Topic: Neural Art Methodology

What are the common AI tools used in the realm of visual art creation? How does artists use them and what outcome has been achieved? How do I make breakthroughs in this “AI x Art”?

I. Artists to study

- Mario Klingemann (Google Arts, huge resources)
- Sofia Crespo (Biology texture synthesis)
- Anna Ridler (custom dataset)
- Robbie Barrat (Stanford young coder, actual author of the first AI artwork sold in the auction)
- Tom White (aesthetically-pleasing outcome)
- Sougwen Chung (Collaboratively drawing with AI robot arms)
- Memo Akten (webcam gan, use towels to generate fire/ocean images)

* A longer list:
https://www.artsy.net/article/artsy-editorial-art-failing-grasp-christies-ai-portrait-coup
http://www.naturemorte.com/exhibitions/gradientdescent/

* Other names: (art-related researcher)
 - Gene Kogan: https://genekogan.com
 - Aaron Hertzmann: https://www.dgp.toronto.edu/~hertzman/index.html
 - Ahmed Elgammal: https://sites.google.com/site/digihumanlab/home

II. Some conclusions:

1. A neural network can be treated as an image synthesizer, creating wilder results, but with less direct control over the result than the tradition image-generating software/algorithms.

2. Artist can guide the AI by changing:
 - Dataset: feeding appropriate dataset; sometimes the artist has to build their unique dataset, which is extremely time consuming
 - Features: decide which features to be considered more, and which less.
3. In the earlier machine learning period, the dataset is smaller and the features and hand-coded. In contrast, in the current deep learning period, as the features are not pre-defined, the dataset has to be big enough for the machine to grasp the features. (like crack a passcode with brutal force, trying on all different possibilities)

4. The breakthrough possibilities lies in:
 - A better **dataset** complies visual artists’ taste
 - A better **model** about artistic visual properties. Essentially, how do we experience aesthetics? and how to model this experience with visual features? Maybe **visual indeterminacy** is one of the answers?

5. Common AI tools categories:
 - Whole image generation (the whole image outcome is generated at once):
 • Neural Style Transfer:
 - https://en.wikipedia.org/wiki/Neural_Style_Transfer
 - https://genekogan.com/works/style-transfer/
 • Texture Synthesis
 • Text to Image https://experiments.runwayml.com/generative_engine/
 - Procedure based image generation: (AI make decision about next step, there is a process of image making)
 • Robots-Human collaborative drawing
 - Drawing Operations, Sougwen Chung, https://sougwen.com/artworks
 • Computer Drawing
 - Image recognition and conversion
 • Image To Text
 - Im2txt, Image Caption Generator: https://github.com/tensorflow/models/tree/master/research/im2txt
 • Image Evaluation
 • Image To Sound
 - Nao Tokui, https://twitter.com/naotokui_en/status/963310211950772224

6. The influence of AI art and the future prediction: (**Can Computers Create Art?**)
 - Elimination: hand-coded algorithm, simulations, etc
 - Improving: More abstract images; More interesting randomizer;

III. Major related Papers

A. GANs

 a) Does not need data of image pairs (A and A′, B and B′), only need two different dataset.
a) Uses image segmentation map to guide the synthesis
b) uses upscaling training to generate high-res results
c) Interactive tools

B. Texture Synthesis (generally higher resolution than GAN model, still in exploration)
1. Deep dream

C. Image Assessment
1. Datta: https://link.springer.com/chapter/10.1007/11744078_23
a) Classical image-rating training framework
b) Image-rating related features
a) Innovative pairwise-training method
3. Computational Understanding fo Visual Interestingness: https://dl.acm.org/citation.cfm?id=3301299
a) A good overview of different paper relating visual interestingness rating, but not very artist-oriented
a) Psychological user study about aesthetic emotions in aesthetic people
b) Cares more about aesthetics

D. Other Papers:
a) Why AI art is so popular, why AI is so good at making “art”?
a) Great sorting out the relationship between AI and art, the future prediction.

IV. Others Resources:
A. ITP Class: Neural Aesthetic: https://ml4a.github.io/classes/itp-F18/