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Abstract: Complex dynamics of natural particle systems, such as insect
swarms, bird flocks, fish schools, has attracted great attention of scientists
for years. Measuring 3D trajectory of each individual in a group is vital
for quantitative study of their dynamic properties, yet such empirical data
is rare mainly due to the challenges of maintaining the identities of large
numbers of individuals with similar visual features and frequent occlusions.
We here present an automatic and efficient algorithm to track 3D motion
trajectories of large numbers of moving particles using two video cameras.
Our method solves this problem by formulating it as three linear assignment
problems (LAP). For each video sequence, the first LAP obtains 2D tracks
of moving targets and is able to maintain target identities in the presence of
occlusions; the second one matches the visually similar targets across two
views via a novel technique named maximum epipolar co-motion length
(MECL), which is not only able to effectively reduce matching ambiguity
but also further diminish the influence of frequent occlusions; the last one
links 3D track segments into complete trajectories via computing a globally
optimal assignment based on temporal and kinematic cues. Experiment
results on simulated particle swarms with various particle densities validated
the accuracy and robustness of the proposed method. As real-world case,
our method successfully acquired 3D flight paths of fruit fly (Drosophila
melanogaster) group comprising hundreds of freely flying individuals.
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OCIS codes: (150.6910) Three-dimensional sensing; (100.4999) Pattern recognition, tar-
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1. Introduction

Complex motion pattern displayed by natural particle systems moving in three-dimensions
(3D), such as insect swarms, bird flocks and fish schools, is a fascinating natural phenomenon
and has long attracted a great deal of attention from scientists of a diversified range of disci-
plines [1]. Although many numerical models [2, 3] have been proposed to simulate such phe-
nomena, theoretical assumptions behind them without the support of empirical trajectory data
are insufficient to reveal the nature of such phenomena [4]. However, such spatial-temporal
position data is rare mainly due to technological difficulties. Most recently, [5] discovered the
hierarchical property of group dynamics via tracking pigeon flock in 3D through GPS devices.
Although useful, it is infeasible to attach such advanced sensor devices to a group consisting
of hundred individuals. Moreover, when handling groups with tiny and lightweight individuals,
such as fruit flies or bees, this approach would affect their flight behaviors. By contrast, a more
feasible non-contact and non-intrusive solution is to use multiple video cameras to capture the
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Fig. 1. Measuring 3D individual trajectory of large numbers of moving particles is chal-
lenging. As red color illustrates, tracking moving groups is difficult in the presence of
occlusions, newly entering targets and clutters etc. Meanwhile, when individuals resemble
each other, epipolar constraint (green line denotes the epipolar line) alone is insufficient to
reduce matching ambiguity. Four images here were chosen from our Drosophila tracking
experiments below.

dynamic scene and then to retrieve the 3D individual trajectories from video sequences.
The key challenge to this scheme, as shown in Fig. 1, is twofold: matching visually similar

targets across various camera views to compute the 3D positions and maintaining their identi-
ties in the presence of occlusions throughout the whole sequences to obtain complete tracks.
Therefore, current stereo matching [6] methods which fully utilize target appearance feature to
reduce matching ambiguity would fail here. Besides, advanced multiple target tracking meth-
ods [7–9] were efficient to monitor a few numbers of targets, but they would lead to extremely
high computational costs when tracking large and variable numbers of interacting individuals.
Most recently, some researchers have attempted to overcome these difficulties: [10] have suc-
cessfully reconstructed the 3D coordinates of large starling flocks, but acquiring the complete
trajectory of each individual still remains a challenge to be addressed; [11] proposed a method
for tracking emerging bats in three dimensions, but the accuracy and capacity of their method
for handing particle systems with complex motion is unclear.

We present here an automatic and efficient method to address the above challenges by us-
ing two video cameras. As shown in Fig. 2, given the detected targets throughout the video
sequence of each camera, our algorithm measures 3D trajectory of each individual in a large
group by solving three linear assignment problems (LAP). For each video sequence, the first
LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence
of occlusions; the second one establishes the correspondences of visually similar targets across
two views via a novel technique named maximum epipolar co-motion length (MECL); the last
one links 3D track segments into complete trajectories via computing global assignment based
on temporal and kinematic cues. MECL, which encodes both the geometric and motion features
of the whole track, is not only able to effectively reduce matching ambiguity but also further
diminish the influence of frequent occlusions. Our method is computationally efficient when
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Fig. 2. Experimental setup and the diagram of the proposed method. When matching tracks
across various camera views in the second step, two tracks with the same color correspond
to a matched pair.

handling large numbers of targets.
We first validated the accuracy and robustness of the proposed method on simulated particle

swarms with various particle densities. We then applied it to track large fruit fly (Drosophila
melanogaster) group flying in 3D space. Recently, the flight behaviour of Drosophila in the
group context has attracted much attention of scientists [12], and two machine vision systems
proposed most recently [13, 14] were both designed to monitor walking fruit fly groups by
using single video camera. Many existing automatic 3D fruit fly tracking systems [15–18] were
designed to track single or at most a few numbers of subjects. Acquiring and analyzing 3D
flight paths of large Drosophila group may provide new insights to their flight behaviours,
such as collision avoidance, in group context. Using the proposed system, we successfully
measured the 3D flight paths of a Drosophila group comprising more than five hundred flying
individuals, which, to our knowledge, is the first quantitative data on such a large Drosophila
group. We evaluated the accuracy and robustness of the proposed method by comparing the
acquired results with manually generated ground truth. This method is general-purpose and can
be easily adapted to a wide range of other 3D tracking tasks in group behaviour research. It can
also potentially be used for tracking microparticle groups in 3D [19,20].

This paper is organized as following: in section 2, after discussing the target detection algo-
rithm, we present the formulation and the corresponding numerical solution to three steps of the
proposed approach. Section 3 first evaluates the performance of proposed method on simulated
particle swarms with different particle densities and then demonstrates the 3D tracking results
of large Drosophila group. Discussions and conclusions are presented in the last section.

2. Problem and method

Prior to capturing the particles moving in 3D space, two video cameras we used here must be
geometrically calibrated and temporally synchronized. With the recorded video sequences, we
first detect the target positions by using background subtraction [21]. Taking in these detections
as input, the proposed method tracks 3D motion trajectories by solving three linear assignment
problems (LAPs) as illustrated in Fig. 2. The following subsections detail the formulation of
the LAPs.

2.1. Two-dimensional tracking via spatial assignment

Tracking a large number of moving targets in 2D video sequences of each camera is realized
through two steps. The first step is to track targets by state prediction and estimation, and the
second step is to associate detections with the tracks. We use Kalman filter [22] to realize state
prediction and estimation, and formulate the state-measurement association as an LAP problem.
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The details are explained as follows.
Target state prediction and estimation can be achieved by Bayesian filters which compute the

successive posterior densities p(x(t)|z(1 : t)) from the set of detected measurements z(1 : t) =
{z(1), · · · ,z(t)}, where z(t) ∈ R

2 is the noisy measurement of a hidden state x(t) at time t. In
our implementation, x(t) ∈ R

4 contains the 2D position and 2D velocity vector. Based on first
order Markov assumption, we model the problem as a linear Gaussian dynamic system in the
following way:

x(t) = Fx(t −1)+w(t) (1)

z(t) = Hx(t)+u(t) (2)

where F is the state transition matrix from t −1 to t, H is the observation matrix. w(t) and u(t)
are the process noise and measurement noise, which are assumed to be zero-mean white Gaus-
sian noises. Let x̂(t) be the predicted state based on z(1 : t−1). Given the following assumptions
in linear Gaussian system above: (1) the process noise and state are mutually independent; (2)
the process noise and measurement noise are mutually uncorrelated and independent, the opti-
mal solution that minimizes the mean-squared error E[||x(t)− x̂(t)||2] is the Kalman filter [22].
After state initialization, Kalman filter is constructed by two steps in each frame: state pre-
diction and estimation. States in current frame are predicted by using the estimated states in
previous frame:

x̂(t) = Fx(t −1), F =

⎡
⎢⎢⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (3)

where Δt denotes the time period of the sampling interval. After employing data association
detailed below, each predicted state is assigned to one measurement. The current state is then
estimated by:

x(t) = x̂(t)+G[z(t)−Hx̂(t)] (4)

where G, known as Kalman gain [22], is updated recursively.
We here adopt a simplified version of Kalman filter: α-β filter [23], of which G is expressed

as:

G =

⎡
⎢⎢⎣

α 0
0 α
β
Δt 0
0 β

Δt

⎤
⎥⎥⎦ ,0 ≤ α,β ≤ 1, H =

[
1 0 0 0
0 1 0 0

]
(5)

α and β determine the fraction of measurement error applied to the predicted position and
velocity (namely the predicted state), respectively. Compared to Kalman filter, it is more flexible
to choose gain parameters α and β : one can use fixed coefficients, or can vary them according
to the situation of noises. Generally, the large the amount of noise is, the smaller their values
should be. In our experiment below, α-β filter performed effectively with fixed parameters.
This simplification, with limited loss of performance, reduces the computational costs, and
thus makes it more efficient for tracking large numbers of moving particles.

Before estimating particle states, a central problem is how to determine the optimal cor-
respondences between detected measurements and predicted states in each frame, which is
known as data association problem. The simplest suboptimal method is nearest neighbor as-
sociation [24], which associates the measurement with the target whose predicted position is
closest. Although simple and efficient when dealing with a small number of targets, it is inef-
fective to track a large number of interacting targets. We here formulate this problem as a linear
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assignment problem (LAP) [25] whose computationally efficient solution provides a globally
optimal association result.

The goal of LAP, given a cost matrix C, is to find the assignment matrix A between the
detected measurements and predicted states by minimizing the sum of assignment costs. C is
non-negative and defined by the assignment costs between measurements and predicted states
in each frame. We here use Euclidean distance to define the assignment cost:

C(i, j) = ‖zi(t)−Hx̂ j(t)‖ (6)

where zi(t) and x̂ j(t) denote the ith and jth element of z(t) and x̂(t), respectively. A is a binary
matrix and the entry A(i, j) is determined as follows:

A(i, j) =

{
1 if zi(t) is assigned to Hx̂ j(t)

0 otherwise
(7)

A is found by solving the following optimization problem:

A =argmin
A

m

∑
i=1

n

∑
j=1

C(i, j)A(i, j) (8)

subject to
n

∑
j=1

A(i, j) = 1,
m

∑
i=1

A(i, j) = 1 (9)

where m and n denote the number of elements in zi(t) and x̂ j(t), respectively. Equation (9)
guarantees that each predicted state could include at most one assigned measurement and each
measurement could be assigned to at most one predicted state. In order to prohibit physically
impossible assignments, any element in cost matrix C whose cost exceeds a threshold Cthr is
set to ∞. This threshold can be selected based on prior kinematic information. The LAP in each
frame can be solved by the Hungarian algorithm [26].

Assignment selection is easy when the number of particles is small and constant. However,
when dealing with large numbers of moving targets, the number of measurements is often
variable from frame to frame because of: (1) frequent occlusions; (2) newly entering particles;
(3) temporarily disappearing particles due to missed detections; (4) particles moving out of the
camera’s field of view; (5) false positive detections resulting from noises, etc. As a result, not all
the predicted states will be assigned to corresponding measurements, and vice versa. In order
to adapt the above LAP to handle these difficulties, we implement it in the following way:

1. States that find their matched measurements in current frame are updated according to
Eq. (4). All these updated states are labeled as active.

2. States without matches, which might result from temporary/permanent disappearance or
occlusions, are associated with dummy measurements and updated by simply assigning
x̂(t) to x(t). All these states are labeled as active and unmatched status. Active states
remaining unmatched status for more than Tpred frames, which indicates the higher prob-
ability of permanent disappearance, will be labeled as inactive and terminated.

3. Measurements without matches, which may be the newly entering targets or false positive
detections, are initialized as new states and labeled as active. Generally, the false positive
detections last for single or at most several successive frames, therefore, they can be
easily removed by discarding the tracks whose lengths are less than a threshold.

In each frame, measurements only associate with active states. Tpred , which mainly depends on
occlusion severity, is set to 2∼5 frames in our experiments. As shown in the experiment part,
the above strategy can effectively handle the difficulties resulting from high particle density
condition.
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2.2. Track matching via MECL

In order to retrieve the 3D positions of moving particles in a group, we need to establish the
correspondences of detected targets across camera views. As shown in Fig. 3(a), provided the
relative translation and rotation of two cameras have been determined via camera calibration
[28], the set of possible matches for point p1in the 1st view is constrained to lie on the associated
epipolar line [28] l in the 2nd view. Finding a corresponding point along epipolar line can be
simplified to be a 1D searching problem after image rectification [29], which is implemented by
projecting two views onto a common plane so that the epipolar lines map to horizontally aligned
lines in the transformed views as shown in Fig. 3(a) . To reduce the matching ambiguities
along the rectified epipolar line, existing stereo correspondence algorithms [6] fully utilize
the image texture feature. These methods would fail here because the particle-like targets are
indistinguishable in appearance. The following fact, as illustrated in Fig. 3(b), suggests that
the acquired 2D tracks encode rich information to solve the particle matching problem: if a
particle swarm moving in 3D space is captured by two geometrically calibrated and temporally
synchronized cameras with common field of view, 2D projections of the same particle at the
same time step will submit to epipolar constraint. Thus particle correspondence problem can
be solved by matching 2D tracks across views. This can be again formulated as an LAP, whose
solution provides an optimal track assignment by minimizing the sum of a defined matching
cost.

Based on the above fact, we here define a novel matching cost named Maximum Epiplor Co-
motion Length (MECL). Let Γk = {Γ1

k , . . . ,Γ
Nk
k } denote the trajectory set of the kth view, where

Nk is the number of the trajectories. Each element in Γi
k is expressed as: Γi

k(t) = (xi
k(t),y

i
k(t), t),

where(xi
k(t),y

i
k(t)) is the tracked position in the tth frame. For convenience, let T i

k be the frame
index sequence of Γi

k, of which the first and the last elements are denoted by T i
k (b) and T i

k (e),
respectively. After rectifying each frame of two video sequences, the frame index sequences of
the matched point pairs of Γi

1 and Γ j
2, as shown in Fig. 3(c), are defined as:

MΓi
1,Γ

j
2
= {t

∣∣‖yi
1(t)− y j

2(t)‖ ≤ ε, t ∈ {T i
1 ∩T j

2 }} (10)

where ε is the matching error tolerance and {T i
1 ∩T j

2 } is the common time span of Γi
1 and

Γ j
2. We subsequently replace MΓi

1,Γ
j
2

with M for simplicity. M is said to be contiguous if all

the point pairs are matched in the common time span. Generally, errors that occur in tracking
module will make it noncontiguous as shown in Fig. 3(c). In such situation, M will be split
into several contiguous subsets, each of which is one frame index sequence of the corresponding
matched segment. This can be formulated as follows:

M = {M 1,M 2, . . . ,M NM } (11)

M p = {M p(b),M p(b)+1, . . . ,M p(e)} (12)

M p+1(b)−M p(e)≥ 2 (13)

where NM denotes the number of subsets in M . Equation (13) means that a point pair remains
unmatched for at least one frame. Let |M p| denote the epipolar motion length, namely the
cardinality of M p, MECL is expressed as:

MECL(Γi
1,Γ

j
2) = max{|M p|} p = {1, . . . ,NM } (14)

Other motion cues such as velocity information can also be incorporated into the definition of
MECL. The trajectory matching cost between Γi

1 and Γ j
2 is defined to be the negative MECL:

C(Γi
1,Γ

j
2) =−MECL(Γi

1,Γ
j
2) (15)
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Tracking errors

Fig. 3. (a): Epipolar constraint: given a calibrated image pair, matching candidates for point
p1 in 1st view must lie on the associated epipolar line l in the 2nd view. Image rectification
is the process of projecting the planes of two views, Π1 and Π2, onto a common plane
Π′ so that the epipolar lines l map to horizontally aligned lines l′ in the rectified views.
The following image pairs are supposed to be calibrated and rectified. (b): Projections of
the same particle on 2D image planes will submit to epipolar constraint. Γi

1 and Γ j
2 denote

two tracks obtained from two video sequences and the dashed horizontal line represents
the epipolar line. (c): 2D tracks matching. Each matched point pair is marked by the same
color. Unmatched point pair is generally caused by tracking errors. (d): Grey band denotes
the matching tolerance band, and any point pair falling in this band is considered to be
matched. Note that near the head or tail of two matched tracks, two truly unmatched points
may still fall in the tolerance band for several frames.
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In order to make the matching cost non-negative as required by the definition of LAP, MECL
is normalized by:

MECL(Γi
1,Γ

j
2) = max{|M p|} · ( 1

T i
1

+
1

T j
2

) p = {1, . . . ,NM } (16)

The trajectory matching cost is then transformed into:

C(Γi
1,Γ

j
2) = 2−MECL(Γi

1,Γ
j
2) (17)

By solving the LAP with the above cost matrix, each track in one view will find its cor-
respondence in the other view. As mentioned above, tracks may be partially matched due to
association errors resulting from the first LAP. To diminish the influence of these errors and
match the tracks as complete as possible, we perform the track matching process iteratively.
For a matched track pair Γi

1,Γ
j
2, let M̃ be the subset of M whose cardinality corresponds to

MECL(Γi
1,Γ

j
2). Then each track can be decomposed into three segments:

Γa
k = Γi

k(T
i

k (b) : M̃ (b)−1+ τ) (18)

Γb
k = Γi

k(M̃ ) (19)

Γc
k = Γi

k(M̃ (e)+1− τ : T i
k (e)) (20)

k ∈ {1,2},τ ∈ Z,τ ≥ 0 (21)

where τ is the parameter to adjust the overlap length between Γb
k and Γa

k , Γc
k. The value selection

for τ will be discussed below. All the Γb
k are collected and labeled as matched, while all the Γa

k
and Γc

k are labeled as unmatched and gathered to go through the matching process iteratively.
In order to make the matching algorithm more robust, unmatched tracks of length less than a
threshold Lthr are discarded, since the possibility of being erroneously matched will be very
high if a track is too short.

The defined MECL differs the matching cost in [27] which was used to reconstruct 3D sur-
face in the following ways: first, the common epipolar length we used here encodes the particle
motion information during the whole common time span while the maximum distance error
term used in [27] weighs only on the single time step with maximum epipolar error. And thus
finding corresponding tracks in our way is more reliable as shown in experiment section. Sec-
ond, compared the method in [27], MECL is able to not only handle the tracking errors but also
yield more complete and correct matched track pairs by operating iteratively.

2.2.1. Selection of overlap parameter

Due to the association errors and relative motion between two particles, as shown in Fig. 3(d),
truly unmatched points may still remain matched for several frames near the head or tail of
one matched segment. Consequently, the resulting reconstruction errors in 3D space may be so
large as to make 3D tracks linking, the last LAP of our approach, very difficult or even failed.
To overcome this difficulty, we set a parameter τ to adjust the overlap length between Γb

k and
Γa

k , Γc
k. τ = 0 means that there is no overlap; in real scenario, its value should be a small positive

integer to generate a short overlap region.

2.3. 3D track linking via temporal assignment

With the obtained 2D matched track pairs, 3D trajectories are then reconstructed by perform-
ing triangulation via Direct Linear Transformation algorithm [28]. However, partially matched
track pairs resulting from tracking errors will make the reconstructed 3D trajectories broken
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into segments. The last LAP is designed to link these tracklets (trajectory segments) into com-
plete motion trajectories. We use Γ = {Γ1,Γ2, . . . ,ΓNΓ} to denote the 3D tracklet sets where
Γk(t) = {xk(t),yk(t),zk(t), t}, T k to denote the frame index sequence of Γk. Suppose that
Γ̃ j = {Γa	Γb	Γc} is a complete trajectory broken into three tracklets where the symbol 	 rep-
resents the linking relation, then one way to recover Γ̃ j is through determining the pairwise
linking of trackets, namely, Γa	Γb and Γb	Γc. Consequently, this problem is reduced to an
LAP, that is how to find the optimal pairwise tracklet assignment among Γ given a linking cost
matrix C.

The definition of tracklet linking cost is the key and we here incorporate temporal and kine-
matic information into linking cost. First, temporal cost Ct , which is used to remove the impos-
sible candidates, is defined as follows:

Ct(i, j) =

⎧
⎪⎨
⎪⎩

1 1 ≤ T j(b)−T i(e)≤ δ
1 0 ≤ T i(e)−T j(b)≤ τ
∞ otherwise

(22)

As discussed in previous subsection, in order to handle tracking errors, an adjustable overlap
region will be generated when removing the matched part of one track. Consequently, Γi may
overlap linking candidate Γ j for at most τ frames. Meanwhile, Γi may also link Γ j if the latter
is initialized at most δ frames later. Second, kinematic cost captures motion information of two
tracklets. As shown in Fig. 4, if two tracklets overlap each other, we choose the mean pairwise
Euclidean distance in overlap region as the kinematic cost, that is:

Ck(i, j) =
∑T i(e)

t=T j(b)
‖ri(t)− r j(t)‖

T i(e)−T j(b)+1
(23)

where ri(t) = {xi(t),yi(t),zi(t)}. Otherwise, if tracklet Γ j is initialized at most δ frames after
Γi terminates, the positions of Γi in broken time region are forwardly predicted by constant
velocity model, and Γ j are backwardly predicted in the similar way. The kinematic cost is then
computed in the following way:

Ck(i, j) =
∑T j(b)

t=T i(e)
‖r̃i(t)− r̃ j(t)‖

T j(b)−T i(e)+1
(24)

where r̃i(t) denotes the predicted 3D particle positions.
The final linking cost function is the product of temporal cost and kinematic cost, namely

C(i, j) = Ct(i, j)×Ck(i, j). Unlike the cost definitions of two previous LAPs, linking cost is
asymmetric, that is C(i, j) 
=C( j, i), because linking relation is directional and irreversible. With
the obtained cost matrix, Hungarian algorithm is employed to find the optimal assignments. The
complete trajectories can be obtained by tracing the resulting assignment matrix.

3. Experimental results

We first tested the performance of the proposed system by tracking simulated 3D particle
swarms with different particle densities. We then applied our system to acquire the 3D mo-
tion trajectories of a Drosophila melanogaster (fruit fly) group comprising hundreds of flying
individuals. The proposed method was implemented by MATLAB and all the experiments were
conducted on a PC running Intel Dual-core 2.53 GHz Processor and 2G RAM.
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Fig. 4. Linking 3D tracklets. Tracklet Γ1 has two linking candidates, Γ2 and Γ3. Γ2 starts
several frames after Γ1 terminates, and Γ3 overlaps Γ1 several frames. The linking cost be-
tween Γ1 and Γ2, denoted by C(1,2) is computed according to Eq. (22) and Eq. (24), while
C(1,3) is computed according to Eq. (22) and Eq. (23). Grey dots denote the predicted
particle positions.

3.1. Object detection

To validate the object detection algorithm mentioned at the beginning of section 2, we com-
pared the detection results with the ground-truth generated by human visual examination. We
chose 30 frames from the whole sequences with resolution 960 × 540 which recorded the flying
Drosophila group as illustrated below, and detected the targets manually. The correlation be-
tween the detection number and the ground-truth was 0.989. The discrepancy mainly resulted
from the occlusions, but our data association method, as discussed in section 2.1, is able to
effectively handle these situations.

3.2. Results on simulated experiments

3.2.1. Simulated particle swarm settings

We first evaluated the proposed framework on simulated particle swarms, which provided a
controllable setting with known ground truths to simulate the challenges mentioned in intro-
duction section. Simulated particles moving in a cube of edge length 2 m were initialized with
a random position p, velocity v and a small random perturbation n. Particle velocity was up-
dated as follows:

v(t +1) = θv(t)+n (25)

where θ ∈ [0,1] was used to modulate the randomness of particle motion, and n ∼N (0,0.05I)
obeyed a normal distribution (with mean zero and covariance 0.05I). Particles moved randomly
when θ = 0 and moved with constant velocity when θ = 1. In the experiment, it was randomly
generated from 0.7 to 0.9. If a particle hits a boundary at the next time step, the component of
velocity parallel to that boundary is unchanged, and the component of velocity perpendicular
to that boundary is reversed. Let the sampling time interval be 0.005 second, the initial velocity
magnitudes were randomly distributed between 1.5 and 3.5 m/s. At each sampling interval,
3D positions of all particles were projected onto two image planes of 500× 500 resolution
from different views, simulating two cameras. CCD video camera noises were not simulated
here because the resulting false positive detections generally had very short tracks (less than 3
frames), which could be easily removed. Each particle was rendered by OpenGL as a sphere
with radius of 0.02 m (1% of side length), and the corresponding 2D projection on image plane
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resembled a circular blob with radius of at most 5 pixels. Occlusions occurred when projections
of two particles overlapped each other on 2D image sequences.

By increasing the particle number, simulated challenges would be similar or even harsher
compared to our real world experiment below. The particle number varied from 20 to 100, and
150 frames were used in the experiments. On average, 2 to 10 particles occluded each other in
each frame.

3.2.2. Performance evaluation metrics

To evaluate the method quantitatively, we associated the obtained trajectories ΓEXP with
ground-truth trajectories ΓGT by using the approach proposed by [30]. Let O(i, j) denote
T i

EXP
⋂

T j
GT , namely the overlap region of these two trajectories. The distance between Γi

EXP

and Γ j
GT was defined by:

D(Γi
EXP,Γ

j
GT ) =

1
|O(i, j)| ∑

t∈O(i, j)

||ri
EXP(t)− r j

GT (t)| (26)

where ri(t) = {xi(t),yi(t),zi(t)}. D measures the average error between the acquired positions
and ground-truth in overlap region. With the above trajectory distance matrix, association ma-
trix A could be obtained and A(i, j) = 1 when the obtained trajectory Γi

EXP is associated with
Γ j

GT . In order to guarantee high accuracy of the acquired trajectories, associations with trajec-
tory distance larger than a threshold Dthr would be forbidden. Dthr, the error tolerance between
ΓEXP and ΓGT , was set to be 0.01. Let Ã(Γ j

GT ) = {Γi
EXP|A(i, j) = 1}, two evaluation metrics,

which were used to evaluate the tracking algorithms in [30], were adopted here, that is trajectory
fragmentation factor (TFF) and trajectory completeness factor (TCF):

TFF =
∑ j |Ã(Γ j

GT )|
|{Γ j

GT |Ã(Γ j
GT ) 
= /0}|

; TCF =
∑ j ∑i|A(i, j)=1 |O(i, j)|

∑ j |T j
GT |

(27)

TFF, of which the ideal score is 1, measures on average the number of acquired trajectories
used to match one ground-truth trajectory. The larger this value is, the worse the performance
on maintaining particle identity is. TCF measures on average the ratio of one ground truth
trajectory length covered by the reconstructed trajectories. TCF equals to 1 when all the motion
trajectories are accurately obtained. The smaller its value is, the larger missed part is.

3.2.3. Results on simulated particle swarms

We here validated the performance of each LAP of the proposed method. We first detected the
particle positions in two simulated image sequences by the object detection method detailed
in section 2 and then took in the detections to acquire 3D motion trajectories. We referred our
method as TraMaL since three LAPs were designed to Track particles in video sequences,
Match particles across various views and Link the 3D track segments, respectively. Model
parameter settings of the proposed method were shown in Table 1, and compared methods used
to test three modules of our framework were shown in Table 2.

Table 1. Model parameter settings

α β Tpred ε Lthr τ
Simulated particle tracking 0.9 0.8 3 18 20 5

Fruit fly tracking 0.8 0.7 4 6 8 2
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Table 2. Compared methods

Method Tracking Matching Linking
TraMaL (ours) proposed proposed proposed
TraRemL proposed REM [27] proposed
TraMa proposed proposed None
CnMaL Constant velocity tracking and

Nearest neighbor association
[24]

proposed proposed
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Fig. 5. Performance of compared methods on two evaluation metrics: (a) TFF and (b) TCF.
One can see that TraMaL, the proposed method, performs best.

Each experiment was performed 5 times in each particle density and the average values of
TCF and TFF were used for comparison. As shown in Fig. 5, our method performed best in
terms of both TCF and TFF. The performance of our tracking module was better than that of
CnMaL which tracked particles using constant velocity model and associated the detections
with tracks via nearest neighbor algorithm [24].

Compared with TraRemL which adopted REM [27] as the trajectory matching cost, our re-
sults were remarkably better in both TFF and TCF. This is because MECL, which combines
motion and geometric cues into the cost definition, is able to handle tracking errors and match
track segments as complete and accurate as possible. This ability was demonstrated in Fig. 6.
If only tracking and matching module were used (TraMa), TFF of TraMa was larger than that
of TraMaL, and the discrepancy was more obvious when particle number increased. When the
particle number was 100, TFF of TraMa was 1.71 while TFF of the proposed method was
only 1.18, which indicated that the linking module could make final trajectories more com-
plete. Results as shown in Fig. 6 demonstrated how the matching and linking module worked
collaboratively.

Acquired trajectories of simulated particles using the proposed framework were shown in
Fig. 7.

3.3. Results on fruit fly swarm

The flight behavior of fruit fly in group context has captured the interests of many scientists and
most current experiments were carried out by tracking single or at most several subjects in 3D
space as mentioned in introduction part. We applied our system to acquire the 3D flight paths of
a large fruit fly (Drosophila melanogaster) group consisting of hundreds of flying individuals.
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Fig. 6. Matching and linking results of simulated particle swarms. For clarity, only partial
results are shown here. (a) and (b) represent the left and right camera view, respectively.
Because of tracking errors, parts of two tracks in (a), namely 1 and 2, are both matched
with one track in (b). As a result, two 3D trajectory segments are obtained as shown in (c).
After performing tracklet linking, a correct and complete trajectory is acquired as shown in
(d).
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Fig. 7. 3D trajectory acquisition results of the proposed method on simulated particle
swarms under different particle densities. From left to right, the particle number is 40,
60, 80 and 100, respectively. The missed and erroneous trajectories are displayed by red
color.

3.3.1. Experimental setup

The experiments setup is illustrated in Fig. 2. About six hundred Drosophila flied freely in a
transparent acrylic box of size 35cm×35cm×25cm, where the background was illuminated by
white plane lights. Two Sony HVR-V1C camcorders, synchronized by the method proposed
by [31] and calibrated by the algorithms developed by [32], were used to capture the scene
from two different views at 20 frame per second. During experiment, both camcorders were
still and the lighting was constant. As shown in Fig. 2, fruit flies appeared like dark particles on
a relatively bright background. 200 frames with resolutions of 960×540 were captured totally
and used to acquire the 3D motion trajectories.

3.3.2. Experimental results

Before performing tracking module, we first detected fruit flies in each frame by the object
detection method detailed at the beginning of section 2 and validated in section 3.1. On av-
erage, 159.8 and 179.5 targets were detected in each frame in left and right cameras views,
respectively. We observed that the Drosophila group here exhibited complex motion: (1) Freely
flying Drosophila performed “body saccades”, in which they rapidly turned their heading. The
projected positions in sequences were thus more complicated to track. (2) The motion prop-
erties among individuals were different: some Drosophila flied rapidly while some moved
slowly along the box edge. Facing these challenges, our framework still worked efficiently and
achieved satisfying results. As shown in Fig. 8, our data association method was able to reliably
maintain the target’s identity under frequent occlusions. We obtained 489 and 561 2D tracks
in two video sequences, respectively, whose lengths were more than 8 frames. After match-
ing these 2D tracks via normalized MECL, we obtained 547 matched pairs. After building the
linking cost function with the reconstructed 3D tracklets, the solution to the third LAP linked
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Fig. 8. Tracking fruit flies through occlusions (zooming in for more details). Enlarged parts
of frame 18-29 of left view are shown here. Dashed circles suggest the occurrence of oc-
clusions. One can see that the identities of fruit fly were correctly maintained, although the
occlusions last for several successive frames. Different colors represent different tracks.
Triangle represents the location in current frame and fruit flies failing to be detected be-
cause of occlusions etc. are denoted by squares.

120 fragments into 54 complete trajectories as shown in Fig. 9. The mean trajectory lengths of
these segments were 36.9 frames, and by contrast the mean trajectory lengths of the linked ones
were 84.0 frames. By visual inspection, one can see that these linked trajectories are seamlessly
smooth at the adjoining points. As shown in Fig. 10(a), we finally acquired 458 trajectories in
total. 22 trajectories of length longer than 150 frames were colored by velocity magnitude and
shown in Fig. 10(c).

3.3.3. Comparison with ground truth

Because the proposed method acquires the trajectories automatically, it is important and nec-
essary to compare the results with ground truth. A direct way to collect the ground truth 3D
tracks is manually detecting the targets, establishing detection correspondences across two
views frame by frame and then associating the 3D positions between consecutive frames to
form complete trajectories. Given that each frame consisted of almost two hundred Drosophila,
this process would be prohibitively labor-intensive and error prone. We accomplished this task
in a semi manual way: firstly, we manually corrected detection and tracking errors from the
results obtained by the proposed method; secondly, we associated the 2D tracks across two
cameras views by human visual inspection; finally, with the matched 2D track pairs and the
cameras parameters obtained from camera calibration, we computed the 3D trajectories, which
were projected on two image planes again to check the accuracy of manual tracking. Using
these trajectories as ground truth data, we finally collected 505 3D trajectories of length 27860
frames in total, while the proposed algorithm obtained 481 3D trajectories of length 27598
frames, among which 458 trajectories of length 27010 frames were correctly reconstructed,
that is, 96.9% of the ground truth (the corresponding TCF was 0.969) were correctly recovered.
Among the acquired trajectories, 23 trajectories of length 588 frames were incorrect, which
only occupied 2.1% of all the acquired trajectories. The comparison results are summarized in
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Fig. 9. Linking 3D track segments into complete trajectories (axis units: mm). Left: 120
linking candidates in all. Right: After performing linking module, 54 complete trajecto-
ries are obtained. One can see that these linked trajectories are seamlessly smooth at the
adjoining points. Trajectory beginning point is marked by a round dot.

Fig. 10. (a):458 3D trajectories of the Drosophila group were finally acquired. (b): 73 tra-
jectories which are longer than 100 frames are demonstrated here. Trajectory of the same
fruit fly is marked by the same colour. (c): 22 trajectories which are longer than 150 frames
are coloured by velocity magnitude. (axis unit: mm).
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Fig. 11. (a): Comparison between the ground truth and acquired trajectories. The proposed
method successfully recovered 96.9% of the ground truth. (b): Frequency distributions of
the errors between ground truth and acquired trajectories. The mean error is 0.08 mm.
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Fig. 11(a). As for the track completeness, only 4 trajectories in ground truth were broken into
8 track segments in the acquired results, and the TFF was 1.009 here, which indicated that the
proposed method was reliable to maintain the target identity in 3D space. We used the distance
in each frame between ground truth and the 458 correctly recovered trajectories to validate the
tracking accuracy. The distance distribution was shown in Fig. 11(b), and the average distance
was 0.08 mm. Some examples were shown in Fig. 12. The whole process took about 196 sec-
onds on the platform illustrated in experiment section. These results indicate that the proposed
approach is accurate and efficient to track large groups of moving particles in 3D space.
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4. Discussions and conclusions

We presented an automatic and efficient algorithm for accurately measuring 3D motion trajec-
tories of large numbers of moving particles using two video cameras. This method uses one
compact LAP framework and is computationally efficient by employing Hungarian algorithm
with cubic complexity. Three LAPs work collaboratively to reliably track large numbers of
moving particles in 3D space, and the proposed stereo matching technique, MECL, is able
to not only match visually similar objects across various camera views but also diminish the
influence of tracking errors. The proposed system accurately measured 3D flight paths of a fly-
ing Drosophila group comprising hundreds of individuals, the further analysis of which may
provide new insights to their flight behaviours in group context.

One limitation of the proposed approach is that it requires the collection of the whole video
sequences in order to acquire the 3D motion trajectories. This off-line tracking fashion, how-
ever, applies for many scenarios in group behavior research where real-time monitoring is not
desired. The proposed method, which achieved satisfying experimental results by using two
video cameras, can be straightforwardly extended to multi-view scenario when more than two
cameras are used. One intuitive way is by implementing the proposed algorithm in each pair of
views. Our algorithm is also applicable to a broad spectrum of other 3D tracking tasks. When
dealing with flocking birds or schooling fish, for example, one is only required to provide the
video sequences captured from calibrated and synchronized cameras. The proposed method is
also potential to be used for tracking microparticle systems.
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