Ariella Gilmore
MAT 265 - Winter
Professor Legrady
March 22, 2020

30 Years of Trends Between Ars
Electronica's Art Works and ACM's
Technical Papers

Previous work

Previously, | focused my priorities on the Ars Electronica data set and creating a visualization that
would help enable people to better understand the Ars Electronica archive. This visualization created
a space in which people could see projects submitted through the years and see how they
corresponded to one another based on word frequency. A regular archive only allows for a static
view of one project at a time, but this visualization enables a user to see how a project is important in
its dataset.

Exploration

After feeling confident in my results, | wanted to see how works within Ars Electronica compare to
the technologies being used in more technical environments/conferences. | explored different types
of datasets including resources such as articles from Wired and papers from Google Scholar. |
decided to start with using the Association of Computing Machinery (ACM) because of the vast and
diverse variety of papers that are submitted through ACM every year and also because it has a
reputable digital library that contain all of this information.

Collecting Dataset

Using Beautiful Soup, which is a Python library | used previously, | was able to scrape and download
PDF's from each year in ACM's digital library from 1980-2020. The digital library interface allows users
to search documents by year and organize by the most downloaded. As an preliminary dataset, |
scraped the top 100 most downloaded works from each year.

Analysis

After collecting my basic dataset for both Ars Electronica and ACM, | wanted to develop a new
heuristic for comparing these resources. My previous project used a simple word count, but | felt that
a word count in this situation would not be accurate enough to convey a relationship between these
two mediums. The picture below, shows a word count mapping of Ars Electronica projects to ACM

papers. It is noticable that there are many similar words in the years 1991-1994 and 2001, but again
this is not able to tell us enough information.

[) acm_output_test_2

Ars Electronica

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

| PPPPP 1

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Assaciation for Computing Machinery (ACM)

Eventually, the digital humanities department discussed some of their resources to me. The one that
stood out the most was a program called the Wikifier.

The Wikifier is a tool that takes in text and, once it finds the keywords from the given text, outputs
each of the keywords' best matched wikipedia title. One can try it out here: http://wikifier.org/. The
keywords are also ranked depending on both how "important" it is in the document as well as how
well it feels the wikipedia title is correctly matched.

This program allows me to take two separate datasets and create a connection between them across
one set of possibly similar keywords. The Wikifier allows for different types of language to be used,
but still fall under one ultimate category created by the wikipedia titles.

The digital humanities team has a virtual machine, where they gave me an account, so that | can

upload all the files | scraped and run the wikifier through this java command line:

java -jar dist/wikifier-3.0-jar-with-dependencies.jar -annotatebata ACMData
ACMOutput false configs/STAND_ALONE_NO_INFERENCE.xm]

This command line runs the wikifier java file and specify the input folder("ACMDATA") of my data and
which folder("ACMOutput") | want my output results to appear.

http://wikifier.org/

The wikifer takes in txt files that then get outputed to an xml file with the wikifier data. Because all of
my files were originally PDF formatted., | used two different Python libraries called PyPDF2 and
pdfminer, which both convert the PDF's into text files. Also, on macs there is an automator
application, which is kind of like a visual coding language. One of the features is being able to convert
PDF's to text. With the combination of these three tools mostly all of the PDF's will be converted into
a normal text output.

After running the wikifier command line, here are some examples of output | recieve in XML format.
The "EntitySurfaceForm" is one of the keywords from the input text. The "LinkerScore" is how strong
of a link there is to the Wikipedia article. The "WikiTitle" references the Wikipedia article that the
keyword is matched to and the "RankerScore" is how well it feels each Wikipedia title correctly
matches the keyword being referenced relative to each other.

three-dimensional
201
218
0.04892872955034064

3D_computer_graphics
10175073
0.1846676875461557
effects graphics

Three-dimensional_space 3054853
0.1764413605855399

3D_computer_graphics 10175073
0.1846676875461557

Dimension
0.12297706229861745

3-D_film 246007
0.06448923619621087

Solid_geometry 507960
0.06448923619621087

Stereoscopy 201460
0.06448923619621087

Volume
0.06448923619621087

3-manifold 1018257
0.06448923619621087

Illumination Model

List_of_common_shading_algorithms

8262244
0.5

computing
9450
9459
0.4326437315019615

Computing
5213
0.20053024956628704

Computing

0.20053024956628704

Computer 7878457
0.08185126978643158

Computer_science
0.08517463288638974

Information_technology
0.06324438477608917

Computation
0.06324438477608917

Green_computing 1661475
0.06324438477608917

End-user_computing 3558310
0.06324438477608917

Remote_procedure_call
0.06324438477608917

Future work

After collecting my results from the wikifier for both Ars Electronica and ACM, | plan on creating a
data visualization to represent the connections between these two mediums. One form of
representation could be a Sankey diagram. There are multiple ways to create this, but | believe the
best way could be using javascript's D3 library. An example of a Sankey diagram created by D3 can be

explaining how to implement this diagram into your own system. It also allows for uploading your
own files and testing that way first. The file should consist of three columns, the first being the
source, the second is the target, and the third is the value. This gives the code the information of
where the source should connect to the target and how thick of a line should be drawn between
them. The D3 library also allows for a lot of parameter adjustment in the stying as well as easy

https://observablehq.com/@d3/sankey-diagram%23sankey

integration for a webpage.

	30 Years of Trends Between Ars Electronica's Art Works and ACM's Technical Papers
	Previous work
	Exploration
	Collecting Dataset
	Analysis
	
	Future work

