for this 

book. Even constrained as you are to the toolset of the early twenty-first 

century, you have an abundance of software choices for experimentation 

with generative visuals. The options range from expensive professional tools 

(such as Flash and 3ds Max) to free online resources (like HasCanvas and 

Scratch). But your time is precious, and you could never hope to master them 

all. For your purposes, you need just one. The best one.

To narrow it down, I came up with a few criteria. The language has to be easy, 

powerful, extensible, and well supported. I also wanted it to be equally adept 

at producing generative visuals for print and video, not just the computer 

screen. Most important, though, I don’t want you to have to pay for it. Even 

with these demands, we’re still spoiled for choice. This book could just 

2

 13

Licensed to george legrady <legrady@arts.ucsb.edu>



14

have easily been focused on openFrameworks (www.openframeworks.cc/), Context Free (www.

contextfreeart.org/), Structure Synth (http://structuresynth.sourceforge.net/), NodeBox (http://

nodebox.net/) or vvvv (http://vvvv.org/). And if you ever find yourself looking for a new toy to 

play with, you’ll have fun exploring any of these. But I’m assuming that, for now, you’re new to 

the world of programming, so you want something that suits an initial gentle learning curve while 

retaining the scope for advanced techniques and professional results. With this in mind, I propose 

that there is only one obvious choice: Processing.

The main reason I favor Processing, though, and the reason it warrants a book like this one 

at this point in its life cycle, is that I believe this one tool marks a significant advance in the 

democratization of programmatic art. To date, generative art has struggled to catch on outside 

of the realms of mathematics and computer science—fields that have never traditionally attracted 

those with more adventurous aesthetic obsessions. Processing is perhaps the first language 

to enable the creation of professional generative art by a general audience, not just computer 

scientists.

2.1 What is Processing?
Processing was conceived as a language for artists. It was developed as an open source 

project (initiated by Casey Reas and Benjamin Fry while at MIT) specifically intended to teach 

programming skills via the instant feedback of visuals. It’s built on a much more complex and 

powerful language, Java, but greatly simplified and applied. As it has grown in popularity, the 

simplicity of the core language has been enhanced with third-party libraries, enabling it to also 

be put to other more sophisticated uses: drawing in 3D, reading XML, talking to MIDI or Arduino, 

or interfacing with other APIs (Flickr, Twitter, and so on). 

Mozilla, the organization behind the open source Firefox web browser, has announced Processing 

for the Web, a project proposal for porting the Processing language and environment to the 

open web, so it can integrate with standard technologies like JavaScript and HTML5’s Canvas 

tag. This would mean Processing could be run directly in the web browser, without a plug-in. 

Already, strides have been made in this direction with John Resig’s Processing.js project, which 

implements Processing in JavaScript. There are also implementations of Processing in Ruby 

(http://wiki.github.com/jashkenas/ruby-processing/), Clojure (http://github.com/rosado/clj-

processing),  and Scala (http://technically.us/spde/), all of which have emerged as grassroots 

projects, typically through the work of a single coder, in the last two years. They’re clear symptoms 

of the growing popularity of Processing and its potential for the future. The barriers for entry are 

dropping as the potential distribution opportunities are expanding.
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Mastery of a programming language is perhaps the single significant barrier of entry to generative 

art. Although it may not be possible to pick up Processing instantly, the learning curve required 

to get started with Processing makes it accessible to a much wider range of technical abilities 

than other languages, while it still retains the power to be more than just a toy or learning aid. 

All tools, even the most basic, come with a learning curve. Your first efforts with a pencil will 

unlikely be great works of art; and although most of us are first introduced to handheld drawing 

implements as children, when our brains are most malleable, it may take years to master even 

this simplest of tools.

The programming language is at the other end of the complexity spectrum: it can’t be encapsulated 

into a neatly tangible physical object, it requires a highly sophisticated chunk of hardware to 

run it (and is useless without it), and it’s abstracted in a way that makes input and response not 

immediately apparent. Rather than the immediate feedback of sweeping a pencil against paper 

and seeing the line created, the process of write—run—amend (or write—run—debug) puts a 

gap between the artist and their work. 

But, as previously mentioned, the Processing language, once tamed, can assist you in your 

art, and become your collaborator as well as your instrument. The programming language, with 

mathematical and logical aptitudes far beyond your own, can do all the heavy lifting and leave 

you to concentrate on the finesse. 

New programmers will find that there is a logic to coding that becomes familiar with time, 

appealing to the ordering, categorical instincts of the left brain. I hope, for the non-programmers 

who have picked up this book, that by the time you’re finished with it, the idea of programming 

will hold no trepidation. After you’ve made friends with your tool and established a confident 

working relationship, you can get on to having some fun with your new collaborator. 

2.1.1 Bold strides and baby steps 
The starting point for these explorations, as well as the Processing download, is the Processing 

website (see figure 2.1). You can find the latest version at www.processing.org/download/. It’s 

currently supported for Mac OS X, Windows, and Linux. The screenshots used throughout these 

pages are taken from the Mac version, but the interface is nearly identical for all the supported 

platforms.

Note that it’s worth checking back to the Processing download page occasionally, because 

revisions to the language are frequent. The application went through 161 versions prior to its 

1.0 release in November 2008, and it continues to be updated and improved. There are also 

many other resources to be explored at www.processing.org, including some great getting-
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Figure 2.1 
Processing.org: an invaluable resource for tutorials, reference, and discourse. It’s also the place to 

download the latest version of Processing.
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started tutorials by Dan Shiffman and Ira Greenberg in the Learning area, lots of code examples 

demonstrating various features of the language (again in the Learning area), and an active forum 

in the Discourse area. And while you’re bookmarking things, you might also like to add both my 

site (www.zenbullets.com) and the Abandoned Art site (www.abandonedart.org) to your list; 

where you’ll find the downloads for this book as well as many other generative artworks and the 

source code behind them. 

The following section will introduce you to the technology, show you around the Processing 

Development Environment (PDE), and point out where to write your first line of code. If you’ve 

coded before, you may not need much more than this to get you started. But if you do, the rest of 

the chapter is a whistle-stop tour of the language essentials, written specifically with the beginner 

in mind. It will take you through the key concepts of Processing and programming languages in 

general, and arm you with everything you need to start experimenting. If you’re a beginner, this 

section is essential.

If you have programming experience but haven’t tried Processing before, you may skim these 

pages a little faster than the rank amateur. But every programming language has its idiosyncrasies, 

so it will be useful for you to learn how Processing uses concepts such as the frame loop, for 

example. If you’ve programmed Java or any ECMA-based language (ActionScript, JavaScript), 

Processing should come naturally to you.

One of the joys of open community projects such as Processing is that there is no shortage 

of free resources on the web in support of the product. If you find that the tutorials in this 

chapter don’t suit your pace, plenty of free options are available to help you. Again, I refer you to  

www.processing.org as a starting point.

Okay, you’ve said hello to Processing; next, let’s see if you can get Processing to say it back.

2.1.2 Hello World
After you’ve downloaded Processing, installed it, and run it for the first time, you’ll see something 

similar to figure 2.2.

This window is called the Processing Development Environment (PDE). Quickly, before blank-

page paralysis sets in, let’s type something. Key the following in the main window:

ellipse(25, 25, 50, 50);
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Then, click the Run button: . What do you see? The output window should pop up (see figure 

2.3). In it is a 100 x 100 pixel canvas within which has been drawn an ellipse, center point at 

coordinates 25, 25 (measured from upper-left), width and height 50 pixels. This is the visual 

programming equivalent of Hello World.

If you’re new to coding, in only one line you’ve already mastered two programming concepts. 

You’ve called a function (ellipse) and passed it a number of parameters (x, y, width, and height). 

You can think of a function as a service you use to perform a certain task. Sometimes you feed 

it parameters; sometimes it only needs to be called. It may give you a value back, or it may just 

perform the task it’s designed for—such as drawing to the screen. Later in this chapter, you’ll 

write your own functions; but before you get there, you’ll test a number of the core functions built 

into Processing, of which ellipse is but one. If you click the Help menu and select Reference, 

you’ll see a full list of the others. The reference is also online at http://processing.org/reference/. 

Figure 2.2  
(Left) The empty PDE window: the first thing you’ll see when you download and run Processing

Figure 2.3  
(Right) Hello World. The output window shows the result of your commands.  

The single line ellipse(25, 25, 50, 50) drew a circle 50 pixels in diameter with its center at point 25, 25.

18

Licensed to george legrady <legrady@arts.ucsb.edu>



2
G

enerative A
rt | P

earson

 19

P
rocessing: A

 P
rogram

m
ing Language for A

rtists

2.2 Programmatic drawing
Everything you need to know to start programming in the Processing language is contained in 

this and sections 2.3 and 2.4 to follow. After reading all three, you’ll have the basics not just of 

Processing but also of programming in general. At their core, all programming languages boil 

down to the same types of structures: variables, loops, and functions. When you’ve got a grip on 

these concepts in Processing, you’ll find you have half an understanding of many other languages 

and will be the toast of your local chess club. 

I appreciate that some of this may be a little unintuitive at first. If you feel you’re in unfamiliar 

territory as you wander through, I’d suggest you take this chapter very slowly. Code along as 

we go, and take the time to play around with trying every code chunk until you feel in control; 

only move on when you’re happy. There is no time limit, and your patience will be rewarded. 

Experienced coders are probably already speed-reading chapter 3 at this stage, so I’ll assume 

I’m not catering to them from here on.

From chapter 3 onward, there’s a lot of fun to be had with graphical programming, getting messy 

and breaking rules. But before you can break any rules, you have to learn a few of the rules you’ll 

be breaking. It’s tedious, I know; but remember that if you want to effectively insult a Frenchman, 

you’ll be a lot more effective at it if you’ve learned French first.

You’ll start with drawing a few simple shapes.

Syntax matters
There is a certain fragility to the syntax of most programming languages. In a human 

language, if you were to mistakenly capitalize a word in a sentence—for example, 

Ellipse rather than ellipse—it might look odd, but the meaning would still be intact.  

But try this in a programming language, and it will break.

Similarly, whatever you do, don’t forget the semicolon at the end of an instruction. 

The semicolon is the Processing syntax equivalent of a full stop. Whitespace doesn’t 

matter—you can use a new line for every statement you write, or run them all along the 

same line, as long as each statement has the semicolon to terminate it. Forgetting the 

semicolon is a common cause of errors. 
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2.2.1 Functions, parameters, and color values
In the previous section, you downloaded Processing, typed your first one-line script, and 

published it to the output window. You’d called your first function (ellipse) and passed it a number 

of parameters (x, y, width, and height). Now, let’s try a few more.

Open a new window, and type the following into the PDE window (see figure 2.4). Note that the 

lines beginning with // are comments, a place where you can put human-readable text. The // 

indicates that Processing shouldn’t try to run that line. You can also use the notation /* … */ to 

spread comments across more than one line:

// setup and background

size(500, 300);

smooth();

background(230, 230, 230);

// draw two crossed lines

stroke(130, 0, 0); 

strokeWeight(4);

line(width/2 - 70, height/2 - 70, width/2 + 70, height/2 + 70);

line(width/2 + 70, height/2 - 70, width/2 - 70, height/2 + 70);

// draw a filled circle too

fill(255, 150);

ellipse(width/2, height/2, 50, 50);

Click Run, and you should see something like figure 2.5. What you’ve written in the PDE is a list 

of functions. I’ll walk you through them and explain what each one does.

First, set the size of the canvas to 500 pixels by 300 pixels:

size(500, 300); 

Turn on smoothing, which anti-aliases the lines you draw so they don’t look jaggy:

smooth();

And set a grey background color:

background(230, 230, 230);

The three parameters to the background function are RGB values—Red, Green, Blue. Each value 

is a number from 0 to 255 defining how much of that color goes into the mix. Together, these 

three numbers give you 1.6 million combinations of colors you can use. In this case, because 
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Figure 2.4 
The PDE with your new script

Figure 2.5 
The output window showing the result of the commands you’ve just written
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all three RGB values are the same, the result will be a grey color (any even mix yields a shade 

of grey). You can use a shorter version of the function for grayscale, with just one parameter: 

background(230);. This produces the same result as the three-parameter version.

Many other graphical applications use this RGB notation. If you’re unfamiliar with it, try a few 

different values from 0–255 in each of the background parameters to get used to this way of 

color mixing. You may also have seen hex values used to denote color values (as in HTML or 

Photoshop), such as #FF0000, which denotes red. This notation is similar; the three RGB values 

are expressed as hexadecimal (base 16) character pairs. Each two characters represent a color 

value: in the example, Red: 255 (ff), Green: 00, Blue: 00.1 

You can use hex values in Processing if you prefer. background(#E6E6E6); produces the same 

result as background(230, 230, 230); (E6 hexadecimal = 230 decimal).

Next, let’s look at the stroke.

2.2.2 Strokes, styles, and coordinates
Returning to the code walkthrough, these are the next two lines:

stroke(130, 0, 0); 

strokeWeight(4);

They tell Processing to set the color of your stroke (imagine this as your virtual pen) to a medium 

red (using RGB values again), and set the pixel thickness to 4.

After this, you draw a line in the stroke style you’ve just set:

line(width/2 - 70, height/2 - 70, width/2 + 70, height/2 + 70); 

For this function, the parameters are (startx, starty, endx, endy); but in this case, you haven’t 

simply passed static values. In the slot for each of the four parameters is a simple sum. The result 

of each sum is passed as the parameter. Remembering that you previously defined a width and 

height of 500 x 300 pixels, you can calculate that the resulting drawn line will be from point (180, 

90) to point (320, 220). (Coordinate values are always measured from upper-left.)

At this point, you may question why the function isn’t just written line(180, 80, 320, 220), because 

this would perform exactly the same action. The reason is that you’re trying to draw a cross 

relative to the center of the canvas. Yes, you know that your canvas is 500 x 300, because you 

set these values yourself only a few lines back; but if you use Processing’s knowledge of the 

1. For more information about hex notation, see www.web-colors-explained.com/hex.php.
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canvas width and height, instead of relying on your human faculties, then if you go back and 

change the size function at any point—say, to size(600,150) (go on, try it)—the crossed lines 

will still meet at the center point. 

An absolute coordinate (250, 150) never moves. But a relative coordinate (width/2, height/2) 

dynamically repositions itself relative to the size of the canvas.

The next line of code does the same, drawing a second line relative to the center point to 

complete the cross:

line(width/2 + 70, height/2 - 70, width/2 - 70, height/2 + 70);

This is a good point to introduce another programming concept: the variable.

2.2.3 Variables
You can see that you’re performing the same calculation (width/2 and height/2) multiple times. 

Wouldn’t it be neater if you did it only once? Your code will be easier to read, and it will execute 

faster if the processor has to do fewer calculations. 

When you get into more complex coding, you’ll see that one of the biggest limitations is speed. 

The CPU in any machine can perform only so many calculations per second. It may not matter 

at this point when you’re managing just a handful of instructions; but it won’t be long until you’re 

performing many thousand calculations per second, so it’s worth developing a consideration of 

efficiency. If there is ever a way to easily reduce the number of calculations you’re performing, 

you should take it. 

Try changing the two cross-drawing lines to the following:

float centX = width/2;

float centY = height/2;

line(centX - 70, centY - 70, centX + 70, centY + 70);

line(centX + 70, centY - 70, centX - 70, centY + 70);

Here you declare two variables to hold the result of a calculation. Think of a variable as a box in 

which you can put only one thing of a certain type; but the thing you put in may, um, vary (hence 

variable). You have to declare your box before you can use it, and give it a name (which can be 

anything you want), although you don’t necessarily have to put anything in it at first. The following 

is a valid way of declaring and filling a variable:

float centX;

centX = width/2;
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You declare a variable by defining the type of data you’ll be putting in it, in this case a float. 

A float? “What’s a float?” I hear you cry. Table 6.1 lists all the built-in variable data types you 

have to choose from. 

Next, let’s look at fill colors and alpha values. 

2.2.4 Fills, alpha values, and drawing order
Okay, we’ve thoroughly deconstructed the drawing of two crossed lines. The final two lines of 

the script draw the circle: 

fill(255, 150);

ellipse(width/2, height/2, 50, 50);

Table 2.1 The most common Processing data types

DATA TYPE EXAMPLE OF USAGE DESCRIPTION

char char varName ='a'; A letter or Unicode symbol, such as a or #. 

Note the single quotation marks used around 

the symbol.

int int varName = 12;  An integer (a whole number). Can be positive 

or negative.

float float varName = 1.2345;  A floating-point number. A number that may 

have a decimal point.

boolean boolean varName = true;  A true or false value. Used for logical 

operations because it can only ever be one of 

two states. (It can also be undefined, but this 

would resolve as false.)

byte byte varName = -127;  A less commonly used data type, which can 

only store a numerical value between -127 

and 128. It’s most useful when you need to 

communicate with the serial port, which you 

won’t do in this book.

String String varName = "hello";  A list of chars, such as a sentence. Note the 
capital S on String, signifying that this is a 
composite type (a collection of chars).
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What you’re doing here, before you draw the circle, is setting a fill color. The fill is the area within 

the lines of a shape. Using this fill value and the stroke you previously set for the crossed lines, the 

final command draws a circle (an ellipse with equal width and height). You set the fill color using 

the single color value 255 (the grayscale notation), which is white. But you also have a second 

parameter that sets the alpha value—the transparency of the color—again, a number 0–255.

An alpha value of 0 is fully transparent, whereas 255 is fully opaque. Any time you define a color, 

you also have the option of giving it an alpha value. If you like, go back and try adding an alpha 

parameter to your stroke color too. With the three-parameter RGB syntax, the alpha value is the 

fourth parameter:

stroke(130, 0, 0, 50);

The order in which you’ve written the functions means that you first draw two solid lines and then 

place a semitransparent circle on top of them. The list of functions that make up the program are 

executed in the order they’re given. If you change the order so that the ellipse is drawn before 

the crossed lines, the point where they cross will be above the semitransparent white circle, so 

the lines will appear solid. Try the following code if you don’t believe me:

size(500, 300); 

smooth();       

background(230, 230, 230);

float centX = width/2;

float centY = height/2;

stroke(130, 0, 0);  

strokeWeight(1); 

fill(0, 40, 0); 

ellipse(centX, centY, 30, 30);          

line(centX - 70, centY - 70, centX + 70, centY + 70); 

line(centX + 70, centY - 70, centX - 70, centY + 70); 

The first section of the code sets up the drawing and creates the background. Next, you set the 

stroke and fill. Finally, you draw the circle followed by two lines.

The order of execution is relevant not only to the layering of your drawing but also to the styles 

you set. Processing is state-based, which means that when you set a style (such as the color 

or weight of the stroke), that state will be maintained until you set it to something else. In the 

example, you call stroke and strokeWeight before drawing anything, so all the lines drawn are 
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of the same style. But you can change these settings as often as you please; whenever a line is 

drawn, it uses whatever setting was received last. Here’s an example that changes the stroke 

styles between shapes:

size(500, 300);        

smooth();

background(230, 230, 230);

stroke(130, 0, 0);  

strokeWeight(1);    

line(width/2 - 70, height/2 - 70, width/2 + 70, height/2 + 70);

line(width/2 + 70, height/2 - 70, width/2 - 70, height/2 + 70);

stroke(0, 125); 

strokeWeight(6);    

fill(255, 150);      

ellipse(width/2, height/2, 50, 50);

The result is shown in figure 2.6.

Figure 2.6 
Commands such as stroke, fill and strokeWeight set the drawing style before a shape is drawn.
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If you don’t want your ellipse (or any other shape) filled, you can use the function noFill (a function 

with no parameters) to remove the fill entirely. Similarly, if you want to turn off the stroke, call 

noStroke. 

This covers the basics of drawing in Processing. Feel free to take a little time to try a few 

commands to get used to the coordinate system; or perhaps pick a few other shapes from 

the Processing reference, such as rect to draw a rectangle or quad for a non-right-angled 

quadrilateral. I’m not going to give you any clues as to what the triangle function might create. 

Once you’re happy with your drawing skills, next you’ll learn a little more about how to organize 

code and control decisions, as we introduce animation. 

2.3 Structure, logic, and animation
So far your scripts have been nothing more than a short list of instructions to perform, after 

which they stop. But with anything above the most basic level of simplicity, you need to go a little 

further: you need ways to group instructions and make decisions. It’s time to step it up a notch.

2.3.1 The frame loop
This section introduces a concept that is Processing specific (although it exists in many other 

tools too): frames. The word frame can mean a variety of things within the computer sciences, 

but our meaning is the movie industry sense—a single still image which, if we flash enough of 

them faster than the eye can see, gives the illusion of animation. 

With Processing, a frame loop redraws the screen continuously. If you instruct Processing to do 

so, you can use this feature to add the dimension of time to your two-dimensional visuals and 

can create works that grow and move.

To enable this way of drawing to the screen, you need to begin putting your code in function 

blocks. A function block is a way of chunking a group of commands together. Processing sets 

aside two special blocks for frame-based scripting: setup() and draw(). The code inside the 

setup() function block is called once when the program launches, so it should contain all your 

initialization code—setting the canvas size, setting the background color, initializing variables, 

and so on. The code you write inside draw() is then called repeatedly, triggered on every frame. 

You can set the speed with which draw() is called by using the frameRate function. If you give 

it a number (12, 24, 25, and 30 are typical), it will attempt to maintain that rate, calling draw() 

regularly. Otherwise, it will perform the frame loop as quickly as the machine can handle.
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24 frames per second   

Increases diameter for next loop 

Clears background every frame  

Note that if you’re performing many complex instructions with every frame, your machine may 

not be able to process the code as fast as the frame rate you’ve specified. It will loop as fast at it 

can, which may result in not just a lower frame rate, but potentially an irregular one as well.

Let’s look at an example. Open a new script, and enter the code in the following listing. Don’t 

worry if you don’t understand all the instructions in the function blocks—a few more new concepts 

are being introduced here that you’ll step through in the next few pages.

Listing 2.1 Organizing code into setup() and draw() function blocks

int diam = 10;  

float centX, centY;

void setup() {    

  size(500, 300);

  frameRate(24);                                               

  smooth();

  background(180);

  centX = width/2;

  centY = height/2;

  stroke(0);

  strokeWeight(5); 

  fill(255, 50);     

}

void draw() {    

   if (diam <= 400) { 

    background(180);                                           

    ellipse(centX, centY, diam, diam);  

    diam += 10;                                               

  }

}

When you run this you’ll see a circle grow toward you in the output window, stopping when 

the diameter reaches 400 pixels (see figure 2.7). The diameter and the center points are kept 

in variables, with the center points calculated in setup(). The frame loop then checks that the 

diameter is smaller than 400, redraws the background, draws the circle, and increases the 

diameter by 10 for the next time it goes around the loop. The effect is that it draws a circle of 

diameter 10, 20, 30, and so on until the diam variable gets to 400. Note that the frame loop 

continues to be called over and over after the circle has reached its full size, but the draw() script 

is no longer drawing anything.
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As soon as you start using function blocks, you lose the convenience of being able to write 

commands outside of function blocks, which is what you’ve been doing so far. But don’t look 

back—that capability was just a feature to improve the learning curve (thanks, Processing). You’re 

welcome to continue programming long lists of sequential commands if you choose, seeing how 

you’re so good at it now, but you can only go so far with that formatting.

Notice that you still declare your variables outside of the function blocks. This is fine syntactically: 

declaring variables outside of the function blocks means the contents of those variables are 

available to any and all function blocks in the script. If you define a variable within a function 

block, rather than outside it, that variable is only available within that block. It’s good practice to 

do this if a variable is only needed within a single function (then the processor doesn’t have to 

remember that value and can free up its memory for some other use). 

This is called variable scope. Variables inside functions are called local: they only exist in that 

locality. Variables outside of functions are called global: they’re everywhere. A variable with an 

unintended scope is a common programming bug for amateurs and experts alike, so it’s one of the 

first things to check if your code is behaving unexpectedly. Many programmers use an underline 

(_) symbol to preface the names of global variables, so they don’t get confused. For example:

Figure 2.7 
A circle drawn using a frame loop. When you run the script, the circle grows 

from a diameter of 10 to 400.
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int _num = 20; 

void draw() {

    int inc = 10; 

    _num = _num + inc;

}

Here, the first line declares a global variable (_num), whereas the inc variable in the function 

block is local.

The chunk of script in listing 2.1 contains a number of other new concepts for the nonprogrammer. 

Before you continue playing with the frame loop, let’s look at those in more detail. 

2.3.2 Writing your own functions
First there is the function block itself. The syntax of a function block is

returnType funcName([parameters]) {

    // code in here

}

The return type of the setup() and draw() functions is void, which is Processing’s way of declaring 

that the function doesn’t return anything at all. There are no required parameters to these 

functions either. The other valid return types for functions are the same as the data types for 

variables: String, char, int, float, and so on. 

The idea of a function returning something will make more sense when you start creating functions 

of your own. Open a new script, and try this:

void setup() {

  int x = AddNumbers(1,2); 

  println(x);

}

 

int AddNumbers(int a, int b) {

   int returnValue = a + b;

   return returnValue; 

}
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The first function setup() is automatically called by Processing when the script is launched. But 

the second function AddNumbers is one of your own and won’t do anything until you call it. You 

do this within the setup() function: define an integer variable x, and set its contents to the return 

value of the custom function AddNumbers(1,2);. You define the return value of your custom 

function as an int also; otherwise, you’d get an error. You also define the data type of the two 

parameters the function requires, so it knows what to expect.

The custom function adds together the two parameters it’s passed, puts the result in a variable, 

and returns that variable. If you give a function a return type, there must be the keyword return 

somewhere within the function; otherwise it throws an error. After the function has completed 

its job and the returned value has been put into variable x, Processing continues to execute the 

commands in the setup() function block. The line println(x) outputs the value of this variable 

to the console window (the black window below the text editor in the PDE). This script has no 

visual output, so the output window is an empty canvas. 

2.3.3 Operators
Within your custom function is another new programming concept: an operator, returnValue = 

a + b. Nothing to worry about here—it’s just math. The full list of operators is in table 2.2.

You can group your operators and define the order they’re dealt with by using brackets, just as 

you do in conventional mathematical notation:

    float a = 45;

    float b = 5;

    float c = 4;

    float sum1 = (a + b) * (b * c);

    float sum2 = a / (b + c);

In this example, sum1 will contain 1000 (50 * 20), and sum2 will contain 5 (45 / 9).

Note that we use floats where the result of a sum may not necessarily be a whole number. 

There are also a few mathematical functions you’ll find useful:

• ceil()—Rounds up to the nearest whole number

• floor()—Rounds down to the nearest whole number

• round()—Rounds up or down to the nearest whole number

• min()—Returns the smallest of the list of numbers passed

• max()—Returns the largest of the list of numbers passed
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The three rounding functions are most useful when you’re converting from floating-point numbers 

to integer values:

int centX = floor(width/2); 

Without the floor() function, it would throw an error because if the width is an odd number of 

pixels, the result is floating-point number. The floor function prevents the error and ensures that 

you’re always dealing in nice whole numbers (and you’re not going to be able to see the difference 

if your center point is half a pixel off anyway).

The Processing language includes a lot more sophisticated math functions, some of which you’ll 

use later in this book’s experiments. If you want to leap ahead and try some of your own code-

based fun, look at the available functions in the Processing reference and play around. 

Table 2.2 Operators used in Processing

OPERATOR NAME EXAMPLE EXPECTED RESULT

+ Addition num = 45 + 5; num becomes equal to 50.

- Subtraction num = 45 – 5; num becomes equal to 40.

* Multiplication num = 45 * 5; num becomes equal to 255.

% Modulo num = 45 % 5; num becomes equal to the 

remainder of 45 / 5 (0).

/ Division num = 45 / 5; num becomes equal to 9.

++ Increment num++; The value of num increases by 1.

-- Decrement num--; The value of num decreases by 1.

+= Add assign num += 4; Adds 4 to the value of num, and 

puts the result back in num.

-= Subtract assign num -= 4; Subtracts 4 from the value of num, 

and puts the result back in num.

*= Multiply assign num *= 4; Multiplies the value of num by 4, 

and puts the result back in num.

/= Divide assign num /= 4; Divides the value of num by 4, and 

puts the result back in num.

- Negation minusnum = -num; Multiplies the value of num by -1.
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2.3.4 Conditionals
The final new element in the circle-drawing script is the conditional:

if (diam <= 400) { ... }

A conditional checks that a condition has been met before executing the code inside the block 

marked by the braces that follow it. In this case, the conditional asks whether the value of diam 

is less than or equal to 400. If it is, the code in the block executes. If not, the code in the block 

is skipped:

  // check a condition

  if (diam <= 400) {

      // execute code between the braces 

      // if condition is met 

  }

You can also use an else clause to provide a block of code to be executed if the condition isn’t met:

if (diam <= 400) {

    // execute this code if diam <= 400

} else {

    // execute this code if diam > 400

}

If you imagine the flow of execution as a trickle of water running down the script, by setting a 

conditional you’re effectively creating different channels for the stream to follow. With an if ... 

else clause, the stream can go one of two ways. if on its own means the stream either goes 

through the block or goes around.

The comparison operators you can use are as follows:

• == equal to

• != not equal to

• > greater than

• < less than

• >= greater or equal to

• <= less than or equal to

You can also use logic operators to group conditions

• || logical OR

• && logical AND

• ! logical NOT
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Here are a few examples:

String likeStr;

if ((likeStr == "pina colada") || (likeStr == "getting lost in the rain")) {

    println("come with me and escape");

}

Note also that conditions can be nested as deeply as you like. The following is valid code:

int man = 5; 

int devil = 6;

int god = 7;

if (man == 5) { 

    if (devil == 6) { 

        if (god == 7) { 

            goToHeaven("monkey");

         }

    } 

}

But in this case, the same result can be achieved as follows:

if ((man == 5) && (devil == 6) && (god == 7)) {

    goToHeaven("monkey");

}

Now you’re starting to get the idea of programmatic flow and trusting the logic to make decisions 

for you. Next, in the final chunk of programming essentials, we’ll look at one of the few things our 

calculating machines can do better than us humans: repetition. 

2.4 Looping
There is one last core programming concept you’ll need to in order to call yourself a coder: 

the loop. After that, we’re finished, I promise. The ability to take a single instruction or group 

of instructions and repeat it hundreds, thousands, or millions of times is a key advantage of 

programmatic drawing over any other comparable creative process. This is a very straightforward 

way to scale ideas.
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You have already encountered one working loop in the previous examples: the frame loop. The 

chunk of code within the draw() function is called every time a new frame is entered, so the 

code is executed repeatedly for as long as the program is running. You can use this to perform 

repeating actions if you want, but this  isn’t the only loop available to you. You can code your 

own loops, too.

Reload the circle drawing frame-loop script from a few pages back, and let’s try it.

2.4.1 While loops
A code loop looks something like this:

int bass = 99;

while (bass > 0) {

    println(bass);

    bass--;

}

println("how low can you go");

This outputs the value of bass to the console window 99 times. The while command checks a 

condition and, if the condition is met, executes the code inside the braces; it then loops back 

up to the top of the block. The execution continues to the final line only after the condition is no 

longer met (in this case, when bass is 0).

Note that if you don’t include the bass-- line inside the loop, which subtracts 1 from the number 

every time it loops, the condition will never be met and the loop will go on forever. This is one of 

those errors the compiler isn’t always clever enough to spot when you click Run. If your code 

includes an infinite loop, it can lock up your system, and you may have to force-quit Processing 

to escape it. So be careful out there, kids.

Let’s put this into action. Modify the circle script with the additions highlighted in the following 

listing, and then run it.

Listing 2.2 Drawing with a while loop

int diam = 10; 

float centX, centY;

void setup() {    

  size(500, 300);

  frameRate(24);  (continued on next spread)
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Increases diameter  
for next loop

Loop within loop

  smooth(); (Listing 2.2 continued)

  background(180);

  centX = width/2;

  centY = height/2;

  stroke(0);

  strokeWeight(5); 

  fill(255, 50);     

}

void draw() {

  if (diam <= 400) {

    background(180); 

     
    strokeWeight(5); 
    fill(255, 50);   

    ellipse(centX, centY, diam, diam);

    
    strokeWeight(0);     
    noFill();
    int tempdiam = diam;
    while (tempdiam > 10) {                                         
       ellipse(centX, centY, tempdiam, tempdiam);
       tempdiam -= 10; 
    }

    

    diam += 10;                                                     

  }

}

Here you have a loop within a loop. You copy the diam value into another variable; and then, 

every time you draw a circle of whatever diam you’re currently at, a second loop draws circles 

inward, decreasing the diameter back to 10 in 10-pixel jumps. You can see the effect in figure 2.8.

Notice how you have to add extra lines to reset the stroke and fill; otherwise, the next time the 

frame loop was triggered, the previous settings would be applied. 
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2.4.2 Leaving traces
There is actually a much easier way of drawing concentric circles though. Try the following.

Listing 2.3 Concentric circles drawn using traces

int diam = 10;  

float centX, centY;

void setup() {

  size(500, 300);

  frameRate(24);

  smooth();

  background(180);

  centX = width/2;

  centY = height/2;
  stroke(0);
  strokeWeight(1); 
  noFill(); 

}

void draw() {

  if (diam <= 400) {
    // background(180);    comment out this line 

    ellipse(centX, centY, diam, diam);

    diam += 10;

  }

}

Again, you see the same concentric rings from figure 2.8, but with fewer lines of code. The crucial 

change is that you comment-out background(180);, the command that clears the image every 

frame (and forces you to redraw everything every time). If you don’t clear the image, you draw over 

the top of the previous frame. The animation of the growing circle is a series of frames of circles 

at growing diameters. If you don’t clear the frame, you can see the traces your movement leaves. 

You can use this to great effect. Try changing the noFill(); line to fill(255, 25);, giving each circle 

a highly transparent white fill color (see figure 2.9). 

Even though the transparency is barely visible, the effect is accumulative. In the center, where 

more circles are layered atop each other, the white is deeper than on the edges where fewer 

circles are overlaid. 
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Figure 2.8  
Circles within circles, a loop within a loop

Figure 2.9 
By not clearing the frame every time you redraw, you can create subtle fades using alpha values.
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Square edges on lines

2.4.3 For loops 
There is one final loop to show you before we can go boil the kettle. The for loop is used when 

you want to iterate through a set number of steps, rather than just wait for a condition to be 

satisfied. The syntax is as follows:

for ([initial state]; [end condition]; [step]) {
    code to be executed

}

An example is probably the best way to see how this works. Open a new script, and enter the 

following:

void setup() {

  size(500, 300); 

  background(180);

  strokeWeight(4);

  strokeCap(SQUARE);                                        

  for (int h = 10; h <= (height - 15); h+=10) {

    stroke(0, 255-h);

    line(10, h, width - 20, h);

    stroke(255, h);)

    line(10, h+4, width - 20, h+4);

  }

} 

No frame loop this time, just a single block of code. The initial state of the for loop sets a variable 

h to 10. The code in the loop executes until h <= (height-15) (the end condition). Every time the 

loop is executed, the value of h increases by 10, according to the step you’ve defined (h += 10). 

This means the code inside the parentheses of the for loop will execute 28 times, with h set to 

10, 20, 30 … 270, 280.

Knowing that the h variable follows this pattern, you can use it in multiple ways. The lines you’re 

drawing are in 10-pixel steps down the canvas, because you use h for the y value. But the alpha 

transparency of the lines also varies as h varies: the black line gets lighter, and the white line 

gets darker (see figure 2.10).

You can also terminate loops from within the code block using the break; keyword. For example, 

if you wish to stop your loop as soon as the black line is entirely invisible (and the white line is 

fully visible), place the following line inside the loop:

if (h > 255) { break; }
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Okay new programmers, you now have a fistful of new concepts to get your heads around. There 

are a few more to come in later chapters, but these are the essential ones. Master these few, 

and you’ll have all the necessary skills to call yourself a coder and be able to hold your corner 

at a very boring dinner party. 

Plenty more programming concepts may be new to you in the remaining chapters of this book, 

but we won’t dwell on them quite as long as we have here. If you’re still struggling to get your 

head around the logic of the procedural processing of instructions, I suggest that you take the 

time to experiment with the small set of concepts introduced in this section, and also make 

use of the many great free resources at Processing.org (in particular, the code examples in the 

Learning section). 

Next, we’ll look at what you can do with your creations after you’ve finished coding them.

2.5 Saving, publishing, and distributing  
your work
The simplified syntax of Processing is perhaps its chief advantage, particularly for the amateur 

programmer; it greatly reduces the learning curve. But Processing also makes it significantly 

easier to publish your work and share it with the world.

Figure 2.10 
Demonstrating the for loop in action

Licensed to george legrady <legrady@arts.ucsb.edu>



2
G

enerative A
rt | P

earson

 41

P
rocessing: A

 P
rogram

m
ing Language for A

rtists
Before you publish your work you should save it. Save, if you haven’t already worked it out, is 

the fifth button on the toolbar (see figure 2.11)—the down arrow. When you first save a script, a 

folder is created with the name you provide in the dialog box. Your script is saved as a text file in 

this folder, sharing the same name, with the extension .pde appended. The reason for the folder 

is to keep things neat when you begin importing and exporting. 

You’ll notice that when loading and saving, Processing uses the term sketch to refer to the bundle 

of scripts and resources that go into a folder. I presume this is to increase the artist appeal, but 

I think the metaphor becomes rather limiting after a while. You’ll have to pardon me if I continue 

to refer to the text files as scripts and the bundle as the script folder. This way, you won’t end up 

sounding like an idiot if you ever find yourself having a conversation about similar concepts in 

some other programming language.

Once you have your script folder, you can free your pixels from the confines of the local output 

window in a number of ways. The first to try is clicking the Export button (the far-right arrow 

on the toolbar). Doing so creates a folder called applet within your script folder, containing 

everything needed to run the sketch in a web browser (see figure 2.12). If you launch the index.

html file in a browser, there’s your creation, ready to be uploaded to the web (if that is what you 

want to do with it).

Figure 2.12 
The script folder (sketch), containing the script (.pde) and an exported applet folder

Figure 2.11 
The toolbar
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To generate applications to run on the desktop, choose File > Export Application. This enables 

you to create standalone applications for OS X, Linux, and Windows, or all three at once. Again, 

the folder containing all you need for these installations is placed in your script folder.

2.5.1 Version control
Having shown you the handy Save button on the toolbar, I’m now going to advise you to stop 

using it immediately. A much more useful feature is available for organizing your work: Save As, 

which you can only access via the File menu (or using the keyboard shortcut Apple-Shift-S on 

the Mac). If you get into the habit of using Save As instead of just hitting Save, you’ll be prompted 

for a name every time you save. You can increment this name—HelloWorld_1, HelloWorld_2, and 

so on—leaving a version trail as you code.

This technique is called version control, and it’s useful to have in place to protect your work (it 

means you can always roll back to an earlier version). But it’s also useful for psychological reasons. 

If your work has a trail of iterations, it frees you to make more sweeping changes to your code, to 

take new directions, or to try stupid ideas, without worrying about doing anything catastrophic. 

This will, imperceptibly, make your coding bolder and more confident, in the same way that when 

you drive a bumper car at an amusement park, you feel safe knowing that no one is really going 

to get hurt no matter how crazily you yank the wheel. You tend to drive more recklessly than you 

would the family sedan.

This practice also enables you to revisit interesting accidents or follow strange tangents. There 

is little overhead to saving multiple versions; the scripts are just text files (rarely more than a few 

KB), so they won’t fill up your disk. 

This amazing feature may seem blindingly obvious to anyone new to coding, but you’d be 

surprised how this isn’t always easy to do in some other more sophisticated programming 

languages (usually because there are often many files with multiple dependencies upon each 

Warning: Java and the web
In order for your applet to run in a user’s browser, a recent version of Java must be 

installed. Java in the web browser doesn’t have the ubiquity of something like Flash, 

and the user isn’t prompted for automatic upgrades to their Java if their installation is 

out of date. Publishing Java to the web is often fraught with cross-browser difficulties.
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other). This is partly why different languages can have such different flavors. Some encourage 

a methodical, structured approach; while others, such as Processing (in its native PDE form, 

anyway), are more attuned to creative flurries. 

2.5.2 Creating stills
The final destination of a generative art project isn’t always an application or animation, nor may it 

be intended for the computer screen—in which case you’ll be interested in other forms of output. 

Capturing still images from an application is relatively straightforward. You can export screenshots 

of the output window in a variety of formats as the application runs. If you put the following 

function into your code, it captures a snap at that point and saves it in your script folder:

saveFrame("screen-####.jpg");

The #### is replaced with the current frame number when the file is saved, to ensure that 

Processing doesn’t replace the image every frame. If you want to save as .png, .tif, or .tga, these 

formats are supported; you just need to change the extension in the filename parameter. You 

can also add folder paths to the URL.

If you place a saveFrame function in the draw() frame loop and use the hash syntax for your 

filename, you’ll fill your script folder with a succession of sequentially named image files. If it’s 

just a single image you’re after, you’ll end up with a folder full of imagery that you’ll need to sort 

through at some stage; so you may want to consider writing a conditional (an if statement) to 

snap an image only if certain criteria are met. It will likely require some pretty complicated logic 

for the machine to determine a good shot from a bad one, so the best way to capture the perfect 

still is probably to rely on your own eye instead. Include this function within your code:

void keyPressed() {

  if (keyCode == ENTER) {

    saveFrame("screen-####.jpg");

  }

}

The keyPressed() function is a built-in event function, called whenever a key is pressed. The 

previous function checks whether the key pressed is Enter and, if so, takes a snapshot and 

saves it in the script folder. 
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2.5.3 Using a still as an alt image
If you’re creating work for the web, here is a useful tip. You may have noticed in figure 2.12 that 

when you export an applet, it includes a loading.gif image file, which the browser displays while 

the application is loading or if it fails to load. If a user’s Java is incompatible, the loading image 

may be all they see; so a nice touch when delivering your works to the web is to replace this 

loading image with a still of the work that is loading. You do this by modifying the generated 

index.html file. Look for this line:

<param name="image" value="loading.gif" />

If you replace loading.gif with a reference to your own image, it provides a failsafe for users whose 

browser isn’t capable of running the Java application. At least they’ll see a still of your work, even 

if they can’t see it in action. 

Next up: the moving image as an output format.

2.5.4 Creating video
A saveFrame function within the draw() loop creates a folder full of screenshots of every frame 

in a running application. What’s more, the image files are numbered sequentially if you use the 

hash syntax for your filename. This is useful for software such as QuickTime Pro, which can 

open an image sequence (available from the File menu in QuickTime Pro) to create a movie file.

The joy of creating for video is that you no longer have to worry about processing power and 

maintaining a smooth frame rate in Processing. Even if you’ve specified a frame rate using 

the frameRate parameter, the sketch will only run as fast as your machine allows. If you’ve 

overloaded it with some processor-heavy fractal-generation algorithms (which you will in part 3 

of this book, believe me), a running application can still crawl. But if you export each frame as 

an image, to use video as your final medium, you have to take frame rate into account only when 

you build the movie from the image sequence. The movie will run as fast as you tell it, even if the 

image sequence it was generated from took many hours to create. 

It’s common, when creating work for video, to leave a dedicated machine rendering frames 

overnight, and only see the result when you import the generated frames into your movie maker 

the next day. Obviously, this removes the immediacy of feedback that you’ve become used to 

when working with software, and you can start to get an appreciation for the computer scientists 

of previous generations who coped with programming via punched cards and mainframe 

computers. For more complicated movies, you’ll probably find yourself developing a system 
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of working with wireframes—simplified or abstracted versions of the finished piece—while you 

develop, and only upping values/reenabling textures/knitting together features when you run 

a render.

If you don’t have (the incredibly useful) QuickTime Pro or a similar application capable of 

sequencing images into a movie, Processing can create QuickTime movies from within your 

code using the Video library, which also enables the use of a webcam as an input device. We 

won’t be covering the huge range of available Processing libraries in these pages, as it’s a topic 

worthy of a book in itself, but they aren’t difficult to use. You can explore the functions provided 

by the Video library at www.processing.org/reference/libraries/video/. 

2.5.5 Frame rates and screen sizes
Processing snaps frames at whatever size you’ve specified for the stage, so a movie can be any 

dimension. Similarly, the frame rate you specify when importing the sequence is usually arbitrary. 

But there exist various standards that are used for the web and broadcast media. 

When it comes to frame rates, 25 fps (frames per second) is the most common for work intended 

to be viewed on computer monitors or TVs, although 24 fps and 30 fps are also used in the US 

(this is the main difference between the 24 fps NTSC format of video that is standard in the US, 

and 25 fps PAL/SECAM used elsewhere). HDTVs use higher frame rates of 50 or 60 fps because 

it’s been proposed that somewhere around the 50-60 fps mark is the limit of flicker-fusion—

the point where the human eye can’t tell it’s watching frames. If you imagine a movie as being 

alternating black and white frames, at frame rates below 50-60 fps, a person would see it as a 

flicker; above this limit, it would be seen as grey. This said, a certain amount of lo-fi flicker isn’t 

prohibitively uneasy on the eyes, and an animation can still look smooth at a frame rate of 12 or so.

With screen dimensions, a widescreen format is the most common, usually a 16:9 ratio (such 

as 1024 x 768 or 1280 x 720). The best practice, though, is to consider where you may want to 

show your video, and aim for that. Projecting a work onto the wall of an art gallery will doubtless 

require a different screen ratio than a work designed for mobile phone. 

If you’re creating video for the web, screen, or TV, the 16:9 standard is pretty ubiquitous. YouTube, 

for example, currently recommends 1920 x 1080 or 1280 x 720. If you don’t use the 16:9 ratio 

when you upload to YouTube, black borders are automatically added to your movie, padding it 

to fit. Vimeo isn’t too dissimilar, currently supporting 640 x 480 standard definition, 853 x 480 

widescreen DV, and 1280 x 720 HD.
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2.5.6 Mobile devices, iPhone/iPad, and Android
Processing, as you’ve discovered, is based on Java. Most modern mobile phones run Java. Does 

this mean you can create mobile-phone applications in Processing? The answer is yes. Kinda.

If you wish to develop for devices that use Google’s Android operating system, it couldn’t be 

simpler. Processing enables you to publish sketches to an Android emulator or an attached device 

as easily as you can export them to the desktop. The 1.5 release of the Processing IDE added a 

new button to the toolbar, which toggles the view between “Standard” and “Android”. If you select 

Android Mode, the run and export functionality will be overridden to target a device. You will need 

to have the Android SDK installed on your machine to use this though. Full instructions on how 

to set this up are at http://wiki.processing.org/w/Android. There are also two great tutorials on 

creativeapplications.net that talk through the creation of your first Android app2 and publishing 

it for the Android Market3, by Jer Thorp and Jerome Saint-Clair respectively.

If you’re targeting a wider range of devices, including older mobile phones, Processing also has 

this capability, but it’s not as fully featured as the Android route. The Java that most current mobile 

phones run is special flavor called Java Micro Edition (Java ME), which means there is a special 

flavor of Processing too to go with it. Mobile Processing isn’t a library but an entirely separate 

application. It has a stripped-down subset of Processing’s functions but includes extra functions 

for dealing with touchscreen interaction, memory management, and other functionality that’s 

specifically relevant to mobiles. It has a similar IDE, but you also need to download a wireless 

toolkit (WTK)—basically, a phone emulator—to develop for these very particular mini platforms.

I won’t go into further details here but will only say that, yes, if mobile is a platform you want to 

target, the majority of the material in this book can be applied to Mobile Processing as easily 

as it can Processing. To get started, you can download the IDE and WTK from http://mobile.

processing.org/download/. As with Processing, the project is well supported, and a number of 

tutorials and a reference are available on the site to get you started.

The iPhone and iPad though, are a different matter. When the iPhone was launched in the UK, 

the Advertising Standards Authority banned an Apple advertisement that claimed the iPhone 

gave you access to “all the internet,” on the basis that if a device doesn’t run Java or Flash, it 

can’t really claim to cover “all the internet.” At the time of writing, neither Java nor Flash runs on 

the iPhone, either natively or in the web browser. To develop for Apple platforms, you need to 

learn Objective-C and be prepared to pay to publish through Apple’s App Store. 

2. http://www.creativeapplications.net/android/mobile-app-development-processing-android-tutorial/

3. http://www.creativeapplications.net/android/from-processing-to-the-android-market-tutorial/
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This situation may, I hope, change over time. Small steps are already being made. But at the 

time of writing, the huge success of the iPhone, iPad, and the App Store doesn’t really put any 

pressure on Apple to encourage development using other technologies. Recent versions of Flash 

include a compiler to create iPhone apps, even though Apple’s Terms and Conditions prohibit its 

use. There is also a comparable, and promising, initiative for Processing, called iProcessing. But 

non-native conversions from one language to another will never compete with native Objective-C 

applications in terms of performance.

If you want a quick way to see your Processing sketches on your iPhone, there is one beautifully 

crazy solution. I’ve already mentioned Processing.js, the JavaScript port of Processing. It’s quite 

a little marvel. It uses HTML5’s Canvas element to draw shapes directly in the web browser. 

Like Mobile Processing, it supports only a subset of Processing functions, but it has the added 

power of being able to mix JavaScript and Processing code together (they’re similar in syntax). 

You can find the download and introduction to Processing.js at www.processingjs.org/. It exists 

as a few hundred lines of JavaScript that you include in a webpage. You’ll need a little experience 

with using JavaScript within HTML to get it working in your own web pages; but if you aren’t 

blessed with such skills, you can get straight into Processing.js via HasCanvas, an online interface 

developed by Robert O’Rourke. It enables you to program direct to the HTML5 Canvas tag in real 

time. You can find it here: www.hascanvas.com/. Anything you create using Processing.js can 

be seen just about anywhere you can view the web, including your favorite irritatingly proprietary 

but highly fashionable devices.

2.6 Summary
This brings you to the end of your introduction to Processing. You now have a tool grasped 

firmly in your eager little fists and are ready for some creative coding. You have the basics of 

programmatic drawing and a variety of options for media in which to publish—web, print, video, 

or mobile device. You’ve also learned a set of programming principles that will serve you well 

with any programming languages, not just Processing.

Next, we’ll bring the focus back to how you create art in the generative style. In chapter 3, we’ll 

look at randomness, noise, and the ways you might go about shrugging off the precise computer 

way of doing things and allow the pen to slip from your fingers a little.
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“If people do not believe  
   that mathematics is simple,  
it is only because they do not realize  
  how complicated life is. ”John von Neumann, speaking in 1947
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But precision is of only limited interest to us in the context of generative art. 

There is a certain joylessness in perfect accuracy; the natural world isn’t 

like that. If our art were to achieve such perfection, it might be dismissed 

as overly mechanical.

Obversely, a l though we may crave forms with imper fection and 

unpredictability, we don’t want that imperfection to wander too far into 

indistinction, either. We’re looking for the sweet spot: that balance between 

the organic and the mechanical, between chaos and order. To find this, we 

may need to move away from the efficient, programmatic way of drawing 

lines and nudge the process toward something a little less deterministic.

In this chapter (and the next), I’ll explain and demonstrate a core principle 

behind my particular approach to programmatic art: breaking down even 

the simplest of processes, and allowing a touch of chaos to creep in. The 

“right” way to draw a line, according to a machine, is always the most efficient 

and accurate way of getting from point A to point B. But from an artistic 

standpoint, it’s the “wrong” way that is the often the most interesting. 

3
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3.1 Randomness and not-so-randomness
It may be argued that all generative art has to include a degree of randomness; without 

randomness, there can be no unpredictability, can there? This isn’t strictly true. A call to a 

random-number-generating function isn’t always necessary in order to come up with something 

that appears unpredictable to our limited human calculating faculties. Mathematical formulae 

above a certain degree of sophistication always return predictable results, yes, but the result 

may only be predictable to another calculating device of comparable sophistication. It may be 

beyond what a human observer can project.

Almost all programming languages include a function equivalent to Processing’s random function, 

but returning a truly random number is an impossibility for a predictable machine. Computer-

generated randomness is always pseudo-random, using mathematical formulae, often including 

a reference to the machine’s internal clock as one of its factors to ensure that no two calculations 

give the same result. The formulae behind these functions are an art in themselves, but you need 

only trust that a returned random value will be good enough to fool us dumb humans.

I may make light of the topic, but pseudo-randomness is a significant problem in computer 

science, mainly because of its use in data encryption. If you want to get really anally retentive 

about your randomness, you’ll love the random.org project run by Dublin Trinity College’s 

School of Computer Science. It has an online API for returning “true” random numbers based 

on atmospheric noise. But this only moves the debate into the realm of chaos math and the 

questionable quantum predictability or unpredictability of the natural world.

Using random is simple. A random function typically returns a value in the range 0 to 1, which you 

can then manipulate to give a value within any given range. In Processing, you pass a parameter 

to give a maximum value, or two parameters to return a number within a range. For example, if 

you want a number in the range 20 to 480, you can use

float randnum = random(460) + 20;

Or you can also write it like this: 

float randnum = random(20, 480);

I prefer the first notation, even though the range is less obvious upon reading. Later in this 

chapter, you’ll use functions that can only return values between 0 and 1; you won’t have the 

convenience of passing a range to them, which is why I force myself to get used to thinking of 

variance without Processing’s more convenient convention. Without using any parameters, you 

can express any random range as follows:

float randnum = (random(1) * (max+min)) – min;
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Let’s apply this to the drawing of a line. If a line is what you’re after, there is an easy way to connect 

point A to point B (see figure 3.1):

size(500,100);

background(255);

strokeWeight(5);

smooth();

stroke(20, 50, 70);

line(20,50,480,50);

Randomizing the line is then just a matter of replacing the parameters. Note how you use the 

width and height constants, even though you know the width is 500 and the height is 100. It 

means the script will adapt to these relative values if you decide to change width or height later. 

Even if you have no intention of doing such a thing, it’s a good habit to get into:

stroke(0, 30);

line(20,50,480,50);

stroke(20, 50, 70); 
float randx = random(width);
float randy = random(height);

line(20,50,randx, randy);

Figure 3.1 
The correct way to draw a line
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Figure 3.2 shows a possible output. Without wanting to be too judgmental of your first piece 

of generative drawing, this is rather uninteresting. It’s just not doing it for me I’m afraid. Still the 

line is too controlled, too tightly gripped by the machine’s way of drawing. To overcome this, we 

need to take a step back from the language’s useful conveniences and deconstruct it a little. 

3.2 Iterative variance
We know the computer is capable of getting from point A to B with maximum efficiency, but 

efficiency isn’t necessarily useful aesthetically. To make things more interesting, we need to take 

a step back from the “best” way of drawing a line and look at some less optimal options. You 

could start by breaking the line-drawing process into a series of steps. 

The following code chunk uses a for loop to iterate through the x position in 10-pixel steps, 

keeping track of the last x and y positions so it can draw a micro-line back to the previous point. 

The line is constructed as a chain of 46 links. The resulting image in the output window will look 

exactly the same as that shown in figure 3.1: a line from point 20,50 to 480,20. But you’re now 

using a few more lines of code:

int step = 10;

float lastx = -999;

float lasty = -999;

float y = 50;

int border = 20;

for (int x=border; x<=width-border; x+=step) {

  if (lastx > -999) {

     line(x, y, lastx, lasty); 

  }

  lastx = x;

  lasty = y;

}

Figure 3.2 
A rather uninteresting random line
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If this were an old lady you were helping across the road, and you insisted on instructing her every 

footstep—“Now move your left foot a few centimeters, then your right …”—she’d probably think 

you were crazy, and be checking her purse. But it’s impossible to patronize a computer program. 

Believe me, I’ve tried. Pointless, tedious, and seemingly arbitrary instructions are perfectly fine 

and won’t be criticized. Our machines are capable of carrying out dumb instructions as smoothly 

and efficiently as they would execute “good” code.

This staccato drawing style enables you to start adding a more interesting flavor of randomness 

to your line. Add an instruction to vary the y value with every step:

int step = 10;

float lastx = -999;

float lasty = -999;

float y = 50;

int borderx=20;

int bordery=10;

for (int x=borderx; x<=width-borderx; x+=step) {
  y = bordery + random(height - 2*bordery);  

  if (lastx > -999) {

     line(x, y, lastx, lasty); 

  }

  lastx = x;

  lasty = y;

}

The first line in the loop assigns y a random value between 10 and 90. The result is shown in 

figure 3.3.

Figure 3.3 
Introducing randomness to the y position
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How easily the line develops an unpredictability. The line will be different every time you run the 

script. But perhaps you’ve wandered too far in the direction of chaos. Let’s pull back on the 

randomness reins a little. In the following example, instead of just making the y position random 

in a range, you add or subtract a random amount from the previous y value, creating a more 

natural variance:

float xstep = 10;
float ystep = 10;
float lastx = 20;
float lasty = 50;

float y = 50;

for (int x=20; x<=480; x+=xstep) {

  ystep = random(20) - 10;  //range -10 to 10
  y += ystep;

  line(x, y, lastx, lasty);

  lastx = x;

  lasty = y;

}

The result is shown in figure 3.4.

This is starting to look better. Yes, a raggedy line is what I’m calling “better” in this context: the 

line is less controlled, yet not so chaotic as to be useless.

You’ve drawn only a single line so far, but already you can see a touch of the analogue creeping 

into the output. You can refine this further to get a gentler progression, or dive in and start drawing 

more shapes using this method; but first I want to show you a much easier way of giving your 

lines naturalistic forms. Wherever you can use random, you can use noise, which is what you’ll 

play with next. 

Figure 3.4 
Random variance looks better than plain randomness.
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3.3 Naturalistic variance
There aren’t many programming awards that your mom has heard of. So on the day Ken Perlin 

bought home an Oscar—an Academy of Motion Picture Arts and Sciences award—for an 

algorithm he created, I’d imagine it was a rare case of a programmer’s mother phoning all her 

friends and praising his decision to devote his life to communing with the calculating machines. 

The Technical Achievement Oscar that Ken was (rather belatedly) awarded in 1997 was for his 

work on procedural textures developed while working on the graphics for the science fiction film 

TRON (1982). TRON was a pioneering movie in both subject matter and production. It made a 

hero of a video gamer at a time when video games were seen as an idiotic frivolity; and much of 

the film took place in virtual reality, two years before William Gibson’s Neuromancer was credited 

with popularizing the concept of cyberspace. Most significantly, though, it was one of the first 

films to rely heavily on computer graphics for its special effects.

Ken’s job was to develop textures to give 3D objects a more natural appearance. He was looking 

for ways to generate randomness in a controlled fashion, much like we were in the previous 

section. The function he came up with to do this, his Perlin noise, is really just another pseudo-

random function—but it’s a bloody good one, one specifically attuned to natural-looking visuals. 

If you’re interested in the logic behind it, you can view the code, along with examples of Ken’s 

applications of it, on his website: http://mrl.nyu.edu/~perlin/.

By the late 1980s, Ken Perlin’s noise functions were pretty much ubiquitous. It’s probably safe 

to say that if you’ve ever played a graphical console game, or seen a computer-animated film, or 

seen CGI used in any movie made in the last 20 years, you’ve seen Ken’s work in action. Now, 

with Processing, Ken’s algorithms are encapsulated into a simple function—noise—that enables 

you to harness in your own creations the same naturalistic variance seen on the big screen.

3.3.1 Perlin noise in Processing
noise is generally used to produce a sequence of numbers. You pass it a series of seed values, 

each of which returns a noise value between 0 and 1 calculated according to the values that 

precede and follow it. It doesn’t matter where you start the sequence of values, but it’s a good 

idea to randomize the start point; otherwise, the resulting line will be identical every time. Small 

increments, between 0 and 0.1, usually give the best results.
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Figure 3.5 
Perlin noise: a possible output of listing 3.1

Figure 3.6 

Perlin noise, with ynoise increment of 0.03 for every x pixel
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Between 10 and 90

Probably the best way to get an appreciation of noise is to try using it. Listing 3.1 takes the script 

from the last section and replaces the call to random with a noise sequence.

Listing 3.1 Perlin noise

size(500,100);

background(255);

strokeWeight(5);

smooth();

stroke(0, 30);

line(20,50,480,50);

stroke(20, 50, 70);

int step = 10;

float lastx = -999;

float lasty = -999;
float ynoise = random(10);

float y;

for (int x=20; x<=480; x+=step) {

  y = 10 + noise(ynoise) * 80;                               

  if (lastx > -999) {

     line(x, y, lastx, lasty); 

  }

  lastx = x;

  lasty = y;

  ynoise += 0.1;

}

In this example, the sequence of values starts somewhere between 0 and 10 (random(10)) and 

increments by 0.1 every step of the loop. The call to noise() for every seed value in the sequence 

returns a floating-point number between 0 and 1, which you adapt (multiply by 80, add 10) to 

produce a useful y value between 10 and 90. The result (one possible result, anyway) is shown 

in figure 3.5.

For a smoother result, you can reduce the x step to 1, so the line steps only one pixel at a time 

horizontally; reduce the ynoise step accordingly. Figure 3.6 shows a single-pixel x step with 

ynoise steps of 0.03.

It’s a handy trick. But don’t think Ken Perlin is the only person who can write an interesting 

variance function.
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sin returns -1 to +1

3.3.2 Creating your own noise
As mentioned at the start of this chapter, when you call a function such as noise or random, 

you aren’t plucking a value from the ether; the function returns the result of a calculation. The 

calculation may be deliberately abstract, as in the case of random—so abstract as to appear 

utterly unpredictable (although, obviously, it is predictable if you know the formula), but it’s still 

just a calculation. I don’t want you to think these are the only calculations you can use to spice 

up the drawing of a line. You have the whole world of mathematics to explore.

Let’s start with a few easy formulas. Like noise, the trigonometric functions sin and cos also return 

values that vary smoothly according to arguments you pass to them. With these two mathematical 

functions, you pass an angle (in radians), and the functions return a value between -1 and 1.

To visualize this, let’s reapproach the straight line once more, using some mathematics of a 

distinctly smoother flavor. Try listing 3.2.

Listing 3.2 Drawing a sine curve

float xstep = 1;

float lastx = -999;

float lasty = -999;

float angle = 0;

float y = 50;

for (int x=20; x<=480; x+=xstep) {

  float rad = radians(angle);

  y = 50 + (sin(rad) * 40);                                       

  if (lastx > -999) {

    line(x, y, lastx, lasty);

  }

  lastx = x;

  lasty = y;

  angle++;

}

This code produces the curve shown in figure 3.7.

If you replace sin with a cosine function (see figure 3.8), the result is similar. Sine and cosine are 

used to calculate the points around a circle (more of that in the next chapter), so it’s unsurprising 

that the values they return are a nice smooth variance.
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Figure 3.8 
A cosine curve. Not too dissimilar from a sine curve.

Figure 3.7 
A sine curve
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Figure 3.11 
The customRandom function in action. It isn’t quite as random as random.

Figure 3.10 
sin cubed, with a soupçon of noise

Figure 3.9 
A line constructed from the return values of sin cubed
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Having set out to experiment with chaos, this smooth predictability may seem useless. But that’s 

only because the calculation is too simple. It doesn’t take many degrees of abstraction before 

it starts looking like the unpredictability of a random or noise function.

How does it look if you cube sin (see figure 3.9)?

y = 50 + (pow(sin(rad), 3) * 30);

Or, how about if you add a bit of noise too (see figure 3.10)? Is that cheating?

y = 50 + (pow(sin(rad), 3) * noise(rad*2) * 30);

This is the basic principle: by mixing up a few mathematical transformations, you can start to 

get interesting and unique lines. Let’s put this principle into action.

3.3.3 A custom random function
The problem with random, as you’ve discovered, is that it’s just too damn random. Perhaps if 

you can transform the randomness into something a little more predictable, it may have more 

aesthetic value. 

First, let’s create a custom function:

float customRandom() {   

   float retValue = 1 - pow(random(1), 5);

   return retValue; 

}

Then, use this function where you calculate the y position:

y = 20 + (customRandom() * 60);

What you’ve done with this function is raise the random number to the power of five (see figure 

3.11). If you were to square the random number, you’d get a returned value that tended more 

toward 0. If you were to raise it to the power of a half, the number would tend toward 1. Taking 

it further, raising it to the power of 5 (or, in the other direction, 0.1 as another example), you get 

a range of random results that are, well, less random. 

You can experiment further with other transformations within this function. You can even rewrite 

it so it doesn’t use the random function at all—instead, come up with a calculation so convoluted 

that it appears random, the same way other pseudo-random functions work. 
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3.4 Summary
All we’ve done in this chapter is look at various different ways of drawing a single line: leaving 

behind the convenience of Processing’s built-in line function, and discovering more interesting 

possibilities by iterating through the line a pixel at a time. Through this mechanism, you can add 

some attractive flavors of variance, freeing your line from its mechanical perfection.

In the next chapter, having mastered the art of messing up a simple job like drawing a straight line, 

you’ll apply this technique to something a little more substantial. Prepare yourself to rediscover 

the joys of trigonometry, as we look at that simplest of shapes, the circle.
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Until sometime in my late twenties, I found myself making Flash games 

for a l iv ing, and more and more I found bits of half-remembered tr ig 

proving useful.

In this chapter, we’ll play with unconventional ways of drawing circles, for 

which we’ll need a little trig. In the same way we wandered away from the 

useful convenience of the line function in the last chapter, we won’t rely 

on Processing’s ellipse function here. Instead, by working out the math 

ourselves, we’ll be able to tease out a more nonmechanical, imprecise way 

of drawing this one shape. Many of my own works have been based on this 

single idea—rotational drawing algorithms—and so I’ll offer one of them 

as a case study later in the chapter.

4
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4.1 Rotational drawing
It didn’t take much googling to discover that, after subjecting my poor adolescent brain to two 

years of A-level mathematics, all the trig I’ve ever really needed to know fits quite easily onto the 

back of a postcard. I scribbled the arcane markings you see in figure 4.1 sometime during my 

coding adolescence (a period I don’t think I’ve ever really left). I’ve had this card tucked into a 

book in my office for more than 10 years now, and I’ve never needed much more (although the 

book it’s tucked into has changed many times).

We’ll use a little of that trig now, as in the same way we deconstructed the drawing of a line, we 

vandalize the circle. 

Figure 4.1 

All the trig I’ve ever needed fits on the back of a postcard.
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4.1.1 Drawing your first circle
Let’s start with the easy way of drawing a circle: 

ellipse(x, y, diameter, diameter);

All you need for this method is a center point, width, and height, width and height both being 

equal to the diameter when you’re drawing a circle. But there is a lot more fun to be had if you 

break it down a little. To do so, you’ll use two equations from my postcard cheat-sheet: sin x = 

opp/hyp, and cos x = adj/hyp. The sine of angle x is equal to the opposite over the hypotenuse. 

The cosine of angle x is equal to the adjacent over the hypotenuse. 

Knowing the center point of the circle, the hypotenuse between the center and a point on the 

circumference is the radius. The opposite and adjacent then correspond to the difference in x 

and y positions from the center point. By jigging the equations, you can calculate the coordinates 

of any point on the circumference of a circle relative to the angle as follows:

X = centerX + (radius * cos(angle));

Y = centerY + (radius * sin(angle));

Figure 4.2 shows the circle drawn using the code in listing 4.1. To highlight the math in action, 

I’ve marked the steps of the loop as points. 

To complete the circle, you would draw lines connecting these points. Increments of 5 degrees 

are smooth enough for this example, but you can decrease this increment later if you want.

Figure 4.2 
Drawing a circle using trigonometry: the output of listing 4.1

Radians and degrees
Angles used by trigonometric functions are in radians, not degrees. One radian is 

equal to 180/π, so a full revolution of a circle (360 degrees) is 2π radians. If you aren’t 

comfortable with radians, you can work in degrees and convert before calling a 

trigonometric function. The formula is on my postcard: radian = degrees * (180/π ), but 

Processing has two handy conversion functions already built in - degrees and radians. 
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360-degree loop 

Converts from degrees  
to radians

Listing 4.1 Drawing a circle: first the easy way, then using trigonometry

size(500,300);

background(255);

strokeWeight(5);

smooth();

float radius = 100;

int centX = 250;

int centY = 150;

stroke(0, 30);

noFill();

ellipse(centX,centY,radius*2,radius*2);

stroke(20, 50, 70);

float x, y;

float lastx = -999;

float lasty = -999;

for (float ang = 0; ang <= 360; ang += 5) {                   

  float rad = radians(ang);                                   

  x = centX + (radius * cos(rad));

  y = centY + (radius * sin(rad));

  point(x,y);

}

That’s all you need. That’s as hard as the trig is going to get within these pages. You now have a 

systematic way of drawing a circle; the next job is to begin tweaking it into something less rigid. 

Figure 4.3 
A few minor tweaks, and the circle becomes a spiral.
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                              Loops four times

4.1.2 Turning a circle into a spiral
Now that you have greater control over the drawing, you can perform tricks like turning a circle 

into a spiral. To do so, you simply increase the radius as the angle turns. Note that you’ll need to 

turn more than just 360 degrees, though. The required changes to the code are highlighted in 

the following listing, and the output is shown in figure 4.3.

Listing 4.2 Code changes required to turn a circle into a spiral

radius = 10;              

float x, y;

float lastx = -999;

float lasty = -999;

for (float ang = 0; ang <= 1440; ang += 5) {                

  radius += 0.5;

  float rad = radians(ang);

  x = centX + (radius * cos(rad));

  y = centY + (radius * sin(rad));

  if (lastx > -999) {

    line(x,y,lastx,lasty);

  }

  lastx = x;

  lasty = y;  

}

So far, so boring. Let’s add some noise. 

4.1.3 Noisy spirals
Listing 4.3 increments the radius as before but also varies it by a rather large noise factor. A 

possible output is shown in figure 4.4.

Listing 4.3 Adding noise to the spiral

radius = 10;

float x, y;

float lastx = -999;

float lasty = -999;
float radiusNoise = random(10);

for (float ang = 0; ang <= 1440; ang += 5) {

  radiusNoise += 0.05; (continued on next page)

Licensed to george legrady <legrady@arts.ucsb.edu>



70

Figure 4.4 
The spiral, with noise. Is that a butterfly in the middle there?

Figure 4.5 
The spiral code turned up to 11
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  radius += 0.5; (Listing 4.3 continued)

  float thisRadius = radius + (noise(radiusNoise) * 200) - 100;

  float rad = radians(ang);

  x = centX + (thisRadius * cos(rad));

  y = centY + (thisRadius * sin(rad));

  if (lastx > -999) {

    line(x,y,lastx,lasty);

  }

  lastx = x;

  lasty = y;  

}

I hope you agree that by the time you’ve reached this stage, you’re starting to see something 

interesting emerging—something you might call generative. These shapes have a basis in 

mathematical seeds you’ve programmed, but there is enough randomness about the way they’re 

drawn that they’re taking on a form of their own.

The next step—and I firmly believe that, if in doubt, this should always be your next step—is to 

multiply it all by 100 (see figure 4.5).

In this version, you use a for loop to draw the same spiral 100 times. You also lighten the line 

weight; and for each spiral, you randomize the stroke color, the alpha, the starting angle, the 

end angle, and the angle step. The full code is in the following listing. 

Listing 4.4 100 spirals, with noise

size(500,300);

background(255);

strokeWeight(0.5);  

smooth();

int centX = 250;

int centY = 150;

float x, y;

for (int i = 0; i<100; i++) {                                          

  float lastx = -999;

  float lasty = -999;

  float radiusNoise = random(10);

  float radius = 10; (continued on next page)
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Randomizes  
spiral aspects

  stroke(random(20), random(50), random(70), 80);                (Listing 4.4 continued)

 

  int startangle = int(random(360));                                   

  int endangle =  1440 + int(random(1440));                            

  int anglestep =  5 + int(random(3));                                 

  for (float ang = startangle; ang <= endangle; ang += anglestep) {

    radiusNoise += 0.05;

    radius += 0.5;

    float thisRadius = radius + (noise(radiusNoise) * 200) - 100;

    float rad = radians(ang);

    x = centX + (thisRadius * cos(rad));

    y = centY + (thisRadius * sin(rad));

    if (lastx > -999) {

      line(x,y,lastx,lasty);

    }

    lastx = x;

    lasty = y;  

  }
}

Figure 4.6 

Spiral Stairs (2009)
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It’s a mess, but it’s an interesting mess. I wouldn’t print this on a greeting card quite yet, but it’s 

a start. I do hope you can see how the application of noise and/or randomness to a systematic 

drawing process can lead us toward aesthetically interesting results (see figure 4.6, for example). 

Through this process of abstracting a mathematically constructed shape, you move the visual 

from order toward chaos. As long as you don’t go too far toward the disordered end of the 

spectrum, the abstraction stays interesting. And if it’s interesting, you can call it art. 

4.1.4 Creating your own noise, revisited
To stop you from getting too dependent on Perlin noise, useful though it is, let’s try the circle 

drawing once more, but this time produce your own naturalistic variance. In the last chapter, 

you created a custom random function for the drawing of a line. Now you can take that a step 

further and adapt that into a custom noise function, which calculates a return value according 

to the seed value it’s passed; you can then apply this function to your circle.

To do this, you’ll have to organize things a little first. In listing 4.5, you take the circle-drawing 

code from listing 4.1 and do the following:

• Rewrite it into function blocks.

• Add the customNoise function.

Listing 4.5 A circle drawn with a custom noise function

void setup () {

  size(500,300);

  background(255);

  strokeWeight(5);

  smooth();

  

  float radius = 100;

  int centX = 250;

  int centY = 150;

  stroke(0, 30);

  noFill();

  ellipse(centX,centY,radius*2,radius*2);

  

  stroke(20, 50, 70);

  strokeWeight(1); (continued on next page)
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Figure 4.7 
The output of listing 4.5: a custom variance to the circumference, based on sine

Figure 4.8 
Another custom variance based on powers of sine

Figure 4.9 You can see the source code for this animation at http://abandonedart.org/?p=549. It 

uses a simple custom noise function much like you’ve created in this section.
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Randomizes start point

Returns value -1 to +1

  float x, y;  (Listing 4.5 continued)

  float noiseval = random(10);                                 

  float radVariance, thisRadius, rad;

  beginShape(); 

  fill(20, 50, 70, 50);

  for (float ang = 0; ang <= 360; ang += 1) {

    

    noiseval += 0.1;
    radVariance = 30 * customNoise(noiseval);

    

    thisRadius = radius + radVariance;

    rad = radians(ang); 

    x = centX + (thisRadius * cos(rad));

    y = centY + (thisRadius * sin(rad));

    

    curveVertex(x,y);

  }
  endShape();

}

float customNoise(float value) {                                 
   float retValue = pow(sin(value), 3);
   return retValue; 
}

You make one other crucial change in listing 4.5. Instead of drawing lines back to the previous 

point, as you did before, this time you use beginShape and endShape  to draw an enclosed 

area to which you apply a fill. You add points to the shape with curveVertex(x,y). The result is 

something a little like figure 4.7.

For this first example, customNoise returns the value of sine cubed, which gives you a regular 

repeating variance. Now that you have the structure, you can experiment with the mathematics 

in your new function. Let’s try, for example, using the parameter value to determine the power 

to which you raise sine: 

float customNoise(float value) {  

   int count = int((value % 12));

   float retValue = pow(sin(value), count);

   return retValue; 

}

Using this function, you end up with something like figure 4.8.
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Okay, it doesn’t quite have the beauty of Perlin noise, so I don’t think this one will win the Oscar. 

But you now have a custom variance you can call your own, which you can apply to lines, shapes, 

movement, or anything else you might apply noise to. 

The next stage is to continue throwing whatever mathematics you know into the function and 

seeing what other glorious messes the routine can create (see, for example, figure 4.9). It doesn’t 

matter if your math is poor—you can achieve plenty with just addition, subtraction, multiplication, 

and division. The complexity of the math doesn’t necessarily correspond to the interestingness 

of the visual. Juggle some numbers, alter the shapes or the drawing style, turn it up to 11, and 

see if you can surprise yourself. 

In the next section, I’ll walk you through my process in creating one of my own Perlin noise–based 

works. There are a thousand creative things you can do with a set of numbers in a naturally 

varying sequence (we’ll look at a few more in the next chapter), but I hope a single practical 

example at this point will be sufficient to inspire you to apply the techniques of this chapter and 

the last to your own ideas. 

4.2 Case study: Wave Clock
My Wave Clock (see figure 4.10) is a nice, simple example of using Perlin noise to produce a 

natural-looking form. I can’t say I was working toward any particular goal at the time I fashioned the 

system, but I can still recount the steps I took so you can gain some appreciation of my process. 

I began by plotting a circle, exactly as you did in the previous section, and then drawing a line from 

each point on the circumference to its opposite point. I calculated the opposite point by adding 

pi to the current angle, which, if you’re using radians, rotates it 180 degrees. I then extrapolated 

the two circumference points using the same sine and cosine functions: 

float rad = radians(_angle);

float x1 = centerX + (_radius * cos(rad));  

 float y1 = centerY + (_radius * sin(rad)); 

  

float opprad = rad + PI; 

float x2 = centerX + (_radius * cos(opprad)); 

 float y2 = centerY + (_radius * sin(opprad));

 

 line(x1, y1, x2, y2);
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Figure 4.10  

Wave Clock (2009)
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Figure 4.11
A circle constructed by drawing lines from a point 

on the circumference to its opposite edge

Figure 4.13  

Perlin noise variance added to the radius value

Figure 4.14 

Perlin noise variance added to the rotation speed/direction

Figure 4.12
Fade effect added by incrementing  

the stroke color as the line rotates
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Figure 4.11 shows the output.

This produced a nice, smooth circle. To give it a fade, I added a few lines to vary the stroke color. 

I defined a strokeCol variable, started it at 255 (white), and decremented it by 1 every frame 

until it reached 0 (black). Then, I reversed the process back to 255 ad infinitum. The result is 

shown in figure 4.12.

Next, I made the length of the connecting line change by varying the radius with a noise value 

as it rotated (see figure 4.13).

  _radiusnoise += 0.005;

  _radius = (noise(_radiusnoise) * 550) +1;

Then, to give it a further spin, I varied the density of the line packing by adding a second noise 

variance to the angle of rotation. I allowed the angle to increase or decrease so the rotation could 

reverse. This gave the effect you can see in figure 4.14:

_angnoise += 0.005;

_angle += (noise(_angnoise) * 6) - 3;

if (_angle > 360) { _angle -= 360; }

if (_angle < 0) { _angle += 360; }

Finally, for one extra touch of non-linearity, I wobbled the center of the circle slightly, again using 

a noise function to move it plus or minus 10 pixels in the x or y direction:

  _xnoise += 0.01;

  _ynoise += 0.01;

  float centerX = width/2 + (noise(_xnoise) * 100) - 50;

  float centerY = height/2 + (noise(_ynoise) * 100) - 50;

The final code for this system is in the following listing. 

Listing 4.6 Final code for Wave Clock

float _angnoise, _radiusnoise;    

float _xnoise, _ynoise;        

float _angle = -PI/2;        

float _radius;        

float _strokeCol = 254;        

int _strokeChange = -1;        

void setup() { (continued on next page)
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  size(500, 300);             (Listing 4.6 continued)

  smooth();                

  frameRate(30);            

  background(255);    

  noFill();        

  

  _angnoise = random(10);        

  _radiusnoise = random(10);    

  _xnoise = random(10);        

  _ynoise = random(10);        

}

void draw() {

  

  _radiusnoise += 0.005;                

  _radius = (noise(_radiusnoise) * 550) +1;    

  

  _angnoise += 0.005;                

  _angle += (noise(_angnoise) * 6) - 3;        

  if (_angle > 360) { _angle -= 360; }       

  if (_angle < 0) { _angle += 360; }        

  

  _xnoise += 0.01;                        

  _ynoise += 0.01;                        

  float centerX = width/2 + (noise(_xnoise) * 100) - 50;    

  float centerY = height/2 + (noise(_ynoise) * 100) - 50;    

  

  float rad = radians(_angle);            

  float x1 = centerX + (_radius * cos(rad));    

  float y1 = centerY + (_radius * sin(rad));    

  

  float opprad = rad + PI;                

  float x2 = centerX + (_radius * cos(opprad));    

  float y2 = centerY + (_radius * sin(opprad));     

  

  _strokeCol += _strokeChange;            

  if (_strokeCol > 254) { _strokeChange = -1; }    

  if (_strokeCol < 0) { _strokeChange = 1; }    

  stroke(_strokeCol, 60);                 (continued on next page)
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Figure 4.15 

Outputs from the completed system: Wave Clock (2009)
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  strokeWeight(1);                     (Listing 4.6 continued)

  line(x1, y1, x2, y2);                

}

Figure 4.15 shows a few possible outputs. 

4.3 Summary
In this chapter, we’ve gone from a wonky way of drawing a line to a complete generative system 

one that churns out some rather pleasing results. The basic methodology established in these 

last two chapters is as follows:

• Deconstruct a machine-drawn shape. 

• Reconstruct it with some form of unpredictability. 

You can apply this simple technique to make just about anything more interesting.

There is plenty of further fun to be had playing with circles—they’re one shape it’s hard to tire 

of. But you may now want to try other computer-drawn forms. I’ll leave it with you experiment. 

In the next chapter, before we move on to even cooler organic methodologies in part 3 of the 

book, we’ll take noise into a few extra dimensions and also see what happens when we use it to 

manipulate both time and space.
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Imagine you’re a tiny creature clinging to the sur face of a large ball.1 You 

walk the sur face of that ball for a l i fetime, unti l you feel you’ve covered 

every par t of its sur face and know it intimately. At this stage, it feels as 

though there is nowhere new for you to go, nothing new to see. That 

is, unti l you discover up, and suddenly you f ind a perspective from 

which every thing looks very dif ferent.

Often, we meet barriers like this in our work, when it seems there is 

nowhere else to take an idea. This is the point at which you should 

consider adding extra dimensions. If you’ve been working in one 

dimension, try it with two. If you’re working in two dimensions, try three.

The computer monitor, printed page, or gallery wall has only two 

dimensions. Anything you create for these media will always be 

flattened for presentation. But that doesn’t mean your work is limited 

to those dimensions. You’ve already learned, in chapter 2, how to 

make your work animate, giving it an extra dimension: time. In this 

chapter, we’ll revisit that idea, as well as learning how Processing 

renders three-dimensional drawing. 

1.  This shouldn’t be hard to imagine, given that you actually are.
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takes two values

at start of each row

We’ll keep Perlin noise as our focus while we examine these concepts, because there is still much 

more to explore in relation to that subject. So far, you’ve only used the noise function with a single 

parameter, creating one-dimensional noise. You’ll begin by adding an extra dimension to that. 

5.1 Two-dimensional noise
Noise in two dimensions isn’t much more complicated than it is in one—it’s just a matter of 

shifting perspective, conceptually, from a line to a plane. One-dimensionally, a progression of 

noise values yields a wavering line, like a mountain range viewed on the horizon. Looking at it in 

two dimensions, you’re viewing the mountain range from above, as if you were flying over it in a 

helicopter; looking straight down, you see a plane of peaks and troughs.

5.1.1 Creating a noise grid
The best way to demonstrate is with an example. Open a new script, and tap in the contents of 

the following listing.

Listing 5.1 A two-dimensional noise grid

size(300,300);

smooth();

background(255);
float xstart = random(10);
float xnoise = xstart;
float ynoise = random(10);

  

for (int y = 0; y <= height; y+=1) {    

    ynoise += 0.01;

    xnoise = xstart;                              

    for (int x = 0; x <= width; x+=1) {    

          xnoise += 0.01;

        int alph = int(noise(xnoise, ynoise) * 255);         

           stroke(0, alph);

            line(x,y, x+1, y+1);

    }

}

Resets xnoise 

Noise function 
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In this script, you create a grid of points (except I’ve used tiny lines instead of points, because 

in Processing lines are better at alpha values). You loop through the pixels of this 300 by 300 

square, traversing column by column, row by row, one pixel at a time. Noise seeds in the x and y 

direction are incremented by 0.01 with every pixel, remembering to reset the x seed to its original 

position at the end of each row, like hitting the carriage return on an old typewriter. The return of 

the noise function for each x and y position is visualized as a variance in the alpha values on the 

tiny line you’re drawing at every position. The result is shown in figure 5.1.

The fun with two-dimensional noise is in dreaming up new ways to visualize it, which is what 

we’ll do next. 

5.1.2 Noise visualizations
First, knowing that the two-loop traversal through the grid won’t change much, you can separate 

the visualization part into a function block. It will help if you also space the grid out a little, too, 

so you can see what’s going on.

Figure 5.1 
Perlin noise in 2D, visualized as alpha values
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Spacing increased;  
increase noise steps too 

Listing 5.2 The noise grid, rewritten into neat function blocks

float xstart, xnoise, ynoise;    

void setup() {    

  size(300,300);

  smooth();

  background(255);

  xstart = random(10);

  xnoise = xstart;

  ynoise = random(10);

  for (int y = 0; y <= height; y+=5) { 

    ynoise += 0.1;                                     

    xnoise = xstart; 

    for (int x = 0; x <= width; x+=5) { 

      xnoise += 0.1;     

      drawPoint(x, y, noise(xnoise, ynoise));  

    }

  } 
}

void drawPoint(float x, float y, float noiseFactor) {    
  float len = 10 * noiseFactor;
  rect(x, y, len, len);
}

The custom drawPoint() function takes three parameters: x and y to define where the point is, 

and the two-dimensional noiseFactor that has been calculated for that point. In this case, you 

draw a tiny square, using the noise factor to determine its size. Click run, and you’ll be looking 

at something like figure 5.2.

Now that you’ve defined the function, you can modify this part to experiment further. How about 

visualizing the noise as a rotation? Here’s a new version of the drawPoint function that draws a 

20-pixel line rotated according to noiseFactor: 

void drawPoint(float x, float y, float noiseFactor) {

  pushMatrix();

  translate(x,y);

  rotate(noiseFactor * radians(360));

  stroke(0, 150);

  line(0,0,20,0); (continued on next page)
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Figure 5.2 
2D Perlin noise visualized as squares of varying size

Figure 5.3 
2D Perlin noise visualized using rotation
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  popMatrix(); (continued from previous page)

}

To perform the rotation, you used translate(x, y) to move the drawing position, and then you 

start the drawing from point 0,0 instead of point (x,y). You do this so the rotation is around the 

point you’re drawing at, not the upper-left 0,0 point. The functions pushMatrix and popMatrix 

are a way of storing the previous drawing position before you perform the translation and rotation, 

and then restoring it afterward. Figure 5.3 shows the result.

Okay, one more. Change background(255) to background(0) in the setup function, and 

then rewrite drawPoint so it varies the rotation, size, color, and alpha, all using the same 

noise factor:

void drawPoint(float x, float y, float noiseFactor) { 

    pushMatrix();

    translate(x,y);

    rotate(noiseFactor * radians(540));       

     float edgeSize = noiseFactor * 35;       

     float grey = 150 + (noiseFactor * 120);  

     float alph = 150 + (noiseFactor * 120);     

    noStroke();

     fill(grey, alph);

      ellipse(0,0, edgeSize, edgeSize/2); 

     popMatrix();

}

The resulting grid now looks something like figure 5.4.

Using translate 
Imagine you’re holding a pen in one hand and steadying a piece of paper with the other. 

When you give a command like line(20, 30, 120, 130), you’re specifying co-ordinates 

for the pen to move from and to, relative to the origin point (0, 0) in the upper left corner. 

When you use translate(20, 30) you’re not commanding the pen, you’re instead 

moving the paper. Point (20, 30) becomes the new origin from which to start drawing. 

Performing translate(20, 30) and then line(0, 0, 100, 100) produces the same result 

as the command line(20, 30, 120, 130), but sometimes it’s easier to follow, especially 

when you begin drawing things relative to each other.

For some actions, such as rotating about a point, you will find it is much easier to do 

this by moving the paper than it is the pen.
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You get the gist. I’d suggest that you try throwing a few of your own ideas at this function to see 

what emerges. Perhaps have a rifle through the Processing reference to come up with different 

ways of drawing that you haven’t tried before, and then see how they can be subverted by 

applying the noise factor. 

Next, we’ll look at time as an extra dimension, and see how you can apply noise to that.

5.2 Noisy animation
The frame loop, Processing’s built-in draw function, enables you to create images that change 

over time. This, folks, is what we call animation: you may have heard of it. Refer back to section 

2.3.1 if you need a refresher on how the frame loop works. The following listing uses the draw 

function to turn the two-dimensional noise grid into something that moves. 

Listing 5.3 Noise grid again, now drawing on the frame loop

float xstart, xnoise, ystart, ynoise;

void setup() {

  size(300,300); (continued on next page) 

Figure 5.4 
2D Perlin noise as little fluffy clouds
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Increments x/y  
noise start values

Sets frame rate

  smooth(); (Listing 5.3 continued)

  background(0);

  frameRate(24);  

  

  xstart = random(10);
  ystart = random(10);

}

void draw () {

  background(0);                                 

  xstart += 0.01;                                
  ystart += 0.01;                                

  

  xnoise = xstart;
  ynoise = ystart;

  

  for (int y = 0; y <= height; y+=5) {

    ynoise += 0.1;

    xnoise = xstart;

    for (int x = 0; x <= width; x+=5) {

      xnoise += 0.1;

      drawPoint(x, y, noise(xnoise, ynoise));

    }

  } 

}

void drawPoint(float x, float y, float noiseFactor) {

  pushMatrix();

  translate(x,y);

  rotate(noiseFactor * radians(540));

  noStroke();

  float edgeSize = noiseFactor * 35;

  float grey = 150 + (noiseFactor * 120);

  float alph = 150 + (noiseFactor * 120);

  fill(grey, alph);

  ellipse(0,0, edgeSize, edgeSize/2);

  popMatrix();

}

Clears background every frame
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Uses noise for  
start positions

Varies by +/- 0.25  
every frame

The drawPoint function is unchanged, as are the x within y loops to traverse the grid. What’s new 

is that with every frame, you increment the start point for both the x and y noise seeds. When 

you run this, you’ll see something very similar to figure 5.4; but now clouds are drifting diagonally 

across the screen, as if a steady wind were blowing from the southwest. There are no moving 

parts—the illusion is created by scrolling across the noise plane.

Obviously, it’s a little difficult for me to demonstrate this in print, so you’ll need to be coding 

along to appreciate the effect. This movement seems a little predictable for my liking, though. If 

only there were some way to produce a smooth, natural variance. Take a look at the next listing.

Listing 5.4 Noise grid with noise variance added to the movement

float xstart, xnoise, ystart, ynoise;
float xstartNoise, ystartNoise;
        

void setup() {

  size(300,300);

  smooth();

  background(255);

  frameRate(24);

  

  xstartNoise = random(20);                      
  ystartNoise = random(20);                      

  xstart = random(10);

  ystart = random(10);

}

void draw () {

  background(255);

  

  xstartNoise += 0.01;                            
  ystartNoise += 0.01;                            
  xstart += (noise(xstartNoise) * 0.5) - 0.25;    
  ystart += (noise(ystartNoise) * 0.5) - 0.25;    

  

  xnoise = xstart;

  ynoise = ystart;

  

  for (int y = 0; y <= height; y+=5) {

    ynoise += 0.1;

    xnoise = xstart; (continued on next page)
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    for (int x = 0; x <= width; x+=5) { (Listing 5.4 continued)

      xnoise += 0.1;

      drawPoint(x, y, noise(xnoise, ynoise));

    }

  }

}

void drawPoint(float x, float y, float noiseFactor) {

  pushMatrix();

  translate(x,y);

  rotate(noiseFactor * radians(360));

  stroke(0, 150);

  line(0,0,20,0);

  popMatrix();

}

The extra code before the grid loop uses two (one-dimensional) noise sequences to give a drifting 

camera position, floating over the noise plane with the gentle irregularity of a leaf in an updraft. 

You’ll notice for this example I rolled back the drawPoint function to the rotating-lines version 

from the previous section. Adding time to this particular visualization produces a nice illusion of 

ruffling fur, or the wind blowing through grass. Run it to see it in action.

Note that there is no limit to the number of noise sequences you can have in a single script. 

Listing 5.4 has four: xnoise and ynoise, which are combined to get a two-dimensional value; 

and xstartNoise and ystartNoise, which each give one-dimensional directional movement. 

Next, we’ll explore new depths, as you learn how Processing draws in 3D.

5.3 The third dimension
When you use the size function to specify the canvas area, there is a third, optional, parameter—

MODE—that you haven’t needed to know about until now. This is how you tell Processing which 

rendering engine to use:

size(width, height, MODE);
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The list of renderers is in table 5.1. The default is JAVA2D, which produces the best two-

dimensional images; this is what you’ve used up until this point. To draw in 3D, you’ll need to 

change MODE to either P3D or OPENGL. OPENGL usually gives better-looking results, but only 

P3D produces an applet small enough to publish to the web. For the purposes of this chapter, 

it doesn’t matter much which you choose.

Now, if you’ve chosen a renderer, let’s try drawing something.

5.3.1 Drawing in 3D space
You’re by now quite familiar with two-dimensional Cartesian coordinates, which is how you 

measure x and y positions on the canvas. To draw in 3D, you need to add an extra position—a 

z value—to measure how far you are above or below the 2D plane.

As with 2D drawing, Processing has a number of built-in functions for common 3D structures. 

You can begin using these to get a sense of drawing in a three-dimensional space. For this first 

example, you’ll use sphere. You’ll do the drawing using translate to move to a 3D position and 

then drawing relative to that point. You’ll find this is the only sensible option when dealing with 

x, y, and z coordinates.

Table 5.1 Processing’s choice of renderers

MODE VALUE DESCRIPTION

JAVA2D The default. The highest-quality 2D renderer.

P2D (Processing 2D)  A faster 2D renderer, optimized for pixel data, but not usually as 

accurate as JAVA2D.

P3D (Processing 3D)  A fast 3D renderer, intended for Java on the web. Prioritizes speed and 

file size over quality.

OPENGL A better high-speed 3D renderer that utilizes OpenGL graphics 

hardware, if available. OPENGL smoothes all graphics, so smooth and 

noSmooth commands become redundant. You need to import the 

OpenGL library to use this renderer (see listing 5.5).

PDF A renderer for writing directly to PDF files, rather than the screen. This 

is ideal for drawing high-resolution vector shapes, particularly when 

you’re creating prints bigger than the screen (when you’d need to save 

to a file to see the results anyway). Requires the PDF library. For more 

information, see http://processing.org/reference/libraries/pdf/.
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Open a fresh window, and type the following:

import processing.opengl.*;

size(500, 300, OPENGL);

sphereDetail(40);

translate(width/2, height/2, 0);

sphere(100);

The first statement imports the OpenGL library. This line is added automatically if you import the 

library via the Sketch menu (Sketch > Import Library). The size command then sets the canvas 

size and selects this renderer.

Next, the sphereDetail command tells the renderer how much detail to use when drawing a 

sphere. 3D renderers can’t draw smooth curves, so any shape will always be made up of a 

collection of flat planes. By giving this command a value of 40, you effectively tell the renderer 

to make a new edge every 9 (360/40) degrees. 

The final two lines create the sphere by moving the drawing point to the middle of the canvas and 

drawing a sphere around that point with a radius of 100. Notice how you pass three variables to 

the translate command, but you aren’t using z yet. The output is shown in figure 5.5.

Figure 5.5  
A sphere drawn using OpenGL
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So far, barring the lines, this doesn’t look too different from a circle created using the 2D renderer. 

But if you start modifying the third parameter of translate, you’ll see the difference. Change that 

line to translate(250, 150, 50); the sphere now appears bigger. You’ve moved it 50 pixels closer 

to you (a value of -50 moves it further away). If you set the third parameter to 150 it will appear 

as if you’re actually inside the sphere.

Let’s now use this new perspective to look at the 2D noise plane from the last section from a 

fresh angle.

5.3.2 Three-dimensional noise
Begin by entering the code from the following listing into a new window.

Listing 5.5 2D noise from a 3D perspective

import processing.opengl.*;

float xstart, xnoise, ystart, ynoise;

void setup() {

  size(500, 300, OPENGL);

  background(0);
  sphereDetail(8);

  noStroke();

  

  xstart = random(10);

  ystart = random(10);

}

void draw () {

  background(0);    

  

  xstart += 0.01;      

  ystart += 0.01;

  

  xnoise = xstart;

  ynoise = ystart;

  

  for (int y = 0; y <= height; y+=5) {

    ynoise += 0.1; (continued on next page)
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    xnoise = xstart; (Listing 5.5 continued)

    for (int x = 0; x <= width; x+=5) {

      xnoise += 0.1;

      drawPoint(x, y, noise(xnoise, ynoise));

    }

  } 

}

void drawPoint(float x, float y, float noiseFactor) {

  pushMatrix();

  translate(x, 250 - y, -y);

  float sphereSize = noiseFactor * 35;

  float grey = 150 + (noiseFactor * 120);

  float alph = 150 + (noiseFactor * 120);

  fill(grey, alph);

  sphere(sphereSize); 

  popMatrix();

}

Aside from the change in renderer, this is similar to listing 5.4. The main difference is to the 

drawPoint function. Instead of translating to a 2D point, you translate to a 3D point. The code 

reuses the y value for the z depth as a shortcut; doing so creates a tiered square, sloping 

Figure 5.6  
Two-dimensional noise, three-dimensional perspective
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Changes renderer to P3D

backward like theatre seating. At each 3D point, you create a sphere with a radius, fill color and 

alpha relative to the noise value. The result is another gently moving cloudscape, but with a better 

perspective (see figure 5.6).

The perspective is three-dimensional, while the plane you’re looking at, and the noise sequence 

that defines it, remain essentially two-dimensional. But the noise function can take up to three 

parameters, so you have the capability to generate noise in three dimensions. The visual metaphor 

for three-dimensional noise will no longer be a mountain range: now you need to imagine a 

cloud, or a smoke-filled room, and consider how you might use that type of variance to create 

visualization. You can begin by building a controlled block of this noise.

You’ll need to make a few changes to the loop. You’ll now be iterating through all the points in a 

cube rather than a plane, and so you’ll pass four parameters to the drawPoint function: x, y, z 

and the three-dimensional noise value for that point. The changes are made in the next listing.

Listing 5.6 Constructing a cube of three-dimensional noise

float xstart, ystart, zstart;

float xnoise, ynoise, znoise;

int sideLength = 200;

int spacing = 5;

void setup() {

  size(500, 300, P3D);                   

  background(0);

  noStroke();

  

  xstart = random(10);

  ystart = random(10);

  zstart = random(10);

}

void draw () {

  background(0);    

  xstart += 0.01;       

  ystart += 0.01;    

  zstart += 0.01;    

   (continued on next page)
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Reposition to get  
a better perspective

Three loops now

  xnoise = xstart; (Listing 5.6 continued)

  ynoise = ystart;

  znoise = zstart;

  

  translate(150, 20, -150);                  

  rotateZ(frameCount * 0.1);                 

  rotateY(frameCount * 0.1);                 

  

  for (int z = 0; z <= sideLength; z+=spacing) {             

    znoise += 0.1;                           

    ynoise = ystart;                         

    for (int y = 0; y <= sideLength; y+=spacing) {

      ynoise += 0.1;

      xnoise = xstart;

      for (int x = 0; x <= sideLength; x+=spacing) {

        xnoise += 0.1;

        drawPoint(x, y, z, noise(xnoise, ynoise, znoise));

      }

    } 

  }

}

void drawPoint(float x, float y, float z, float noiseFactor) {

  pushMatrix();

  translate(x, y, z);

  float grey = noiseFactor * 255;

  fill(grey, 10);

  box(spacing, spacing, spacing);

  popMatrix();

}

The cube you build is made up of almost-transparent boxes, the color of which varies by the 

three-dimensional noise factor. It’s still difficult to see, which is why you need the code to spin it 

around. You’ve essentially created a cloud in a box (see figures 5.7 and 5.8).

Calculating your way around three dimensions isn’t straightforward: the math of 3D space is 

considerably more complicated than traversing a 2D canvas. But it comes with practice. After 

you’ve played with it a while and got the hang of it, you may consider taking the “break it down, 

build it back up” approach of the previous two chapters and trying it with 3D shapes. By way of 

example, we’ll end this chapter with a quick look at the trigonometry of a sphere. 
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Figure 5.8 
The source code for Haunted Fishtank (Abandoned Artwork #49), available at http://abandonedart.

org/?p=449, is similar to the system you’ve developed in this section.

Figure 5.7  

Three-dimensional noise: a cloud in a box 
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5.3.3 The wrong way to draw a sphere
Below are the not-so-magic formulae for plotting points on the outer edge of a sphere. They’re 

similar to the formulae for points on a circle (see chapter 4), but they require two angles (s and 

t) to determine a location relative to the center point:

x = centreX + (radius * cos(s) * sin(t));

y = centreY + (radius * sin(s) * sin(t));

z = centreZ + (radius * cos(t));

To construct a sphere without using Processing’s sphere function, you’ll take the same approach 

you did in section 4.1: iterate around rotations of these two angles. In doing so, you can project 

a line to every point on a sphere’s outer surface. 

See the following listing for one application of this technique. The t angle circles around the central 

axis many times in 18-degree jumps, while the s angle does one slow 180-degree rotation turn. 

Listing 5.7 Spiraling around a sphere

import processing.opengl.*;

int radius = 100;

void setup() {

  size(500, 300, OPENGL);

  background(255);

  stroke(0);

} 

  

void draw() {

  background(255);

  

  translate(width/2, height/2, 0);    

  rotateY(frameCount * 0.03);

  rotateX(frameCount * 0.04);

  

  float s = 0;

  float t = 0;

  float lastx = 0; 

  float lasty = 0;

  float lastz = 0;
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radians for trig
 Converts angles to  

  while (t < 180) {

     s += 18;  

     t += 1;   

     float radianS = radians(s);             

     float radianT = radians(t);              

     

     float thisx = 0 + (radius * cos(radianS) * sin(radianT));

     float thisy = 0 + (radius * sin(radianS) * sin(radianT));

     float thisz = 0 + (radius * cos(radianT));

     

     if (lastx != 0) {

        line(thisx, thisy, thisz, lastx, lasty, lastz);

     }

     lastx = thisx; 

     lasty = thisy; 

     lastz = thisz;

  }

}

The result is a spiral drawn onto the surface of a virtual sphere, as shown in figure 5.9.

Figure 5.9 

Spiraling around a sphere
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Figure 5.10 
Frosti (2010). A video work created by applying Perlin noise to a deconstructed sphere:  

http://vimeo.com/9712740
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The three lines of trig at the beginning of this section have served me well in my own work. 

They’re the core math wizardry behind my video piece Frosti (2010), for example (see figure 

5.10). I leave you with this magic to make your own, to take and pervert into your own creations. 

5.4 Summary
When an experiment feels like it has no further to go, you can always try adding an extra 

dimension. Be it a dimension in space or time. In this chapter, we’ve tried both. We’ve also 

introduced three-dimensional drawing in Processing, which can now be considered an extra 

string to your bow. 

We have now, in this and previous chapters, pretty much exhausted Perlin Noise. Hopefully you 

now have a good appreciation of the range of effects you can produce with it. Anywhere we need 

a nice naturalistic variance it can be employed, which makes it such a useful convenience it is 

never going to fall too far down the toy box. I imagine it would be possible to spend a lifetime 

coming up with new ways to visualize this single algorithm, and when you tired of it you can 

change algorithm and waste a second lifetime. 

As far as this book is concerned, we’re putting down the noise and random functions for a while 

so we can look at a more organic way of exploring unpredictability. In part 3, we’ll introduce an 

even cooler mathematical toy: emergence. We’ll look at the simulation of natural processes, 

and practical ways of evoking natural forms the way they’re constructed in the world outside 

of our laptops. 
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  “The distinction that’s new, and that we didn’t used to make,  
is that something can be deterministic but not predictable.  
   We tend to think they are synonyms but they’re not. 

 Something can be obeying some law of nature but it’s not predictable  
    because what it’s doing is so complicated 
that the time it would take you to calculate what it was going to do  
     would take longer than the thing actually doing it. 

 So you could compute it but you can’t compute the world  
any faster than it is happening. ”Rudy Rucker, in interview, 2007

three
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Figure 6.1 
A murmation of starlings over Brighton’s West Pier, photographed by Kevin Meredith (http://lomokev.com).  

Low-level rules creating higher-level organization.
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I find these formations mesmerizing, because they appeal to both sides 

of my brain. One hemisphere appreciates the natural aesthetic beauty 

of these creatures in motion and the shapes they form, but there is also 

the mathematical beauty of the flocking algorithm they are following, that 

challenges my logical side. Each bird in the formation is obeying simple 

instincts, oblivious to the higher-level pattern the flock is creating. Their 

behavior is defined by a small set of rules—orienting themselves in relation 

to their immediate neighbors, seeking the center of the flock, avoiding the 

paths of other birds—but these simple low-level rules, when applied en 

masse, create patterns of abstract beauty on a higher level. 

6

 107 107

I l ive in Brighton, on the southern coast of England. I moved here af ter a 

lifetime of living in urban environments; so I was, and remain, enraptured 

by the view to the south, where there is nothing but sea and sky. I 

used to walk home past Brighton’s West Pier, a once-beautiful Victorian 

pleasure palace, abandoned since the 1970s and burned to a skeleton 

in 2003. It ’s now home to many thousands of starlings, and every night 

shor tly before the sun goes down they per form a stunning murmation, 

circling in complex formations before settl ing to roost (see f igure 6.1).
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6.1 Emergence defined
This phenomenon, whereby a simple rule set at a low level creates organized complexity on a 

higher level, is called emergence. The term was first coined in the mid-19th Century by George 

Henry Lewes, the English psychologist, philosopher, and sometime lover of George Eliot, in a 

paper on the mind; but notions of the whole being greater than the sum of its parts can be dated 

back as far as Aristotle. In recent decades, the concept of emergence has found a new relevance 

and wider popularity through its application to Complexity theory, first by John Holland in his 

book Emergence (1989), and later for a more popular audience by Steven Johnson in a 2001 

book of the same name. 

In a nutshell, emergence is the observation of how complex and coherent patterns can arise 

from a large number of small, very simple interactions. The classic example is the ant colony, an 

organism that has clearly defined, logical and coherent behaviors observable on two different 

scales. When we study the patterns of each ant, we see that each one has needs, abilities, and 

pheromone responses that define its behavior as an individual insect. But when we study the 

collective behavior of the colony, we again see sophisticated behavioral patterns; the colony 

operating like a city, with factories, defenses, and waste-disposal facilities. What is remarkable 

is the fact that these macro patterns aren’t formed through any central design or intent: they’re 

nothing more than byproducts of the local self-interested behaviors of the individuals collectively. 

These behaviors, seemingly insignificant on the micro level, form a more complex macro-

organism when viewed collectively. 

This is the principle we’ll be trying to harness in the next few chapters. When you create a large 

number of small agents with simple behaviors, collectively they can become capable of producing 

a more complex, emergent, behavior on the macro level.

6.1.1 Ant colonies and flocking algorithms
The common myth, still prevalent today among lazier minds (including the makers of animated 

films) is that ant colonies operate in a hierarchical organization, with the queen at the top of a 

chain of command. With our human-centric perspective, this is the type of organizational patterns 

we find ourselves seeking; but the myth has been debunked in studies as far back as the 1970s. 

No central organization defines the structure and operation of an ant colony. All these global-

level patterns and structures arise as the result of a large number of local-level micro-decisions. 

Design, hierarchy, pacemakers, and any other form of higher-level influence have no part in it. 
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The role of the queen is as perfunctory as that of every other ant with a job to perform within the 

greater whole. There is no trickle-down command; the ants’ organization is from the bottom up. 

It is grass-roots. Emergent.

Similarly, the murmating starlings aren’t following a leader as they swirl around the West Pier. 

The flock is made up of individuals, with individual behavioral impulses. Each starling looks only 

to its immediate surroundings and the movement of its closest neighbors to define the speed 

and orientation of its flight. This effect has been modeled in computing, most famously by Craig 

Reynolds in his Boids algorithm, first published in 1987. Reynolds discovered that to produce a 

realistic flocking simulation in code, he needed only three rules:

• Separation—Steer to avoid your immediate neighbors.

• Alignment—Steer to align with the average heading of your immediate neighbors.

• Cohesion—Steer toward the average position of your immediate neighbors.

More complex rules can be added (object avoidance, for example), but these three are all that 

are required to achieve a complexity comparable with the West Pier starlings. Dan Shiffman 

(and others) have created Boids implementations in Processing, which are fun to adapt. I won’t 

reproduce the code here, because it’s a little lengthy and more complex than required for the 

purposes of this chapter; but you can copy it from http://processing.org/learning/topics/flocking.

html if you want to play with it. One example of my experiments with this code is shown in figure 

6.2, and there are more sophisticated adaptations among the color images in the introduction.

Figure 6.2 
Blonde Boids (Abandoned Artwork #4) was my adaptation of Dan Shiffman’s adaptation  

of Craig Reynolds Boids code.
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It’s difficult to get far  with flocking algorithms, and other forms of emergent code, without a 

basic understanding of object-oriented approaches to programming. This is the main thrust of 

this chapter and something we’ll get on to in section 6.2. But before we do, I want to give you a 

little more context on what emergence means from a sociological perspective.

6.1.2 Think locally, act locally
The concept of emergence, particularly in relation to both the natural world and society, has 

necessitated a steady political shift upon its path to wider, mainstream acceptance. The concept 

was extremely left-field in the 1950s (Alan Turing’s final work before his death in 1954 was on 

the subject of morphogenesis: the way patterns formed in nature through emergent rules), 

groundbreaking in the 1970s and 80s, and the subject of excited discussion in the 1990s. It’s 

only now becoming more comfortable and familiar in the web-savvy 21st century, because the 

internet has played no small part in changing the way we view other forms of organization. 

The idea that a self-organized collective—be it the single cells of a slime mold, the ants of a 

colony, the human inhabitants of a city, or the globally distributed users of the web—can organize 

themselves into coherence is understandable and acceptable in a world where we conduct much 

of our intellectual discourse via the distributed nodes of the internet. Most of us can grasp how 

a network like Twitter, for example, can have a significant sociological meaning, even though 

each of its single 140-character tweets is near meaningless.1 Each user’s tweeting is either 

entirely self-interested or influenced by a small local group of a few hundred followers. But the 

meta-patterns of this chatter, when multiplied by hundreds of thousands, shape themselves into 

cultural shifts and global opinions. All we need is the right perspective, tools, or visualizations 

to be able to appreciate them. 

Emergent networks like this have incredible but subtle strength and resilience. Their power is in 

their distribution. Each node is too small to be meaningful individually, so it’s difficult to target, 

influence, or attack an emergent body. The internet avoids the vulnerabilities of a centralized 

organization in the same way a slime mold does: if a single node were to be lost or damaged, 

the greater whole would feel little effect. Distributed file-sharing networks share this principle, 

resilient to legislation because there is no central point to target. 

1.  The Twitter protocol itself may be seen as an emergent phenomenon. Its syntax (hashtags, @ 
addresses, and so on) were never designed by its creators but have been adopted from the bottom up, 
through their use by the collective.
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Clearly, there are political connotations here. Emergence may suggest that, if it works so well for 

the natural world, central organization in the human world — governments, institutions — may be 

largely redundant. Ants follow local pheromone cues, oblivious to the effect of their decisions on 

the colony as a whole, just as humans give their local concerns (wealth, status, security, and so 

on) priority over the needs of the macro-organisms they form (groups, cities, countries). While our 

grander objectivity acknowledges that our car use is having devastating environmental effects 

on a global scale, it doesn’t influence many to sacrifice the convenience a car allows them to 

get to the supermarket a little quicker. Even an understanding of the greater whole and how the 

effect works doesn’t change the micro-behavior.

Many newer, more radical groups have acknowledged and embraced emergence as an 

organizing principle. Anti-globalization and environmental protest groups, for example, have 

explicitly modeled themselves after distributed, self-organized systems, as have the champions 

of file sharing. 

There is a theory from the realms of neuroscience that argues that perhaps consciousness 

itself — the sense of self that is interpreting these words — is an example of emergence, being 

a macro-level coherence formed from the micro-interactions between firing synapses within our 

brains. Our whole sense of being may be an emergent effect.

It’s a concept with many applications and theories across many disciplines; but for our interests, 

emergence is of relevance as a way of generating organic artworks. It’s relevant first because 

emergence dictates how many forms of the natural world organize and construct themselves. If 

you wish to resonate with this aesthetic, you should pay attention to how it works. Second, within 

a methodology whereby you work with the simple logic of the programming language, where you 

encourage artworks to grow from logical seeds, and you wish to evolve a complexity sufficient to 

be visually interesting, the principles of emergence seem to be an ideal tool for getting complex 

results from simple code.

Until now, you’ve relied heavily on randomization and noise functions as ways of introducing 

unpredictability to your creations; but you’ll discover that you don’t always need such an obvious 

approach. You can program algorithms with a simplicity your animal brain can understand, but 

which through minimal abstraction can develop a complexity beyond what you could predict.

Over the coming pages we’ll explore emergence in code. In the section to follow, you’ll stumble 

across it as an accidental byproduct of simple programming. Then, in chapter 7, you’ll create it 

again via the more organized approach of cellular automata, among other ideas. Chapter 8, on 

the subject of fractals, then builds on this way of programming, adding the further concept of 

self-similarity. Throughout the chapters in this final part of the book, you’ll see copious examples 

of code that mirrors the organizational principles of the natural world. 

Licensed to george legrady <legrady@arts.ucsb.edu>



112

6.2 Object-oriented programming
There is a mission to the rest of this chapter: we’re going in search of the emergent complexity 

I just described. But in order to do this through the medium of code, we first need several new 

tools. In the next few pages, you’ll learn the basics of object-oriented programming (OOP). 

If you’re a seasoned programmer, you’re probably already familiar with this concept—very 

few languages above a certain power and sophistication don’t accommodate object-oriented 

structures. But even if you’re on familiar ground, please bear with me, because OOP is only half 

of what I’m trying to illustrate.

If you’ve never heard the term before, OOP is just a small conceptual leap in how you think 

about coding. Rather than giving the machine the task of dealing with a linear progression of 

instructions, which is what you’ve done so far, you think in terms of creating objects in memory: 

self-contained data boxes that you can then use within the familiar linear programming style.

This conceptual shift is sometimes a little difficult for beginners, but it’s nothing to be scared 

of. All it’s really going to involve initially is drawing some circles and seeing where it takes you. 

Remember that what you’re really doing in this chapter is seeking emergent complexity, and I 

guarantee it won’t be long until you see some. First, let’s look at classes and instances.

Figure 6.3 
The output of listing 6.1: randomly generated circles
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6.2.1 Classes and instances
Let’s start simple. The following listing creates a script that draws a handful of randomly placed 

circles every time the mouse is clicked.

Listing 6.1 Code to draw a few circles at the click of the mouse

int _num = 10;          

void setup() {

  size(500,300);

  background(255);

  smooth();

  strokeWeight(1);

  fill(150, 50);

  drawCircles();        

}

void draw() {

                        

}

void mouseReleased() {

  drawCircles();        

}

void drawCircles() {

  for (int i=0; i<_num; i++) {

    float x = random(width);

    float y = random(height);

    float radius = random(100) + 10;

    noStroke();

    ellipse(x, y, radius*2, radius*2);

    stroke(0, 150);

    ellipse(x, y, 10, 10);

  }

}

I hope you can follow what’s happening here. The script creates 10 circles at random positions on 

the screen every time you click the mouse. Try it a few times to get something similar to figure 6.3.
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Object color and alpha 

 Object properties

Object constructor

So far, the circles are pretty unsophisticated. They’re thrown at the screen and left there, and 

you don’t have any way to do anything further with them. If you reapproach the circles and define 

them in a more organized way, you’ll find they’re capable of a little more life. Instead of just telling 

Processing to draw a circle, let’s instead create a circle object. The circle object will encapsulate 

everything there is to know about itself, which at the moment isn’t much more than the x,y of its 

center point, and its radius.

An object, in programming, isn’t too dissimilar from the concept of an object in the real world. 

Imagine a rock: this is an object. It has properties—color, weight, roughness—just as the circle 

object has an x,y and a radius. There are also things you can do with the rock: it has functions; it 

can be thrown, it can be hit with a hammer, it can be placed on a desk to use as a paperweight. 

It can also be disposed of before it becomes too convoluted a metaphor; let’s do that and look 

instead at how you model an object in Processing.

Defining an object is very similar to defining a function. You use the class keyword to specify 

that this is a reusable object you’re defining. Add the contents of the next listing to the bottom 

of your sketch.

Listing 6.2 A Circle class

class Circle { 

  float x, y;                              

  float radius;                            

  color linecol, fillcol;                  

  float alph;                              

 

  Circle () {                               

    x = random(width);

    y = random(height);

    radius = random(100) + 10; 

    linecol = color(random(255), random(255), random(255));     

    fillcol = color(random(255), random(255), random(255));     

    alph = random(255);                                         

  }

}

What you have done here is not define a single object, but a class of all objects of that type. 

Think of it as a template that you can reuse. You don’t need to make lots of different circles; you 

can just create an instance of the circle class, an object constructed according to the template 

you’ve defined.
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Note that so far, this is purely conceptual. You haven’t drawn a circle to the screen—you haven’t 

even created a circle yet. You’ve just defined the template for it. To create an actual object from 

this template, an instance of the class, you call the constructor by using the new keyword, as 

demonstrated in this new version of the drawCircles function:

void drawCircles() {

  for (int i=0; i<_num; i++) { 

    Circle thisCirc = new Circle();    

  }

}

Fine so far, but you’re still not actually drawing any circles, just creating them conceptually in 

memory. You’ve only defined the properties (variables) and the constructor (the function called 

when an object of that class is created) of the class so far. If you want to do something with the 

class, you need to add some methods (functions) to it, as per the following listing. 

Classes and instances
The difference between classes and instances of those classes is important. If you can 

digest this one concept, you’ve cracked OOP. 

A class is a definition for a collection of objects. For example, if we define a class 

80s English indie band, it describes a number of objects with shared characteristics 

(guitars, backcombed hair, maudlin lyrics. and so on). We can make an instance of that 

class called The Smiths and a second instance called Echo and The Bunnymen. Both 

are independent of each other but can share common functionality; recordAlbum(), 
featureInJohnHughesFilm(),  splitAcrimoniously(), etc.

The class is a template: it defines only the parameters these objects share, functions 

they can perform, and logic for how an object can be constructed. A class becomes an 

object only when you make an instance of it.

In one of our lazy human languages, you might say you once saw an 80s English indie 

band, but what you mean is that you once saw one or more instances of 80s English 
indie band. You can’t get drunk and dance to a conceptual definition, no matter how 

post-modern you think you are. 
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Listing 6.3 The Circle class again, with its first method

 class Circle {

  

  float x, y;                                  

  float radius; 

  color linecol, fillcol; 

  float alph; 

  

  Circle () {                                

    x = random(width);

    y = random(height);

    radius = random(100) + 10; 

    linecol = color(random(255), random(255), random(255));

    fillcol = color(random(255), random(255), random(255));

    alph = random(255);

  }

  

  void drawMe() {                              

    noStroke(); 

    fill(fillcol, alph);

    ellipse(x, y, radius*2, radius*2);

    stroke(linecol, 150);

    noFill();

    ellipse(x, y, 10, 10);

  }

}

Now, update the drawCircles function to call this method after you’ve created the object:

void drawCircles() {

  for (int i=0; i<_num; i++){ 

    Circle thisCirc = new Circle();    

    thisCirc.drawMe();             

  }

}

Et voilà, you have some circles, much as in figure 6.3. Great. This may seem like an awful lot 

of effort to get to where you were a few pages back. But when you start playing with the new 

structure, you’ll see what you’ve gained by encapsulating the circles as objects. Now you can 
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Define array of circles 

Add object to array

give each of the circles actions, behaviors, and lives of their own. You could also give them 

feelings and opinions if you chose to, but we’ll save that for chapter 7. For now, we’ll concentrate 

on making them drift around and interact with each other.

Let’s make another few updates to the code. In listing 6.4, you do the following:

• Create an array to store all the circles.

• Give each circle a movement factor in the x and y directions.

• Give each circle an updateMe method, called every frame by the draw loop.

Listing 6.4 Object-oriented circle-drawing code with movement

int _num = 10;

Circle[] _circleArr = {};             

void setup() {

  size(500,300); 

  background(255);

  smooth();

  strokeWeight(1);

  fill(150, 50);

  drawCircles();

}

void draw() {

  background(255);
  for (int i=0; i<_circleArr.length; i++) {
    Circle thisCirc = _circleArr[i];
    thisCirc.updateMe();
  }

}

void mouseReleased() {

  drawCircles();

}

void drawCircles() {

  for (int i=0; i<_num; i++) { 

    Circle thisCirc = new Circle();

    thisCirc.drawMe();
    _circleArr = (Circle[])append(_circleArr, thisCirc);     

  }      (continued on next page)
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Wrap position  
at stage edges

Move every frame

Steps to move every frame

Random step 

}      (Listing 6.4 continued)

//================================= objects

class Circle {

  float x, y;

  float radius; 

  color linecol, fillcol; 

  float alph;

  float xmove, ymove;                            

  

  Circle () {

    x = random(width);

    y = random(height);

    radius = random(100) + 10; 

    linecol = color(random(255), random(255), random(255));

    fillcol = color(random(255), random(255), random(255));

    alph = random(255);

    xmove = random(10) - 5;                       
    ymove = random(10) - 5;                      

  }

  

  void drawMe() { 

    noStroke(); 

    fill(fillcol, alph);

    ellipse(x, y, radius*2, radius*2);

    stroke(linecol, 150);

    noFill();

    ellipse(x, y, 10, 10);

  }

  
  void updateMe() {
    x += xmove;                     
    y += ymove;                                   
    if (x > (width+radius)) { x = 0 - radius; }   
    if (x < (0-radius)) { x = width+radius; }     
    if (y > (height+radius)) { y = 0 - radius; }  
    if (y < (0-radius)) { y = height+radius; }    
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Draw it    drawMe();      
  }

}

Now the circles are moving around. The updateMe method changes each object’s x and y 

positions and wraps it if it’s drifted offscreen. The drawMe method then renders the instance 

to the screen.

Notice how, when you click to add more circles, the previous circles stay onscreen unchanged. 

You’re still clearing the canvas every frame (you call background(255) in the draw frame loop); 

but because the objects remain in memory, they don’t go anywhere, so you can redraw them 

whenever you need them. Even if you didn’t render them to the screen every frame, they would 

still be there in memory, following their paths invisibly.

If you click several times, bringing the circle count into the hundreds, then thousands, you’ll notice 

that the performance of the movie starts to suffer. Depending on the speed of your machine, 

you can probably comfortably manage a few hundred circles independently moving around the 

screen before you see any sign of the animation slowing down, but you should start to get an 

appreciation of the limits of your processor.

Using Arrays
An array is a list of objects of a certain type. If you define an array as

int[] numberArray = new int[5]; 

you’re saying that you want a list of five items, all of type int. 

You can specify what those five items are when you define the array using the braces 

syntax: 

int[] numberArray = {1, 2, 3, 4, 5};

However you define it, you can add items to each position like so:

numberArray[2] = 3; 

This places a 3 as the third item, not the second. The first position is index 0, so the 

third item is index 2.

An empty array, with no items, is defined as follows:

int[] numberArray = {};

To add an extra slot to an array and place data in that slot (as you do in listing 6.4), you 

use append. Note that you need to cast the new array returned by this command to the 

correct type, such as int[]:

numberArray = (int[])append(numberArray, 6);
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You have the object-oriented structure, and you have an application capable of generating many, 

many simple objects. Next, lets look at how you might tweak this system and tease out some 

emergent patterns. 

6.2.2 Local knowledge (collision detection)
An instance created from the Circle class has what we might call self-awareness. It knows 

everything there is to know about itself, but nothing about the environment it’s in or how it’s being 

used by the script. If this was one of the murmating starlings, it would be flying blind, unable to 

see its flock-mates. You can change this though, and give the objects created from the class 

some rudimentary senses. 

You have all the circle objects in an array; so by looping through this array, which is available 

globally (to all objects), each object can test itself against every other object (regardless of 

whether that object is onscreen or not). For this example, you’ll test to see if the current circle is 

overlapping any other circle. This is called, in gaming parlance, collision detection. 

Collision detection (and collision correction — making an object react realistically to a collision) 

is one of the dark arts of games programming. To have a realistic physics systems, objects need 

to be able to have an awareness of the environment around them and its inhabitants, and be able 

to react to their surroundings. As environments get more complex, and the number of inhabiting 

objects increases, this becomes quite a processor intensive action to perform every frame loop, 

especially if objects are of peculiar shapes. 

There are entire books devoted to this topic, and for our needs we don’t require a realistic physics 

simulation, so we’ll keep the example simple. When you’re dealing with circles, you just need a 

bit of trig to check the distance between two points; and Processing has a built-in dist function 

that does the calculation for you. If you check the distance between the centers of two circles and 

subtract their radii, if anything is left, you know the two circles aren’t touching. This calculation 

requires a few extra lines in the updateMe function, as you can see in the following listing.

Listing 6.5 Circle class’s updateMe method with added collision detection

  void updateMe() {

    x += xmove;

    y += ymove;

    if (x > (width+radius)) { x = 0 - radius; }

    if (x < (0-radius)) { x = width+radius; }

    if (y > (height+radius)) { y = 0 - radius; }

    if (y < (0-radius)) { y = height+radius; }
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other circles

Don’t test current circle

    boolean touching = false;
    for (int i=0; i<_circleArr.length; i++) {                 
      Circle otherCirc = _circleArr[i];
      if (otherCirc != this) {                                
        float dis = dist(x, y, otherCirc.x, otherCirc.y);     
        if ((dis - radius - otherCirc.radius) < 0) {   
          touching = true;
          break; 
        }
      }
    }
    if (touching) {
      if (alph > 0) { alph--; }
    } else {
      if (alph < 255) { alph += 2; }
    }

    drawMe()

}

The loop you’ve added checks through every other circle in the array and tests how far away it is. 

If it’s overlapping, the touching flag is set to true, and it breaks out of the loop. The if statement 

then applies an effect depending on whether the circles are intersecting. If circles are overlapping, 

they fade. They increase in opacity if they’re in the clear. This should mean that smaller circles, 

which overlap other circles less as they move around, tend toward solidity, whereas larger circles 

become more transparent. Run the code to see it in action.

I’m sure you can come up with something more visually interesting to do with this behavior, but 

before I leave you to play around with it, let’s try a little something. Where circles collide, let’s 

draw another circle at the midpoint between them. 

6.2.3 Interaction patterns
The only potentially tricky bit here is calculating the midpoint between two circles that could be 

anywhere on (or off) screen. You need to ensure that all bases are covered. If the x position of 

the current circle is greater than the x position of the intersecting circle, the midpoint x is 

x + (otherCirc.x – x)/2

If it’s less, the midpoint is 

otherCirc.x + (x - otherCirc.x)/2

Calculates distance  
between circles

Loops through 

Licensed to george legrady <legrady@arts.ucsb.edu>



122

Calculates overlap

Negative overlap = touching

Calculates midpoint

This is one way of doing it, but there is a neater way that will cover both possibilities with a single 

line of code. The average of the two x values will give us the midpoint between them, you can 

calculate this by adding them together and dividing by 2.

(x + otherCirc.x)/2

The same applies in the y direction. When you have the x and y position, you can mark it by 
drawing a circle at that point, with the radius of the circle dictated by the size of the overlap. The 
updated method is shown next.

Listing 6.6 Circle class’s updateMe method again, now with circles

void updateMe() {

    x += xmove;

    y += ymove;

    if (x > (width+radius)) { x = 0 - radius; }

    if (x < (0-radius)) { x = width+radius; }

    if (y > (height+radius)) { y = 0 - radius; }

    if (y < (0-radius)) { y = height+radius; }

    

   for (int i=0; i<_circleArr.length; i++) {

      Circle otherCirc = _circleArr[i];

      if (otherCirc != this) {  

        float dis = dist(x, y, otherCirc.x, otherCirc.y); 

        float overlap = dis - radius - otherCirc.radius;          
        if (overlap < 0) {                        
          float midx, midy;                       
          midx = (x + otherCirc.x)/2;             
          midy = (y + otherCirc.y)/2;             
          stroke(0, 100);
          noFill();
          overlap *= -1;                         4
          ellipse(midx, midy, overlap, overlap); 5

        }

      }

    }

    

    drawMe();

  }
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Figure 6.4 
The circles are following a simple behavior you’ve programmed. But in the interaction between the 

circles, a new, emergent complexity is apparent.

Figure 6.5 
Removing the original behavior, all you have left are the emergent patterns, which are far more interesting.
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Figure 6.6  
It took 170 circle objects to create this. I can only guess how many actual circles are on the screen.

Figure 6.7  
The emergent circles, abstracted further using a softer line and traces
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Run that, and you’ll see a whole new pattern emerging. Figure 6.4 shows the output. You’re 

drawing the circles, which position themselves according to the simple behavior you’ve given 

them, but you’ve also discovered an emergent property of the interaction between the circles. 

Abstracting this behavior by only a small degree, you’ve stumbled upon a new layer of complexity.

This new emergent behavior is clearly much more interesting than the simple one you built in the 

code. Let’s isolate that so you can see it more clearly. If you comment out, or remove, the call to 

drawMe in the updateMe function, you get rid of the original circles. The circles are still there, of 

course; you’re just not drawing them to the screen anymore. When you’ve done this, you have 

something that looks a little like figure 6.5.

Next, add a line to the mouse-press function to trace the current number of circles to the console 

window, so you can see how many circles you need to produce what effect:

void mouseReleased() {

  drawCircles();

  println(_circleArr.length); 

}

I kinda liked 170 (see figure 6.6).

This clustering pattern, made up of nothing but circles, isn’t a product of intention. The pattern 

is a byproduct of the interactions between the behaviors you programmed, not the behaviors 

themselves. Typically, it’s in the interactions between agents that you find the emergent patterns. 

A single starling follows a flight pattern that obeys a set of rules; but place that bird in a flock, 

and the complexity of the pattern increases several-fold, while the rule set remains unchanged.

In this example, the behaviors couldn’t have been much simpler: a number of objects moving 

in straight lines. And the drawing style was pretty basic, too. If you want to take this further, you 

can follow a lot of paths. To start you off, here are a few ideas. How about:

• Leaving traces—Don’t clear the screen between frames. Draw a transparent rectangle over 

everything instead (as described in 2.4.2).

• Reducing the alpha and stroke weight—Make the lines more subtle to turn hard edges into 

an organic blur (see figure 6.7).

• Plotting more complex paths—You’ve already seen in previous chapters how there are far 

more interesting routes to take between two points than a straight line. How about plotting 

movement along a curve, for example?

• Drawing more interesting shapes—Draw something more exciting than a simple circle. You 

can even import images to be the visual representations of objects. 
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6.3 Summary
In this chapter, we’ve introduced the concept of emergence, discussed examples, and then, 

living up to my promise, discovered one of our own: an emergent effect from the simplest of 

objects behaving in the simplest of manners. I hope this has demonstrated how easy it is: how 

emergence isn’t something you need to work at, it’s something you may stumble upon almost 

by accident. Any system of many parts above a certain (relatively low) level of complexity, will be 

prone to emergent complexity. The only trick is exploiting it.

We haven’t relied on randomness or noise to introduce the generative element to the code in this 

chapter. All we’ve done is apply a level of abstraction sufficient to introduce an unpredictable 

complexity. Simple rules creating complex results.

One other achievement we’ve unlocked in this chapter is the mastery of a very useful programming 

methodology: object-oriented programming. This will open us up to more advanced coding 

possibilities in the remaining chapters (and beyond).

In the next chapter, we’ll stick with the topic of emergent complexity but take a more structured 

approach to its creation. We’ll take our understanding of OOP and refine it toward a definition 

of agent-oriented programming.
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Object-oriented programming (OOP) is a programming conceit. Objects are 

for organizing conceptual things into conceptual structures. An “object” can 

be anything: a speck within a particle system, a game character, a pure 

data form, or just a neat way of collecting variables and methods.

It doesn’t necessarily have to correspond to anything that has a visual form 

or identity; it’s a data holder. But you don’t need to think of objects in such 

clinical terms. If you chose to define them so, you could give your objects 

feelings, aspirations, failings, and destinies. They can be active citizens in 

a virtual world, albeit a highly abstract one. Your objects can be more than 

data holders: they can be autonomous agents.

The difference between an object and an agent, in programming parlance, 

is that agents, specifically, observe and interact with their environment. 

They may have more sophisticated behaviors, such as goals, beliefs, 

and prejudices. They can also harbor imprecisions, self-interests, and 

irrationalities too, which is what makes them so interesting to work with. 

This is what we mean when we speak of autonomy: the capability for 

something, whether human, monkey, sof tware construct, robot, or 

supermodel, to make its own decisions. The difference between an agent 

and an object is the difference between an animal and a rock. You don’t 

7
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necessarily have to anthropomorphize your objects to make them more interesting, but you might 

do so expecting the more complex, and less predictable, behavior you’d get from a creature 

rather than a data construct. 

The most familiar single example of an autonomous agent, to you at least, is the one staring at 

this page. You, dear reader, with your behavior on any particular day defined by a complex mix 

of biology, psychology, and the comfortableness of your footwear, are an autonomous object, 

creating interesting patterns in the data you create. Most everything you do these days leaves a 

data trail: every purchase you make, every point you earn on your store card, every link you click, 

and every journey you take. The cards in your wallet are writing your economic autobiography, 

your tweets and SMSs are writing an ASCII diary as part of a social map, and the phone in your 

pocket is drawing a GPS picture of your daily psycho-geography.

In the second half of this chapter, we’ll look at the concept of the agent further, discussing some 

particularly creative examples from both within and without our electronic boxes, including ways 

of tapping into the available mass of human-generated data for artistic use. But first, to familiarize 

you with the concept of autonomy and the emergent complexity of this breed of object, we’ll play 

one of the early parlor games of computer science: cellular automata.

7.1 Cellular automata
We demonstrated in the previous chapter how easy it is to stumble across emergent complexity 

without particular intention. With the help of a cellular automata (CA) grid, you’ll learn a more 

structured way of observing the phenomenon. In the 1970s, the field of computer science 

was obsessed with CA. Super-computers were employed to churn through iterations of John 

Conway’s Game of Life (see section 7.1.2) over periods of weeks. Today, that kind of computing 

power is available in our mobile phones, so we can easily simulate cellular automata in a 

lightweight Processing sketch.

A 2D1 CA is a grid of cells (see figure 7.1),  each of which has only two states: on and off, black or 

white, alive or dead. Each cell has limited local knowledge, only able to see its eight immediate 

neighbors. In a series of cycles, each cell decides its next state based on the current states of 

its surrounding cells. 

1.  There are one-dimensional and multidimensional variants of CA, but for our purposes we’ll stick to two 
dimensions.
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Figure 7.1  
A cellular automata grid
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Gets locations  
to each side
Gets locations  
to each side

Wraps locations  
at edges

Loop tells each object  
its neighbors
Loop tells each object  
its neighbors
Loop tells each object  
its neighbors

Creates grid  
of cells

7.1.1 Setting up the framework
The best way to demonstrate is by example. The following listing creates a grid of cells with on/

off states and a reference to their immediate neighbors.

Listing 7.1 CA framework

Cell[][] _cellArray;     

int _cellSize = 10;          

int _numX, _numY;             

void setup() { 

  size(500, 300);

  _numX = floor(width/_cellSize);

  _numY = floor(height/_cellSize);

  restart();

} 

void restart() {

  _cellArray = new Cell[_numX][_numY];     

  for (int x = 0; x<_numX; x++) {          

    for (int y = 0; y<_numY; y++) {        

      Cell newCell = new Cell(x, y);        

      _cellArray[x][y] = newCell;          

    }                                      

  }                       

  

  for (int x = 0; x < _numX; x++) {        

    for (int y = 0; y < _numY; y++) {      

      

      int above = y-1;    

      int below = y+1;    

      int left = x-1;     

      int right = x+1;    

      

      if (above < 0) { above = _numY-1; }     

      if (below == _numY) { below = 0; }      

      if (left < 0) { left = _numX-1; }       

      if (right == _numX) { right = 0; }      
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     _cellArray[x][y].addNeighbour(_cellArray[left][above]);     

     _cellArray[x][y].addNeighbour(_cellArray[left][y]);         

     _cellArray[x][y].addNeighbour(_cellArray[left][below]);     

     _cellArray[x][y].addNeighbour(_cellArray[x][below]);         

     _cellArray[x][y].addNeighbour(_cellArray[right][below]);     

     _cellArray[x][y].addNeighbour(_cellArray[right][y]);         

     _cellArray[x][y].addNeighbour(_cellArray[right][above]);     

     _cellArray[x][y].addNeighbour(_cellArray[x][above]);         

    }

  }

}

void draw() {

  background(200);

                           
  for (int x = 0; x < _numX; x++) {        

    for (int y = 0; y < _numY; y++) {      

     _cellArray[x][y].calcNextState();     

    }                     

  }                       

                          

  translate(_cellSize/2, _cellSize/2);      

                        

  for (int x = 0; x < _numX; x++) {       

    for (int y = 0; y < _numY; y++) {     

     _cellArray[x][y].drawMe();           

    }                    

  }                      

}

void mousePressed() {

  restart();

}

//================================= object

class Cell { 

  float x, y;  (continued on next page) 
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On or off 

Randomizes initial state

  boolean state;                   (Listing 7.1 continued)

  boolean nextState;  

  Cell[] neighbors;

  

  Cell(float ex, float why) {

    x = ex * _cellSize;

    y = why * _cellSize;

    if (random(2) > 1) {            

      nextState = true;

    } else {

      nextState = false; 

    } 

    state = nextState;

    neighbors = new Cell[0];

  }

  

  void addNeighbor(Cell cell) {

    neighbors = (Cell[])append(neighbors, cell); 

  }

  

  void calcNextState() {

     // to come 

  }

  

  void drawMe() {

    state = nextState;

    stroke(0);

    if (state == true) {

      fill(0);

    } else {

      fill(255);

    }

    ellipse(x, y, _cellSize, _cellSize);

  }

  

}

Licensed to george legrady <legrady@arts.ucsb.edu>



7
G

enerative A
rt | P

earson

 133

A
utonom

y
It’s a lengthy starting point, but nothing you haven’t encountered before. At the bottom of the 

script you define an object, a Cell, which has x and y positions and a state, either on or off. It 

also has a holder for its next state, nextState, the state it will enter the next time its drawMe 

method is called. 

In setup, you calculate the number of rows and columns based on the width and height and 

the size you want the cells; then, you call the restart function to fill a 2D array with this grid. 

After the grid is created, there is a second pass through the array to tell each of the cells who its 

neighbors are (above, below, left, and right of them). 

The draw loop then does a double pass through the array. The first pass triggers each cell to 

calculate its next state, and the second pass triggers each to make the transition and draw itself. 

Note that this needs to be done in two stages so each cell has a static set of neighbors on which 

to base its next state calculation.

Now that you have the grid of cells (as shown in figure 7.1), you can begin giving the cells their 

simple behaviors. The best-known CA is John Conway’s Game of Life, so that is the one we’ll 

start with. 

Multidimensional arrays
A one-dimensional array, as you saw in chapter 6, is a data structure for storing a list of 

elements. You define one as follows:

int[] numberArray = {1, 2, 3};

But if you want to store more than a list, if you have a matrix of elements to keep track 

of, you can add an extra dimension to the array. A 2D array is initialized like so:

int[][] twoDimArray = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };

Essentially, you’re defining an array of arrays. In listing 7.1, you can see an example of 

creating and iterating through a 2D array.

If you want more dimensions, you can have them. You’re free to add as many 

dimensions as you can get your head around:

int[][][] threeDimArray;

int[][][][] fourDimArray;

...

Licensed to george legrady <legrady@arts.ucsb.edu>



134

7.1.2 The Game of Life 
The popularity of Conway’s Game of Life (GOL) is mostly due to the relevance it has found outside 

the field of mathematics. Biologists, economists, sociologists, and neuroscientists, amongst 

others, have discussed at length the parallels between the behavior of CA obeying GOL rules 

and the results of studies in their respective fields. It’s essentially a simple computational form 

of artificial life, a mathematical petri dish teeming with autonomous agents.

The rules for GOL are as follows:

• Rule 1: If a live (black) cell has two or three neighbors, it continues to live. Otherwise it dies,  

of either loneliness or overcrowding.

• Rule 2: If a dead cell has exactly three neighbors, a miracle occurs: it comes back to life.

You write this in code as follows. Complete the calcNextState function in accordance with the 

following listing. 

Figure 7.2 
Conway’s Game of Life after 100 iterations
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Figure 7.3  
Triangle height and rotation depend on the age of a cell. Triangle width is the neighbor count.  

The color of the shape is mixed using a combination of the two.

Figure 7.4  
Circle size is determined by neighbor count. Lines and their rotations are determined by cell age.
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Listing 7.2 Calculating the next state using GOL rules

void calcNextState() { 

     int liveCount = 0;  

     for (int i=0; i < neighbours.length; i++) {

       if (neighbors[i].state == true) { 

         liveCount++; 

       }              

     }                

     if (state == true) {    

        if ((liveCount == 2) || (liveCount == 3)) {

          nextState = true;      

        } else {                 

          nextState = false;     

        }                        

     } else {                    

        if (liveCount == 3) {    

          nextState = true;      

        } else {                 

          nextState = false;     

        }                        

     }                           

  }

This code first counts the number of neighbors alive and then applies GOL rules. If you run it 

for a few seconds, you begin to see what looks like a microscope view of abstract organisms 

(see figure 7.2). Some parts bubble and then fade out; others achieve a looping stability. There 

has been much study of this game, identifying the mathematical “life” that forms: gliders, toads, 

boats, blinkers, beacons, and so on. The GOL Wikipedia page has many animated examples 

of the complex shapes and patterns that arise from these simple rules: see http://en.wikipedia.

org/wiki/Conway’s_Game_of_Life#Examples_of_patterns. 

It would be very easy for us to get sidetracked here, because what you’ve written is essentially an 

AI program. Artificial intelligence is a field that, admittedly, has huge potential for the creation of 

generative art, but it’s far beyond the scope of this book.2 We’ll keep our focus relatively shallow 

and toy with the possibilities for each of these cells, with its local, blinkered behavior, to render 

itself to the screen in visually interesting ways. 

2.  If this subject interests you, I suggest that you seek out Douglas Hofstadter’s Pulitzer Prize winning 
Gödel, Escher, Bach (1979) as an entertaining, not too scary, starting point.
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A simple black or white dot is only a starting point. Just as you did with multidimensional Perlin 

noise back in chapter 5, where you used the noise value as rotation, shape, size, and alpha values, 

you can try similar rendering experiments using a cell’s properties. In the two examples in figures 

7.3 and 7.4, I’ve used the number of live neighbors a cell has, and the number of frames it has 

remained alive, to determine the size, rotation, and color of a shape drawn at that cell’s location. 

You may like to try similar experiments.

GOL is only one of many potential rule sets. In addition to experimenting with visualizations, I’d 

encourage you to try inventing your own. In the following pages, I’ll demonstrate two more well-

known patterns, and one invented behavior, each of which produces forms that have analogues 

in the natural world. 

7.1.3 Vichniac Vote
The first pattern, the Vichniac Vote (after Gerard Vichniac who first experimented with it), is a 

lesson in conformity. Each cell is particularly susceptible to peer-group pressure and looks to its 

neighbors to observe the current trend. If the cell’s color is in the majority, it remains unchanged. 

If it’s in the minority, it changes. To ensure that there is an odd number of cells on which to make 

the decision, the cell includes its own current state in addition to its eight neighbors in making 

the calculation.

To see the vote in action, rewrite the calcNextState function using the code from the following 

listing. To create an artificial instability in the algorithm, you’ll swap the rules for four and five 

neighbors; otherwise, it settles quickly into a static pattern.

Listing 7.3 The Vichniac Vote rule

void calcNextState() {

     int liveCount = 0;

     if (state) { liveCount++; }          

     for (int i=0; i < neighbors.length; i++) { 

       if (neighbors[i].state == true) { 

         liveCount++; 

       } 

     } 

         

     if (liveCount <= 4) {                

       nextState = false;  

     } else if (liveCount > 4) { 

       nextState = true; 

     }     (continued on next page)
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Swaps rules for 4 and 5

State 1, 2, or 0    

              (Listing 7.3 continued)

     if ((liveCount == 4) || (liveCount == 5)) {            

       nextState = !nextState; 

     }     

  } 

The result is shown in figure 7.5. You can see how the clustering effect creates patterns similar 

to the hide of a cow, or the contours of a landscape seen from above. 

With the Vichniac Vote, the rules you apply are sociological —agents succumbing to the peer-

group pressure from their neighbors—but the results have an aesthetic more familiar from biology 

or geology. Might this imply that common computational principles underpin these disciplines? 

Before we’ve finished with this chapter and the next, you’ll see plenty more algorithmic systems 

that may support this hypothesis. Brian’s Brain, for example. 

7.1.4 Brian’s Brain 
This is a three-state cellular automaton, meaning a cell can be in one more condition, apart from 

on or off. The states of a Brian’s Brain CA are firing, resting, and off. It’s designed to mimic the 

behavior of neurons in the brain, which fire and then rest before they can fire again. The rules 

are as follows:

• If the state is firing, the next state is resting. 

• If the state is resting, the next state is off.

• If the state is off, and exactly two neighbors are firing, the state becomes firing.

You’ll need to modify the cell class for this, as in the following code. Note that you have to change 

the type of state to int, so it can have more than two values. The integers 0, 1, and 2 indicate 

off, firing, and resting, respectively.

Listing 7.4 Cell object modified for the three-state Brian’s Brain behavior

class Cell {

  float x, y;

  int state;                                

  int nextState;  

  Cell[] neighbors;

  

  Cell(float ex, float why) {

    x = ex * _cellSize; (continued on next page)
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Figure 7.5  
The Vichniac Vote rule after 3 iterations, 11 iterations,  

41 iterations, and 166 iterations
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 Off = white

    y = why * _cellSize; (Listing 7.4 continued)

    nextState = int(random(2)); 
    state = nextState;

    neighbors = new Cell[0];

  }

  

  void addNeighbor(Cell cell) {

    neighbors = (Cell[])append(neighbors, cell); 

  }

  

  void calcNextState() {
     if (state == 0) {      
       int firingCount = 0;
       for (int i=0; i < neighbors.length; i++) {

         if (neighbors[i].state == 1) {       
           firingCount++;
         }
       }
       if (firingCount == 2) {                
         nextState = 1;    
       } else {

         nextState = state;                   
       }

     } else if (state == 1) {                 
       nextState = 2;

     } else if (state == 2) {                 
       nextState = 0;
     }  
  }

  

  void drawMe() {

    state = nextState;

    stroke(0);

    if (state == 1) {
      fill(0);                                  
    } else if (state == 2) {
      fill(150);                                
    } else {
      fill(255);                               
    }

    ellipse(x, y, _cellSize, _cellSize);
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  }

  

}

The results look something like figure 7.6. Spaceships (the CA term, not mine) move across the 

plane in horizontal, vertical and sometimes diagonal directions.

Does this behavior reflect the way your thoughts form from the electronic bursts of firing 

synapses? Is what you’re seeing a mathematical model of consciousness itself? Perhaps; but 

for our purposes, for the time being at least, it’s just another emergent behavior that you can use 

as the basic for a generative visualization. 

Just one more example before we move on. Not one of the famous rule sets, but a custom 

behavior instead. The patterns it produces should be quite familiar though.

Figure 7.6 
The Brian’s Brain behavior after 19 iterations
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Figure 7.7  

The customized wave rule after 6, 26, 49, and 69 iterations
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7.1.5 Waves (averaging) 
This final pattern is an example of a CA with a continuous behavior. There is no reason a cell has 

to be limited to two or three distinct values: its state can vary across a range of values. In this 

example, you’ll use 255 values, the grayscale from white to black. This is a custom behavior, so 

it doesn’t have a name, but I’ve based it on a standard physics model—averaging—whereby a 

chaotic state settles into a steady one thorough the influence of its neighbors. 

The rules are as follows:

•  If the average of the neighboring states is 255, the state becomes 0.

•  If the average of the neighboring states is 0, the state becomes 255.

•  Otherwise, new state = current state + neighborhood average – previous state value.

•  If the new state goes over 255, make it 255. If the new state goes under 0, make it 0. 

If you were adhering to the physics model, you’d need only the third of these rules. I’ve added 

the other rules for instability, to stop it from settling. The code is in the next listing. The output 

is shown in figure 7.7.

Listing 7.5 Custom wave-like behavior

class Cell {

  float x, y;

  float state;          

  float nextState;  
  float lastState = 0; 

  Cell[] neighbors;

  

  Cell(float ex, float why) {

    x = ex * _cellSize;

    y = why * _cellSize;

    nextState = ((x/500) + (y/300)) * 14;     

    state = nextState;

    neighbors = new Cell[0];

  }

  

  void addNeighbor(Cell cell) {

    neighbors = (Cell[])append(neighbors, cell); 

  }

  

  void calcNextState() { (continued on next page)
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      (Listing 7.5 continued)

                
    float total = 0;                          
    for (int i=0; i < neighbours.length; i++) {                
       total += neighbors[i].state;           
    }                                         
    float average = int(total/8); 
                
    if (average == 255) {
      nextState = 0;
    } else if (average == 0) {
      nextState = 255;
    } else {
      nextState = state + average;
      if (lastState > 0) { nextState -= lastState; }     
      if (nextState > 255) { nextState = 255; }
      else if (nextState < 0) { nextState = 0; }
    }
 
    lastState = state;                         
  }

  

  void drawMe() {

    state = nextState;

    stroke(0);

    fill(state);                                

    ellipse(x, y, _cellSize, _cellSize);

  }

  

}

The most obvious comparison with this behavior is a liquid. Like rain on a shallow pool of water, 

it churns and varies.

The reason for this example is to emphasize how you can tweak not only the rules but also the 

framework itself. You don’t need a grid, you don’t need circles, and you don’t need a limited set 

of grayscale values: your system can be as subtle and sophisticated as you care to make it (see 

figure 7.8). In the next section, we’ll look at a few further simulation and visualization ideas that 

step far outside the ordered gird but still utilize agents, with their limited local knowledge, for 

emergent effects. We’ll also look at the potential in exploiting one very familiar, oblivious data 

object: you. 
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Figure 7.8 
Single-pixel-sized cells produce more subtle (but more processor-intensive) patterns.
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7.2 Simulation and visualization
CAs may be of only limited interest to us visually. The real purpose of your experiments so far 

has been to drum in the agent-oriented approach, and the ways you can study the patterns that 

objects unwittingly create. CAs, for all their nerdy amusement value, may be only the simplest 

of possible systems you can visualize this way. 

The coding part of this chapter is finished now, but there is plenty of scope to develop these 

approaches in more meaningful directions. For the remaining pages of this chapter, we’ll discuss 

a few ideas. 

7.2.1 Software agents
When you define a class in code, as you have a number of times now, you give it properties 

and methods: x, y, height, width, alpha; update, draw, calcWidth, and so on. But an object’s 

properties and methods may just as easily be as follows:

class Agent {

  String political_leaning = "right";

  int num_years_in_education = 12;

  int salary = 30000;

  Agent[] neighbors;

  Agent[] coworkers;

  Agent[] friends;

  

  Agent() {

    num_years_in_education = 11 + int(random(8));

    if ((num_years_in_education < 13) {

       if (random(1) > 0.8)) {

           political_leaning = "right";

       } else {

        political_leaning = "left"; 

       }

    } else {

        if (random(1) > 0.3) {

           political_leaning = "right";

        } else {
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           political_leaning = "left";

           }

    }

 }    

}

If you give an agent real-world attributes, suddenly the simulations can take on more meaningful 

interpretations. The interactions of these simplified souls can say something about their less 

simple analogues: us. For example, you can query the thoughts or feelings of an agent, perhaps 

something like this:

boolean isHappy() {

if ((political_leaning == "right") { 

  if (salary > 60000)) {

      return true;

    } else {

        return false;

    }

} else {

    if (friends.length > 25) {

      return true;

    } else {

      return false;

    }

  } 

}

Given an infinite number of coders at an infinite number of MacBooks, you might follow this to its 

logical extreme and code an entire human being, and pack a bunch of them into a CA grid to see 

how they got on. Or, more interestingly, you could code up an artificial city environment to house 

them, and see the patterns they traced. But a human, or near-human, level of intelligence isn’t 

needed for interesting agents, as you’ve already seen. It isn’t the sophistication of the objects 

that produces the complexity; it’s their large numbers and the way they interact with each other. 

One of my favorite examples of an analogous agent-oriented system is Jeremy Thorp’s Colour 

Economy (2008). He constructed a system whereby a number of colored cubes are given the 

ability to trade their own color value in the pursuit of profit (see figure 7.10). The set of rules each 

cube followed was the same, but each cube had different leanings and idiosyncrasies influencing 

its self-interested behavior; these collectively defined the unstable economics of the system. 
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Thorp visualized the cubes and their trades in both two- and three-dimensional views. There 

are some great videos of the system (built in Processing) in action on Jeremy’s blog: http://blog.

blprnt.com/blog/blprnt/the-colour-economy-the-gap-between-the-rich-and-the-poor.

The interplay between Thorp’s cubes, although not smart enough to be considered true artificial 

intelligence, has sufficient complexity to model a system with obvious cultural parallels. His piece 

was more than a nice aesthetic: it was also a sociopolitical discussion point, commenting on 

consumerism, free trade, and the gap between rich and poor. 

When you begin down a path of humanizing agents, inevitably you’ll hit upon the obvious shortcut.  

7.2.2 Human agents
The Apollo 17 Mission, the last (to date) of NASA’s Moon landings, produced one of the most 

important photographs of the 20th century. The shot of Earth shown in figure 7.9, taken as the 

mission left Earth’s orbit on its way out, was the first time the hairless apes, in their masses, 

had seen their planet like this. Before this photograph, we had highly detailed maps of the world 

and knew pretty much what it would look like when we got up there, but this was the first time 

we gained the perspective to see it for ourselves from so far away. It was a great leap in our 

anthropic subjectivity.

Figure 7.9 
The “blue marble” photograph of Earth taken by Apollo 17, December 1972
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Figure 7.10  
Colour Economy by Jeremy Thorp (2008)
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Figure 7.11 
Aaron Koblin’s Flight Patterns (2005): visualization of the flight paths of aircraft crossing North America
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To the Google maps generation, this meta-view of the human race is becoming commonplace. 

It took only 40 years before the power of satellite imagery was on every laptop. It’s one of those 

minor miracles we quickly take for granted when information technology accelerates at such 

speed. Couple this with a related technology, Global Positioning Systems (GPS), and you have 

the potential for a new form of unwitting artistic expression. 

Your everyday movements leave a trail on the surface of the planet, and this trail draws a pattern. 

If you’re a commuter, your GPS trail probably scores deep furrows as you repeat the same pattern 

day in day out; but on the weekend, your random psychogeography may create a more complex 

ballet. Viewed en masse, your data can produce much grander expression, as seen in Aaron 

Koblin’s visualizations of the flight paths of aircraft crossing North America (see figure 7.11 and 

the color images in the introduction, figure i.18).

If you recall the opening chapters of this book, where I defined what generative art is (and isn’t), 

one of the essential criteria was that the systems need to be autonomous: independent of outside 

control, free of any guiding hand. When you involve human beings with a generative system, 

their natural instinct is to attempt to influence it, which would remove the autonomy—but only 

if the human’s involvement in the system is conscious. If the human agent is acting unaware, or 

uninterested, of the effect their actions are having on the system, they become as valid a data 

source as any other autonomous object. 

Figure 7.12 
Lunar Lander, the classic arcade game re-created in ActionScript 
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A fine example of this arose from a project created by my friend and colleague Seb Lee-Delisle 

(http://sebleedelisle.com). As an exercise in coding minimalism, he built an AS3 version of the 

old Lunar Lander arcade game (see figure 7.12), in less than 5 KB. Later, he used this as the basis 

for experiments with multiuser gaming, building a system to enable many users to play the game 

over the web. Seb threw his toy out there, inviting any of the great unwashed visiting his site to 

give it a play. But, unbeknownst to his users, he had the system record the paths they took as 

they maneuvered their landers safely to the lunar surface. 

When he traced this data out onto a composite image, the result, through no intent or design, 

was surprisingly beautiful (see figure 7.13).

So, it would appear that there are only two challenges in using human agents in the creation of 

generative art: ensuring that they remain autonomous, and collecting the data. Once, the latter 

would have been a daunting task, but today it’s simple. Data, particularly that relating to the 

hairless apes and their consumption habits, is being stockpiled as if it were the most valuable 

commodity we have—which some may argue it is. 

Figure 7.13 
 Lunar Lander Trails (2010), by Seb Lee-Delisle: 

the actions of a many autonomous human agents
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Most web or mobile-device users leave these data trails routinely. There are patterns in Twitter 

streams, web browsing, and GPS location data that can be accessed via a variety of APIs 

available to programmers, usually for free. For example, more recent works by Jeremy Thorp have 

been based on the New York Times’ API (http://blog.blprnt.com/blog/blprnt/7-days-of-source-

day-6-nytimes-graphmaker), using Processing to visualize the occurrences of key phrases over 

the long periods covered by the newspaper’s newly digitized archives. The agents in this system 

are journalists, doing their jobs and writing their articles, obliviously creating meta-patterns in 

the commonality of their language usage.

Data visualization is an artform in itself, one with huge potential. If you want to explore this area 

further, I’d suggest you try one of the following options as a launching point:

• Ben Fry’s book Visualizing Data (O’Reilly 2007) covers the topic in depth, using Processing 

as the principle tool.

• For the coffee-break version, drop by Jeremy Thorp’s blog, particularly the post http://

blog.blprnt.com/blog/blprnt/your-random-numbers-getting-started-with-processing-and-

data-visualization, which talks through getting Twitter data into a GoogleDocs spreadsheet, 

reading that spreadsheet into Processing, and visualizing the results.

• If you want to cut straight to the pretty pictures, you’ll find plenty to feast your eyes on at 

www.informationisbeautiful.net and www.visualcomplexity.com 

7.3 Summary
The object-oriented approach to code is just the start. With this approach, you can begin realizing 

more sophisticated systems. Your objects can be autonomous agents, interacting with each 

other in an artificial environment, producing emergent complexity for you to visualize, an idea 

you explored through cellular automaton experiments. You then went on to learn that agents 

don’t have to fit such rigid constructs: they don’t even need to be software-based. The potential 

in data visualization opens up a new field of art.

You may not be feeling like such a precious little flower after this excursion—after seeing yourself 

as the tiniest pixel of raw data, sand in God’s great egg-timer. So, next we’ll refocus, from the 

macro to the micro, into the intricacies of another natural construct: fractals. In the final chapter, 

we’ll examine what they are, how to make them, and what you can do with them.
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Figure 8.1 
After experimenting with fractal structures, you’ll start to notice self-similar recursion everywhere. 

This illustration is from Ernst Haeckel’s 1904 book Kunstformen der Natur (Artforms of Nature)
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To my mind, there is something very “seventies” about fractal ar t. Even 

before James Gleick ’s hugely popular book Chaos: Making a New 

Science (1987), which popular ized the mathematics of chaos theory, 

fractal imagery, in par ticular the Mandelbrot set, was overly famil iar 

from the kind of posters you might expect to see on the walls of hippie 

math grads. 

We’ll never know why the renderers of early fractal art favored such lurid, 

psychedelic colors, but I assume it had a lot to do with the overconsumption 

of LSD. Anyway, I want this preconception of fractal art flushed from your 

mind as we explore self-similarity in this chapter. Fractal art can also be 

subtle and beautiful (see figures 8.1 and 8.2).

The code will be a little more involved in this, the book’s final chapter, pushing 

the object-oriented organization we introduced in chapter 6 as far as your 

processors will allow. But this is about as difficult as generative art ever 

needs to get. If you can wrap your head around a self-similar recursive 

fractal structure and re-create it in code (a feat you’ll be performing with 

great aplomb in a few pages’ time), you’ll find harnessing physics libraries, 

mechanical systems, fluid simulation, particles, AI, audio reactive art, or 

whatever explorations you want to pursue after you put this book down, 

won’t present any barriers to you. 
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Figure 8.2 
Mandelbulb by Tom Beddard (2009), www.subblue.com: a 3D version of the Mandelbrot fractal.  

See Beddard’s site or www.skytopia.com/project/fractal/mandelbulb.html for the math.
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Fractals, from the Latin fractus (meaning “broken”), are shapes or patterns that repeat at many 

levels. The patterns don’t necessarily need to be identical at the different scales; they just 

share certain types of self-similar structures. As with emergent patterns, fractal structures 

are everywhere in nature: in snowflakes, tree branches, rivers, coastlines, and blood vessels.  

The leaf of a fern is one particularly good example (see figure 8.3), where the fronds of each leaf 

mirror the shape of the leaf as a whole. Examine the frond in closer detail, and you’ll see that 

its subdivisions are the same shape again. This self-similarity repeats, continuing downward in 

scale, beyond the limits of the human eye. 

In this chapter, we’ll look at fractal iteration as a way of creating art. You’re already familiar with 

recursion: for loops, while loops, and draw loops. But this is a different breed of iteration, a 

reflexive iteration—a type that, unchecked, tends toward the infinite. 

Figure 8.3 
Ghost Ferns (photographed by Flickr user L’eau Bleue:)  

fractal structures in nature
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8.1 Infinite recursion
Imagine you’re standing before a mirror, with a second mirror behind you. You see a reflection 

of a reflection of a reflection of a reflection, onward toward the limit of perception. Strange 

things happen when you have an infinite recursion like this. Small changes, micro-movements, 

become massively amplified within this closed loop. Try holding a flame in such a mirror loop (go 

on, put the book down and try it—it’s really cool). The micro-randomness of the flame’s flicker 

creates bizarre abstracts as it’s repeated an infinite number of times. In the same way as the 

small interactions between many agents gave rise to an emergent complexity in the previous 

chapters, small changes in infinite, self-similar structures create a similar complexity, but on a 

more ineffable scale.

A computer can’t deal with the concept of infinity. You can’t ask a computer to loop an infinite 

number of times because, as a blind obeyer of instructions, it will never stop—the computer will 

loop for ever until you interrupt it or turn it off. This is Alan Turing’s halting problem: he proved that 

in addition to it being impossible for an infinite loop to ever return a result, it’s also impossible to 

determine in every case whether any given set of instructions will result in an infinite loop or reach 

a final state. This is one of the central concerns of the field of AI, that ultimate form of complexity 

we’re gingerly skirting around in these chapters. Telling whether a problem is finitely soluble or not 

is something a human can do instinctively, but this ability can’t be easily simulated by machines. 

For example, you can tell at a glance that the following code will never reach a state where  

it stops:

int x = 1;

while (x>0) { 

  x++; 

}

This is an example of an infinite loop. It’s perfectly syntactically correct, but it will lock the 

processor into a never-ending cycle until something interrupts it. Infinite loops are easy to code 

but are infinitely tedious to perform.

This is one thing to bear in mind as you begin coding reflexive iteration in the following section. 

Although fractals in the natural world have the potential to be infinitely recursive, you can only 

simulate infinite recursion in electronics. You don’t have to worry about the halting problem, 

because, although Turing’s famous proof rules out a perfect test for a non-halting state, modern 

syntax engines can usually warn against the majority of situations that may send the processor 

into a tailspin. And even if your engine doesn’t warn you, all you have to do is quit Processing. 

So, without further ado, let’s code something and see what your machine can handle.
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8.2 Coding self-similarity
The inevitable things in life are, as we know, death, taxes, and turning into our parents. This is why 

the concept of a child object that exactly resembles its parent object isn’t going to be too foreign. 

This is how you’ll create self-similarity: you’ll define an object that acts as both child and parent 

and that creates a number of copies of itself. And of course, if one of the defining characteristics 

of an object is that it multiplies, you know that inevitably the objects will breed like rabbits. 

We’ll start with the structure and a familiar metaphor.

8.2.1 Trunks and branches
The first lines of code you’ll write serve to set some limits. Without limits, you’ll quickly fall into 

the trap of infinite recursion. Open a new sketch, and type

int _numLevels = 3;

int _numChildren = 3;

You’re limiting the number of children each object can have and how many levels of recursive 

depth the system is allowed to go to. If you keep the numbers low to start with, you can maintain 

an appreciation for what is going on; then, you can kick the numbers up gently when you have 

something interesting. Bear in mind, though, that increasing the number of children by one isn’t 

a process of addition, or even multiplication: it’s raising to a power. Adding 3 levels, each with 3 

children, is the equivalent of 33, which means 27 objects. Add 1 more child, and it becomes 34, 

which is 81 objects. Five levels with 5 children gives you 3,125 elements to control. This is why 

you need to tread carefully. 

Call the class you’re creating Branch, because a tree is a useful model. You can think of the first 

Branch as the trunk of the tree. Let’s code it and see how far we can stretch this metaphor. The 

following listing is your starting point.

Listing 8.1 Coding a fractal structure, step 1

int _numChildren = 3;  

int _maxLevels = 3; 

 (continued on next page)

Branch _trunk;    

void setup() { (continued on next page)
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  size(750,500); (Listing 8.1 continued)

  background(255);

  noFill();

  smooth();

  newTree();

}

void newTree() {

  _trunk = new Branch(1, 0, width/2, 50);

  _trunk.drawMe();

}

class Branch {

  float level, index;  

  float x, y;

  float endx, endy;

  

  Branch(float lev, float ind, float ex, float why) {

   level = lev; 

   index = ind;

   updateMe(ex, why);

  }

  

  void updateMe(float ex, float why) {

   x = ex;

   y = why;

   endx = x + 150;

   endy = y + 15;

  }  

  void drawMe() { 

    line(x, y, endx, endy); 

    ellipse(x, y, 5, 5);

  }  

}

All the code does so far is

• Define and create an instance of a Branch object (the trunk).

• Call drawMe on that object.
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The Branch object takes four parameters: level, index, x, and y. The level for the first branch, the 

trunk, is 1, and its index is 0 because there is only one of it. The x and y parameters are arbitrary 

points where you’d like to plant your tree. The object, when created, calls updateMe, which 

calculates an end point based on the start point you passed it. The drawMe function draws a 

line between those two points and a little circle to show its origin. Simple so far.

Next, let’s get self-referential. Add a children array to the Branch’s properties, and update the 

Branch’s creation function to spawn new versions of itself. You pass each of the children the 

parent branch’s end point as its start point, and the current level + 1. As long as you include the 

conditional (level <= _maxLevels), you’ll avoid infinite loops:

Branch [] children = new Branch[0];    

Branch(float lev, float ind, float ex, float why) {

 level = lev; 

 index = ind;

 updateMe(ex, why);

 

 if (level < _maxLevels) {

   children = new Branch[_numChildren];

   for (int x=0; x<_numChildren; x++) {

     children[x] = new Branch(level+1, x, endx, endy);

   }

 }

}

The result of this change means your single level-1 branch creates three level-2 children, each 

of which creates another three level-3 children. The total number of branches is therefore 1 + 

3 + 9 = 13. 

To see all the branches, you have to modify the drawMe function:

void drawMe() {

  line(x, y, endx, endy);                

  ellipse(x, y, 5, 5);            

  for (int i=0; i<children.length; i++) {

     children[i].drawMe();        

  }                    

}
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Notice how the app only needs to call drawMe on the trunk of the tree. The command trickles 

down to the children.

In order to be able to distinguish each branch, you’ll need to vary their appearance a little. This is 

why it’s useful for Branches to know their own level and index. Change updateMe so it calculates 

the end point randomly, but weighted according to the level, as follows:

void updateMe(float ex, float why) {

 x = ex;

 y = why; 

 endx = x + (level * (random(100) - 50));

 endy = y + 50 + (level * random(50));

}

And add a variation on the strokeWeight to the drawMe function:

strokeWeight(_maxLevels - level + 1);

If you run this, you have the beginnings of a fractal tree (see figure 8.4).

Next, you’ll try animating it.

Figure 8.4 
The beginnings of a fractal tree
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8.2.2 Animating your tree
Okay, you have the structure, and you haven’t broken your machine yet. Let’s now add the draw 

loop, so you can animate this little guy:

void draw() {

  background(255);

  _trunk.updateMe(width/2, height/2);

  _trunk.drawMe();

}

Notice that you’ve moved the tether point to the middle of the stage (for neatness, you may want 

to change this in the newTree function too). Next, you need to add a few new properties to the 

Branch class to enable you to control drawing style, line length, and rotation (put them under 

the line float endx, endy;):

float strokeW, alph;      

float len, lenChange; 

float rot, rotChange;  

You’ll need to initialize these properties, giving each level its own strokeWeight and alpha and 

each branch its own randomized set of length and rotation properties. Add this code before the 

line updateMe(ex, why); in the Branch constructor function:

   strokeW = (1/level) * 100;

   alph = 255 / level;

   len = (1/level) * random(200);

   rot = random(360);

   lenChange = random(10) - 5;

   rotChange = random(10) - 5;

With these new properties, you can make the updateMe function actually do something when 

it’s called every frame. You’ll also give it the code to trickle down the command to its children 

so they can do something too, just as you did with the drawMe function. With this new version, 

the end point will be calculated according to the angle and length—plotting it as a point on the 

circumference of a circle of radius len. The angle to that point will change every frame, as will 

the length of the line. The new updateMe function is as follows.
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Increments length

Increments rotation

Listing 8.2 updateMe that calculates the end point according to a rotating angle

void updateMe(float ex, float why) {

   x = ex;

   y = why;

   

   rot += rotChange; Increments rotation

   if (rot > 360) { rot = 0; }        

   else if (rot < 0) { rot = 360; }    

   

   len -= lenChange;  Increments length

   if (len < 0) { lenChange *= -1; }        

   else if (len > 200) { lenChange *= -1; }    

   

   float radian = radians(rot);        

   endx = x + (len * cos(radian));        

   endy = y + (len * sin(radian));    

   

   for (int i=0; i<children.length; i++) { 

     children[i].updateMe(endx, endy); 

   }   

  }

You can update the object’s drawMe function to use the strokeW and alph properties you’ve defined 

and initialized. Also change the radius of the ellipse to be relative to the new variable length:

void drawMe() {

  strokeWeight(strokeW);

  stroke(0, alph);

  fill(255, alph);

  line(x, y, endx, endy);

  ellipse(endx, endy, len/12, len/12);        

  for (int i=0; i<children.length; i++) {    

      children[i].drawMe();            

  }                        

}

The final code is in listing 8.4 at the end of the next section, if you want to skip ahead. The 

output at this stage should look something like figure 8.5, except that in your version it will be 

spinning crazily like space clockwork. We’re purposely departing a little from the tree metaphor 

Licensed to george legrady <legrady@arts.ucsb.edu>



8
G

enerative A
rt | P

earson

 165

Fractals

now. Every fractal programming tutorial I’ve ever read teaches you how to draw a tree and make 

it shake in the wind. But there are some things computers can do better than nature—one of 

which is space clockwork. 

Next, it’s time to turn it up to 11.

8.3 Exponential growth
Normally, the message at this point in the chapter would be to throw what you can at your 

structure and see what flies. But this time, let’s tread a little more cautiously. If you just start 

adding zeros to _numChildren and _maxLevels, things will seize up. Instead, try pushing up the 

numbers more gently. The following pages show images from _numChildren = 4; _maxLevels 

= 7; (figure 8.6) and _numChildren = 3; maxLevels = 10; (figure 8.7). Already this was nearing 

the point when my machine was starting to grumble. My amorphous blob was still spinning, but 

with a little less pizzazz.

With a finer line (strokeW = (1/level) * 10;), you can get something that looks like figure 8.8. With 

this example I also added a conditional (if (level > 1)) to stop the drawMe function from drawing 

the trunk, which is clearly visible in figure 8.7.

Figure 8.5
Space clockwork: the beginnings of an animated fractal, spinning like a dervish
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Figure 8.7  

3 children, 10 levels

Figure 8.6  

Turning it up a little: four children, seven levels. I hope you’re coding along so you can see this structure moving.
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Figure 8.8  

A finer line, six levels, and seven children

Figure 8.9  

Seven children, seven levels: about as far as I could push it and expect it to animate
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Figure 8.8 has six levels and seven children. Pushing that one further, to seven levels, yields something 

like figure 8.9. I found that was about the limit of what would still animate on my machine.

The complete code for this final version is in the following listing.

Listing 8.3 Final listing for the cog fractals

int _numChildren = 7;     

int _maxLevels = 7;      

Branch _trunk;        

void setup() {

  size(750,500);

  background(255);

  noFill();

  smooth();

  newTree();

}

void newTree() {

  _trunk = new Branch(1, 0, width/2, height/2);

  _trunk.drawMe();

}

void draw() {

  background(255);

  _trunk.updateMe(width/2, height/2);

  _trunk.drawMe();

}

class Branch {

  float level, index;  

  float x, y;

  float endx, endy;

  

  float strokeW, alph;   

  float len, lenChange; 

  float rot, rotChange; 
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  Branch[] children = new Branch[0];    

  

  Branch(float lev, float ind, float ex, float why) {

   level = lev; 

   index = ind;

   

   strokeW = (1/level) * 10; 

   alph = 255 / level;

   len = (1/level) * random(500);

   rot = random(360);

   lenChange = random(10) - 5;

   rotChange = random(10) - 5;

   updateMe(ex, why);

   

   if (level < _maxLevels) {

     children = new Branch[_numChildren];

     for (int x=0; x<_numChildren; x++) {

       children[x] = new Branch(level+1, x, endx, endy);

     }

   }

  }

  

void updateMe(float ex, float why) {

   x = ex;

   y = why;

   

   rot += rotChange;

   if (rot > 360) { rot = 0; }

   else if (rot < 0) { rot = 360; }

   

   len -= lenChange;

   if (len < 0) { lenChange *= -1; }

   else if (len > 500) { lenChange *= -1; }

   

   float radian = radians(rot);

   endx = x + (len * cos(radian));

   endy = y + (len * sin(radian));

    (Continued on next page)
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     for (int i=0; i<children.length; i++) { (Listing 8.3 continued)

       children[i].updateMe(endx, endy);

     }

  }

  

 void drawMe() {

   if (level > 1) {                                             

     strokeWeight(strokeW);

     stroke(0, alph);

     fill(255, alph);

     line(x, y, endx, endy);

     ellipse(endx, endy, len/12, len/12);    

   }        

   for (int i=0; i<children.length; i++) {    

       children[i].drawMe();            

   }                        

 }

  

}

So far, we’ve looked at a single branching fractal structure, probably the simplest such system 

we might conceive. I’m not going to catalogue a long list of other possible shapes you could 

explore; I will leave the tinkering up to you. Instead, I’ll finish the chapter, and the book, with one 

specific example: a shape that was shown to me by a wise old mathematician on a dark and 

slightly overcast night—a shape that I’ve had a lot of fun with since. 

8.4 Case study: Sutclif fe Pentagons
In 2008 I went to a meeting of the Computer Arts Society (CAS) in London, an organization 

that was (remarkably, for a body devoted to computing) celebrating its fortieth anniversary with 

that event. There, I heard a short talk by the society’s initiator and first chairman, the artist and 

mathematician Alan Sutcliffe.1 Through this talk, he introduced me to a marvelous shape, which 

I have since mentally dubbed the Sutcliffe Pentagon. 

1. Alan has written about the early days of the CAS in the book White Heat Cold Logic: British Computer Art 
1960–1980, Paul Brown, Charlie Gere, Nicholas Lambert, and Catherine Mason, editors (MIT Press, 2008).
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To be clear, I’ve spoken to Alan about this, and he isn’t entirely over the moon with me using this 

name. He has been insistent that, even though he thought it up, he doesn’t believe the shape was 

his invention. He cites Kenneth Stephenson’s work on circle packing2 as preceding him, in which 

Stephenson himself credits earlier work by Floyd, Cannon, and Parry.3 But I have since reviewed

this trail of influence, and, although Sutcliffe’s predecessors do describe a dissected pentagon, 

none of them take the idea half as far as he did. And even if they had, it wouldn’t change the way 

the Sutcliffe Pentagon was burned into my brain that particular evening.

So, respecting Alan’s modesty, and his proviso that we probably shouldn’t, strictly speaking, refer 

to this construct as a Sutcliffe Pentagon, let me begin by showing you what a Sutcliffe Pentagon 

looks like (see figure 8.10). Then, I’ll talk you though how to construct a Sutcliffe Pentagon, and 

finally I’ll show you a number of different Sutcliffe Pentagon–derived works, developed using 

the Sutcliffe Pentagon structure.

Sutcliffe noticed that if you draw a pentagon, then plot the midpoints of each of its five sides 

and extend a line perpendicular to each of these points, you can connect the end of these 

lines to make another pentagon. In doing this, the remaining area of the shape also ends up 

being subdivided into further pentagons, meaning that within each pentagon are six sub-

pentagons. And within each of those, another six sub-pentagons, repeated downward toward 

the infinitesimal. 

If you don’t find yourself overly thrilled by the mathematics of this yet, bear with me. In the 

following section, I’ll show what you can do with this simple principle. Let’s start by coding it up; 

then, I’ll demonstrate some of the directions I took it in. 

8.4.1 Construction
You begin by drawing a regular pentagon. But the way I approached it, you don’t just draw five 

lines between five points; instead, you create a drawing method that is a little more generic—

rotating 360 degrees around a center and extrapolating points at certain angles. For example, 

if you plot a point every 72 degrees, you get a pentagon.

2. Kenneth Stephenson, Introduction to Circle Packing: The Theory of Discrete Analytic Functions 
(Cambridge University Press, 2005).

3. J. W. Cannon, W. J. Floyd, and W. R. Parry, “Finite subdivision rules,” Conformal Geometry and Dynamics, 
vol. 5 (2001).
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Figure 8.10 
Sutcliffe Pentagons
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Creates root pentagon

Calls drawShape  
method on it

Object class to store  
an x, y position

Listing 8.4 Drawing a pentagon using rotation

FractalRoot pentagon; 

int _maxlevels = 5;

void setup() {

  size(1000, 1000); 

  smooth();

  pentagon = new FractalRoot();                             

  pentagon.drawShape();                                     

}

class PointObj {                                            

   float x, y;                                              

   PointObj(float ex, float why) {                          

     x = ex; y = why;                                       

   }                                                        

}                                                           

class FractalRoot {                        

  PointObj[] pointArr = new PointObj[5];            

  Branch rootBranch;                    

                                  

  FractalRoot() {                        

      float centX = width/2;                

      float centY = height/2;                

      int count = 0;                    

      for (int i = 0; i<360; i+=72) {            

        float x = centX + (400 * cos(radians(i)));    

        float y = centY + (400 * sin(radians(i)));    

        pointArr[count] = new PointObj(x, y);        

        count++;                        

      }                            

      rootBranch = new Branch(0, 0, pointArr);        

  }                                

                                  

  void drawShape() {                    

    rootBranch.drawMe();                    

  }                                

}                             (continued on next page)
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Constructs Branch object

Branch draws itself

      (Listing 8.4 continued)

class Branch {                                            

  int level, num;                                         

  PointObj[] outerPoints = {};                            

                                                          

  Branch(int lev, int n, PointObj[] points) {             

    level = lev;                                          

    num = n;                                              

    outerPoints = points;                                 

  }                                                       

  

  void drawMe() {

    strokeWeight(5 - level);      

    // draw outer shape

    for (int i = 0; i < outerPoints.length; i++) {         

     int nexti = i+1;                                      

     if (nexti == outerPoints.length) { nexti = 0; }       

     line(outerPoints[i].x, outerPoints[i].y, outerPoints[nexti].x, outerPoints[nexti].y);   

   }                                                       

  }  

}

The FractalRoot object contains an array of five points. It fills that array by rotating an angle 

around a center point in 72-degree jumps. It then uses that array of points to construct the first 

Branch object. The Branch object is your self-replicating fractal object. Each branch draws itself 

by connecting the points it has placed in its outerPoints array.

This should give you a pentagon, as shown in figure 8.11. 

Figure 8.11 
Just in case you don’t know what a regular pentagon looks like
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Next, you plot the midpoints of each side. Add the two functions in the following listing to  

the Branch object.

Listing 8.5 Functions to calculate the midpoints of a set of vertices 

PointObj[] calcMidPoints() {                        

    PointObj[] mpArray = new PointObj[outerPoints.length];        

    for (int i = 0; i < outerPoints.length; i++) {            

      int nexti = i+1;                            

      if (nexti == outerPoints.length) { nexti = 0; }        

      PointObj thisMP = calcMidPoint(outerPoints[i], outerPoints[nexti]);        

   mpArray[i] = thisMP;                        

 }                                     

 return mpArray;                            

}                                    

  

PointObj calcMidPoint(PointObj end1, PointObj end2) {        

    float mx, my;                            

    if (end1.x > end2.x) {                        

      mx = end2.x + ((end1.x - end2.x)/2);                    

    } else {                            

      mx = end1.x + ((end2.x - end1.x)/2);                

    }                                    

    if (end1.y > end2.y) {                        

      my = end2.y + ((end1.y - end2.y)/2);                

    } else {                                

      my = end1.y + ((end2.y - end1.y)/2);                

    }                                    

    return new PointObj(mx, my);                    

}                                    

The first function, calcMidPoints, iterates through the array of outer points and passes each pair 

of points to the second function, calcMidPoint; this function works out the difference between 

each individual pair, covering every possible relative position to each other. calcMidPoints 

collects each of the results in an array to pass back. 
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You call the new function in the Branch constructor and put the result in an array named 

midpoints:

PointObj[] midPoints = {};

Branch(int lev, int n, PointObj[] points) {

  …

  midPoints = calcMidPoints();

}

Then, you can plot those points in the drawMe function: 

strokeWeight(0.5);

fill(255, 150);   

for (int j = 0; j < midPoints.length; j++) {

  ellipse(midPoints[j].x, midPoints[j].y, 15, 15);

}

This gives you figure 8.12.

The next set of points you need are the ends of the struts to extend from the midpoints. You 

don’t need to work this out relative to the angle of the side vertex; you can instead use one of 

the opposite points of the shape to aim toward. 

First, define a global _strutFactor variable to specify the ratio of the total span you want the 

strut to extrude:

float _strutFactor = 0.2;

Now, the Branch object needs another set of functions to plot those points. 

Figure 8.12 
Calculating the midpoints of the sides
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Projects along hypotenuse

Trig calculations

Projects midpoint to  

Listing 8.6 Functions to extend the midpoints toward the opposite points

PointObj[] calcStrutPoints() {

      PointObj[] strutArray = new PointObj[midPoints.length];

      for (int i = 0; i < midPoints.length; i++) { 

        int nexti = i+3;

        if (nexti >= midPoints.length) { nexti -= midPoints.length; }

        PointObj thisSP = calcProjPoint(midPoints[i], outerPoints[nexti]);     

        strutArray[i] = thisSP;

      } 

      return strutArray;

}

      

PointObj calcProjPoint(PointObj mp, PointObj op) {

      float px, py;

      float adj, opp;                                      

      if (op.x > mp.x) {                                   

           opp = op.x - mp.x;                              

      } else {                                             

             opp = mp.x - op.x;                            

      }                                                    

      if (op.y > mp.y) {                                   

         adj = op.y - mp.y;                                

      } else {                                             

         adj = mp.y - op.y;                                

      }                                                    

      if (op.x > mp.x) {                                   

         px = mp.x + (opp * _strutFactor);                 

      } else {                                             

         px = mp.x - (opp * _strutFactor);                 

      }                                                    

      if (op.y > mp.y) {                                   

           py = mp.y + (adj * _strutFactor);               

      } else {                                             

           py = mp.y - (adj * _strutFactor);               

      }                                                    

      return new PointObj(px, py);  

}

opposite outer point

Licensed to george legrady <legrady@arts.ucsb.edu>



178

Again, add this code to the Branch constructor:

PointObj[] projPoints = {};

Branch(int lev, int n, PointObj[] points) {

  ...

  projPoints = calcStrutPoints();

}

And plot those points in the drawMe function so you can see they’re correct:

strokeWeight(0.5);

fill(255, 150);   

for (int j = 0; j < midPoints.length; j++) {

  ellipse(midPoints[j].x, midPoints[j].y, 15, 15); 

  line(midPoints[j].x, midPoints[j].y, projPoints[j].x, projPoints[j].y);

  ellipse(projPoints[j].x, projPoints[j].y, 15, 15);

}

You should be looking at something like figure 8.13.

Figure 8.13  
Project struts toward the opposite points
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Now you have all the points you need for the recursive structure. You can test this first by passing 

the five strut points as the outer points for an inner pentagon. Add the following to the Branch 

object’s constructor:

Branch[] myBranches = {};

Branch(int lev, int n, Point[] points) {

    ...

    if ((level+1) < _maxlevels) {

      Branch childBranch = new Branch(level+1, 0, projPoints);

      myBranches = (Branch[])append(myBranches, childBranch); 

    } 

}

Then, add a similar trickle-down method to the drawMe function so the children are rendered 

to the screen:

void drawMe() {

...

    for (int k = 0; k < myBranches.length; k++) {

         myBranches[k].drawMe();

    } 

}

You should see the result shown in figure 8.14.

Figure 8.14 
A recursive pentagon
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Reduced to 4 to  
keep manageable

Adding the other five pentagons to create a complete Sutcliffe Pentagon fractal is just a matter 

of passing the points to five more new Branch objects. The code is as follows:

if ((level+1) < _maxlevels) {

   ...

   for (int k = 0; k < outerPoints.length; k++) {

     int nextk = k-1;

     if (nextk < 0) { nextk += outerPoints.length; }

     PointObj[] newPoints = {  projPoints[k], midPoints[k],

                     outerPoints[k], midPoints[nextk], projPoints[nextk] };

     childBranch = new Branch(level+1, k+1, newPoints);

     myBranches = (Branch[])append(myBranches, childBranch);

   } 

}

This gives you the fractal shown at the beginning of this section in figure 8.10. Now you can begin 

experimenting with it. 

8.4.2 Exploration
You have the ratio of the projected strut in a handy variable, so let’s start by varying this. You’ll 

add a draw loop to redraw the fractal every frame with a new strut length, and vary that length 

by a noise factor. For this modification, you don’t need to do anything to the objects—just update 

the initialization section of the code as shown in the following listing.

Listing 8.7 Varying the strut length of a Sutcliffe Pentagon

FractalRoot pentagon;

float _strutFactor = 0.2;

float _strutNoise;

int _maxlevels = 4;                               

void setup() {

  size(1000, 1000); 

  smooth();

  _strutNoise = random(10);

}

void draw() {
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Range of 0 to 2, not 0 to 1

Re-creates fractal  
every frame

  background(255);

  

  _strutNoise += 0.01;

  _strutFactor = noise(_strutNoise) * 2;         

  

  pentagon = new FractalRoot(frameCount);       

  pentagon.drawShape();                          

}

You make one other little change here: you pass the frameCount to the FractalRoot object. If 

you then modify FractalRoot, you can use that number to increment the angle and make the 

shape spin, Space Odyssey style:

FractalRoot(float startAngle) {

...

        float x = centX + (400 * cos(radians(startAngle + i)));

        float y = centY + (400 * sin(radians(startAngle + i)));

...

}

Also notice that the strut ratio doesn’t just vary between 0 and 1, we’ve allowed it to go to 2, 

so it can extend beyond the limits of the shape. Does this work? Try it and see. How about if 

the strut ratio went into negative values? What would happen then? Only one way to find out:

_strutFactor = (noise(_strutNoise) * 3) - 1;    

In this case, the ratio varies between -1 and +2. You end up with an animation that produces 

shapes like those shown in figure 8.15.

Already it’s getting interesting. 

Although the pentagon has a neat symmetry, there is no reason why your starting shape has to 

have five sides. One of the reasons I adopted the non-absolute method of drawing the pentagon 

was that it made it easy to add extra sides to the polygon. For example, create a global variable: 

int _numSides = 8;
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Strut factors -1 through to +2
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Now, change the FractalRoot class as shown in this listing.

Listing 8.8 Sutcliffe Pentagon, not limited to five sides

class FractalRoot {                        

  PointObj[] pointArr = {};            

  Branch rootBranch;                    

                                  

  FractalRoot(float startAngle) {

      float centX = width/2;

      float centY = height/2; 

      float angleStep = 360.0f/_numSides; Steps according to number of sides

      for (float i = 0; i<360; i+=angleStep) {

        float x = centX + (400 * cos(radians(startAngle + i)));

        float y = centY + (400 * sin(radians(startAngle + i)));

        pointArr = (PointObj[])append(pointArr, new PointObj(x, y));

      }

      rootBranch = new Branch(0, 0, pointArr);

  }                                

                                  

  void drawShape() {                    

    rootBranch.drawMe();                    

  }                                

}

Now you have a structure capable of handling any number of sides. How about eight, as shown 

in figure 8.16?

Or 32? (See figure 8.17.)

Taking another approach, why should you feel limited to 360 degrees? I discovered that setting 

the angle step to 133 and stepping 8 times (effectively turning the circle three times) gave me 

something like figure 8.18. 

I followed this line of exploration by making the angles and the number of sides vary according 

to a noise factor between frames, in the same way you varied the strut factor. You shouldn’t have 

any difficulty working out the code if you want to try it. Through this process, I discovered what 

an incomplete revolution looks like (see figure 8.19). 
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A 32-sided structure

Figure 8.18 
 Angle step of 133, through 1024 degrees

Figure 8.19 
The system is resilient enough to work with irregular and incomplete shapes.

Figure 8.16 
Eight sides: a Sutcliffe Octagon?
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Figure 8.20 
A number of abandonedart.org applications of the Sutcliffe Pentagon
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The fractal structure I built (to Sutcliffe’s specification) proved to be extremely mathematically 

sturdy, as long as I didn’t turn the number of levels up too high. This meant I could wrench it 

about as if I were throttling a ferret, with the only consequence being that the results became 

less linear and more interesting.

I hope you’re beginning to appreciate why this single fractal delighted me so when I started 

playing with it. Figure 8.20 shows a few of the ideas I’ve tried. You can find the code for all of 

these, along with the finished code for this section, at http://abandonedart.org.

This is where we leave fractals—and where we leave the book, too. If you can get your head 

around the code in this chapter, there really is nothing you can’t conquer in Processing. 

8.5 Summary
Fractals, another organizational structure we’ve stolen from the natural world, share a similar 

principle to the emergent structures we experimented with in earlier chapters. Simple code can 

produce complex results when magnified through reflexive recursion. 

The main themes of this book have been unpredictability, emergent complexity, and fresh 

approaches to programming. In part 1, I introduced generative art, the Processing language and 

IDE, and the idea of allowing a certain artistic flourish into the strict discipline of programming. 

In part 2, our focus was on ways to force our computers into surprising us with unexpectedly 

sophisticated aesthetics, using random functions, noise functions, and mathematical 

constructions that produced results beyond what we can work out in our heads. 

In this final part, the unpredictability we fostered arose from emergence; the interplay between 

large numbers of simple elements giving rise to levels of complexity beyond the competence 

of our humble programming skills. The manipulations of logic and procedure that we perform 

when creating generative art, no matter how abstract, clearly share principles with the more 

sophisticated computations of the natural world. Craig Reynold’s Boids (chapter 6) performs 

a pretty good imitation of murmating starlings; two-state cellular automata produce patterns 

that are equally familiar to sociologists, biologists, and geologists (see figure 8.21 and chapter 

7). Recursive fractal constructions are at their root an idea stolen from natural organization, as 

you’ve seen in this chapter. 

Despite how it may look when viewed through a screen, we don’t live in a digital world. Our reality 

is stubbornly analog: it doesn’t fit into distinctly encodable states. It’s an intricate, gnarly, and 

indefinite place. If we want to use digital tools to create art, which somehow has to reflect our crazy, 
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chaotic existence, we need to allow imperfection and unpredictability into the equation. But, as I 

hope I’ve shown, there is room for the organic within the mechanical, and programming isn’t just 

about efficiency and order. Our computing machines, which may only be capable of producing 

poor imitations of life, are tapping a computational universality that the natural world shares.

Programming generative art, if I were to try and sum up it up into a single pocket-sized nugget, is 

about allowing the chaos in. Not all things in life benefit from a structured approach; there is much 

that is better for a little chaotic drift. If you have a way of working that allows this freedom, permitting 

inspiration to buffet you from idea to idea, you’ll inevitably end up in some interesting places. 

Thanks for reading.

Figure 8.21 
Patterns generated using the Vicniac Vote rule from chapter 7

Note: If you found value in this book and want to share it with a friend (and I’d appreciate it if you did), the 
Creative Commons chapters are free to distribute. You can download them from http://zenbullets.com.
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Clojure, Processing implementation 14

collaboration, generative artwork as 6

collision correction 120

collision detection 120–125

Colour Economy, Jeremy Thorp 149

comment, notations 20

comparison operators 33

complexity, and emergence 123

Complexity theory, and emergence 108

Computer Arts Society (CAS) 170

conditional
grouping 33
introduction to 33–34
nesting 34

Context Free 14

Conway, John, Game of Life SEE  Game of Life
cos function 60

cosine curve, drawing 61

cosine, definition of 67

CSS, usability 11

curveVertex(x,y) function 75

C++, usability 11

custom function 30–31

D
data type

boolean 24
byte 24
char 24
composite 24
float 24
int 24
most common 24
String 24

data visualization 153

Dawkins, Richard, The Blind Watchmaker 4

decrement operator 32

digital artwork, fragility of 11

digital tools 9–12
learning curve 11
rapid obsolescence of 9, 11

dist function 120

divide assign operator 32

division operator 32

draw() function block 27

drawing
basics of 19–27
in 3D space 93–95
rotational SEE  rotational drawing

Drawing With Particles (01010101) xxxix

Dublin Trinity College, School of  

 Computer Science 52
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E
efficiency, in code, importance of 23

ellipse function 18
drawing a circle with 67–68

emergence 108–111
and complexity 125
and Complexity theory 108
and consciousness 111
ant colony as example of 108
as a way of generating organic artworks 111
as organizing principle 111
definition of 108
patterns in interactions 125
political connotations of 111
sociological perspective 110–111

Emergence (John Holland) 108

Emergence (Steven Johnson) 108

emergent complexity 125, 128–144

emergent networks 110

endShape function 75

Enlightenment xxv

Eno, Brian
and generative music 7
Discreet Music 7

F
fill

introduction to 25
turning off 27

fill function 75

Final Cut Pro, usability 11

Flash, usability 11

flicker-fusion 45

Flight Patterns (Aaron Koblin) xxxiv, 150

float 24

flocking simulation, rule for 109

Floyd, W. J., finite subdivision rules 171

for loop 39–40, 54

fractal
and infinite recursion SEE  infinite recursion
case study, Sutcliffe Pentagons 170–187

angle step, varying 184
animating 181
constructing 171–180
description of 171
example 172
experimenting with 180–187
incomplete revolution 184
number of sides, varying 181
strut length, varying 180

exponential growth 165–170
introduction to 157
self-similarity, coding SEE  self-similarity, coding
space clockwork 165, 168
tree

animating 163
beginnings of 162

frame loop 27–30, 89
and noise 89

frameRate function 27

frame rate, standards 45

Frosti (Matt Pearson) xxvii, 102

Fry, Benjamin 14
Visualizing Data 153

function
custom SEE  custom function
introduction to 18

function block
definition of 27

G
Galanter, Philip, definition of generative art 3

Game of Life 128, 134–137
and generative art 137
code 134
online examples 136
rules 134

GarageBand, usability 11

generative art
aim of xxxii
algorithms as tools to produce 9
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and artificial intelligence 136
and human beings 151
and the Game of Life 137
as chaos art xli
as collaboration 6
history of 6–9
introduction to xviii
order and chaos xxv–xxxii
simplicity of xxii–xxiii
tangible, via 3D printer 11
what it is 12
what it isn’t 4–6

generative methodology
autonomy of 6
rules of defining 6
unpredictability of 6

generative music 7

Gibson, William 57

global variable
definition of 29
underline as preface for 29

Gödel, Escher, Bach (Douglas Hofstadter) 136

Greenberg, Ira, Processing tutorial 17

Grid Distortion 02D 0018 (Marius Watz) xxxii

H
halting problem, of Alan Turing 158

Happy Place (Jared Tarbell) xl

HasCanvas 47

Haunted Fishtank 99

Hello World 17–19

hexadecimal, using to denote color values 22

Hodgin, Robert
Addition/Subtraction, Variant xx
Jelly (Magnetosphere) xxi
Magnetic Ink xxi

Hofstadter, Douglas, Gödel, Escher, Bach 136

Holland, John, Emergence 108

HTML, usability 11

human beings, and generative systems 151

hypotenuse, definition of 67

I
if 33

if ... else 33

Illuminations B (Marius Watz) xxxiii

Illustrator, usability 11

increment operator 32

infinite loop 35, 158

infinite recursion 158
simulating in code 158

infinity, computer’s inability to process 158

Information Is Beautiful 153

instance
creating 115
in programming 114
self-awareness 120
vs. class 115

int 24

interaction between objects, and complexity 125

internet, as an example of emergence 110

Introduction to Circle Packing  

 (Kenneth Stephenson) 171

iPad, developing for 46

iPhone, developing for 46

iProcessing 47

iterative variance 54–56
vs. randomness 56

J
Java

must be installed in browser 42
usability 11

JAVA2D rendering engine 93

Java Micro Edition (Java ME) 46

Jelly (Magnetosphere) (Robert Hodgin) xxi

Jerome Saint-Clair SEE  01010101
Johnson, Steven, Emergence 108
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K
KBGD01E 0012 (Marius Watz) xxxii

keyPressed() function 43

Koblin, Aaron, Flight Patterns xxxiv, 151

L
Lady Quark (Manfred Mohr) 8

Lee-Delisle, Seb, Lunar Landing Trails 152

Lewes, George Henry, and emergence 108

Life in 2050 (Matt Pearson) xxvi

line function, vs. translate function 88

loading.gif 44

local variable, definition of 29

logic operators 33

loop
for SEE  for loop
terminating 39
while SEE  while loop

looping, introduction to 34–40

LORMALIZED (Reza Ali) xxxix

Lunar Lander arcade game 152

Lunar Lander Trails (Seb Lee-Delisle) 152

M
Magnetic Ink (Robert Hodgin) xxi

Mandelbrot 156

Mandelbulb (Tom Beddard) 156

mathematical transformations, and line drawing 63

Maya, usability 11

methodology, generative SEE generative 
methodology
micro-behavior vs. macro-knowledge 111

mobile phone, developing for 46

Mobile Processing 46

MODE, specifying rendering engine with 92

modulo operator 32

Mohr, Manfred
and early generative art 9
Artificiata I 9
Lady Quark 8

Molnar, Vera, and early generative art 9

Mondrian Architecture (Matt Pearson) xxxvi

Moore’s Law 11

morphogenesis 110

Mozart, as generative musician 7

Mozilla, Processing for the Web 14

multiplication operator 32

multiply assign operator 32

music, generative SEE generative music

N
Nake, Frieder, and early generative art 9

naturalistic variance 57–63, 73–76

Nees, George, and early generative art 9

negation operator 32

Neuromancer 57

new keyword 115

Newton, Isaac, world view of xxv

Newton (William Blake) xxv

New York Times, API 153

NodeBox 14

noFill function 27

noise
and animation 89–92
generating 60, 73–76
three-dimensional 95–98
two-dimensional 84–89
visualizations 85–89

noise cube 97

noise function 57
as variance in alpha values 85
custom 73–76

noise grid 84–85
on frame loop 89
with noise variance 91
written as function blocks 85

Licensed to george legrady <legrady@arts.ucsb.edu>



194

O
object

in Processing 114
modeling in programming 114
vs. agent 127

object-oriented programming 112–125
array 119
class 114
classes and instances 113–120
drawing circles with 113
instance 114
interactions between behaviors 125
introduction to 112
objects 114

obsolescence, rapid, of digital tools 10

openFrameworks 14

OpenGL library, importing 94

OPENGL rendering engine 93

operators
grouping 31
introduction to 31–32
list of 32

Opiamas Trangelo (Matt Pearson) xix

Orbitals (Matt Pearson) xxxvii

order and chaos xxv–xxxii

order of execution
and layering 25
and styles 25

organic, creating using the mechanical xviii

O’Rourke, Robert, HasCanvas 47

output window 18

P
parameter, introduction to 20

Parry, W. R., finite subdivision rules 171

PDF rendering engine 93

Pearson, Matt
100 Abandoned Artworks xxx
Broken Mirrors 1–4 xxxviii
Frosti xxvii, 102
Life in 2050 xxvi

Mondrian Architecture xxxvi
Opiamas Trangelo xix
Orbitals xxxvii
Perth Arts Festival Branding xxiv
Spiral Stairs 72
Tube Clock 5
Twill xxviii
Wave Clock 77, 81

Perlin, Ken 57

Perlin noise 57
2D, from a 3D perspective 96
case study 76–82
in Processing 57
visualized as alpha values 85
visualized as clouds 89
visualized as squares of varying sizes 87
visualized using rotation 86

Perth Arts Festival Branding (Matt Pearson) xxiv

Photoshop, usability 11

popMatrix function 88

Process 14 / Image 4 (Casey Reas) xxix

Processing
as tool to create generative art 6
introduction to 14–19
learning curve 15
Mobile SEE  Mobile Processing
Perlin noise in SEE  Perlin noise
resources 15
state-based 25
tutorials 17
website 15

Processing 2D (P2D) rendering engine 93

Processing 3D (P3D) rendering engine 93

Processing for Android 46

Processing for the Web 14

Processing.js 14
and iPhone 47
downloading 47

programming
as poetry xxxv–xxxviii
introduction to 19–40
syntax rules xxxviii
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 programming language
as means of producing 2D generative art 6
as tool to create generative art 6

pseudo-randomness 52

pushMatrix function 88

R
radians vs. degrees 67

random function 52–56
custom 63
drawing a line with 53

randomness
and not-so-randomness 52–54
and Perlin noise 57
computer-generated 52
generating in a controlled fashion 57
random.org project 52
vs. random variance 56

random number, generating 52

random.org project 52

Reas, Casey 14
Process 14 / Image 4 xxix

recursion, infinite SEE  infinite recursion
relative coordinate, definition of 23

rendering engine
JAVA2D 93
list of 93
OPENGL 93
P2D 93
P3D 93
PDF 93
specifying with MODE 92

Resig, John 14

Reynolds, Craig, Boids algorithm 109

RGB, introduction to 20

Romanticism xxv

rotational drawing 66–76

rotation, performing with translate function 88

Ruby, Processing implementation 14

Rucker, Rudy 105

S
Saint-Clair, Jerome SEE 01010101
Save As 42

saveFrame function 43

saving work 41

Scala, Processing implementation 14

screen dimension 45

script
exporting 41
generating application from 42
saving 41

self-similarity
coding 159–170
exponential growth 165–170
introduction to 157
recursive depth, limiting 159
tree structure 159

animating 163
branches 161
level and index 162

semicolon 19

setup() function block 27

Shiffman, Dan, Processing tutorial 17
Boids implementation 109

simulation and visualization 146

sine curve, drawing 60

sine, definition of 67

sin function 60

size function, MODE parameter 92

sketch, definition of 41

smoothing, introduction to 20

speed, as code limitation 23

sphere
drawing with sphere function 93
drawing with trigonometry 100–103
spiral drawn around 101

sphereDetail function 94

sphere function 93

spiral
adding noise to 69–76
drawing 69–76

Spiral Stairs (Matt Pearson) 72
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starlings, murmating 109

Stephenson, Kenneth, Introduction to  

 Circle Packing 171

still
creating 43
using as \alt\ image 44
using to create video 44

Stockhausen, Karlheinz, and generative music 7

Strange Symmetry 2 (Frederik Vanhoutte) xxxv

String 24

stroke
introduction to 22
turning off 27

stroke function 25

strokeWeight function 25

Structure Synth 14

subtract assign operator 32

subtraction operator 32

Sutcliffe, Alan
Sutcliffe Pentagons 170
White Heat Cold Logic 170

syntax, importance of 19

T
Tarbell, Jared, Happy Place xl

Thorp, Jeremy
Colour Economy 149
data visualization 153
use of New York Times API 153

tools, digital SEE digital tools
Toop, David, Haunted Weather 7

translate function 88
and drawing in 3D 94
vs. line function 88

TRON 57

Tube Clock (Matt Pearson) 5

Turing, Alan
morphogenesis 110 

halting problem 158

Twill (Matt Pearson) xxviii

Twitter, and emergence 110

U
underline, as preface for global variables 29

unpredictability, required for generative  

 methodology 6

V
Vanhoutte, Frederik, Strange Symmetry 2 xxxv

variable
global SEE  global variable
introduction to 23–24
local SEE  local variable

variable scope, definition of 29

variance
iterative SEE  iterative variance
naturalistic SEE  naturalistic variance

version control 42–43

Vichniac, Gerard 137

Vichniac Vote 137–138

video
creating 44–45
dedicated machine for rendering 44
frame rates 45
screen dimensions 45

Vimeo, screen dimensions 45

Visual Complexity 153

Visualizing Data (Ben Fry) 153

vvvv 14

W
Watts, Alan xviii

Watz, Marius
Grid Distortion 02D 0018 xxxii
Illuminations B xxxiii
KBGD01E 0012 xxix

Wave Clock, case study 76–82

waves 144

while loop 35–36
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White Heat Cold Logic (Alan Sutcliffe) 170

wireframe, definition of 45

wireless toolkit (WTK) 46

X
xnoise 92

xstartNoise 92

Y
ynoise 92

YouTube, screen dimensions 45

ystartNoise 92

Z
z value 93

ZX Spectrum 10
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Artists have always explored new media, and computer-based 

artists are no exception. Generative art, a technique where the artist 

creates print or onscreen images by using computer algorithms, 

finds the artistic intersection of programming, computer graphics, 

and individual expression.

Generative Art presents both the techniques and the beauty of 

algorithmic art. In it, you’ll find dozens of high-quality examples of 

generative art, along with the specific steps the author followed 

to create each unique piece using the Processing programming 

language. The book includes concise tutorials for each of the 

technical components required to create the book’s images, and it 

offers countless suggestions for how you can combine and reuse the 

various techniques to create your own works.

What’s inside 
· The principles of algorithmic art 

· A Processing language tutorial 

· Using organic, pseudo-random, emergent, and fractal processes

Matt Pearson is an artist, coder, and award-winning blogger.

For access to the book’s forum and a 

free ebook for owners of this book, go to 

manning.com/GenerativeArt

FREE 
eBook

see insert

D IG ITA L D ES IG N / PRO G R A M MIN G

US $39.99 / Can $45.99  (including eBook)

“Perfectly placed at the 
intersection of code  
and creative thinking.”From the Foreword by  
Marius Watz 

Founder of Generator.x

“Succeeds in teaching  
without lecturing ...  
turns dull programming 
concepts into fun 
explorations.”Frederik Vanhoutte 
Generative Artist, wblut.com 

“If you’re interested  
in generative art, this  
is the place to start.”Robert O’Rourke 
Founder of HasCanvas

generative art
pearson 

http://manning.com/GenerativeArt
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